
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustr. 7, D-14195 Berlin - Dahlem

Harald Böing

Wolfram Koepf

REDUCE Package for the

Indefinite and Definite Summation

of q-hypergeometric Terms

Technical Report TR 97–04 (May 1997)

REDUCE Package for the Inde�nite

and De�nite Summation

of q�hypergeometric Terms

Harald Böing

Wolfram Koepf
email: koepf@zib.de

1 Introduction

This package is an implementation of the q-analogues of Gosper’s and Zeilberger’s1 algorithm
for indefinite, and definite summation of q-hypergeometric terms, respectively.
An expression ak is called a q-hypergeometric term, if ak/ak−1 is a rational function with re-
spect to qk. Most q-terms are based on the q-shifted factorial or qpochhammer. Other typical
q-hypergeometric terms are ratios of products of powers, q-factorials, q-binomial coefficients,
and q-shifted factorials that are integer-linear in their arguments.

2 Elementary q-Functions

Our package supports the input of the following elementary q-functions:

• qpochhammer(a,q,infinity)

(a; q)∞ :=
∞∏
j=0

(
1− a qj

)

• qpochhammer(a,q,k)

(a; q)k :=

⎧⎨
⎩

∏k−1
j=0 (1− a qj) if k > 0

1 if k = 0∏k
j=1 (1− a q−j)

−1
if k < 0

• qbrackets(k,q)

[q, k] :=
qk − 1

q − 1

�The ZEILBERG package (see [7]) contains the hypergeometric versions. Those algorithms are described in
[4],[11],[12] and [6].

1

• qfactorial(k,q)

[k]q! :=
(q; q)k
(1− q)k

• qbinomial(n,k,q) (
n

k

)
q

:=
(q; q)n

(q; q)k · (q; q)n−k

Furthermore it is possible to use an abbreviation for the generalized q-hypergeometric series
(basic generalized hypergeometric series, see e. g. [3], Chapter 1) which is defined as:

rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z
]
:=

∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk

(q; q)k

[
(−1)k q(

k
2)
]1+s−r

where (a1, a2, . . . , ar; q)k is a short form to write the product
∏r

j=1 (aj; q)k. An rφs series
terminates if one of its numerator parameters is of the form q−n with n ∈ N . The additional

factor
[
(−1)k q(

k
2)
]1+s−r

(which does not occur in the corresponding definition of the gener-

alized hypergeometric function) is due to a confluence process. With this factor one gets the
simple formula:

lim
ar→∞ rφs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z
]
= r−1φs

[
a1, a2, . . . , ar−1

b1, b2, . . . , bs

∣∣∣∣ q, z
]
.

Another variation is the bilateral basic hypergeometric series (see e. g. [3], Chapter 5) that is
defined as

rψs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q, z
]
:=

∞∑
k=−∞

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk
[
(−1)k q(

k
2)
]s−r

.

The summands of those generalized q-hypergeometric series may be entered by

• qphihyperterm({a1,a2,...,a3},{b1,b2,...,b3},q,z,k) and

• qpsihyperterm({a1,a2,...,a3},{b1,b2,...,b3},q,z,k)

respectively.

3 q-Gosper Algorithm

The q-Gosper algorithm [8] is a decision procedure, that decides by algebraic calculations
whether or not a given q-hypergeometric term ak has a q-hypergeometric term antidifference
gk, i. e. ak = gk − gk−1 with gk/gk−1 rational in q

k. The ratio gk/ak is also rational in qk — an
important fact which makes the rational certification (see § 4) of Zeilberger’s algorithm possi-
ble. If the procedure is successful it returns gk, in which case we call ak q-Gosper-summable.

2

Otherwise no q-hypergeometric antidifference exists. Therefore if the q-Gosper algorithm does
not return a q-hypergeometric antidifference, it has proved that no such solution exists, an
information that may be quite useful and important.
Any antidifference is uniquely determined up to a constant, and is denoted by

gk =
∑

ak δk .

Finding gk given ak is called indefinite summation. The antidifference operator Σ is the inverse
of the downward difference operator∇ak = ak−ak−1. There is an analogous summation theory
corresponding to the upward difference operator Δak = ak+1 − ak.
In case, an antidifference gk of ak is known, any sum

∑n
k=m ak can be easily calculated by an

evaluation of g at the boundary points like in the integration case:

n∑
k=m

ak = gn − gm−1

4 q-Zeilberger Algorithm

The q-Zeilberger algorithm [8] deals with the definite summation of q-hypergeometric terms
f(n, k) wrt. n and k:

s(n) :=

∞∑
k=−∞

f(n, k)

Zeilberger’s idea is to use Gosper’s algorithm to find an inhomogeneous recurrence equation
with polynomial coefficients for f(n, k) of the form

J∑
j=0

σj(n) · f(n+ j, k) = g(k)− g(k − 1), (1)

where g(k)/f(k) is rational in qk and qn. Assuming finite support of f(n, k) wrt. k (i. e.
f(n, k) = 0 for any n and all sufficiently large k) we can sum equation (1) over all k ∈ Z. Thus
we receive a homogeneous recurrence equation with polynomial coefficients (called holonomic
equation) for s(n):

J∑
j=0

σj(n) · s(n + j) = 0 (2)

At this stage the implementation assumes that the summation bounds are infinite and the
input term has finite support wrt. k. If those input requirements are not fulfilled the resulting
recursion is probably not valid. Thus we strongly advise the user to check those requirements.
Despite this restriction you may still be able to get valuable information by the program: On
request it returns the left hand side of the recurrence equation (2) and the antidifference g(k)
of equation (1).
Once you have the certificate g(k) it is trivial (at least theoretically) to prove equation (2) as
long as the input requirements are fulfilled. Let’s assume somone gives us equation (1). If we

3

divide it by f(n, k) we get a rational identity (in qn and qk) —due to the fact that g(k)/f(n, k)
is rational in qn and qk. Once we confirmed this identity we sum equation (1) over k ∈ Z:

∑
k∈Z

J∑
j=0

σj(n) · f(n+ j, k) =
∑
k∈Z

(g(k)− g(k − 1)), (3)

Again we exploit the fact that g(k) is a rational multiple of f(n, k) and thus g(k) has finite
support which makes the telescoping sum on the right hand side vanish. If we exchange the
order of summation we get equation (2) which finishes the proof.
Note that we may relax the requirements for f(n, k): An infinite support is possible as long
as lim

k→∞
g(k) = 0. (This is certainly true if lim

k→∞
p(k) f(k) = 0 for all polynomials p(k).)

For a quite general class of q-hypergeometric terms (proper q-hypergeometric terms) the
q-Zeilberger algorithm always finds a recurrence equation, not necessarily of lowest order
though. Unlike Zeilberger’s original algorithm its q-analogue more often fails to determine
the recursion of lowest possible order, however (see [10]).
If the resulting recurrence equation is of first order

a(n) s(n− 1) + b(n) s(n) = 0 ,

s(n) turns out to be a q-hypergeometric term (as a and b are polynomials in qn), and a
q-hypergeometric solution can be easily established using a suitable initial value.
If the resulting recurrence equation has order larger than one, this information can be used
for identification purposes: Any other expression satisfying the same recurrence equation, and
the same initial values, represents the same function.
Our implementation is mainly based on [8] and on the hypergeometric analogue described
in [6]. More examples can be found in [3], [2], some of which are contained in the test file
qsum.tst.

5 REDUCE operator QGOSPER

The QSUM package must be loaded by:

1: load qsum;

The qgosper operator is an implementation of the q-Gosper algorithm.

• qgosper(a,q,k) determines a q-hypergeometric antidifference. (By default it returns a
downward antidifference, which may be changed by the switch qgosper_down; see also
§ 8.) If it does not return a q-hypergeometric antidifference, then such an antidifference
does not exist.

• qgosper(a,q,k,m,n) determines a closed formula for the definite sum
n∑

k=m

ak using

the q-analogue of Gosper’s algorithm. This is only successful if q-Gosper’s algorithm
applies.

4

Examples: The following two examples can be found in [3] ((II.3) and (2.3.4)).

2: qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);

k

(q *a - 1)*qpochhammer(a,q,k)

(a - 1)*qpochhammer(q,q,k)

3: qgosper(qpochhammer(a,q,k)*qpochhammer(a*q^2,q^2,k)*

qpochhammer(q^(-n),q,k)*q^(n*k)/(qpochhammer(a,q^2,k)*

qpochhammer(a*q^(n+1),q,k)*qpochhammer(q,q,k)),q,k);

k*n k k n 1

(- q *(q *a - 1)*(q - q)*qpochhammer(----,q,k)

n

q

2 2 2*k n

*qpochhammer(a*q ,q ,k)*qpochhammer(a,q,k))/((q *a - 1)*(q - 1)

n 2

*qpochhammer(q *a*q,q,k)*qpochhammer(a,q ,k)*qpochhammer(q,q,k))

Here are some other simple examples:

4: qgosper(qpochhammer(q^(-n),q,k)*z^k/qpochhammer(q,q,k),q,k);

***** No q-hypergeometric antidifference exists.

5: off qgosper_down;

6: qgosper(q^k*qbrackets(k,q),q,k);

k k

- q *(q + 1 - q)*qbrackets(k,q)

k

(q - 1)*(q + 1)*(q - 1)

7: on qgosper_down;

8: qgosper(q^k,q,k,0,n);

n

q *q - 1

q - 1

5

6 REDUCE operator QSUMRECURSION

The qsumrecursion operator is an implementation of the q-Zeilberger algorithm. It tries to
determine a homogeneous recurrence equation for summ(n) wrt. n with polynomial coeffi-
cients (in n), where

summ(n) :=

∞∑
k=−∞

f(n, k).

If successful the left hand side of the recurrence equation (2) is returned.
There are three different ways to pass a summand f(n, k) to qsumrecursion:

• qsumrecursion(f,q,k,n), where f is a q-hypergeometric term wrt. k and n, k is the
summation variable and n the recursion variable, q is a symbol.

• qsumrecursion(upper,lower,q,z,n) is a shortcut for
qsumrecursion(qphihyperterm(upper,lower,q,z,k),q,k,n)

• qsumrecursion(f,upper,lower,q,z,n) is a similar shortcut for
qsumrecursion(f*qphihyperterm(upper,lower,q,z,k),q,k,n),

i. e. upper and lower are lists of upper and lower parameters of the generalized q-hypergeometric
function. The third form is handy if you have any additional factors.
For all three instances the following variations are allowed:

• If for some reason the recursion order is known in advance you can specify it as an
additional (optional) argument at the very end of the parameter sequence. There
are two ways. If you just specify a positive integer, qsumrecursion looks only for a
recurrence equation of this order. You can also specify a range by a list of two positive
integers, i. e. the first one specifying the lowest and the second one the highest order.

By default qsumrecursion will search for recurrences of order from 1 to 5. (The global
variable qsumrecursion_recrange!* controls this behavior, see § 8.)

• Usually qsumrecursion uses summ as a name for the summ-function defined above.
If you want to use another operator, say e. g. s, then the following syntax applies:
qsumrecursion(f,q,k,s(n))

As a first example we want to consider the q-binomial theorem:

∞∑
k=0

(a; q)k
(q; q)k

zk =
(a z; q)∞
(z; q)∞

,

provided that |z|, |q| < 1. It is the q-analogue of the binomial theorem in the sense that

lim
q→1�

∞∑
k=0

(qa; q)k
(q; q)k

zk =

∞∑
k=0

(a)k
k!

zk = (1− z)−a .

For a := q−n with n ∈ N our implementation gets:

6

9: qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/

qpochhammer(q,q,k),q,k,n);

n n

- ((q - z)*summ(n - 1) - q *summ(n))

Notice that the input requirements are fulfilled. For n ∈ N the summand is zero for all k > n
as (q−n; q)k = 0 and the (q; q)k-term in the denominator makes the summand vanish for all
k < 0.
With the switch qsumrecursion_certificate it is possible to get the antidifference gk de-
scribed above. When switched on, qsumrecursion returns a list with five entries, see § 8. For
the last example we get:

10: on qsumrecursion_certificate;

11: proof:= qsumrecursion(qpochhammer(q^(-n),q,k)*z^k/

qpochhammer(q,q,k),q,k,n);

n n

proof := - ((q - z)*summ(n - 1) - q *summ(n)),

k n

- (q - q)*z

----------------,

n

q - 1

k 1

z *qpochhammer(----,q,k)

n

q

--------------------------,

qpochhammer(q,q,k)

k,

downward_antidifference

12: off qsumrecursion_certificate;

Let’s define the list entries as {rec,cert,f,k,dir}. If you substitute summ(n+ j) by f(n+
j, k) in rec then you obtain the left hand side of equation (1), where f is the input summand.
The function g(k) := f*cert is the corresponding antidifference, where dir states which sort
of antidifference was calculated downward antidifference or upward antidifference, see
also § 8. Those informations enable you to prove the recurrence equation for the sum or supply
you with the necessary informations to determine an inhomogeneous recurrence equation for
a sum with nonnatural bounds.
For our last example we can now calculate both sides of equation (1):

7

13: lhside:= qsimpcomb(sub(summ(n)=part(proof,3),

summ(n-1)=sub(n=n-1,part(proof,3)),part(proof,1)));

k k n n 1

z *(q *(q - z) + q *(z - 1))*qpochhammer(----,q,k)

n

q

lhside := ---

n

(q - 1)*qpochhammer(q,q,k)

14: rhside:= qsimpcomb((part(proof,2)*part(proof,3)-

sub(k=k-1,part(proof,2)*part(proof,3))));

k k n n k 1

- z *((q - q)*z - q *(q - 1))*qpochhammer(----,q,k)

n

q

rhside := ---

n

(q - 1)*qpochhammer(q,q,k)

15: qsimpcomb((rhside-lhside)/part(proof,3));

0

Thus we have proved the validity of the recurrence equation.
As some other examples we want to consider some generalizations of orthogonal polynomials
from the Askey–Wilson–scheme [9]: The q-Laguerre (3.21), q-Charlier (3.23) and the contin-
uous q-Jacobi (3.10) polynomials.

16: operator qlaguerre,qcharlier;

17: qsumrecursion(qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n),

{q^(-n)}, {q^(alpha+1)}, q, -x*q^(n+alpha+1), qlaguerre(n));

n alpha + n n

((q + 1 - q)*q - q *(q *x + q))*qlaguerre(n - 1)

alpha + n n

+ ((q - q)*qlaguerre(n - 2) + (q - 1)*qlaguerre(n))*q

18: qsumrecursion({q^(-n),q^(-x)},{0},q,-q^(n+1)/a,qcharlier(n));

x n n 2*n

- ((q *((q + 1 - q)*a + q)*q - q)*qcharlier(n - 1)

8

x n n

+ q *((q + a*q)*(q - q)*qcharlier(n - 2) - qcharlier(n)*a*q))

19: on qsum_nullspace;

20: term:= qpochhammer(q^(alpha+1),q,n)/qpochhammer(q,q,n)*

qphihyperterm({q^(-n),q^(n+alpha+beta+1),
q^(alpha/2+1/4)*exp(I*theta), q^(alpha/2+1/4)*exp(-I*theta)},
{q^(alpha+1), -q^((alpha+beta+1)/2), -q^((alpha+beta+2)/2)},
q,q,k)$

21: qsumrecursion(term,q,k,n,2);

n i*theta alpha beta n

- ((q *e *(q *(q *(q *(q + 1) - q) - q

alpha + beta + n n beta + n

+ q *(q + 1 - q - q)) -

(alpha + beta)/2 alpha n beta + n n

q *(q *(q *(q + 1) - q + q *(q + 1 - q))

2*alpha + beta + 2*n

- (q + q)))*(sqrt(q) + q) +

(2*alpha + 1)/4 2*i*theta alpha + beta + 2*n 2

q *(e + 1)*(q - q)

alpha + beta + 2*n alpha + beta + 2*n

(q - 1))(q - q)*summ(n - 1) -

i*theta (alpha + beta + 2*n)/2 (alpha + beta + 2*n)/2

e *((q *(q + q)

(alpha + beta + 2*n)/2

(q - q)(sqrt(q) + q) +

(2*alpha + 2*beta + 4*n + 1)/2

(q + q)

alpha + beta + 2*n 2 alpha + beta + n

(q - q))(q - 1)

n alpha alpha + beta + 2*n

*(q - 1)*summ(n) + (q *(sqrt(q)*q + q)

(3*alpha + beta + 2*n)/2

+ q *(sqrt(q) + q))

alpha + beta + 2*n alpha + n beta + n

(q - 1)(q - q)*(q - q)

9

*summ(n - 2)))

22: off qsum_nullspace;

The setting of qsum_nullspace (see [10] and § 8) results in a faster calculation of the recur-
rence equation for this example.

7 Simplification Operators

An essential step in the algorithms introduced above is to decide whether a term ak is q-
hypergeometric, i. e. if the ratio ak/ak−1 is rational in qk.
The procedure qsimpcomb provides this facility. It tries to simplify all exponential expressions
in the given term and applies some transformation rules to the known elementary q-functions
as qpochhammer, qbrackets, qbinomial and qfactorial. Note that the procedure may
fail to completely simplify some expressions. This is due to the fact that the procedure
was designed to simplify ratios of q-hypergeometric terms in the form f(k)/f(k − 1) and not
arbitrary q-hypergeometric terms.
E. g. an expression like (a; q)−n · (a/qn; q)n is not recognized as 1, despite the transformation
formula

(a; q)−n =
1

(a/qn; q)n
,

which is valid for n ∈ N .
Note that due to necessary simplification of powers, the switch precise is (locally) turned
off in qsimpcomb. This might produce wrong results if the input term contains e. g. complex
variables.
The following synomyms may be used:

• up_qratio(f,k) or qratio(f,k) for qsimpcomb(sub(k=k+1,f)/f) and

• down_qratio(f,k) for qsimpcomp(f/sub(k=k-1,f)).

8 Global Variables and Switches

The following switches can be used in connection with the QSUM package:

• qsum_trace, default setting is off. If it is turned on some intermediate results are
printed.

• qgosper_down, default setting is on. It determines whether qgosper returns a downward
or an upward antidifference gk for the input term ak, i. e. ak = gk−gk−1 or ak = gk+1−gk
respectively.

• qsumrecursion_down, default setting is on. If it is switched on a downward recurrence
equation will be returned by qsumrecursion. Switching it off leads to an upward
recurrence equation.

10

• qsum_nullspace, default setting is off. The antidifference g(k) is always a rational mul-
tiple (in qk) of the input term f(k). qgosper and qsumrecursion determine this cer-
tificate, which requires solving a set of linear equations. If the switch qsum_nullspace

is turned on a modified nullspace-algorithm will be used for solving those equations.
In general this method is slower. However if the resulting recurrence equation is quite
complicated it might help to switch on qsum_nullspace. See also [5] and [10].

• qgosper_specialsol, default setting is on. The antidifference g(k) which is determined
by qgosper might not be unique. If this switch is turned on, just one special solution
is returned. If you want to see all solutions, you should turn the switch off.

• qsumrecursion_exp, default setting is off. This switch determines if the coefficients of
the resulting recurrence equation should be factored. Turning it off might speed up the
calculation (if factoring is complicated). Note that when turning on qsum_nullspace

usually no speedup occurs by switching qsumrecursion_exp on.

• qsumrecursion_certificate, default off. As Zeilberger’s algorithm delivers a recur-
rence equation for a q-hypergeometric term f(n, k), see equation (1), this switch is used
to get all necessary informations for proving this recurrence equation.

If it is set on, instead of simply returning the resulting recurrence equation (for the
sum)—if one exists—qsumrecursion returns a list {rec,cert,f,k,dir} with five items:
The first entry contains the recurrence equation, while the other items enable you to
prove the recurrence a posteriori by rational arithmetic.

If we denote by r the recurrence rec where we substituted the summ-function by the
input term f (with the corresponding shifts in n) then the following equation is valid:

r = cert*f - sub(k=k-1,cert*f)

or
r = sub(k=k+1,cert*f) - cert*f

if dir=downward_antidifference or dir=upward_antidifference respectively.

The global variable qsumrecursion_recrange!* controls for which recursion orders the pro-
cedure qsumrecursion looks. It has to be a list with two entries, the first one representing
the lowest and the second one the highest order of a recursion to search for. By default it is
set to {1,5}.

9 Messages

The following messages may occur:

• If your call to qgosper or qsumrecursion reveals some incorrect syntax, e. g. wrong
number of arguments or wrong type you may receive the following messages:

***** Wrong number of arguments.

11

or

***** Wrong type of arguments.

• If you call qgosper with a summand term that is free of the summation variable you
get

WARNING: Summand is independent of summation variable.

***** No q-hypergeometric antidifference exists.

• If qgosper finds no antidifference it returns:

***** No q-hypergeometric antidifference exists.

• If qsumrecursion finds no recursion in the specified range it returns:

***** Found no recursion. Use higher order.

(If you do not pass a range as an argument to qsumrecursion the default range in
qsumrecursion_recrange!* will be used.)

• If the input term passed to qgosper (qsumrecursion) is not q-hypergeometric wrt. the
summation variable — say k — (and the recursion variable) then you get

***** Input term is probably not q-hypergeometric.

With all the examples we tested, our procedures decided properly whether the input
term was q-hypergeometric or not. However, we cannot guarantee in general that
qsimpcomb always returns an expression that looks rational in qk if it actually is.

• If the global variable qsumrecursion_recrange!* was assigned an invalid value:

Global variable qsumrecursion_recrange!* must be a list

of two positive integers: {lo,hi} with lo<=hi.

***** Invalid value of qsumrecursion_recrange!*

References

[1] Askey R. and Wilson, J.: Some Basic Hypergeometric Orthogonal Polynomials that
Generalize Jacobi Polynomials. Memoirs Amer. Math. Soc. 319, Providence, RI, 1985.

[2] Gasper, G.: Lecture Notes for an Introductory Minicourse on q-Series. 1995. To obtain
from ftp://unvie6.un.or.at/siam/opsf new/00index by author.html.

12

[3] Gasper, G. and Rahman, M.: Basic Hypergeometric Series, Encyclopedia of Mathematics
and its Applications, 35, (G.-C. Rota, ed.), Cambridge University Press, London and
New York, 1990.

[4] Gosper Jr., R. W.: Decision procedure for indefinite hypergeometric summation. Proc.
Natl. Acad. Sci. USA 75, 1978, 40–42.

[5] Knuth, D. E.: The Art of Computer Programming, Seminumerical Algorithms. 2nd ed.,
1981, Addison-Wesley Publishing Company.

[6] Koepf, W.: Algorithms form-fold hypergeometric summation. Journal of Symbolic Com-
putation 20, 1995, 399–417.

[7] Koepf, W.: REDUCE package for indefinite and definite summation. SIGSAM Bulletin
29, 1995, 14–30.

[8] Koornwinder, T. H.: On Zeilberger’s algorithm and its q-analogue: a rigorous description.
J. of Comput. and Appl. Math. 48, 1993, 91–111.

[9] Koekoek, R. und Swarttouw, R.F.: The Askey-scheme of Hypergeometric Orthogonal
Polynomials and its q-analogue. Report 94–05, Technische Universiteit Delft, Faculty of
Technical Mathematics and Informatics, Delft, 1994.

[10] Paule, P. und Riese, A.: A Mathematica q-analogue of Zeilberger’s algorithm based on an
algebraically motivated approach to q-hypergeometric telescoping. Fields Proceedings of
the Workshop ‘Special Functions, q-Series and Related Topics’, organized by the Fields
Institute for Research in Mathematical Sciences at Univerisity College, 12-23 June 1995,
Toronto, Ontario,179–210.

[11] Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Dis-
crete Math. 80, 1990, 207–211.

[12] Zeilberger, D.: The method of creative telescoping. J. Symbolic Computation 11, 1991,
195–204.

13

