
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

PATRICK SCHÄFER

Bag-Of-SFA-Symbols in Vector Space
(BOSS VS)

Preprint

ZIB Report 15-30 (May 2015)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Bag-Of-SFA-Symbols in Vector Space (BOSS VS)

Patrick Schäfer

8th May 2015

Abstract

Time series classification mimics the human understanding of simil-
arity. When it comes to larger datasets, state of the art classifiers reach
their limits in terms of unreasonable training or testing times. One repres-
entative example is the 1-nearest-neighbor DTW classifier (1-NN DTW)
that is commonly used as the benchmark to compare to and has several
shortcomings: it has a quadratic time and it degenerates in the presence
of noise. To reduce the computational complexity lower bounding tech-
niques or recently a nearest centroid classifier have been introduced. Still,
execution times to classify moderately sized datasets on a single core are
in the order of hours. We present our Bag-Of-SFA-Symbols in Vector
Space (BOSS VS) classifier that is robust and accurate due to invariance
to noise, phase shifts, offsets, amplitudes and occlusions. We show that it
is as accurate while being multiple orders of magnitude faster than state
of the art classifiers. Using the BOSS VS allows for mining massive time
series datasets and real-time analytics.

1 Introduction

Time series are recorded from sensors and other input sources over time. Ap-
plication domains include personalized medicine [1], human walking motions [2],
anthropology [3], security [4], historical documents [3], astronomy [5], and spec-
trographs [3], for example. While a human has an intuitive understanding of
the similarity of two time series, this task becomes very hard for a computer es-
pecially in the presence of noise. Typical similarity measures that resemble the
human understanding of similarity are the Euclidean Distance (ED), Dynamic
Time Warping (DTW) [6, 7] or most recently the noise robust Bag-of-SFA-
Symbols (BOSS) [8].

Classification describes the task of finding a label to an unlabeled time series.
Therefore a classifier has to produce a model from a set of labeled time series
that takes this unlabeled time series as input and outputs its label. This process
is referred to as testing or predicting. The task of building the model is referred
to as training.

Two trends have evolved in data analytics: the availability of large datasets
and machine learning on streaming data (aka real-time analytics). The first
requires for an algorithm to handle large amounts of data in reasonable time.
The latter is troublesome as the underlying source generating the data might
change over time. This requires for a classifier to evolve its classification model
by incremental updates or frequently rebuilding its model.

1

0

10-1

100

101

102

103

104

105

106
T

im
e
 i

n
 s

0

10-1

100

101

102

103

104

105

106

S
p

e
e
d

u
p

 o
ve

r
1

-N
N

 D
T

WTest Train Speedup

SAX VSM

1-NN Shotgun Ensemble

1-NN DTW Centroid (16)

1-NN Fast Shapelets

1-NN BOSS

SVM
1-NN DTW

1-NN BOSS VS (best coeff)

1-NN Euclidean

1-NN Euclidean Centroid

75.0%
80.0%
85.0%
90.0%
95.0%

100.0%

T
e
st

 A
cc

u
ra

cy

8
9

.2
%

9
0

.7
%

8
9

.2
%

9
4

.4
%

9
7

.9
%

9
4

.1
%

9
0

.7
%

9
4

.1
%

8
4

.9
%

7
6

.2
%

StarLightCurves

Figure 1: The accumulated train and test times and the accuracy on the Sta-
lightCurves dataset.

1-Nearest Neighbor (1-NN) classifiers are among the oldest classifiers, yet
form the basis for most time series classification algorithms [9, 4, 6, 8, 10, 11].
Their idea is simple: to obtain the label to a query, one has to find the sample
within a train dataset that minimizes a similarity measure, and assign its label
to the query. These classifiers do not require any training, though the simil-
arity measure might require training, like DTW with a warping window. The
authors [11] argue that 1-NN DTW is among the best classifiers by perform-
ing an exhaustive study using techniques like C4.5, Naive Bayes, the Bayesian
Network, SVM, or Rotation Forests. They conclude that “[...] a new algorithm
is only of interest in terms of accuracy if it can significantly outperform 1-NN
DTW [...]”. The O(Nn2) complexity of 1-NN DTW has been reduced by the use
of lower bounding techniques [6] and the introduction of a 1-NN DTW centroid
classifier [12], for time series length n and size of the dataset N . 1-NN DTW is
just one representative example. We believe that the computational complexity
of most state of the art classifiers is excessive even when it comes to moderately
sized datasets of N ≥ 103 time series. Apparat from the obvious fact that a
classifier has to provide fast testing times, the need for reasonable training times
emerges with real-time analytics. We claim based on the statement in [11]:

“A new algorithm is of interest if it can significantly outperform
1-NN DTW in terms of accuracy OR classification times”.

The StartLightCurve dataset is a moderately sized dataset containing 1000
train samples and 8236 test samples each of length 1024. Figure 1 illustrates
the test times, the train times, and the classification accuracy of state of the art
time series classifiers. The dashed line represents the speedup over 1-NN DTW.
Training the classifiers takes from seconds (BOSS VS) up to several days (SAX

2

VSM, DTW centroid). The 1-NN DTW takes more than 200 minutes on a single
core machine and 7 minutes on a 32 core machine to classify the 8236 queries in
parallel with an accuracy of 90.7%. The Euclidean Distance based classifiers are
the fastest but show the most inaccurate results with 84.9% and 76.2%, as these
provide no invariance to noise, horizontal shifts, warping, etc. The Bag-of-SFA-
Symbols (BOSS) [8] classifier offers the best classification accuracy of 97.9% at
the cost of high test and training times, due to its invariances to noise, phase
shifts, offsets, amplitudes and occlusions. Support Vector Machines (SVMs) are
very competitive with an accuracy of 94.1%, but have a high O(N2n) training
complexity and cannot easily cope with variable length time series. We added
a video to our website to illustrate differences in test times [13].

Our Bag-of-SFA-Symbols in Vector Space (BOSS VS) classifier offers the
third best classification accuracy with 94.1%. It allows for fast testing combined
with low training times. These are orders of magnitude lower than that of the
other classifiers. The testing time is even lower than that of the 1-NN ED
classifier. The BOSS VS has a test complexity of O(n) that allows for the
classification of massive time series datasets. Its moderate training complexity
of O(Nn

3
2) allows for frequent model updates such as in real-time predictive

analytics. Our contributions are as follows:

• We present the background of the Symbolic Fourier Approximation (SFA)
and the BOSS model in Section 2.

• We present the BOSS VS classifier for fast and accurate time series clas-
sification in Section 3.3.

• We present two case studies for noisy time series that underline the low
training, low testing times, and high classification accuracy of the BOSS
VS in Section 4.1.

• We show the scalability to 2 billion values equal to 15 GB of the BOSS
VS classifier in Section 4.2. The BOSS VS classifier is multiple orders of
magnitude faster than other state of the art classifiers and has a moderate
training complexity.

• The BOSS VS is very competitive with regards to classification accuracy
on the established UCR benchmark datasets (Section 4.3).

2 Background and Related Work

2.1 Definitions

A time series is a sequence of nεN real values, which are recorded over time:

T = (t1, . . . , tn) (1)

This time series is split into a set of subsequences, named windows hereafter,
using a windowing function.

Definition 1. Windowing: A time series T = (t1, . . . , tn) of length n is split
into fixed-size windows Si;w = (ti, . . . , ti+w−1) of length w using a windowing

3

function. Two consecutive windows at offset i and i+1 overlap in w−1 positions:

windows(T,w) =

 S1;w︸︷︷︸
(t1,. . . ,tw)

, S2;w︸︷︷︸, . . .
(t2,. . . ,tw+1)

, Sn−w+1;w

 (2)

To obtain a consistent scale and vertical alignment (offset and amplitude
invariance), each window is typically z-normalized by subtracting its mean and
dividing it by its standard deviation.

2.2 From Real Values to Words

The Symbolic Fourier Approximation (SFA) [14] is a symbolic representation
of time series. That is, a real valued time series is represented by a sequence
of symbols, named SFA word, using a finite alphabet of symbols. The SFA
transformation aims at:

• Noise reduction: Rapidly changing sections of a signal are often asso-
ciated with noise. These can be removed by a low pass filter. The SFA
word length determines the number of Fourier coefficients and thereby the
bandwidth of the low pass filter.

• String representation: SFA uses quantization and character strings.
This transformation allows for string matching algorithms like hashing or
the bag of words to be applied. The size of the alphabet determines the
degree of quantization and has an additional noise reducing effect, but it
might lead to information loss.

2.3 Symbolic Fourier Approximation (SFA)

SFA is composed of two operations (Figure 2):

1. Approximation using the Discrete Fourier Transform (DFT) configured
by the SFA word length lεN and

2. Quantization using a technique called Multiple Coefficient Binning (MCB)
configured by the alphabet size cεN equal to the number of bins.

Approximation aims at representing a signal of length n by a transformed signal
of reduced length l. Higher order Fourier coefficients are often associated with
rapid changes like dropouts or noise in a signal. The signal is low pass filtered by
using the first l � n Fourier coefficients. Quantization adds to noise reduction
by dividing the frequency domain into frequency bins and mapping a Fourier
coefficient to its bin. In essence MCB quantization determines equi-depth bins
to map the real and imaginary part of the Fourier coefficients separately to
symbols. As part of MCB a separate histogram for each real and imaginary
part is built using all train samples. The histograms are then partitioned using
equi-depth binning. Figure 2 bottom right illustrates the SFA transformation.
A time series is transformed using DFT resulting in a vector of real values
(1.89,−4.73,−4.89, 0.56). The vector is quantized to the SFA word DAAC
using the MCB bins.

4

0 64 128 192 256

-2

0

-5

-1

-3
T

qu
an

tis
at

io
n

ap
pr

ox
im

at
io

n
Fourier transforma time series T

-4

1

DFT 1.89 -4.73 -4.89 0.56

2 Fourier
coefficients

D A A C

SFA word
4 characters

MCB

0

F

E

D

C

B

E

C

B

A

F

E

D

B

A

F

E
D

C

D

C

B

A

1
2
3
4

-4
-3
-2
-1

5
F

A

6

-5

lookup

1.89

-4.73 -4.89

0.56

real1 imag1 real2 imag2

real1 imag1 real2 imag2

quantisation

real valued

discrete

Figure 2: SFA: A time series is (a) approximated (low pass filtered) using DFT
and (b) quantized using MCB resulting in the SFA word DAAC. [8, 14]

Modification to SFA In [14] we proposed to use the first l � n Fourier
coefficients. We noticed that for larger datasets, it is advantageous to use the
l Fourier coefficients which have the largest area under the curve in the MCB
histograms. This follows the assumption that if the value range is larger, the
Fourier coefficient is more important. We study the effects in our experiments.

2.4 The Bag of SFA Symbols (BOSS)

Figure 4: The BOSS workflow.[8]

The BOSS model describes each time
series as an unordered set of substruc-
tures using SFA words. The approach
has multiple advantages:

• it is fast, as hashing can be used
to measure the similarity of SFA
words,

• it applies noise reduction,

• it provides invariance to phase
shifts, offsets, amplitudes and oc-
clusions.

2.5 The BOSS Model

The BOSS model (Figure 4) has four parameters:

• the window length wεN: represents the length of the substructures.

5

0 200 400 600 800 1000
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

Sample

0 200 400 600 800 1000

bcc
bcc
bcc
bcc
bcc
bcc
bcc
bcc
...

ccc
ccc
bcc
bcb
bcb
bcb
bcb
bcb
...

bcb
bcb
bcb
bcb
bcb
bcb
bcb
bcb
...

bcb
bcb
ccc
ccc
ccc
ccc
ccc
ccc
...

bbb
bbb
abb
abb
abb
abb
abb
abb
...

bab
bab
cac
cac
cac
cac
cac
cac
...

cac
cac
cab
cab
cab
cac
dbc
dbd
...

ddd
ddc
cdc
cdb
bda
bda
bda
bda
...

bdb
bdc
bdc
bdc
bdc
bdc
adb
ada
...

aab
bab
bab
bab
bab
bab
bab
bac
...

bac
bac
bac
bac
cac
cac
cac
cac
...

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
...

bdb
bdb
bdb
bdb
bdb
bdb
bdb
bdb
...

2. SFA Words

0 200 400 600 800 1000

1.0

0.5

0.0

0.5

......

1. Windowing

a
a
a

a
a
b

a
b

a

a
b

b

a
b

c

a
ca

a
cb

a
cc

a
d

a

a
d

b

a
d

c

b
a
a

b
a
b

b
a
c

b
b

a

b
b

b

b
b

c

b
cb

b
cc

b
d

a

b
d

b

b
d

c

b
d

d

ca
b

ca
c

cb
a

cb
b

cb
c

ccb

ccc

cd
a

cd
b

cd
c

cd
d

d
a
b

d
a
c

d
a
d

d
b

b

d
b

c

d
b

d

d
cb

d
cc

d
cd

d
d

c

d
d

d

0
2
4
6
8

10
12
14
16
18

C
o
u

n
ts

3. BOSS histogram

Figure 3: The BOSS model is extracted from a sample time series using word
length 3 and 4 symbols (a-d). The black SFA words are skipped due to numer-
osity reduction.[8]

• mean normalization meanε[true, false]: set to true for offset invariance.

• the two SFA parameters word length lεN and alphabet size cεN: used
for low pass filtering and the string representation.

First, sliding windows of length w are extracted from a time series. Intuitively w
should roughly represent the length of the substructures within the time series.
Next, each sliding window is normalized to have a standard deviation of 1 to
obtain amplitude invariance. The parameter mean is treated as a parameter
of our mode and determines if the mean value is to be subtracted from each
sliding window to obtain offset invariance. For example, heart beats should
be compared using a common baseline, but the pitch of a bird sound can be
significant for the species. Finally, the SFA transformation is applied to each
sliding window. The BOSS model transforms a time series into an unordered
set of SFA words. Using an unordered set provides invariance to the horizontal
alignment of each substructure within the time series (phase shift invariance).
In stable sections of a signal the SFA words of two neighboring sliding windows
are very likely to be identical. To avoid outweighing stable sections of a signal,
numerosity reduction is commonly is applied [15, 16]. That is, the first occur-
rence of an SFA word is registered and all duplicates are ignored until a new
SFA word is discovered. In Figure 3 the first SFA words are identical:

S = bcc bcc bcc bcc bcc bcc bcc bcc ccc ccc bcc bcb bcb bcb bcb . . .

If numerosity reduction is applied to S this leads to:

S′ = bcc ccc bcc bcb . . .

6

map <string ,int > BOSSTransform(sample ,w,l,c,mean)
(1) map <string ,int > boss
(2) for s in sliding_windows(sample ,w)
(3) word = SFA(s,l,c,mean)
(4) if word != lastWord // numerosity reduction
(5) boss[word]++ // increase counts
(6) lastWord = word
(7) return boss

Algorithm 1: The BOSS transformation.

From these SFA words a histogram is constructed, which counts the occur-
rences of the SFA words. In the above example the BOSS histogram of S′

is:

B : bcc = 2, ccc = 1, bcb = 1, . . .

This BOSS histogram ignores the ordering of the occurrences of the SFA
words within a time series. This provides phase invariance of the substructures
and thereby eliminates the need for preprocessing the samples by a domain
expert for approximate alignment of the substructures.

Definition 2. Bag-Of-SFA-Symbols (BOSS): Given are a time series T , its slid-
ing windows Si;w and SFA transformations SFA(Si;w)εΣl, for i = 1, 2, . . . , (n−
w + 1). The BOSS histogram B(t) : Σl → N is a function of the SFA word
space Σl to the natural numbers. The number represents the occurrences of an
SFA word within T counted after numerosity reduction.

BOSS transformation (Algorithm 1) The algorithm extracts sliding win-
dows of length w from the sample (line 2) and determines SFA words (line 3)
with length l and alphabet size c. Mean normalization is obtained by dropping
the first Fourier coefficient in each SFA word. Finally, a new SFA word is added
to the histogram (line 5), if two subsequent SFA words are different (line 4,
numerosity reduction).

2.6 Related Work

Classical data mining algorithms like SVMs, decision trees, rotation or random
forests have been used in the context of time series [17]. However, these did not
perform better than the 1-NN DTW classifier [6], which is commonly used as
the benchmark to compare to [11]. Its computational complexity is quadratic in
the length n of the time series and linear in the size N of the training dataset:
O(Nn2). Much effort has been spent to reduce the computational complexity
by the use of lower bounding techniques [6] and most recently a nearest centroid
classifier has been presented [12].

Shapelet classifiers [4, 18] extract representative variable-length subsequences
(called shapelets) from a time series. A decision tree is built using these shapelets
within the nodes of the tree. A distance threshold is used for branching. These
classifiers have a high computational complexity for training of O(N2n3) [4] to
O(Nn2) [18]. The 1-NN Shotgun Classifier [10] divides the query into disjoint
subsequences and slides each query window over the sample to find the position

7

that minimizes the Euclidean distance. Both, Shapelet and the Shotgun Clas-
sifiers are based on the Euclidean Distance and are therefore sensitive to noisy
data.

In our previous work [8] we underlined the importance of the tolerance to
noise for the time series classification task and showed that the BOSS model
performs better than state of the art in terms of classification accuracy. In this
work, we significantly reduce the computational complexity of the BOSS model
to support the classification of large time series datasets. The BOSS model is
based on the Symbolic Fourier Approximation (SFA) that has been introduced
in [14] in the context of similarity search on massive time series datasets using
the SFA trie. SFA is a symbolic representation of time series like Symbolic
Aggregate approXimation (SAX) [16]. Unlike SAX, which uses mean values
(PAA) to approximate a time series, SFA uses DFT coefficients. Both, have a
noise canceling effect by smoothing a time series. One disadvantage of using
mean values is that these have to be recalculated when changing the resolution
- i.e. from weekly to monthly mean values. The resolution of DFT can be incre-
mentally adapted by choosing an arbitrary subset of Fourier coefficients without
recalculating the DFT of a time series. Maximizing the train accuracy while
increasing the number of Fourier coefficients is the core idea of the presented
algorithms. Dropping the rear mean values of a SAX word is equal to dropping
the rear part of a time series. To avoid this, one has to recalculate all SAX
transformations each time we choose to represent a time series by a different
SAX word length.

The bag-of-patterns (BOP) model [15] is the closest to our work. BOP
extracts substructures as higher-level features of a time series. BOP transforms
these substructures using SAX for quantization and the Euclidean Distance as
similarity metric. SAX-VSM [19] extends BOP by the use of the tf-idf weighting
of the bags and Cosine similarity as similarity metric. It uses one bag of words for
each class, instead of one bag for each sample. SAX-VSM has a huge parameter
space and has to recalculate all SAX coefficients for each new set of parameters,
as mentioned before. This results in an unreasonable high training time for
even moderately sized datasets. In contrast our 1-NN BOSS VS uses SFA [14]
that allows to adapt the length of the SFA words on the fly and has a much
smaller parameter space (smaller training times). Furthermore, it uses the offset
invariance as a model parameter.

3 The BOSS in Vector Space

The vector space model has been presented in information retrieval for repres-
enting text documents as vectors of keywords. Vector operations like cosine
similarity are used to compare the similarity of documents. In the vector space
model as proposed in [20] the term frequency inverse document frequency (tf-
idf) model is used. The tf-idf measure is used to weigh each term frequency
in the vector to give a higher weight to representative words of a class. In our
model the term is an SFA word and a document is equal to a time series. We
use an approach presented in [19] and calculate the inverse document frequency
(idf) for each class as opposed to each time series. The term frequency (tf) for

8

an SFA word t of a time series T is given by:

tf(t, T) =

{
1 + log(BT (t)) , if BT (t) > 0

0 , otherwise
(3)

with BT (t) being the BOSS histogram which represents the raw frequency
of an SFA word in the specific time series T . In the same manner the term
frequency (tf) for an SFA word t within a class C is given by:

tf(t, C) =

{
1 + log(

∑
TεC BT (t)) , if

∑
TεC BT (t) > 0

0 , otherwise
(4)

The inverse document frequency (idf) captures how relevant an SFA word is
across all time series T within one class C:

idf(t, C) = log
|C|

|{C |TεC ∧BT (t) > 0}|︸ ︷︷ ︸
number of classes that contain t

(5)

The idf for an SFA word represents the total number of classes divided by
the number of classes this SFA word occurs in.

The tf-idf of an SFA word t within a class C is then defined as:

tfidf(t, C) = tf(t, C) · idf(t, C) (6)

= (1 + log(
∑
TεC

BT (t))) · log
|C|

|{C |TεC ∧BT (t) > 0}|
(7)

High weights are obtained by SFA words with a high frequency that occur
only in a specific class. Thus, SFA words that are common within all classes
receive a low weight and are thereby filtered out.

The similarity of a tf vector Q to an idf class vector C is then computed
using the Cosine similarity metric:

sim(Q,C) =

−→
Q ·
−→
C∥∥∥−→Q∥∥∥ · ∥∥∥−→C ∥∥∥ =

∑
tεQ tf(t, Q) · tfidf(t, C)√∑

tεQ(tf(t, Q))2
√∑

tεC(tfidf(t, C))2
(8)

3.1 Intuition behind BOSS VS

The BOSS VS has several advantages compared to other approaches:

1. It applies noise reduction by using the SFA representation.

2. It provides invariance to phase shifts, offsets, amplitudes and occlusions
by discarding the original ordering of the SFA words and normalization.

3. It highlights characteristic SFA words by the use of the tf-idf weight mat-
rix. SFA words that occur frequently across all classes are given a lower
idf weight. This has an additional noise reducing effect.

4. It uses a compact representation of classes instead of time series and
thereby minimizes the influence of erroneous and extraneous data within
a single time series, and it significantly reduces the computational com-
plexity.

Properties (1) and (2) were presented with the BOSS model as presented in [8].
The BOSS VS adds properties (3) and (4).

9

0 50 100 150 200 250
2

0

2

Time Series

Bell

a
a

a
b

a
c

a
d

b
d

ca cb cc cd d
a

d
b

d
c

0

2

4

C
o
u

n
ts

BOSS histogram

0 50 100 150 200 250

0

2 Bell

a
a

a
b

a
c

a
d

b
d

ca cb cc cd d
a

d
b

d
c

0

2

4

C
o
u

n
ts

0 50 100 150 200 250

2

0

2

4
Cylinder

b
a

b
b

b
c

ca cb cc cd d
a

d
b

d
c

d
d

0
2
4
6
8

10
12

C
o
u

n
ts

0 50 100 150 200 250
2

0

2

4
Cylinder

b
a

b
b

b
c

cb cc cd d
a

d
b

d
c

d
d

0

2

4

6

8

C
o
u

n
ts

0 50 100 150 200 250
2

0

2

4
Funnel

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0

2

4

6

C
o
u

n
ts

0 50 100 150 200 250
2

0

2

4

Funnel

a
a

a
b

a
c

a
d

b
c

b
d

cb cc cd d
a

d
b

d
c

0

2

4

C
o
u

n
ts

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0
0.2
0.4
0.6
0.8
1.0

tf
-i

d
f

tf-idf class: Bell

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0
0.2
0.4
0.6
0.8
1.0

tf
-i

d
f

tf-idf class: Cylinder

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0
0.2
0.4
0.6
0.8
1.0

tf
-i

d
f

tf-idf class: Funnel

Figure 5: The BOSS VS: first, the SFA word frequencies are stored in the BOSS
histograms from each time series. Finally, the tf-idf vectors are constructed from
the BOSS histograms for each class.

3.2 Training

Figure 5 illustrates the training of the BOSS VS. Each time series is trans-
formed to its BOSS histogram. Based on all BOSS histograms the tf-idf matrix
is constructed. It contains one tf-idf vector for each class (i.e.: Cylinder, Bell,
Funnel). Training the BOSS model aims at finding the parameters that max-
imize the accuracy on a train dataset:

• the window length wεN.

• mean normalization meanε[true, false].

• the SFA word length lεN and alphabet size cεN.

We use grid search in combination with cross-validation to optimize the para-
meters for mean, w, l, and use a fixed alphabet size of c = 4. It is possible
to use different alphabet sizes, but this would increase execution times. We
empirically observed that a constant alphabet size of 4 was sufficient for a high
classification accuracy.

The mean normalization is a boolean parameter, and increases the complex-
ity by a constant factor of 2 when both true and false are tested. We choose
the SFA word lengths from {4, 6, 8, 10, 12, 14, 16}. In total these are 7 values.
Searching for the optimal window length can be computationally expensive, as
there are at most n windows for time series length n. To significantly reduce
training times, we chose to train using only the

√
n windows at equidistance in

10

(int ,int ,int ,bool) fit(samples ,labels ,mean ,windowLengths)
(1) maxL=16, c=4
(2) for w in windowLengths // search window lengths
(3) bags = BOSSTransform(samples ,w,maxL ,c,mean) // obtain the bags
(4) bestCor=0, bestL=0, bestW=0
(5) for l in {4 ,6.. maxL} // search word lengths
(6) tfIdfs = calcTfIdf(bags , l) // tf -idf matrix
(7) correct =0
(8) for qId in 1..len(samples) // leave -one -out
(9) best = predict(qId , bags[qId], tfIdfs)
(10) if best has correct label then correct ++
(11) if correct > bestCor // keep best
(12) (bestCor , bestL , bestW) = (correct , l, w)
(13) return (bestCor , bestL , bestW , mean) // return best parameters

Algorithm 2: Fit: Train the parameters using leave-one-out cross validation.

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0

0.2

0.4

0.6

0.8

1.0

tf
-i

d
f

tf-idf class: Bell

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0

0.2

0.4

0.6

0.8

1.0

tf
-i

d
f

tf-idf class: Cylinder

a
a

a
b

a
c

a
d

b
a

b
b

b
c

b
d

ca cb cc cd d
a

d
b

d
c

d
d

0.0

0.2

0.4

0.6

0.8

1.0

tf
-i

d
f

tf-idf class: Funnel

0 50 100 150 200 250
2

0

2

Windowing
+SFA

Time Series

Bell

a
a

a
b

a
c

a
d

b
d

ca cb cc cd d
a

d
b

d
c

0

2

4

C
o
u

n
ts

M
ax

im
iz
e

Co
si
ne

Si
m

ila
ri
ty

M
a
x
im

iz
e

C
o
s
in

e
S

im
il
a
ri

ty

M
ax

im
iz

e

Co
si

ne

Si
m

ila
ri

ty

BOSS histogram

CLASSIFICATION

Figure 6: Classification of an unlabeled query using the BOSS VS: first the
query is transformed to its BOSS histogram and tf vector and finally the Cosine
similarity is maximized.

the interval [10, n]. In total this parameter space has the size: 2 · 7 ·
√
n. We

will analyze the effects in our experiments.
At the end of the training phase, we obtain tf-idf vectors for each class of

the train dataset. This tf-idf matrix is the compressed representation of the
train dataset.

BOSS VS Fit (Algorithm 2) The algorithm iterates all
√
n window lengths

(line 2) and obtains the BOSS model for each window length (line 3). Next,
the tf-idf weight matrix is computed for each class based on the BOSS models
of each time series and a concrete SFA word length (lines 5–6). Leave-one-out
cross-validation is performed for each sample to predict the best class (lines 8–
10). Finally, the best configuration is returned (line 13). The mean normaliza-
tion parameter is a Boolean parameter to drop the DC Fourier coefficient. It is
constant for a whole dataset and not set per sample.

3.3 Classification

Classification describes the task of assigning a label to an unlabeled time series
Q. Figure 6 illustrates this classification task. It requires the tf-idf weight
matrix to be computed for each class (i.e. Cylinder, Bell, and Funnel) based on

11

String predict(tf,samples ,tfIdfs)
(1) (maxSim , bestClass) = (0, NULL)
(2) for classId in 1.. len(classes) // search class
(3) smilarity = dotProduct(tf, tfIdfs[classId])
(4) if smilarity > maxSim // store the best class
(5) (maxSim , bestClass) = (similarity , classId)
(6) return bestClass

Algorithm 3: Predict: Classification using the BOSS VS.

a train dataset. First, the unlabeled query Q has to be transformed into the tf
vector using the BOSS model and the optimal features (window length, mean
normalization, SFA word length) obtained from the training phase. Next, the
Cosine similarity is calculated using the tf-idf weight matrix for each class C of
the train dataset. Finally the unlabeled time series is assigned to the class Ci
that maximizes the Cosine similarity:

label(Q) = argmax
CiεC

(sim(Q,Ci))

BOSS VS Classification (Algorithm 3) The algorithm is based on 1-
nearest-neighbor (1-NN) classification using the tf-idf weight matrix. Using
the classes instead of the time series significantly reduces the computational
complexity for classification. First, all classes (line 2) are iterated and the cross
product between the tf vector of the query and the tf-idf weight matrix for
each class is calculated (line 3). The class that maximizes the cosine similarity
is chosen (lines 4–5) as the query’s class label.

3.4 Computational Complexity

The BOSS model The BOSS model has a runtime that is linear in n: there
are n−w+1 sliding windows in each time series of length n. The transformation
of one sliding window of length w is constant O(l) in the window length (see [8]),
whereas the first sliding window has to be calculated using the Fast Fourier
Transform O(w logw):

T (BOSS) = O(w logw + l · (n− w))

= O(n) with l� w � n (9)

Cosine Similarity The computational complexity of the cosine similarity is
linear in the length of the time series n. Each BOSS histogram contains at most
n − w + 1 SFA words. A histogram lookup for an SFA word has a constant
time complexity by the use of hashing. This results in a total complexity that
is linear in n:

T (BOSSDistance) = O(n− w + 1) = O(n) (10)

While the computational complexity is bound by the time series length n,
the actual number of unique SFA words is typically smaller due to duplicates
and numerosity reduction.

12

Classification The computational complexity for classification is given by a
1-NN search over the |C| classes using the cosine similarity calculations:

T (Predict) = O(|C| · T (BOSSDistance))

= O(|C| · n) (11)

Rivalling methods have the complexity: 1-NN ED O(Nn), 1-NN DTW
O(Nn2), Bag-of-Pattern O(Nn), or 1-NN BOSS O(Nn) with number of samples
N .

Training The computational complexity of the training phase results from (a)
building N histograms, one for each of N time series, and (b) finally building
|C| tf-idf vectors, one for each class C. This is done for

√
n window lengths:

T (Fit) = O(
√
n ·N · [T (BOSS) + T (Predict)])

= O(Nn
3
2 |C|)

= O(Nn
3
2) with C � N (12)

4 Experiments

We claim that the BOSS VS offers a very good trade-off between classification
accuracy and execution times. We evaluated this using two case studies and
established benchmark datasets. Our web page reports all raw numbers and
contains C++ source codes [13]. The BOSS VS classifier was implemented in
C++ and JAVA. All experiments were performed using the JAVA implement-
ation on a shared memory machine running LINUX with 8 Quad Core AMD
Opteron 8358 SE processors, and JAVA JDK x64 1.7. All experiments consist of
two phases: model building using the train dataset and testing the classification
accuracy using the test dataset. It is impossible to benchmark all classification
algorithms. We did our best to include as many state of the art algorithms
as possible. The BOSS VS classifier is compared to state of the art classifiers
like nearest neighbor based classifiers like 1-NN fast shapelets [18], 1-NN bag-
of-patterns [15], 1-NN shotgun ensemble [10], 1-NN ED or 1-NN DTW with
the optimal warping window [6], SAX VSM [19], 1-NN BOSS classifier [8], an
ensemble technique Proportional (Prop) [21], or machine learning techniques
such as support vector machines (SVM) with a quadratic and cubic kernel, and
a tree based ensemble method (random forest). Where possible we used the
implementations given by the authors and python using sklearn for the SVM
benchmarks.

4.1 Case Studies

We present two case studies using (a) a moderately sized dataset resulting from
personalized medicine and (b) a small dataset capturing human walking mo-
tions. Both datasets have in common that they contain noisy data. Figure 7
shows two examples of each class in the datasets.

13

0 100 200 300 400 500

Walking Motions

0 500 1000 1500 2000 2500 3000 3500

Heartbeats

Figure 7: Two samples representing each class of the case studies: abnormal
and normal walking motions, and ECG signals from 15 subjects.

4.1.1 Personalized Medicine: Heartbeat BIDMC

The BIDMC Congestive Heart Failure Database [1] consists of ECG recordings
of 15 subjects, who suffer from severe congestive heart failures. The record-
ings contain noisy or extraneous data, when the recordings started before the
machine was connected to the patient. ECG signals show a high level of redund-
ancy due to repetitive heart beats but even a single patient can have multiple
different heart beats. The total size of this dataset is equal to 9 million data
points (10 hours sampled at at 250 Hz). We used the train/test split provided
by [22] containing 600 samples each. The train and test splits have different
lengths of 3750 and 11250.

Figure 8 shows that the 1-NN BOSS, the 1-NN BOSS VS and the 1-NN
Shotgun Ensemble classifiers offer the best classification accuracy. The other
classifiers have a much lower classification accuracy. This is not surprising as
the data is noisy and requires invariance to horizontal shifts or time warping in
order to cope with the periodic patterns. Train times vary from minutes (BOSS,
BOSS VS) to days (SAX VSM, Shotgun classifier, and DTW centroid). 1-NN
DTW has the highest test times with 30 minutes. The 1-NN Euclidean Centroid
classifier has the lowest test time with 0.01s, but the worst accuracy. Our 1-NN
BOSS VS offers the best trade-off between train/test times and accuracy. The
test time is orders of magnitude lower than that of the more complex classifiers.
Even when combining a test time of 2s and a train time of 150s, the 1-NN BOSS
VS is one order of magnitude faster than the 1700s 1-NN DTW classifiers’ test
times.

4.1.2 Human Walking Motions: Toe Segmentation

This dataset [2] contains variable length walking motions of four subjects. We
benchmarked the first segmentation approach provided by [3]. The data were
captured by recording the z-axis accelerometer values of either the right or the
left toe and categorized by the labels normal walk and abnormal walk. The

14

0

10-1

100

101

102

103

104

105

106
T

im
e
 i

n
 s

0

10-1

100

101

102

103

104

105

106

S
p

e
e
d

u
p

 o
ve

r
1

-N
N

 D
T

WTest Train Speedup

SAX VSM

1-NN Shotgun Ensemble

1-NN DTW Centroid (8)

1-NN Fast Shapelets

1-NN DTW

1-NN BOSS

1-NN BOSS VS (lowest)

1-NN BOSS VS (best)

1-NN Euclidean

1-NN Euclidean Centroid

10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

T
e
st

 A
cc

u
ra

cy

1
0

0
.0

%

9
9

.5
%

6
3

.3
%

7
8

.7
%

6
2

.8
%

1
0

0
.0

%

1
0

0
.0

%

1
0

0
.0

%

3
5

.0
%

1
5

.0
%

Heartbeats

Figure 8: Accuracy and classification times for ECG recordings. We could not
benchmark SVM due to variable time series lengths. Fast Shapelets timed out
after 6 days of training.

difficulties in this dataset result from variable length gait cycles, gait styles and
paces due to different subjects throughout different activities including stops
and turns. A normal walking motion consists of up to three repeated similar
patterns. This is a small dataset containing 40 train and 228 test samples of
variable lengths.

Figure 9 shows that the 1-NN BOSS classifier offers the best classification
accuracy with 97.4% followed by the 1-NN Shotgun Ensemble and 1-NN BOSS
VS classifiers. The accuracy of the other classifiers drops significantly. The
BOSS and BOSS VS classifiers perform well due to the periodicity in walking
motions and the noise reducing effect of SFA. Train times vary from milliseconds
to up to 2 hours (SAX VSM). 1-NN DTW has the highest test times with 2s.
Again, the 1-NN Euclidean Centroid classifier has the lowest train and test
times, but the worst accuracy.

Our 1-NN BOSS VS offers the best trade-off between train/test times and
accuracy. It offers the second lowest test time and a very low train time. Note,
that is was advantageous here to use the best Fourier coefficients instead of the
lowest Fourier coefficients. This provides an increase of accuracy by 7 percentage
points.

4.2 Scaling to a Billion Values

This synthetic dataset shows scalability in terms of wall-lock times. We test the
scalability based on the Cylinder-Bell-Funnel (CBF) dataset using a variable
number of time series N of 103 up to 8·106 and a fixed time series length n = 256
(Figure 10). The largest tested dataset has 2.048 billion values (= 2 ·109) which
is roughly equal to 15 GB of data. This dataset is widely used and contains

15

0

10-1

100

101

102

103
T

im
e
 i

n
 s

0

10-1

100

101

102

103

S
p

e
e
d

u
p

 o
ve

r
1

-N
N

 D
T

WTest Train Speedup

SAX VSM

1-NN DTW Centroid (8)

1-NN Fast Shapelets

1-NN BOSS

1-NN DTW

1-NN Shotgun Ensemble

1-NN BOSS VS (best)

1-NN BOSS VS (lowest)

1-NN Euclidean

1-NN Euclidean Centroid

50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

T
e
st

 A
cc

u
ra

cy

9
4

.7
%

7
1

.9
%

8
3

.7
%

9
7

.4
%

6
6

.2
%

9
6

.9
%

9
6

.5
%

8
9

.9
%

6
2

.3
%

4
6

.5
%

Human Walking Motions

Figure 9: Accuracy and classification times for human walking motions. We
could not benchmark SVM due to variable length time series.

three basic shapes: cylinders, bells and funnels. We performed 3000 predictions
for each classifier. Not all classifiers could be tested for all dataset sizes due to
timeouts or out of memory errors. We stopped a classifier when it took more
than several days to train. This happened for 1-NN DTW Centroid, SVMs and
the 1-NN Shotgun Ensemble.

We focus on execution time rather than accuracy here. For the sake of
completeness, the BOSS VS scores an accuracy of 99.9%. Figure 10 shows two
sets of curves for training and testing the classifiers. Training the BOSS VS
classifier took a maximum of 4.4 hours for the largest dataset size of 2 billion
values. These train times are quickly amortized given the presented 1-NN DTW
test times. 1-NN DTW took 27 hours to classify the queries within 0.2 billion
values, where 1-NN BOSS VS takes less than 1/50 of the time to train. We
didn’t continue to measure the 1-NN DTW times from there on.

1-NN BOSS VS testing took on average 10−1 seconds for all 3000 predictions
regardless of the dataset size. The other classifiers scale with the size of the
dataset, with the exception of 1-NN DTW centroid which has an enormous
train time and timed out after 7 days for datasets larger than 2 ·106. The 1-NN
BOSS runs out of memory at 2 · 107 values. In total the BOSS VS is multiple
orders of magnitude faster than the other classifiers. It has moderate training
times. These empirical results are not surprising given the test complexities of
the other classifiers and that our 1-NN BOSS VS is just O(n).

4.3 Classification Accuracy

All classifiers were evaluated using the same 32 time series datasets from the
UCR time series classification archive [5] as previously published [23, 24, 9, 15,
4, 18, 19]. Each dataset provides a train/test split. By the use of these train/test

16

105 106 107 108 109 1010

Number of Values (Nn)

10-2

10-1

100

101

102

103

104

105

106

T
im

e
 i

n
 s

e
co

n
d

s

Predict/Test

105 106 107 108 109 1010

Fit/Train
Wall-clock times

1-NN BOSS VS

1-NN BOSS

1-NN DTW

SVM

1-NN Shotgun Ensemble

1-NN DTW Centroid (16)

1-NN Euclid

timed out

out of
memory

timed out
O(Nn3/2)

timed out
O(Nn)

O(Nn2)

O(Nn)

O(n2)

O(n2)

O(Nn2)

O(n)

Figure 10: Scalability for an increasing number of time series. Dotted lines
represent the train time, solid lines represent the test times.

splits, the results are comparable. All our results are based on the test accuracy
of the classifiers.

Classification Accuracy Figure 11 shows a critical difference plot over the
average ranks of the classifiers as introduced in [25]. The classifiers with the
lowest (best) ranks are to the right. The group of classifiers that are not sig-
nificantly different are connected by a bar. 1-NN BOSS performs best and has
the lowest rank. The strength of the 1-NN BOSS VS classifier lies in its com-
putational complexity rather than its high classification accuracy. Still it is not
significantly different from the best classifiers 1-NN BOSS, PROP, SAX-VSM, 1-
NN Shotgun ensemble, or 1-NN DTW. The 1-NN DTW classifier is commonly
used as the benchmark to compare to [9, 11] and performs worse than 1-NN
BOSS VS by almost 2 ranks.

Wall-clock time Figure 12 shows the wall-clock times of the four most ac-
curate classifiers in a pairwise comparison to BOSS VS. PROP is an ensemble of
classifiers including 1-NN DTW and as such can not be faster than 1-NN DTW.
Again our BOSS VS classifier significantly outperforms the other classifiers by
2 to 4 orders of magnitude in terms of test times (predict). The BOSS VS is
significantly faster than the BOSS in terms of train times (fit). It seems to have
similar training times as the Shotgun ensemble classifier. When looking at the
raw data, the Shotgun ensemble classifier trains faster for very small datasets
and is orders of magnitude slower for moderate to large sized datasets. The
authors of SAX VSM report training times for the UCR datasets. These are 4

17

��

�� �� �� �� �� �� � � � � � � � � �

����
���������

����
����

����
���������������������

����
������������

����
�������

�
��������

����
����������������������

����
��������������������

����
��������������������

����
���������������������

����
�������

����
��������������

����
��������������

����
�������������������

����
����������������

Figure 11: Critical difference diagram for state of the art classifiers on the UCR
datasets. The best classifiers are to the right. Critical difference is 3.5.

to 5 orders of magnitude larger (in the order of weeks in total) than the BOSS
VS training times. This might be a result of the large parameter space of the
SAX VSM classifier. We could not verify these training times, and thus report
the test times only. These are up to 2 orders of magnitude higher than those
of the BOSS VS. We conclude that the BOSS VS is orders of magnitude faster
than its competitors.

4.4 Impact of Design Decisions

The BOSS VS is based on four design decisions:

1. Testing a subset of
√
n windows for training as opposed to using all win-

dows.

2. Use mean normalization as a parameter or always norm the mean of all
windows.

3. Using numerosity reduction to avoid outweighing stable sections of a signal
as opposed to no numerosity reduction.

4. Using the best Fourier coefficients or using the lowest Fourier coefficients.

The BOSS VS was designed to use a subset of windows, mean normalization
as a parameters, numerosity reduction, and the lowest Fourier coefficients (Sub-
set;Numerosity;Lowest).

Figure 13 shows that the average score on the UCR datasets slightly improves
when numerosity reduction is applied. Using the best Fourier coefficients seems
to perform worse than using the lowest Fourier coefficients for the UCR data-
sets. However, it is advantageous for some datasets like the human walking
motions (Figure 9) or the StarlightCurve dataset. Using the mean normaliza-
tion as a parameter performs significantly better than always norming the data
(“Norm”). The best 5 classifiers all use it as a parameter, whereas the worse

18

100 101 102 103 104 105

1-NN BOSS VS in ms

100

101

102

103

104

105

1
-N

N
 D

T
W

 i

n
 m

s

Classification Time Comparison

predict

10
0x

10
00
x

10
x

1x 0.
1x

0.
01
x

0.
00
1x

100 101 102 103 104 105

1-NN BOSS VS in ms

100

101

102

103

104

105

1
-N

N
 B

O
S

S

in
 m

s

Classification Time Comparison

fit predict

10
0x

10
00
x

10
x

1x 0.
1x

0.
01
x

0.
00
1x

100 101 102 103 104 105

1-NN BOSS VS in ms

100

101

102

103

104

105

S
A

X
 V

S
M

in

 m
s

Classification Time Comparison

predict

10
0x

10
00
x

10
x

1x 0.
1x

0.
01
x

0.
00
1x

100 101 102 103 104 105

1-NN BOSS VS in ms

100

101

102

103

104

105

1
-N

N
 S

h
o
tg

u
n

 E
n

se
m

b
le

 i

n
 m

s
Classification Time Comparison

fit predict

10
0x

10
00
x

10
x

1x 0.
1x

0.
01
x

0.
00
1x

Figure 12: Predict (test) and fit (train) wall-clock times of the most accurate
classification algorithms compared to 1-NN BOSS VS.

��

�� � � � � � � � � �

����
�����������������������

����
��������������������������

����
��������������������������

����
�����������������������������

����
���������������������

����
��������������������������������

����
��������

�
������������������������

����
�����������������������������������

����
�������

Figure 13: Critical difference diagram for different design decisions made. The
best classifiers are to the right. Critical difference is 2.2. BOSS VS is Sub-
set;Numerosity;Lowest.

19

classifiers always subtract the mean from the windows. Using
√
n windows per-

forms significantly worse than using all windows but is crucial for a low training
time which is reduced by a factor of

√
n.

5 Conclusion

In the context of mining large datasets and real-time analytics there is a need for
time series classification algorithms with (a) a low test time to allow for mining
large datasets, (b) tolerance to noise to provide high classification accuracy and
(c) a moderate train time to allow for frequent model updates. This work intro-
duces the BOSS in Vector Space that combines constant time classification and
linear time training with high classification accuracy due to invariance to noise,
phase shifts, offsets, amplitudes and occlusions. Our experimental evaluation
shows the scalability to up to 2 billion values (15 GB) with a classification time
that is multiple orders of magnitude faster than 1-NN DTW with the same level
of classification accuracy. The BOSS VS beats competitors on two use cases for
noisy data and it is in the group of best state of the art classifiers with regards
to classification accuracy on the UCR benchmark datasets.

Acknowledgment

The author would like to thank Claudia Eichert-Schäfer, and Florian Schintke,
and the owners of the datasets.

References

[1] The BIDMC congestive heart failure database. http://www.physionet.

org/physiobank/database/chfdb/ (2014)

[2] CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.

edu/ (2014)

[3] Ye, L., Keogh, E.J.: Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. Data Min. Knowl. Discov.
(2011)

[4] Mueen, A., Keogh, E.J., Young, N.: Logical-shapelets: an expressive prim-
itive for time series classification. In: KDD, ACM (2011)

[5] UCR Time Series Classification/Clustering Homepage. http://www.cs.

ucr.edu/~eamonn/time_series_data (2014)

[6] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B.,
Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time
series subsequences under dynamic time warping. In: ACM SIGKDD,
ACM (2012)

[7] Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing (1) (1978)

20

[8] Schäfer, P.: The boss is concerned with time series classification in the
presence of noise. Data Mining and Knowledge Discovery (2014)

[9] Ding, H.: Querying and mining of time series data: experimental compar-
ison of representations and distance measures. VLDB Endowment (2008)

[10] Schäfer, P.: Towards time series classification without human prepro-
cessing. In: Machine Learning and Data Mining in Pattern Recognition.
Springer (2014) 228–242

[11] Bagnall, A., Lines, J.: An experimental evaluation of nearest neighbour
time series classification. arXiv preprint arXiv:1406.4757 (2014)

[12] Petitjean, F., Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh,
E.: Dynamic time warping averaging of time series allows faster and more
accurate classification. In: IEEE International Conference on Data Mining.
(2014)

[13] Webpage, BOSS VS. http://www.zib.de/patrick.schaefer/bossVS/

(2014)

[14] Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and
index for similarity search in high dimensional datasets. In: EDBT, ACM
(2012)

[15] Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using
bag-of-patterns representation. J. Intell. Inf. Syst. (2012)

[16] Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing SAX: a novel sym-
bolic representation of time series. Data Mining and Knowledge Discovery
(2007)

[17] Esling, P., Agon, C.: Time-series data mining. ACM Computing Surveys
(CSUR) 45(1) (2012) 12

[18] Rakthanmanon, T., Keogh, E.: Fast Shapelets: A Scalable Algorithm for
Discovering Time Series Shapelets. In: SDM. (2013)

[19] Senin, P., Malinchik, S.: Sax-vsm: Interpretable time series classification
using sax and vector space model. In: Data Mining (ICDM), 2013 IEEE
13th International Conference on, IEEE (2013) 1175–1180

[20] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic
indexing. Communications of the ACM 18(11) (1975) 613–620

[21] Lines, J., Bagnall, A.: Time series classification with ensembles of elastic
distance measures. Data Mining and Knowledge Discovery (2014) 1–28

[22] Hu, B., Chen, Y., Keogh, E.: Time Series Classification under More Real-
istic Assumptions. In: SDM. 2013

[23] Bagnall, A., Davis, L.M., Hills, J., Lines, J.: Transformation Based En-
sembles for Time Series Classification. In: SDM, SIAM / Omnipress (2012)

[24] Batista, G., Wang, X., Keogh, E.J.: A Complexity-Invariant Distance
Measure for Time Series. In: SDM, SIAM / Omnipress (2011)

21

[25] Demšar, J.: Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research 7 (2006) 1–30

22

