
Segmentation of ray and shark tesserae

David Knötel
Matrikelnummer: 4220582

david.knoetel@fu-berlin.de

Masterarbeit in Informatik am Fachbereich Mathematik und Informatik

der Freien Universität Berlin (FUB) angefertigt am Konrad-Zuse-Zentrum

für Informationstechnik Berlin (ZIB) in Kooperation mit dem

Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG)

Gutachter:

Prof. Dr. Helmut Alt (FUB)

Betreuer:

Dr. Daniel Baum (ZIB)

Kooperationspartner:

Dr. Mason Dean (MPIKG),

Ronald Seidel (MPIKG)

Berlin, den 29.09.2014

Erklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit mit dem Titel
Segmentation of ray and shark tesserae selbstständig und nur unter Zuhil-
fenahme der angegebenen Quellen erstellt habe.

Berlin, den 29.09.2014
David Knötel

1

Abstract

Rays and sharks are cartilaginous fishes. Most of the cartilaginous skeleton
is covered with calcified tiles to improve the stability of the skeleton. These
tiles are called tesserae and enclose areas of uncalcified cartilage. Because of
the special properties of the tesserae, biologists are interested to understand
shape and structure of tessellated cartilage.

This thesis presents a segmentation pipeline for the separation of tesserae
on the cartilaginous skeleton of rays and sharks. The segmentation pipeline
consists of an automatic initial segmentation step followed by manual error
corrections by the user. The initial segmentation is based on the contour tree
data structure that tracks the evolution of level sets in a dataset during iso-
value changes. The presented segmentation concepts are not limited to the
segmentation of tesserae but also viable for similar kinds of tiled structures.
The input datasets are given as micro-CT scans.

The contribution of this thesis is the development of a segmentation pipeline.
The pipeline uses a newly developed fast version of the contour-tree-based
segmentation algorithm that, after a preprocessing step, does not need to
iterate over all voxels in the dataset. Visualizations and computations are
done with the software system ZIBAmira. Used algorithms are either imple-
mented as new ZIBAmira modules or they extend already existing ZIBAmira
modules.

Zusammenfassung

Rochen und Haie sind Knorpelfische. Der Großteil ihres Knorpelsekeletts ist
von einer Schicht mineralisierter Plättchen mit hohem Kalziumgehalt über-
zogen, um die Stabilität des Skeletts zu erhöhen. Diese Plättchen heißen
Tesserae und umschließen Bereiche bestehend aus unmineralisiertem Knor-
pel. Aufgrund der speziellen Eigenschaften von Tesserae sind Biologen daran
interessiert, ihre Form and Struktur zu verstehen.

Die vorliegende Arbeit präsentiert eine Segmentierungspipeline, die einzelne
Tesserae auf dem Knorpelskelett von Rochen und Haien voneinander trennt.
Die Segmentierungspipeline besteht aus einer automatischen Erstsegmen-
tierung gefolgt von manueller Fehlerkorrektur durch den Benutzer. Die Erst-
segmentierung basiert auf dem Contour Tree, einer Datenstruktur, die die
Evolution von Niveaumengen während der Änderung von Isowerten verfolgt.
Die zu segmentierenden Datensätze sind als Mikro-CT Aufnahmen gegeben.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung der Segmentierungs-
pipeline. Diese Pipeline benutzt eine neuentwickelte schnelle Version des
Contour-Tree-basierten Segmentierungsalgorithmus, der, nach einem initia-
len Vorbereitungsschritt, nicht über alle Voxel des Datensatzes iterieren
muss. Visualisierungen and Berechnungen werden mit Einsatz des Soft-
waresystems ZIBAmira erledigt. Dabei werden verwendete Algorithmen
entweder als neue Module implementiert oder bestehende Module werden
erweitert.

Acknowledgments

First of all I want to thank my instructor at the Zuse Institute Berlin, Daniel
Baum, for his support and his help during text revision. I also want to thank
my supervisor Helmut Alt. Further thanks go to our collaboration partners
Mason Dean and Ronald Seidel at the Max Planck Institute of Colloids and
Interfaces. This project is funded by the Human Frontier Science Program
(HFSP) that also enabled the presentation of this work at the poster ses-
sion of the Tomography for Scientific Advancement symposium (ToScA) in
London.

1

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Contributions . 7

1.3 Overview . 7

2 Basics 8

2.1 Segmentation . 9

2.1.1 Spectral clustering . 10

2.1.2 Random walker segmentation 12

2.2 Surface . 13

2.3 Volume rendering . 14

3 Contour tree 15

3.1 Definition . 15

3.2 Computation . 17

3.3 Contour tree segmentation . 18

3.3.1 Persistence criteria . 22

3.3.2 Fast contour tree segmentation 22

4 Amira 26

5 Segmentation of tesserae 29

5.1 Introduction of datasets . 29

5.2 Segmentation of small areas 30

5.3 Segmentation pipeline . 33

2

5.3.1 Separation of tesserae and background 33

5.3.2 Distance map . 35

5.3.3 Initial segmentation 38

5.3.4 Dual graph of segmentation 40

5.3.5 Manual improvement of segmentation 44

6 Evaluation 50

6.1 Datasets . 50

6.2 Qualitative evaluation . 51

6.3 Running time . 57

7 Analysis of tesseral structures 58

7.1 Size and number of neighbors 58

7.2 Curvature . 59

8 Future work 61

8.1 Improvement of the presented pipeline 61

8.2 Application of new algorithms 62

8.3 Biological applications of segmentation 63

9 Conclusion 64

3

Chapter 1

Introduction

Image segmentation is the process that partitions an input dataset into
segments that share some kind of similar property. This thesis presents an
image segmentation pipeline based on the contour tree data structure to
solve a specific segmentation problem in a biological context.

1.1 Motivation

Over the last decade, better access to micro-CT scanners has given re-
searchers working in biological fields new possibilities to explore their data.
More and more facilities like natural history museums scan their collections.
The exchange of digitized datasets between different researchers is much
easier than the exchange of their physical counterparts. Furthermore, the
existence of micro-CT scans enables new ways to analyze the data. For
example, virtual histologies made with the help of slices through micro-CT
scans do not destroy the object. So the amount of available digital data
that can be accessed and analyzed with visualization software, is increasing
all the time and gives image processing algorithms like image segmentation
interesting applications.

Studying the properties of natural material can lead to new important in-
sights. If it can be achieved to understand structure and growth process,
one can try to imitate natural materials for the human benefit.

An example for such interesting natural materials is the skeleton of rays and
sharks. Rays and sharks are cartilaginous fishes, so their skeleton does not
consist of bones but of cartilage. This has advantages and disadvantages.
Cartilage is more flexible but the jaw of sharks needs also a high stability.
Locations, where strength is very important, are fortified with little tiles
of calcified cartilage, called tesserae (singular is tessera). Typically, such a

4

(a) (b)

Figure 1.1: Photographs: (a) angelshark (Squatina) braincase; (b) close-up
of tesseral structures. The pictures are taken from a presentation of Mason
Dean, our collaboration partner at the Max Planck Institute of Colloids and
Interfaces.

tessera is around 200-400 micro-meter wide and around 150-300 micro-meter
deep. Figure 1.1 shows photographs where this tiling structure is visible.

Figure 1.2 shows the structure of tesserae in multiple resolutions including
cross-sections. The layer of tesselated cartilage encloses uncalcified cartilage
as shown in Figure 1.2 (right top image) resulting in a material that is
flexible and stable. Small parts connecting two neighbored tesserae are called
intertesseral joints, see Figure 1.2 (right bottom image). Biologists study
shape and structure of tesserae [1] and are interested in how properties like
the size or the number of tesserae are changing with the age of the animal.

Image segmentation is a very powerful concept and an important part of
many applications in medicine or biology. A segmentation to separate in-
dividual tesserae is a first step for further algorithmic-driven analyses of
tesseral structures. This is the goal of this thesis: to provide algorithms to
segment individual tesserae in micro-CT scans. Of course, such segmenta-
tion algorithms are not limited to only this purpose but can also be applied
to other tiled structures.

5

Figure 1.2: Schematic representation of the tesseral structure of a ray: (Left)
tesseral structure on multiple resolutions; (Right top) the tesseral layer en-
closes uncalcified cartilage; (Right bottom) a thin tesseral joint connects two
tesserae. The picture is a modification of a picture for a paper in review
by Mason Dean, our collaboration partner at the Max Planck Institute of
Colloids and Interfaces.

6

1.2 Contributions

During this thesis, I present a newly developed segmentation pipeline con-
sisting of an automatic initial segmentation step that exploits the geomet-
rical shape of the tesserae and uses the contour tree data structure. The
contour tree tracks the evolution of level sets in a dataset during isovalue
changes. The initial segmentation is followed by a manual correction step.
The algorithms were implemented into the visualization software ZIBAmira
as new or extended computation modules.

Furthermore, I developed a graph based abstraction of the segmentation to
support further analysis and to enhance user interaction.

The contour tree based segmentation algorithm is sped up by a new approach
that I call fast contour tree segmentation.

1.3 Overview

This thesis is structured in the following way. The first chapters describe
concepts and algorithms that are later used to solve the segmentation task.
This includes Chapter 2 which summarizes basic knowledge about segmen-
tation algorithms and volume rendering. Chapter 3 introduces the contour
tree data structure and explains the usage of the contour tree for segmen-
tation purposes. Chapter 4 presents the visualization software ZIBAmira
which is used throughout this thesis.

The contour tree segmentation is part of the segmentation pipeline presented
in Chapter 5. The quality of these segmentation results is discussed in
Chapter 6. Chapter 7 describes how the segmentation results can be used
for further analysis of tesseral structures. The final chapters give an outlook
to possible future work and summarize the presented work.

7

Chapter 2

Basics

The grayscale images in this thesis are functions defined on two or three-
dimensional meshes. A two-dimensional image I is defined as an m × n
matrix of natural or real numbers. An individual element of this matrix
is called pixel. The elements of the three-dimensional equivalent are called
voxels.

Algorithms working on neighbors of pixels or voxels are affected by the
choice of the neighborhood relation. For example, if a local maximum is
defined as a voxel with higher value than any of its neighbors, then there
are more local maxima if a voxel has fewer neighbors. The best choice of
the neighborhood relation is often not obvious. Figure 2.1 shows two basic
neighborhood definitions in two-dimensional space with 4 or 8 neighbors.
The equivalent definitions in three dimensions have 6, 18 or 26 neighbors.

(a) (b)

Figure 2.1: Neighborhood relations in 2D: (a) shows 4 neighbors of the
central black voxel; (b) shows 8 neighbors.

8

2.1 Segmentation

Image segmentation is a huge field with a vast number of concepts and
algorithms created over the last decades. This chapter gives an overview of
segmentation basics. The algorithms that are used for the segmentation of
tesseral structures are presented more accurately during the next sections.
The usage of the contour tree for segmentation purposes is described in
Section 3.3. This chapter focuses on the segmentation of three-dimensional
images, hence the following text deals with voxels instead of pixels.

Segmentation algorithms partition the input image into multiple segments.
The segmentation assigns the same natural number, called label, to all vox-
els of one segment. Voxels with the same label share certain characteristics,
one possibility is for example that they have similar grayscale values. The
input datasets can vary from simple two-dimensional pictures to complex
datasets from medical or biological applications. The result of the segmen-
tation process is a dataset consisting of labels, often called label field. An
oversegmentation refers to a segmentation result with too many labels.

There are multiple possibilities to classify segmentation algorithms, for ex-
ample whether the algorithm just separates the foreground from the back-
ground, whether the algorithm is fully-automatic or needs additional user
interaction, whether the algorithm works on voxels, edges or treats the im-
age like a graph, and so forth. For more information see the review papers
from Wirjadi [2] and Pal et al. [3]. The following paragraphs summarize
some of the most common segmentation approaches.

Thresholding might be the easiest of the segmentation algorithms but it is
sufficient for a lot of applications where the grayscale values distinguish the
regions of interest. In a binary thresholding, all voxels smaller than the
threshold value t get assigned label 0, and the remaining voxels get assigned
label 1. A separation in more than two segments is possible with multiple
threshold values. There are several variations of thresholding algorithms, for
example local thresholding [2] with different threshold values for different
parts of the image.

Edge-based segmentation algorithms are suitable if the segments are sepa-
rated by edges. Then the segmentation can be done by identifying these
edges with edge detection algorithms. An example for this kind of segmen-
tation algorithm is intelligent scissors [4].

Region growing algorithms start with seed regions. Neighbor voxels are it-
eratively added to the growing region if they fulfill some region homogeneity
criterion. Examples are the magic wand, usable in image processing soft-
wares like GIMP, or the grow cut algorithm [5].

9

Graph-based segmentation algorithms treat the input image as a graph and
solve the segmentation task by performing operations on that graph. In most
cases, there is one vertex for each voxel and there are edges between vertices
if they share common properties, for example if they are neighbored due to
a useful neighborhood criterion. Often edge weights are included to measure
the similarity between two vertices. Example algorithms are graph cut [6],
normalized cuts [7], random walker [8] and spectral clustering [9]. The last
two algorithms are presented more accurately in the following sections.

The idea of watershed segmentation [10] is to interpret the grayscale values
as altitude information. Then the dataset is flooded with water. The water
basins start to grow at each local minimum and build barriers where different
basins meet. The segments of the segmentation are the individual water
basins that have been built after the whole dataset has been flooded. This
segmentation approach usually leads to an oversegmentation, so there exist
different versions of hierarchical watershed algorithms.

Surface or shape-based segmentation algorithms solve the segmentation prob-
lem by identifying specific objects in the image. This is for example possible
with the creation of an active shape model [11] of the searched object.

Energy-based segmentation algorithms create a function defining a seg-
mentation and try to maximize an energy functional. Examples are the
Mumford-Shah [12] functional or the Chan-Vese [13] functional.

It is important to notice that there is not one perfect segmentation algorithm
which outclasses all others. One needs to understand a given segmentation
problem and has to choose the algorithms that are most appropriate for this
specific problem. Also the importance of properties like the running time
differs between applications.

2.1.1 Spectral clustering

Spectral clustering refers to a family of clustering algorithms that use the
spectrum of matrices belonging to the input data. See the paper of von
Luxburg [9] for a comprehensive introduction to spectral clustering.

First, the problem to segment the image into k segments is reformulated as
a graph clustering problem. The vertices of the similarity graph G = (V,E)
correspond to voxels in the image, the weight wi,j of the edge (i, j) ∈ E
measures the similarity between the vertices i and j. Now, the solution of a
clustering of G into k clusters refers to a segmentation of the input image.

Assume that a similarity graph G = (V,E) is given.

Definition 1 (Laplacian matrix).
Let G = (V,E) be a weighted undirected graph with vertices V , edges E ⊆

10

V × V , |V | = n and edge weights wi,j. Let D = (di,j) be the degree matrix
with di,i =

∑n
j=0wi,j and di,j = 0 for i 6= j, and let A be the adjacency

matrix using the edge weights. Then the Laplacian matrix L = (li,j) is
defined as

L = D −A

It follows that li,j =

{
di,j i = j

−wi,j i 6= j
.

L is symmetric, positive semi-definite and has n non-negative, real-valued
eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. The constant vector 1 is an eigenvector
with eigenvalue 0. The proof is shown in [9].

Now, the eigenvalues and eigenvectors of L are used to perform the graph
clustering. The following example demonstrates the functionality.

1 3

2 4

5

6

7

1

1

1

1

1

1

1

1

1

(a)

L =



3 −1 −1 −1 0 0 0
−1 3 −1 −1 0 0 0
−1 −1 3 −1 0 0 0
−1 −1 −1 3 0 0 0
0 0 0 0 2 −1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2


(b)

Figure 2.2: (a) similarity graph with seven vertices and two connected com-
ponents; (b) corresponding Laplacian matrix.

Figure 2.2 shows a simple example of a similarity graph with edge weights
1 and the corresponding Laplacian matrix. The graph consists of two con-
nected components C1, C2 ⊆ V . It is easy to see that the indicator vectors
1C1 and 1C2 are eigenvectors with eigenvalue 0. Furthermore, for a simi-
larity graph with m connected components C1, C2, . . . , Cm, the eigenspace
of eigenvalue 0 is spanned by the indicator vectors 1C1 ,1C2 , . . . ,1Cm . The
proof can be found in [9]. So the eigenvectors with eigenvalue 0 relate to the
connected components in the similarity graph.

Now assume that there is an edge between vertex 4 and vertex 5. Then
only the constant vector 1 spans the eigenspace with eigenvalue 0 but the
eigenvector with the second-smallest eigenvalue enables the separation be-
tween the first four vertices and the last three vertices, see the first two
eigenvectors from a Matlab calculation in the following table.

11

Eigenvector 1 =



−0.37796

−0.37796

−0.37796

−0.37796

−0.37796

−0.37796

−0.37796


, Eigenvector 2 =



0.35604

0.35604

0.35604

0.21422

−0.29656

−0.49289

−0.49289


So spectral clustering calculates the first k eigenvectors, the i-th row belongs
to the i-th vertex of the similarity graph, and uses each row as a vector for
a k-means clustering into k clusters on n datapoints with dimension k. The
result is the final clustering of the similarity graph. The following pseudo
code summarizes the algorithm.

Algorithm 1 Spectral clustering pseudo code for a clustering in k clusters

1: Create the similarity graph
2: Compute the Laplacian matrix L
3: Compute the first k eigenvectors
4: Do k-means clustering on the rows of the eigenvectors

A similarity graph with n vertices leads to an n × n Laplacian matrix. So
it is necessary to compute the k smallest eigenvalues and the corresponding
eigenvectors of an n×nmatrix. The k-means algorithm clusters n datapoints
in k-dimensional space into k clusters.

2.1.2 Random walker segmentation

Again, the input image is treated as a weighted graph with a vertex for
each voxel and edges between two vertices if their corresponding voxels are
neighbored. Random walker segmentation [8] requires starting seeds as ad-
ditional input. If there are k different seeds, the dataset will be segmented
into k segments.

Imagine that each unlabeled voxel releases a random walker. The algo-
rithm computes the probability that a random walker reaches a specific seed
first. For each voxel, k probabilities are computed, the probability that the
random walker reaches the first seed first, the probability that the random
walker reaches the second seed first and so forth. Finally, the voxel is as-
signed to the seed with the highest probability. The random walk is done on
the weighted graph, so the probability to reach the neighbored voxel j from

12

a voxel i is determined by the edge weight. The most common edge weight
is the Gaussian weighting function wi,j = exp(−β(gi − gj)2) where gi is the
image intensity value at voxel i and β is a free parameter.

For each seed, it is necessary to solve a system of linear equations, so in total
k−1 linear systems have to be solved. The last linear system is unnecessary
because the sum of all probabilities at one vertex equals 1. The size of
the linear systems is u × u, where u is the number of unseeded vertices.
Computational details can be found in the paper of Grady [8].

2.2 Surface

In the context of this work, a surface is a discrete mesh embedded in three-
dimensional space consisting of points and edges which create a triangular
structure. Triangular surface meshes can be created in several ways, for
example by scanning the surface of a real object with a laser. A common
approach is the creation of a surface belonging to a segmentation. The
creation of surfaces resulting from label fields with more than two labels
can be done using the generalized marching cubes (GMC) algorithm [14].
Thereby, the created mesh triangles are placed where different labels of
the segmentation meet each other. Figure 2.3 shows the surface and the
corresponding mesh of a tessera, and its surrounding neighbors.

(a) (b)

Figure 2.3: Surface mesh example: the surface is generated from a
foreground-background segmentation. The surface triangles in (b) separate
the foreground from the background.

13

2.3 Volume rendering

Volume rendering is a standard technique to visualize volumetric scalar data
defined on a three-dimensional mesh. Volume rendering using ray casting
shoots rays through all pixels of the image plane and follows them on their
way through the data field. The individual rays are sampled and the scalar
values at the sample points are accumulated to the final pixel value on the
two-dimensional image plane using the volume rendering equation. The
volume rendering equation describes the interaction between the ray and
the volume and deals with emission, absorption and scattering of light rays.
The color of an image voxel depends on the choice of the transfer function.

The visualization algorithm used for segmentation results needs to be fast.
Computation and visualization of the corresponding surface does not reach
the required running time. The solution is to use volume rendering on the
label field of a segmentation. The transfer function assigns a random color
to each label. The evaluation of the sample points uses an interpolation
algorithm. Linear interpolation is not useful for label fields because the
field only contains natural numbers, linear interpolation between two labels
reduces the visualization quality. Instead nearest neighbor interpolation
should be used for volume rendering of label fields.

14

Chapter 3

Contour tree

The contour tree is a data structure that tracks certain changes of level
sets during isovalue changes. The contour tree was introduced by Boyell
and Ruston [15] for a two-dimensional application. This section follows the
paper and definitions by Carr et al. [16].

3.1 Definition

Given a set of n points P = {p1, p2, . . . , pn} in Rd with different scalar values
{h1, h2, . . . , hn}, the considered mesh M is a simplicial mesh with vertex set
P . Simplicial meshes consist of simplices, so M is a triangular mesh in two-
dimensional space and a tetrahedral mesh in three-dimensional space. Now,
f is a function on M with f(pi) = hi and f is linearly interpolated inside
the simplices.

Definition 2 (Level set).
The level set of f for isovalue h is defined as {x ∈ Rd|f(x) = h}. In two
dimensions, the level set is called isoline, in three dimensions isosurface.
One level set can consist of multiple connected components, in the following
called contours.

The contour tree tracks the evolution of these contours of f .

Definition 3 (Critical point).
Critical points are points at which the topology of level sets change.

Definition 4 (Morse function).
Critical points are isolated if they occur at distinct points and values. If all
critical points of a function are isolated, the function is a Morse function.

The function f defined on M is a Morse function and all critical points of
f are at mesh vertices. See [16] for the proof. The contour tree nodes are

15

(a) (b)

Figure 3.1: (a) simplicial mesh; (b) contour tree corresponding to the sim-
plicial mesh. The pictures are taken from the paper of Carr et al. [16].

a subset of the critical points. The contour tree consists of local maxima,
local minima and nodes where the number of contours change. One edge
corresponds to one contour and tracks the evolution of this contour while
the isovalue is changing. The augmented contour tree shown in Figure 3.2a
contains nodes for all mesh vertices, not only for critical points.

Figure 3.1 shows a function defined on a two-dimensional simplicial mesh
and the corresponding contour tree. Nodes 9, 10, 8 and 7 are local maxima,
nodes 1 and 2 are local minima and nodes 3, 4, 5 and 6 are nodes where
the number of contours change. Node 3 is called split node, nodes 4, 5
and 6 are called join nodes. The number of intersection points between
the contour tree and a horizontal line created for an isovalue h shows the
number of contours in the level set of isovalue h. The level set of the isovalue
belonging to line a in Figure 3.1 consists of 4 contours. One encloses the
local maximum 9, the other ones enclose 10, 8 and 7. The contours starting
at 8 and 7 grow with decreasing isovalue and meet at isovalue 6. There, the
contours merge into one contour and the number of contours at isovalue b
is decreases to 3.

16

3.2 Computation

Let N be the number of simplices in M and n be the number of mesh
vertices. Van Kreveld et al. [17] developed an algorithm that created the
contour tree in O(N logN) in two dimensions, and in O(N2) in higher di-
mensions. Tarasov and Vyalyi [18] presented an O(N logN) algorithm in
three dimensions based on sweeps through the mesh.

The algorithm by Carr et al. [16] computes the contour tree in O(n log n+
Nα(N)), where α is the inverse Ackermann function, and uses three sweeps.
First, the algorithm iterates over all mesh vertices in a descending manner
and constructs the join tree consisting of all local maxima and all join nodes.
The join tree belonging to the example in Figure 3.1 can be seen in Figure
3.2b. Note that the join tree contains a node for each mesh vertex, not only
for critical points, but there exist no split nodes.

The following pseudocode describes the computation of the join tree. The
algorithm iterates over the descending mesh vertices. For each mesh vertex,
a join tree node is created (line 3). If there is exactly one neighboring
contour, an edge between the lowest node of this contour and the current
node is created (line 10). If there are multiple connecting contours, the
current node gets connected to all these contours and becomes a join node.
The tracking and merging of the contours is done using a union-find data
structure, called Component in the pseudo code (initialization in line 2,
merge in line 9).

Algorithm 2 Computation of join tree, input mesh vertices p1, . . . , pn are
sorted: h1 < h2 < . . . < hn

1: for i = n→ 1 do
2: Component[i] = i
3: Create new node on position Position[i]
4: LowestVertex[i] = Position[i]
5: for each neighbor pj of pi do
6: if j<i or Component[i] = Component[j] then
7: continue
8: end if
9: Merge(Component[i], Component[j])

10: AddEdgeToJoinTree(Position[i], LowestVertex[Component[j]]
11: LowestVertex[Component[j]] = Position[i]
12: end for
13: end for

The split tree is calculated in the same way as the join tree, just in reverse
order from the lowest to the highest value, and contains all local minima
and split nodes. Split and join trees are shown in Figure 3.2.

17

(a) (b) (c)

Figure 3.2: (a) augmented contour tree containing all mesh vertices; (b) join
tree; (c) split tree. The pictures are taken from the paper of Carr et al. [16].

The augmented contour tree is a combination of join and split tree. This
combination algorithm starts with an empty contour tree. It iteratively adds
nodes to the contour tree and removes them from the join and split trees,
until both the join and split trees are empty. A node can be added if it has
no parent (edge to a node with higher value) in the join tree and one child
(edge to a node with lower value) in the split tree, or it has no child in split
tree and one parent in the join tree.

Detailed descriptions of the whole algorithm, including proofs and a series
of example images for the combination algorithm, can be found in [16].

3.3 Contour tree segmentation

The most common applications of contour trees are fast isosurface computa-
tion [19] and transfer function selection for volume rendering [20]. Marching
cubes is the standard algorithm for isosurface computation and has to iterate
over all voxels to find starting seeds of the isosurface. Then the contour is
followed until the starting seed is reached again. The contour tree contains
information about the number of connected components belonging to an
isovalue and enables immediate seed generation. Regarding volume render-
ing, the contour tree enables the application of separate transfer functions
to individual connected components. The contour tree can also be used to
perform image segmentation. In the following, three different segmentation
algorithms based on the contour tree and on the join tree are presented.

The easiest approach is to assign one segment to each edge of the contour
tree. Imagine a simple two-dimensional relief with two mountains and a

18

9
10

8
7

6
5

4

3

1
2

Figure 3.3: First segmentation approach: contour tree with edges that are
colored according to their segment.

mountain pass. Then the algorithm creates two segments for the tops of the
mountains. The segments start at the local maxima and spread out until
they reach the mountain pass. At the mountain pass a third segment starts.
Figure 3.3 shows a contour tree with edges colored according to the created
segment. In total, 9 different segments are created.

The second approach uses the join tree and is based on the idea that each
node v in the join tree stands for all data points D(v) lying on an edge
above v. So D(v) contains all mesh points that can be reached by following
the contour corresponding to v with increasing isovalue up to the reachable
local maxima. For example, a local maximum just stands for itself, there
are no edges above. Figure 3.4a shows a node where the described edges
and nodes are colored in red. The creation of one segment corresponds to
the choice of one node v, then the segment contains all voxels in D(v). The
choice of multiple nodes creates multiple segments. Assume v1, v2, . . . are
the selected vertices. To achieve a unique segmentation, it must hold that
the sets D(v1), D(v2), . . . have no common elements. Figure 3.4b shows the
choice of a valid segmentation. Note that there are data points which remain
unlabeled. For example, the selection of a local minimum would not allow
the selection of another node, so voxels with low values will most probably
stay unlabeled. This segmentation approach was implemented for a diploma
thesis [21].

The third approach uses the join tree and starts with one segment for each
local maximum. At join nodes, multiple segments meet. Now, segments
meeting at a join node can either be merged into one segment or the seg-

19

9 10
8

7

6
5

4

3

1

2

v

D(v)
D(v2)

(a)

9 10
8

7

6
5

4

3

1

2

v1

v2
D(v1)

D(v2)

(b)

Figure 3.4: Second segmentation approach: (a) red regions belong to v; (b)
segmentation into two segments with two selected vertices v1 and v2.

ments can stay separated depending on a persistence criterion introduced by
Edelsbrunner et al. [22]. In the context of this algorithm and in the context
of the following parts of the thesis, these join nodes are called merge nodes
or split nodes. See Figure 3.5 for an example. Throughout this thesis, the
term contour tree segmentation refers to this third segmentation approach
using a persistence criterion.

To be more precise, the segmentation algorithm iterates over the data points
in the order of decreasing scalar values. If there is a new local maximum, a
new segment containing this voxel is created. Each voxel that is neighbored
to exactly one already labeled segment gets the same label as its neighbor.
If a new voxel is neighbored to more than one segment, the segments merge
if the difference between one of the maxima and the value at the current
voxel is less than a user-defined persistence value (merge node). Otherwise
the segments stay separated (split node). The final segmentation is defined
by the values of the union-find data structure, again called component in
the pseudo code in algorithm 3. If the persistence value is so small that
no merges occur, the number of segments in the final segmentation equals
the number of local maxima. On the other hand, if the persistence value is
so large that merges occur at each join node, all segments merge into one
segment.

Assume that a new voxel v has two segments as neighbors but the seg-
ments cannot be merged because the persistence value is too small. Now
the segments stay separated but v has to be assigned to one of these adja-
cent segments. Two possibilities are to either assign v to the segment of the

20

9 10
8

7

6
5

4

3

1

2

MergeSplit

Split

Persistence = 2.5

Figure 3.5: Third segmentation approach: The segments/contours starting
at 7 and 8 meet each other at 6. 8− 6 = 2 and 7− 6 = 1 is smaller than the
persistence value 2.5, hence the segments get merged. Nodes 5 and 4 are
split nodes because the difference to the maxima values is larger than 2.5.
The node between 5 and 4 can belong to the blue or to the green segment.
If blue is added to green one gets cyan. This is the reason why the node
between 5 and 4 has the color light-cyan.

Algorithm 3 Contour tree segmentation, input mesh vertices p1, . . . , pn are
sorted: h1 < h2 < . . . < hn

1: for i = n→ 1 do
2: Component[i] = i
3: MaxValueOfComponent[i] = hi
4: for each neighbor pj of pi do
5: if j<i or Component[i] = Component[j] then
6: continue
7: end if
8: if Persistence criterion then
9: Merge(Component[i], Component[j])

10: Update MaxValueOfComponent[i] or MaxValueOfComponent[j]
11: end if
12: end for
13: end for

21

neighbor with the largest value or to the segment where most of its neighbors
belong to.

As long as there are no split nodes (all segments get merged), the voxels with
multiple neighbor segments correspond exactly to the join nodes. Imagine a
node where segments S1 and S2 meet and stay separated. Then it is possible
that there are following voxels neighbored to S1 and S2 and the persistence
value decides again whether the segments should be merged or not. So the
decision between merge or split was made for a voxel not corresponding to
a join node. But as shown later, the segments meeting at such nodes will
never merge.

Contour tree segmentation is useful if voxels between the wanted segments
have lower values than voxels inside the segments. Then it can be possible
to find a persistence value that creates split nodes between the segments. So
hopefully, different maxima inside the segments get merged but the segments
are split at the borders.

The contour tree segmentation has similarities with watershed segmentation.
Watershed starts from the local minima and floods the water basins while the
contour tree segmentation starts from the maxima. Both algorithms have to
deal with the problem of oversegmentation. For watershed exist hierarchical
algorithms, the contour tree segmentation handles oversegmention with the
persistence criterion.

3.3.1 Persistence criteria

The described persistence criterion is not the only possibility. Another ex-
ample is a persistence criterion that includes the size of the segments. So
very small segments with high values can be merged with their neighbor
segment.

The one-dimensional example in Figure 3.6 shows a very thin segment with
high maximum value S1 and a large segment S2. Using the first persistence
criterion, the segments stay separated because the difference between the
maxima and the value at the current voxel is not less than the persistence
threshold. A persistence criterion including the size could identify S1 as noise
and include it into S2. The following parts of the thesis use the standard
persistence criterion without regarding the segment size.

3.3.2 Fast contour tree segmentation

The contour tree segmentation algorithm has to sort the whole dataset and
has to iterate over all voxels in order to merge segments according to the
persistence criterion. The idea of our fast contour tree segmentation algo-

22

S1 S2
Persistence value

Figure 3.6: Persistence criterion example: A persistence criterion depending
on the size of segments can merge S1 into S2.

rithm is to iterate only over the nodes of the join tree. The join tree is
calculated in one initial computation and afterwards it is only necessary to
iterate over the join nodes for different persistence values. In general, there
are significantly less join tree nodes compared to the number of voxels in
total, so the running time decreases dramatically.

The idea is to precompute the join tree and the oversegmentation where
all segments stay separated. The oversegmentation is given as the corre-
sponding union-find data structure. Additionally, the maximum values of
all components in the union-find data structure are saved. Now, for a spe-
cific persistence value, the algorithm only iterates through the join nodes of
the join tree and tests whether it is a merge node or a split node. If it is
a merge node, the components of the union-find data structure get merged.
The final segmentation is again defined by the union-find result. The pseudo
code in algorithm 4 illustrates the functionality of the algorithm.

Algorithm 4 Fast contour tree segmentation, inputs are join tree: J, union-
find of oversegmentation: Component, maximum values of components:
MaxValueOfComponent

1: for each join tree node in order of decreasing value do
2: pi is mesh vertex corresponding to join tree node
3: for each neighbor pj of pi do
4: if j<i or Component[i] = Component[j] then
5: continue
6: end if
7: if Persistence criterion then
8: Merge(Component[i], Component[j])
9: Update MaxValueOfComponent[i] or MaxValueOfComponent[j]

10: end if
11: end for
12: end for

23

x

Figure 3.7: Proof sketch.

The fast contour tree segmentation result equals the standard contour tree
segmentation result under certain conditions, which are described in the
remainder of this chapter. But first, it must be shown that all merges
during the application of the standard contour tree segmentation algorithm
happen on a join tree node and not somewhere in between. In the following
the segments are called components because of the used union-find data
structure.

Theorem 1. During the application of the standard contour tree segmenta-
tion algorithm, merges only occur on join nodes.

Proof. Observation 1: If two segments (components) meet and get not
merged, they will never merge again. This is because a later voxel, where
both segments meet again, has an even lower value than the one before.
So the difference between maxima and voxel value increases and cannot get
lower than the persistence value.

Observation 2: If a component C meets another component and is not
merged, it can only be merged later to a component that fulfills the per-
sistence criterion. The difference between all following voxel values and the
maximum of C is larger than the persistence value.

Now assume that two components C1, C2 merge in x but x is not a join
node and has just one parent (see Figure 3.7) . This is only possible, if C1

and C2 were both parts of at least one prior split node. Hence for C1 and
C2 holds observation 2 and they cannot be merged. This contradicts the
assumption.

Now imagine that the fast contour tree segmentation algorithm reaches a
join node where the components C1 and C2 merge to C. After the merge,

24

voxels that belonged to C1 or C2 are now in C, what is exactly the same
result as in the standard algorithm. The question is if there are voxels with
lower value than the join node which are not in C1 or C2 but would have
been in C using the standard algorithm. This is possible what is illustrated
with the following example.

Assume a voxel v has C1, C2 and S as neighbor components and these three
components cannot merge at v. Assume that v shares more neighbors with
S than with C1 or C2 but C shares more neighbors with v than S. Then
v belongs to S in the oversegmentation where all contours stay separated
and hence v belongs not to C after the merge of C1 and C2. But this is a
mistake because in the standard algorithm C1 and C2 were already merged
before v, so v gets assigned to C.

The problem is that the component choice for v depends on the number of
neighbors which is affected by merges. So the result of the component choice
depends on previous merges. This is not the case if the choice depends on
the largest neighbor. The neighbor with the largest value does not change
during merges. So the fast contour tree segmentation equals the standard
contour tree segmentation if this choice depends on value size instead of
neighborhood.

25

Chapter 4

Amira

Amira, Avizo and ZIBAmira [23] are data visualization, processing and anal-
ysis softwares developed by FEI Visualization Sciences Group in Bordeaux
and the Zuse Institute Berlin (ZIB). Amira and Avizo are commercially dis-
tributed by FEI Visualization Sciences Group where Amira focuses on life
sciences and Avizo focuses on material sciences. ZIBAmira is developed at
the Zuse Institute Berlin for research partners and contains, for example,
also experimental or special purpose modules.

Amira is able to handle a broad range of input file formats such as TIFF
stacks or DICOM data. Once loaded, the data can be stored using the native
file format AmiraMesh. The user can visualize or process scalar fields, vector
fields, label fields, triangular surface meshes and many more kinds of data.

A high flexibility is obtained due to Amira’s modular design. Loaded datasets
occur in the object pool (part (a) in figure 4.1) and can be visualized with
rendering modules or processed with computation modules. Multiple com-
putation modules can be used to create a working pipeline to solve a specific
task. The latter module gets the result of the previous module as input. Such
computation modules include, for example, Gaussian smoothing, gradient
computation of a scalar field, random walker segmentation or surface gener-
ation from a given segmentation. Three-dimensional visualization modules
are, for example, modules for isosurface visualization, volume rendering or
surface visualization. Figure 4.1 shows the Amira interface with two datasets
and two modules in the object pool and a volume rendering as visualization
example.

The segmentation editor of Amira allows manual and semi-automatic seg-
mentation. The user can iterate through the slices and select the label of
each voxel manually, or use algorithms like thresholding or region growing.
The segmentation editor creates a label field as segmentation result. In
ZIBAmira, such label fields behave like scalar fields optimized for segmen-

26

Figure 4.1: ZIBAmira user interface: (a) the object pool contains all datasets
and modules (green: datasets, yellow: 3D visualization modules, red: com-
putation modules, orange: 2D visualization modules); (b) the properties
area shows properties of selected datasets and allows to adjust the settings
of computation modules; (c) the 3D viewer shows visualization results, here
a volume rendering of a tesseral structure; (d) the console window is used
for text outputs and TCL commands.

27

tation results and can only store up to 256 labels. Scalar fields containing
natural numbers could handle the results of larger segmentations but they
cannot be processed by the segmentation editor.

The user can automatize tasks with the help of the script language TCL.
TCL commands can be used in the console window (part (d) in figure 4.1)
or in TCL script files. These script files can be written by every Amira user.

This thesis was created in the Visualization and Data Analysis department
at the Zuse Institute Berlin, so all visualizations and computations in the
next chapters were done with ZIBAmira. Hence it was possible to use all
existing ZIBAmira functionalities and to write own modules in C++ which
were added to the program. So there were three possibilities: either it was
possible to simply use an existing ZIBAmira module, or an existing module
was extended, or a completely new module was created.

28

Chapter 5

Segmentation of tesserae

This chapter describes how the algorithms of the previous chapters can be
used to perform a segmentation of tesseral structures. The chapter contains
the following parts. In the first part, the input micro-CT datasets are pre-
sented. Then, a segmentation of a dataset with few tesserae is calculated.
The main part is the presentation of a segmentation pipeline to segment
datasets consisting of hundreds of tesserae.

5.1 Introduction of datasets

The input datasets are micro-CT scans of tesserae. Figure 5.1 gives a first
impression of the data and shows volume renderings of ray skeletons.

Humans can identify individual tesserae by just looking at the volume ren-
dering. This is possible because of multiple reasons. First, the intensity
values of tesserae are higher than the values of all other background struc-

(a) (b)

Figure 5.1: Volume renderings of two ray datasets with visible tesserae.

29

tures like uncalcified cartilage. Second, there are holes between the tesserae,
that means, there are small areas not consisting of calcified cartilage. So
the tesseral joints are small in comparison to the main parts of the tesserae.
These observations can be seen in the slice in Figure 5.2b.

The Figures 5.2b and 5.2d focus on the intensity distribution over tesserae
voxels. High values are mainly found in the boundary regions and on the
tesseral joints. There are no borders between individual tesserae to use
border detection algorithms. So the micro-CT values of the tesserae do not
give enough information to perform the tesserae separation. Instead, it is the
geometry of the tesserae with small tesseral joins that should be exploited
by the following segmentation algorithms.

5.2 Segmentation of small areas

The segmentation of only a few tesserae, that means around ten to thirty in-
stead of hundreds, is an easier task than the segmentation of a large dataset.
It is possible to use segmentation algorithms that are too slow for the whole
dataset but which perform well on a small amount of tesserae or voxels. It is
also possible to use seed-based segmentation algorithms because the needed
amount of user time and the possibility of user mistakes is lower.

As explained in the previous chapter, the geometry of the tesserae with small
tesseral joints should be exploited for the segmentation. Because of these
small joints, a random walker will most probably stay inside the tessera
where he was released. Using a graph only consisting of vertices correspond-
ing to tesserae voxels, spectral clustering could split the graph on the tesseral
joints.

A random walker module already exists in ZIBAmira. It gets the micro-CT
scan and user-defined seeds for each tessera plus one seed for the background
as input and returns a segmentation of the whole dataset. The seeds can be
constructed with the ZIBAmira segmentation editor. It is important that
there is also a seed for the background label, the random walker module
does not distinguish between foreground labels and the background label.

There is one linear system for each seed and each linear system has n vari-
ables, where n is the number of unlabeled voxels. These linear systems are
solved by an iterative solver. Significant improvement of running time can
be reached by maximizing the background seed, that means by performing
a background segmentation first. The size of the linear systems depends on
the number of unlabeled voxels, so the running time decreases if the seeds
get larger.

30

(a) (b)

(c) (d)

(e)

Figure 5.2: Two dimensional slices through the micro-CT dataset: (a) and
(c) show the slice positions as white planes in the three-dimensional dataset;
(b) and (d) show the slices; (e) colormap which is used for the slices, not
for the volume renderings. These are just two-dimensional slices, so tesserae
that are neighbored but not connected in these images are most likely con-
nected in three dimensions.

31

(a) (b)

(c)

Figure 5.3: Segmentation results: (a) volume rendering of micro-CT scan;
(b) segmentation result obtained by random walker segmentation; (c) seg-
mentation result obtained by spectral clustering.

As expected, random walker segmentation leads to good segmentation re-
sults as shown in Figure 5.3b.

Spectral clustering is implemented as a new ZIBAmira module. It gets the
foreground tesserae voxels and the wanted number of segments k as inputs.
Then the Laplacian matrix of the similarity graph is constructed with one
vertex for each foreground voxel and an edge between two vertices if they
are neighbored according to the neighborhood relation with 26 neighbors.
All edge weights are set to one.

The Laplacian matrix L has a size of m×m where m is number of foreground
voxels. Matlab is used to do the eigenvector computation and to do the
clustering with k-means as shown in the following Matlab code. Matlab can
be directly included into ZIBAmira. Currently L is stored as a scalar field
in the pool area of ZIBAmira and then loaded into the Matlab module. This
is a very slow process and it does not allow the usage of sparse matrices.

32

So the dataset is resampled to a very low resolution and this might be the
reason why the result in Figure 5.3c contains errors.

Algorithm 5 Spectral clustering matlab code, L is Laplace matrix and k
the number of clusters

1: L = sparse(L);
2: [V,D] = eigs(L, k, 0);
3: resultClustering = kmeans(V, k);

5.3 Segmentation pipeline

The algorithms of the previous chapter are not capable to realize the segmen-
tation of much larger datasets. For example, random walker segmentation
of a dataset with 500 tesserae needs the user to set 500 seeds and afterwards
the algorithm has to solve 500 large linear systems. So there is a need for a
new segmentation algorithm.

The idea is to use a flexible pipeline consisting of exchangeable parts that
starts with a fully-automatic initial segmentation followed by manual cor-
rections of segmentation errors. Manual corrections are necessary because it
is often not possible to get a perfect segmentation with only one automatic
step.

Figure 5.4 shows a schematic representation of the suggested pipeline. First,
the tesserae are separated from the background. Then, the main idea is to
create a function with low values on the tesseral joints. This function enables
a contour tree segmentation with split nodes on the tesseral joints to separate
the tesserae. Such a function is created in step two by a distance map. In
the end, this first automatic segmentation is improved by the user to get a
final segmentation of the tesserae.

Detailed explanations of the individual steps follow in the next sections.
Example images are taken from one dataset that is used throughout all
pipeline steps.

5.3.1 Separation of tesserae and background

In the micro-CT scan, tesserae have a larger density than uncalcified carti-
lage or soft tissue. Hence it is possible to separate tesserae from the back-
ground with the help of simple thresholding. Figure 5.5 shows the surface
belonging to the binary segmentation with threshold value 50.

Simple thresholding is prone to background noise with high values on small
amounts of voxels which are not connected to the tesseral structure. Later, a

33

Figure 5.4: Segmentation pipeline.

(a) (b)

Figure 5.5: Background surface from two perspectives.

34

label is assigned to each of these voxels. It is possible to correct these errors
after the initial segmentation by removing all tiny segments. Nevertheless,
it is more sensible to exclude these areas already during the thresholding.

This can be achieved by using the magic wand tool of the segmentation
editor. This tool performs a region growing, that is, the user selects a voxel
and a gray value range, and the algorithm selects the largest connected area
including the selected voxel and with values inside the given range. The
result is a threshold segmentation where all selected voxels are connected.

Another problem is the possibility of changes in the gray value intensity
over a large dataset. As a result, no suitable global threshold can be found,
because the selection is too small in one area and in another area too large.
This problem can be solved using local thresholding algorithms or prior
smoothing of the dataset.

5.3.2 Distance map

Humans can identify individual tesserae because of regions consisting of
uncalcified cartilage (holes) between the tesserae. So the geometry enables
the separation and not the gray value structure. The idea of the distance
map step is to create a function with high values at the tesserae centers
and low values on the tesseral joints. Then, the topological properties of
this function are exploited to do an initial segmentation with the help of a
contour tree segmentation.

The described function is created by calculating the distance map, that
means each foreground voxel gets assigned the shortest distance to the back-
ground. Because of the tesserae geometry, this distance is lower on the
tesseral joints than in the centers. One tessera can contain multiple max-
ima.

The distance map in Figure 5.6a and in Figure 5.6c is computed using an ex-
isting ZIBAmira module that implements a three-dimensional distance map.
The algorithm uses a region growing approach starting at the background
voxels.

The three-dimensional distance map works for the example dataset used for
the description of this pipeline. But the distance map calculation works in
three dimensions, so there are voxels where the distance map value measures
the distance to the top or bottom of the tessera because the height of tesserae
is smaller than the diameter. This is a problem if the width of the tesseral
joint is too large. In such cases, voxels on the tesseral joints and voxels
inside the tesserae get a height value as distance map value. So the difference
between center values and values on the joints is too low, and the contour
tree based segmentation algorithm in Section 5.3.3 can not separate the

35

(a) (b)

(c) (d)

Figure 5.6: Volume rendering of distance maps: (a) 3D distance map; (b) 2D
distance map; (c) close-up of 3D distance map; (d) close-up of 2D distance
map. Compare the close-up images with Figure 5.2b.

36

(a) (b)

Figure 5.7: Failure of 3D distance map: (a) initial segmentation of 3D dis-
tance map with long segments that can not be separated; (b) initial seg-
mentation of 2D distance map with separated tesserae. These are the only
images in this section that are showing another dataset.

tesserae. Figure 5.7a shows how the initial segmentation fails and how long,
not separatable segments are created.

Actually, the distance to the next hole or to the borders on the side of the
tesserae is the important one, so our idea is to use two-dimensional distances
instead of three-dimensional. Then, the distances are only calculated inside
the plane orthogonal to the height dimension (see plane in Figure 5.8b).

There are two steps for each voxel v: first the plane is calculated and then
the shortest distance to the background inside this plane.

For the plane calculation, the first idea is to use a three-dimensional principle
component analysis including all foreground voxels inside a cube around v.
For plate-like structures as the tesserae, the first two eigenvectors of the
larger eigenvalues are spanning the searched plane and the third eigenvector
is orthogonal to the plane. To save the plane it is sufficient to store the
orthogonal vector.

The second idea is to shoot rays from v in all directions (three-dimensional)
and to compute the first intersection point of such a ray with the background.
The intersection points with the top of the tesserae can be seen in Figure
5.8c. The searched plane is the plane with the minimal sum of squared
distances to all intersection points.

Both algorithms are implemented in a new ZIBAmira module HxPlaneDis-
tanceMap. Currently the second idea is used with 1214 rays because it is
much faster than the variant using the principle component analysis and
gives similar results.

Once the plane is found, a user defined number of rays are shot inside this
plane and the distance along each ray to the first background voxel is com-

37

(a) (b) (c)

Figure 5.8: Two-dimensional distance map calculation: (a) surface of a
tessera; (b) slice through the tessera with voxel v, the slice corresponds to
the searched plane; (c) background intersection points on the top of the
tessera after shooting 1214 rays.

puted. The iteration over the voxels of a ray is done using the Bresenham
algorithm [24]. The final distance is the smallest of the computed distance
values. A two-dimensional distance map can be seen in Figure 5.6.

Two-dimensional distance map approaches solve the problem in Figure 5.7a,
but there are problems with very large tesserae at regions with high curva-
ture as the right highlighted region in Figure 5.9b. These tesserae do not
have a plate-like form, so it is not clear how to place the plane.

So there are cases where the three-dimensional distance map fails and other
cases where the two-dimensional version has problems. To solve this prob-
lem, the idea is to combine both versions for complicated datasets, that
means both distance maps are computed and the three-dimensional values
are used in areas where it was not possible to find a useful plane. These
regions are identified with the help of the expected value and the variance
of the squared distances between intersection points and calculated plane.
The right highlighted area in Figure 5.9b has high variance values and is the
area where it is not possible to find a useful plane approximation.

5.3.3 Initial segmentation

The automatic initial segmentation is done with the contour tree segmen-
tation algorithm on the distance map. The theoretical background of the
algorithm is described in Section 3. The standard contour tree segmentation
algorithm already exists as a module in ZIBAmira. The module uses the
standard persistence criterion without using the size of the segments and
has now been extended with the fast contour tree segmentation algorithm
described in Section 3.3.2. Figure 5.10 shows the final module interface. The

38

(a) (b)

Figure 5.9: Identification of regions where the plane calculation is not suc-
cessful: (a) isosurface of whole dataset; (b) two-dimensional distance map
with highlighted region where it is not possible to find a suitable plane for
each point, highlighted region contains voxels with high variance values re-
garding the squared distances between intersection points and plane.

user can choose whether the fast segmentation algorithm should be used or
not.

In addition to the description in Section 3, the module also uses a user-
defined threshold value. All voxels with smaller values than the threshold
are ignored during the segmentation and get automatically assigned to the
background label. The input separation between tesserae and background
is maintained if the threshold value is larger than zero and smaller than the
smallest distance map value not equal to zero.

The maximum number of created segments equals the number of maxima
in the distance field. The larger the persistence value the more merges
will happen during the segmentation process, that means the number of
segments decreases. The lowest possible number of segments equals the
number of connected components over all voxels with larger value than the
threshold value.

To obtain a good final segmentation, it is better to start with a slight over-
segmentation because it is much easier to merge two segments in the manual
correction step than to split a segment that is too large. Hence the persis-
tence value should better be too small than too large.

Immediate visualization of segmentation results is required to quickly find
a suitable persistence value. ZIBAmira already includes a volume rendering
module for label fields but the module also needs segment colors as input.
The module has been extended to generate random colors if no input colors

39

Figure 5.10: Interface of contour tree segmentation module.

are available. The images in Figure 5.11 visualize segmentation results for
increasing persistence values. All pictures are generated by volume render-
ing.

To summarize the workflow: the user simply connects the distance map
to the contour tree segmentation module. He selects the wished threshold
and persistence value and visualizes the segmentation result with volume
rendering. For a fixed threshold value, the fast contour tree segmentation
algorithm has to do the precalculations only for the first segmentation. For
the following persistence values, the algorithm only iterates over join nodes
of the join tree and enables the fast choice of a suitable persistence value.

5.3.4 Dual graph of segmentation

The dual graph of a given segmentation is a graph (V,E) embedded in R3,
that means each vertex v ∈ V has three-dimensional coordinates. There is
one vertex for each segment and there is an edge between two vertices if the
corresponding segments are neighbors. Figure 5.12 shows an example of the
whole dataset.

The dual graph has two main advantages. First, the graph is an abstrac-
tion of the segmentation. Even without annotations it stores all information
about the neighborhood relations. With annotations it can store properties
on the edges or on the vertices like the size of regions and curvature infor-
mation. More information about these properties are shown in Chapter 7.

40

(a) Persistence value 0 (b) Persistence value 5

(c) Persistence value 10 (d) Persistence value 20

(e) Persistence value 50 (f) Persistence value 200

Figure 5.11: Initial segmentation results with increasing persistence value.
The threshold value is always 0.5. All images are results of volume rendering
on label fields.

41

(a) (b)

Figure 5.12: Whole dataset: (a) transparent surface with dual graph; (b)
dual graph.

Furthermore, the dual graph helps to identify problematic areas. In the case
of a perfect segmentation, the dual graph has a regular structure. Otherwise,
for example if there are multiple vertices in a very small area as shown in
Figure 5.13b, there is most probable a segmentation error. Second, the dual
graph is a useful tool to handle user interaction. Manual interaction with a
segmentation requires the selection of individual segments. The selection of
a vertex is comfortable and identifies a segment uniquely.

The graph is computed with the new module HxCreateSurfaceGraph. The
current implementation constructs a graph edge between two vertices if the
corresponding segments are connected in a given surface. Thus it is nec-
essary to construct the surface belonging to the initial segmentation from
the previous section. Of course it is also possible to create the edges purely
based on the label field but it is easier to use the triangular surface mesh.
Figure 5.14a shows an example where two neighbored segments share no
common boundary so the dual graph contains no edge between them. To
solve this problem it is possible to enlarge the segments before the surface
creation (shown in Figure 5.14b). All unlabeled voxels which are next to a
segment and which have higher values than a given threshold value get the
label of that segment. This process is repeated until there are no such voxels
left. The existing ZIBAmira module HxPropagateContours implements this
algorithm.

The last step is to find suitable vertex positions. The straight forward solu-
tion is to place them in the centers of gravity of the segments. This approach
needs the segmentation as additional input of the graph computation mod-
ule. It is easy to implement but has problems with non-convex segments.
Furthermore, the vertices are inside the label field, that means the surface
and the vertices are not visible at the same time. The best solution would

42

(a) (b)

(c) (d)

Figure 5.13: (a) and (b) show a segmentation with errors and the correspond-
ing irregular graph structure; (c) and (d) show the corrected segmentation
with the corresponding regular graph structure.

(a) (b)

Figure 5.14: Propagation of label fields: (a) surface that contains neighbored
regions with no common boundary; (b) the corresponding label field has been
propagated, now neighbored regions share a common boundary.

43

be to create the vertices on the surface but this is much more difficult and
not used in the current implementation.

5.3.5 Manual improvement of segmentation

It seems unlikely to obtain a perfect segmentation result using only the
fully-automatic segmentation step, although this would clearly be the best
solution for the given segmentation problem. Therefore it is necessary to
provide the user with tools to improve a segmentation. Manual user cor-
rections are useful because a human can detect the searched tesserae in a
volume rendering and is therefore able to detect errors in a given segmenta-
tion by simply comparing it with the volume rendering.

The usability of the manual improvement tool is important in order to min-
imize the needed amount of time. Of course this is only possible if the
quality of the initial segmentation is high enough. The correction of a poor
initial segmentation takes either a long time or it is even impossible. This
underlines the importance of the initial segmentation step.

The existing segmentation editor in Amira is not capable to solve this task.
Labelfields in ZIBAmira can handle a maximum of 256 labels what is not
sufficient for the given problem. Additionally, there are no methods to com-
fortably correct the segmentation errors.

The newly developed module HxAnalyzeSegmentation should fulfill three
main tasks. First, it is able to identify problematic segments automatically.
The user can then decide whether corrections are needed or not. Second,
it is able to merge segments in case of an oversegmentation. Third, it is
able to split a segment that covers several tesserae. The interface of the
module is shown in Figure 5.15. The module needs the segmentation and
the corresponding dual graph as inputs.

The user must be able to select individual segments. Such user interaction is
done with the help of the dual graph. There is a one-to-one-correspondence
between the graph nodes and the segments in the segmentation. So the selec-
tion of a node identifies a unique segment. This one-to-one-correspondence
must be preserved during the whole improvement process. Hence it is nec-
essary to update the dual graph after each merge or split.

Identification of problematic segments

The automatic identification of problematic segments has two main pur-
poses. First, it simply helps the user to find the segmentation errors faster.
Then the user can do manual merges and splits to solve the problem. Sec-
ond, it enables automatic operations executed on all critical segments. For

44

Figure 5.15: Interface of new module for manual improvement of segmenta-
tion.

example, it enables the deletion of all critical segments by merging these
segments to the background. So one can remove all small artifact segments
in one operation. Another example is the removal of a second structure in
the background that forms an own connected component that is not con-
nected with the main graph. It is also possible to merge all critical segments
with the most probable neighbor, that is the neighbor with the most num-
ber of connecting triangles in the surface. Such operations must be used
carefully, manual merges are safer because the user chooses the goal and not
an algorithm.

The following list contains all implemented criteria to find critical segments.

• size: too small or too large segments

• number of neighbors: segments with too few or too many neighbors

• isolated segments: only connected to background

• enclosed segments: no connection to background

• small connected component: segments that form a connected compo-
nent with too few nodes

• distance: segments with too small distance to a neighbor

45

(a) (b) (c)

Figure 5.16: Critical segments: (a) whole surface; (b) surface segments with
less than 5 neighbors; (c) surface segments with less than 500 voxels.

Figure 5.16a shows an example of the whole surface followed by surface parts
that belong to different critical segments.

Visualization

The visualization of the surface can be controlled by the HxAnalyzeSegmen-
tation module. It is possible to show only surface parts belonging to selected
vertices or belonging to critical segments as in Figure 5.16b and in Figure
5.16c. The module is also capable to adjust the colors with the goal that two
neighbored segments do not get too similar colors. The original color choice
is random, so it is likely that there are two neighbored, different regions that
look like one in the surface visualization.

Merge

The merge of two or more segments simply means that all of them get
the same label. It is an easy operation but effective if there is a slight
oversegmentation and one tessera consists of several segments. The user
has to select the corresponding graph vertices and after the merge all these
vertices merge into one new vertex. A single merge can not deal with a
segment that is part of multiple tesserae. During the merge operation all
internal structures are updated, that means for example that the vertex
position is recomputed, the unnecessary vertices are deleted, new edges are
created and so forth. An example is shown in the first two pictures of Figure
5.18.

Split

To split one segment R consisting of r voxels into two or more tesserae
equals the primary segmentation task but needs to be performed only on a

46

small part of the dataset. Therefore it is possible to adopt the algorithms
from Section 5.2 and include them into the HxAnalyzeSegmentation mod-
ule. Three splitting algorithms will be discussed: random walker, spectral
clustering and a contour-tree-based algorithm.

Spectral clustering works similar to the previous approach in Section 5.2,
only that the Laplacian matrix L contains voxels of one segment and not of
the whole foreground. An injective mappingM : {0, 1, . . . r−1}� {0, 1, . . . }
between the index of a voxel in R and the index in the whole dataset is
needed. The first row of L stands for the voxel M(0) and so forth. The
Laplacian matrix is written to a scalar field, the matlab module gets the
scalar field as input, does the necessary computation and the result is written
back to the original segmentation label field. The advantage of this approach
is that there is not much user interaction necessary. Selection of the vertex
and setting the number of wished segments is enough. But if the resulting
segmentation is not correct there is no possibility to use spectral clustering
on R with the wished result.

Using random walker segmentation requires the user to create seeds. The
algorithm only needs to work on voxels belonging to R. Because of the seeds,
the user has much influence on the split. If R should be divided into two
segments the user can set the seeds close to the boundary. Then it is not
possible that one segment spreads itself across the boundary into the other
one. Obviously this advantage has also the drawback that the seeds have to
be created. If the segmentation is not successful the process can be redone
with new seed positions.

The third approach uses the contour tree and is built to split a segment into
exactly two parts. The idea is to iterate only over voxels in R and to select
exactly one join tree node where the split should happen. All other join
nodes function as merge nodes. The first implementation allows the user
to choose this split node interactively and view the result immediately. It
takes too much time to find a suitable node so the second implementation
tries each possible node as split node and takes the best one. Under the
assumption that both new segments should be nearly of the same size, the
algorithm calculates the number of voxels and minimizes the absolute value
of their difference. It should be possible to use the fast contour tree segmen-
tation approach from Section 3.3.2 but currently the algorithm iterates over
all voxels in R.

Currently, only the contour tree split and the spectral clustering split are
implemented. Figure 5.17 shows an example where the contour-tree-based
split is not capable to separate the tesserae, but the spectral clustering split
succeeds.

47

(a) (b) (c)

Figure 5.17: Different split results: (a) the yellow tessera has parts inside
the green tessera, the tesserae get merged and then split; (b) contour-tree-
based split was not able to correct the error ; (c) spectral-clustering-based
split separated the green tessera and the yellow tessera successfully.

Combination of merge and split

The combination of merge and split operations enables the correction of
more complicated segmentation errors.

For example, if one segment is part of multiple tesserae as shown in Figure
5.18a, then it is possible to merge these segments into one segment and to
do a split operation on this new segment. If the number of merged segments
is greater than two, then it is just possible to perform the spectral clustering
split, the implemented version of the contour-tree-based split can only handle
two regions.

(a) (b) (c)

Figure 5.18: Combination of merge and split: (a) three tesserae with er-
rors; (b) three tesserae merged into one; (c) result of a successful spectral
clustering split into three tesserae.

There exist segmentation errors that are not solvable with the presented
tools. In such a case it is necessary to use the ZIBAmira segmentation
editor. If the number of segments is larger than 256, one needs to extract

48

a smaller part with less than 256 segments and solve the problem with the
segmentation editor. Afterwards the extracted area must be reinserted into
the original segmentation. This process needs a lot of time but is the only
chance to correct the remaining errors. This also underlines the importance
of the presented corrections tools which work much faster.

49

Chapter 6

Evaluation

Quantitative evaluation is difficult because there exist no ground truth seg-
mentation to compare with. Real quantitative analysis would need a manual
segmentation of a domain expert. So the focus of this chapter lies on quali-
tative evaluation.

6.1 Datasets

The segmentation pipeline is tested on three ray datasets. The technique
used during the micro-CT scans of datasets 2 and 3 differs from the first
one. The datasets 2 and 3 were freeze-dried and as a result the skeleton was
squashed together. That means there is just a little space between the two
sides of the dataset. This effect can be seen in the Figures 6.1b and 6.1c.
More information can be found in the following table.

(a) (b) (c)

Figure 6.1: Segmentations of the three datasets.

50

Dataset 1 Dataset 2 Dataset 3

Size 1708×712×
1142

1424×648×
1249

620×548×
1311

Resolution (in
µm)

3.96×3.96×
3.96

5.42×5.42×
5.42

5.28×5.28×
5.28

File size 1.4 GB 1.2 GB 445 MB

Size after resam-
pling

427×178×285 356×162×312 310×274×655

Resolution after
resampling (in
µm)

15.84×15.84×
15.84

21.68×21.68×
21.68

10.57×10.57×
10.57

File size after re-
sampling

21.7 MB 18 MB 55.6 MB

Grayscale value
range

0 .. 255 0 .. 255 0 .. 255

The datasets were resampled because the quality was still sufficient and the
fast contour tree segmentation finished immediately instead of taking a few
seconds.

6.2 Qualitative evaluation

As mentioned before, the user is in most cases able to identify individual
tesserae. So qualitative evaluation can be done by comparing the final seg-
mentation result with an isosurface.

The second and third datasets use the two-dimensional distance map ap-
proach because the standard three-dimensional version leads to the errors
shown in Figure 5.7. The used settings are shown in the following table.

51

(a) (b)

(c) (d)

Figure 6.2: Excellent segmentation results in dataset 1. The images on the
right side show the segmentation results corresponding to the isosurfaces on
the left side.

Dataset 1 Dataset 2 Dataset 3

Threshold value 50 65 65

Type of distance map 3D 2D 2D

Persistence value 9 20 10

The Figures 6.2, 6.3 and 6.4 show areas with excellent segmentation re-
sults for all three datasets. These areas allowed such good segmentation
results because there are large enough background areas (holes) separat-
ing the tesserae. The quality of the distance map result depends on the
existence of such holes, otherwise the distance to the border regions can-
not be measured correctly, because they do not exist as background in the
foreground-background segmentation.

52

(a) (b)

(c) (d)

Figure 6.3: Excellent segmentation results in dataset 2.

(a) (b)

(c) (d)

Figure 6.4: Excellent segmentation results in dataset 3.

53

(a) (b)

(c) (d)

Figure 6.5: Images are taken from dataset 1. The border of the micro-CT
scan is in the lower part of the images. (a,b) initial segmentation could
not separate the green segment in 2 tesserae, contour tree based split fails,
spectral clustering based split succeeds; (c,d) even the isosurface allows no
clear separation, contour tree based split and spectral clustering based split
fail.

More problematic are areas at the border of the micro-CT scan. There,
the real dataset is cut which leads to very small parts of tesserae whose
main parts lie outside of the micro-CT scan. This problem can be solved
by removing the border regions after the segmentation process. Figure 6.5
shows examples where these small parts are not separated correctly from a
neighbored tessera.

The largest problem is the existence of areas where only few background
voxels are separating two tesserae. In such cases the distance map values
between two tesserae are not small enough, so one segment will have voxels in
both tesserae. This segment can only be corrected with a split. As described
in Section 5.3.5, the results of the currently existing contour-tree-based split
and spectral-clustering-based split cannot be controlled by the user. So if
these methods fail, there is currently no possibility to split the segment
without manually using the ZIBAmira segmentation editor. The random-
walker-based split described in Section 5.3.5 will most probable solve this
problem. Figure 6.6 shows examples of such problematic parts.

54

(a) (b)

(c) (d)

Figure 6.6: (a,b) images belong to dataset 1, the purple segment is too large
and has voxels inside the tessera belonging to the blue segment; (c,d) images
belong to dataset 3, an example for a really difficult area, there are nearly no
holes in the right part of the isosurface, this leads to a wrong segmentation
that is not correctable with the current splits.

55

(a) (b)

(c) (d)

Figure 6.7: Segmentation results of inner parts of dataset 1 (a and b) and
dataset 2 (c and d).

The previous images showed only results on the surface but the performed
segmentation is three-dimensional. So it is also necessary to look at segmen-
tation results in the inner parts. This is done with help of slices through
the dataset. Figure 6.7 shows segmentation results in the inner parts of the
tesserae.

To summarize the results that were presented with the above example im-
ages: the segmentation quality crucially depends on the existence of holes
between the tesserae. Figure 6.6c shows the isosurface for an isovalue where
this property is not fulfilled. The increasing of the threshold value during
the background segmentation will create these holes, but such a threshold
value is not suitable for the rest of the dataset. To solve this problem, it is
either necessary to improve the background segmentation or to merge these
segments in the manual correction step and correct them with a random
walker split.

The reached segmentation quality of the first two datasets is very good,
there are only very few segments that could not be corrected with the cur-
rently available tools. The segmentation quality of dataset 3 is poor, there
are successfully segmented parts as shown in Figure 6.4 but there are also
multiple regions like the one shown in Figure 6.6c. The segmentation of

56

dataset 1 was also very fast. It seems, that the freeze-drying of datasets 2
and 3 complicates the segmentation process.

6.3 Running time

Regarding the running time, there are two discussable parts. First, the
running time of the automatic algorithms, and second, the time the user
needs using the presented pipeline.

All computations were carried out on a Linux computer with 4 Intel Xeon
3.0 GHz processors and 16 GB of main memory. The running time of back-
ground segmentation, dual graph generation and performing individual steps
of the manual correction phase is negligible compared to standard visualiza-
tion operations like volume rendering or isosurface computation. Only the
computation of the two-dimensional distance map is expensive. Here, expen-
sive means 15 minutes for the distance map computation on the resampled
first dataset.

The most time-consuming step for the user of the pipeline is obviously the
manual correction step. The needed time depends on the quality of the
initial segmentation and how much merge and split steps are necessary for
a good segmentation result. Dataset 1 could be handled fast, that means in
around half an hour. Dataset 2 was more difficult and needed around three
hours with standard settings.

57

Chapter 7

Analysis of tesseral
structures

A successful segmentation is the first step to realize further analysis of
tesseral structures. Biologists are interested to understand relations be-
tween the shape of tesserae and properties like the number of neighbors or
the curvature. The segmentation and the dual graph enable automatic cal-
culation and comparison of these properties. For example, it is not necessary
to count the neighbors of each tessera manually, what would be a common
but time-consuming approach if there is no algorithmic solution available.
This chapter gives only an overview of these properties and how they can
be visualized, the real evaluation of these information in a biological context
would be part of another work.

7.1 Size and number of neighbors

Size and neighborhood information are attached to the vertices of the dual
graph and are updated during all user-dependent steps of Section 5.3.5.
Thereby size only refers to the number of voxels inside a segment, not to
the real volume. So the absolute values change between different image
resolutions but the size values of one resolution are comparable. Figure 7.1
shows examples of annotated graphs.

58

(a) (b)

(c)

Figure 7.1: Graph annotations: (a) number of neighbors; (b) size of seg-
ments; both properties are encoded as the radius of the vertices (larger
radius means larger value) and as the vertex colors (see colormap (c)).

Using the dual graph, it is easy to see that there is a variation in the num-
ber of neighbors. Even in very flat regions exist smaller tesserae with more
neighbors than their neighboring tesserae. There are also large size differ-
ences, mainly between flat regions and regions with high curvature.

7.2 Curvature

Definition 5 (Curvature).
Given a three-dimensional parametric surface S : R2 → R3, for each arbi-
trary surface point P ∈ R3 exist a tangent plane. The intersection between
the surface and a plane orthogonal to the tangent plane and containing P
is a curve on the surface. Different planes lead to different curves that can
have different curvatures. The minimum and maximum curvature values
are called principal curvatures. The Gauss curvature is the product of the
principal curvatures.

In the actual problem, the surface is a triangular mesh and not given as a
parametric equation. There are several approaches [25] how to adopt the
above definitions to a discrete context. The most common idea is to use
normals of triangles in a neighborhood of the point. Within a small neigh-
borhood, the calculated curvature is a very local property. This is similar to

59

the continuous definition but also prone to noise. Larger neighborhoods lead
to a more robust calculation but differ more from the original definition.

There is an Amira module to calculate different types of curvature for tri-
angular surfaces. The first problem is the existence of holes between the
tesserae. These are the regions with the highest maximum curvature as seen
in Figure 7.2a but these are not the regions of interest. Second, even if these
holes are filled as in Figure 7.2b, the surface is still uneven and the tesserae
on the border of the whole structure have no larger values than parts in flat
regions.

A solution is to calculate curvature values only for the vertices of the dual
graph as shown in Figure 7.2c. All other properties are also stored on the
graph vertices and the graph mesh is fine enough to deliver meaningful cur-
vature information. The new algorithm first calculates normals for each
vertex by averaging the normals of the adjacent graph faces. Then it cal-
culates the curvature for a vertex v by comparing it with the normals of
adjacent vertices. For Figure 7.2c, the angles between the normal of v and
all of its neighbor normals are calculated and v gets simply the maximum
of these angles. Of course it would also be possible to use other variants, for
example to average over all these angles.

(a) (b) (c)

(d)

Figure 7.2: Curvature information: (a) maximum curvature on original sur-
face; (b) maximum curvature on smoothed surface; (c) curvature on graph
vertices; (d) colormap.

The largest curvature values in Figure 7.2c are in the large, strongly curved
regions. These are the searched regions, the surface computation methods
in 7.2a and 7.2b were not able to identify them.

60

Chapter 8

Future work

Chapter 5 described a segmentation pipeline for separating individual tesse-
rae in micro-CT scans. There are several opportunities how the presented
work can be used or improved in the future. The work on the segmentation
of tesserae is not finished with the end of this master thesis. The project
will continue, so hopefully some of the following ideas will be implemented
soon.

8.1 Improvement of the presented pipeline

Further improvement of the presented tools and algorithms is necessary.
This improvement includes work on the usability of the segmentation pipe-
line. The manual correction step contains no possibility to undo the last
action. A split can be undone by a simple merge, the opposite direction is
more difficult because most probably the split will not separate the segment
in exactly the same parts as before.

Another interesting feature would be that the manual correction module
automatically zooms to an incorrect part of the dataset, the user corrects
the errors and restarts the process. The identification of problematic areas
can be done with algorithms from Section 5.3.5.

The number of tested datasets in the evaluation chapter is currently too
small. It is important to use the pipeline on other ray and shark datasets for
further evaluation and improvement of the process. A dataset with a given
ground truth segmentation would enable a real quantitative evaluation.

The spectral clustering implementation uses the ZIBAmira Matlab module.
So the input Laplacian matrix is written to a scalar field that lies in the
object pool. This is quite inefficient and it would be a great improvement

61

to store the Laplacian matrix only internally as a sparse matrix and use
Matlab directly.

The initial segmentation can lead to a lot of small segments. Automatic
removal with algorithms described in Section 5.3.5 is prone to errors. On
the other hand, manual corrections take a lot of time. It might be possible
to remove this problem by using a persistence criterion including the size of
the segments as described in Section 3.3.1.

8.2 Application of new algorithms

The two main drawbacks of the presented spectral clustering method are the
running time and that the number of segments must be known before the
computation. But the number of tesserae is not known, except if the user
counts them manually. The running time might be reduced by resampling
the dataset and by using a multi-resolution approach. Also concepts like
super-voxels as a combination of multiple individual voxels could lower the
running time. Robust Perron Cluster Analysis [26] was originally developed
to find almost invariant subsets of states in Markov chains but the method
can also be applied as a clustering algorithm [27] using eigenvectors of a row
stochastic matrix. This matrix contains transition probabilities. The algo-
rithm has much similarities with the spectral clustering algorithm presented
in Section 2.1.1 but has one significant advantage: Robust Perron Cluster
Analysis does not need the number of clusters as input. Applications of
Robust Perron Cluster Analysis as a clustering method can be found in [27].
It might be possible to use a spectral clustering algorithm based on Robust
Perron Cluster Analysis for the segmentation of tesserae in a large dataset.

The Morse-Smale complex segments the domain into regions of uniform gra-
dient flow behavior. A separation into segments where the gradient flow has
the same target leads to segments belonging to a local maximum. There
exist algorithms to simplify Morse-Smale complexes to remove irrelevant
segments. This simplification is also based on a persistence criterion. It
could be possible to use a Morse-Smale complex segmentation on the dis-
tance map that merges segments belonging to different maxima in one tessera
but preserves the intertesseral joints. An example for Morse-Smale complex
segmentation can be found in the paper of Laney et al. [28].

An active shape model [11] of a tessera could be used to do a surface-based
segmentation approach. Problems are that the shape of tesserae can vary
widely so it is not clear if one model would be enough. Furthermore, the
creation of the model is not trivial.

The initial segmentation fails if the distance map is not capable to detect the
intertesseral joints. This was shown in Figure 6.6c. The quality of the dis-

62

tance map depends on the foreground-background segmentation. Right now,
background segmentation is done with region growing and thresholding. It
might be possible that other algorithms like Chan-Vese segmentation [13] or
local thresholding algorithms [2] improve the result.

In the initial segmentation step described in Section 5.3.3, the algorithm
should perform a slight oversegmentation because manual merges are easier
than splits. Another approach would be to use an algorithm for automatic
merges. The initial segmentation starts with an extreme oversegmentation
and an algorithm for automatic merges creates the individual tesserae. Such
an approach is used in the paper by Haris et al. [29], where the initial
segmentation is performed by a watershed segmentation.

8.3 Biological applications of segmentation

Segmentations of tesserae help biologists to analyze the shape of tesserae,
how the shape changes with the curvature and so forth. With successful
segmentations of a series of micro-CT scans of the same species but with
different ages, it would be possible to study how shape and tiling patterns
change with the aging of the species.

Another opportunity would be to carry out finite element simulations to
study stress relaxation properties of the tessellated cartilage. It would also
be possible to use a 3D printer to obtain a real three-dimensional model of
the tessellated structure.

Of course it is also possible to study other materials as long as these materials
consist of some kind of tiles.

63

Chapter 9

Conclusion

This thesis described a segmentation pipeline to separate tesselated struc-
tures in micro-CT scans of rays and sharks. The pipeline consists of two main
parts. First, the dataset is segmented with an initial automatic segmenta-
tion step based on a newly developed fast version of a contour-tree-based
segmentation algorithm. Second, the automatic segmentation is corrected
by the user. Furthermore, the dual graph of the segmentation is created as
an abstraction of the segmentation and to support user interaction. Addi-
tionally, algorithms for the segmentation of datasets with few tesserae were
suggested: spectral clustering and random walker. These algorithms are also
useful during the manual correction step.

The suggested pipeline was implemented into the visualization software sys-
tem ZIBAmira and used for the segmentation of ray datasets with hundreds
of tesserae. The quality of the segmentation result depends on whether there
exist parts of uncalcified cartilage between the tesserae.

In this thesis it was shown that the suggested segmentation pipeline is ca-
pable to solve the given segmentation task. Some problems remain, mainly
concerning the distance map which is the basis for the following initial seg-
mentation step. The initial segmentation becomes error-prone if the distance
map is not able to identify the boundaries between two tesserae. The project
in which the thesis was prepared will continue and the suggestions from the
previous chapter will hopefully solve the remaining problems.

64

Bibliography

[1] Dean, Mason N. ; Summers, Adam P.: Mineralized cartilage in the
skeleton of chondrichthyan fishes. In: Zoology 109 (2006), Nr. 2, S.
164–168

[2] Wirjadi, Oliver: Survey of 3d image segmentation methods. ITWM,
2007

[3] Pal, Nikhil R. ; Pal, Sankar K.: A review on image segmentation
techniques. In: Pattern Recognition 26 (1993), September, Nr. 9, 1277–
1294. http://dx.doi.org/10.1016/0031-3203(93)90135-j. – DOI
10.1016/0031–3203(93)90135–j. – ISSN 00313203

[4] Mortensen, Eric N. ; Barrett, William A.: Intelligent Scissors for
Image Composition. In: Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques. New York, NY, USA :
ACM, 1995 (SIGGRAPH ’95). – ISBN 0–89791–701–4, 191–198

[5] Vezhnevets, Vladimir ; l. eta: ”GrowCut” – Interactive Multi-Label
N-D Image Segmentation By Cellular Automata. 2005

[6] Boykov, Y.Y. ; Jolly, M.-P.: Interactive graph cuts for optimal
boundary amp; region segmentation of objects in N-D images. In:
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Inter-
national Conference on Bd. 1, 2001, S. 105–112 vol.1

[7] Shi, Jianbo ; Malik, Jitendra: Normalized Cuts and Image Segmen-
tation. In: IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), Au-
gust, Nr. 8, 888–905. http://dx.doi.org/10.1109/34.868688. – DOI
10.1109/34.868688. – ISSN 0162–8828

[8] Grady, L.: Random Walks for Image Segmentation. In: Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on 28 (2006), Nov,
Nr. 11, S. 1768–1783. http://dx.doi.org/10.1109/TPAMI.2006.233.
– DOI 10.1109/TPAMI.2006.233. – ISSN 0162–8828

65

http://dx.doi.org/10.1016/0031-3203(93)90135-j
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1109/TPAMI.2006.233

[9] Luxburg, Ulrike: A Tutorial on Spectral Clustering. In: Statistics
and Computing 17 (2007), Dezember, Nr. 4, 395–416. http://dx.doi.
org/10.1007/s11222-007-9033-z. – DOI 10.1007/s11222–007–9033–
z. – ISSN 0960–3174

[10] Beucher, Serge ; Lantuéjoul, Christian: Use of watersheds in con-
tour detection. (1979)

[11] Cootes, T. F. ; Taylor, C. J. ; Cooper, D. H. ; Graham, J.: Active
Shape Models&Mdash;Their Training and Application. In: Comput.
Vis. Image Underst. 61 (1995), Januar, Nr. 1, 38–59. http://dx.doi.
org/10.1006/cviu.1995.1004. – DOI 10.1006/cviu.1995.1004. – ISSN
1077–3142

[12] Mumford, D. ; Shah, J.: Boundary detection by minimizing function-
als. In: IEEE Conference on Computer Vision and Pattern Recognition,
1985

[13] Chan, T.F. ; Vese, L.A: Active contours without edges. In: Image
Processing, IEEE Transactions on 10 (2001), Feb, Nr. 2, S. 266–277.
http://dx.doi.org/10.1109/83.902291. – DOI 10.1109/83.902291.
– ISSN 1057–7149

[14] Hege, Hans-Christian ; STALLING, DETLEV ; SEEBASS, MAR-
TIN ; Zockler, Malte: A Generalized Marching Cubes Algorithm
Based On Non-Binary. (1997)

[15] Boyell, Roger L. ; Ruston, Henry: Hybrid Techniques for Real-time
Radar Simulation. In: Proceedings of the November 12-14, 1963, Fall
Joint Computer Conference. New York, NY, USA : ACM, 1963 (AFIPS
’63 (Fall)), 445–458

[16] Carr, Hamish ; Snoeyink, Jack ; Axen, Ulrike: Computing Contour
Trees in All Dimensions. In: Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms. Philadelphia, PA, USA :
Society for Industrial and Applied Mathematics, 2000 (SODA ’00). –
ISBN 0–89871–453–2, 918–926

[17] Kreveld, Marc van ; Oostrum, René van ; Bajaj, Chandrajit ;
Pascucci, Valerio ; Schikore, Dan: Contour Trees and Small Seed
Sets for Isosurface Traversal. In: Proceedings of the Thirteenth Annual
Symposium on Computational Geometry. New York, NY, USA : ACM,
1997 (SCG ’97). – ISBN 0–89791–878–9, 212–220

[18] Tarasov, Sergey P. ; Vyalyi, Michael N.: Construction of Contour
Trees in 3D in O(N Log N) Steps. In: Proceedings of the Fourteenth
Annual Symposium on Computational Geometry. New York, NY, USA
: ACM, 1998 (SCG ’98). – ISBN 0–89791–973–4, 68–75

66

http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1109/83.902291

[19] Carr, Hamish ; Snoeyink, Jack: Path Seeds and Flexible Isosur-
faces Using Topology for Exploratory Visualization. In: Proceedings of
the Symposium on Data Visualisation 2003. Aire-la-Ville, Switzerland,
Switzerland : Eurographics Association, 2003 (VISSYM ’03). – ISBN
1–58113–698–6, 49–58

[20] Weber, Gunther H. ; Dillard, Scott E. ; Carr, Hamish ; Pascucci,
Valerio ; Hamann, Bernd: Topology-Controlled Volume Rendering. In:
IEEE Transactions on Visualization and Computer Graphics 13 (2007),
März, Nr. 2, 330–341. http://dx.doi.org/10.1109/TVCG.2007.47. –
DOI 10.1109/TVCG.2007.47. – ISSN 1077–2626

[21] Rosanwo, Olufemi: Interactive Multi-Object Segmentation with Max-
Tree Filtering, Diplomarbeit

[22] Edelsbrunner, Herbert ; Harer, John: Persistent Homology – a
Survey

[23] Stalling, Detlev ; Westerhoff, Malte ; Hege, Hans-Christian:
Amira: a highly interactive system for visual data analysis. 2005

[24] Bresenham, J. E.: Algorithm for Computer Control of a Digital Plot-
ter. In: IBM Syst. J. 4 (1965), März, Nr. 1, 25–30. http://dx.doi.

org/10.1147/sj.41.0025. – DOI 10.1147/sj.41.0025. – ISSN 0018–
8670

[25] Rusinkiewicz, Szymon: Estimating Curvatures and Their Derivatives
on Triangle Meshes. In: Proceedings of the 3D Data Processing, Visu-
alization, and Transmission, 2Nd International Symposium. Washing-
ton, DC, USA : IEEE Computer Society, 2004 (3DPVT ’04). – ISBN
0–7695–2223–8, 486–493

[26] Deuflhard, P. ; Weber, M.: Robust Perron Cluster Analysis in
Conformation Dynamics. In: Lin. Alg. Appl. – Special Issue on Matrices
and Mathematical Biology Bd. 398. 2005, S. 161 – 184

[27] Weber, Marcus ; Kube, Susanna: Robust Perron Cluster Analysis for
Various Applications in Computational Life Science. In: Proceedings
of the First International Conference on Computational Life Sciences.
Berlin, Heidelberg : Springer-Verlag, 2005 (CompLife’05). – ISBN 3–
540–29104–0, 978–3–540–29104–6, 57–66

[28] Laney, D. ; Bremer, P. T. ; Mascarenhas, A. ; Miller, P. ;
Pascucci, V.: Understanding the Structure of the Turbulent Mix-
ing Layer in Hydrodynamic Instabilities. In: IEEE Transactions on
Visualization and Computer Graphics 12 (2006), September, Nr. 5,
1053–1060. http://dx.doi.org/10.1109/TVCG.2006.186. – DOI
10.1109/TVCG.2006.186. – ISSN 1077–2626

67

http://dx.doi.org/10.1109/TVCG.2007.47
http://dx.doi.org/10.1147/sj.41.0025
http://dx.doi.org/10.1147/sj.41.0025
http://dx.doi.org/10.1109/TVCG.2006.186

[29] Haris, K. ; Efstratiadis, S.N. ; Maglaveras, N. ; Katsaggelos,
AK.: Hybrid image segmentation using watersheds and fast region
merging. In: Image Processing, IEEE Transactions on 7 (1998), Dec,
Nr. 12, S. 1684–1699. http://dx.doi.org/10.1109/83.730380. – DOI
10.1109/83.730380. – ISSN 1057–7149

68

http://dx.doi.org/10.1109/83.730380

	Introduction
	Motivation
	Contributions
	Overview

	Basics
	Segmentation
	Spectral clustering
	Random walker segmentation

	Surface
	Volume rendering

	Contour tree
	Definition
	Computation
	Contour tree segmentation
	Persistence criteria
	Fast contour tree segmentation

	Amira
	Segmentation of tesserae
	Introduction of datasets
	Segmentation of small areas
	Segmentation pipeline
	Separation of tesserae and background
	Distance map
	Initial segmentation
	Dual graph of segmentation
	Manual improvement of segmentation

	Evaluation
	Datasets
	Qualitative evaluation
	Running time

	Analysis of tesseral structures
	Size and number of neighbors
	Curvature

	Future work
	Improvement of the presented pipeline
	Application of new algorithms
	Biological applications of segmentation

	Conclusion

