
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7, D-14195 Berlin-Dahlem

Jörg Heroth

Are Sparse Grids Suitable for the Tabulation of
Reduced Chemical Systems ?

Technical Report TR 97-2 (March 1997)

Are Sparse Grids Suitable for the Tabulation of
Reduced Chemical Systems ?

Jörg Heroth

Abstract

Reduced chemical systems are used in the numerical simulation of combus-
tion processes. An automatic approach to generate a reduced model is the
so-called intrinsic-low-dimensional manifold (ILDM) by Maas and Pope.
Thereby, the system state is tabulated as a function of some parameters.
The paper analyses the storage requirements for usual interpolation schemes
and for sparse grids. It also estimates the response time and gives a short
description of an implementation.

Contents

Introduction . 2

1. Storage Requirement . 3

2. Response Time . 7

3. Implementation . 9

4. Interface . 14

References . 16

1

Introduction

Databases are often used in the simulation of complex processes to store
some specific system data that can be computed in advance and reused for a
lot of subsequent computations. It is much more efficient to compute those
data once and for all then to generate them anew in each calculation they
are needed for.

We focus here on a problem arising in the simulation of combustion processes.
In technically relevant processes, such as the combustion in a diesel engine,
complex fuels have to be considered leading to models with often serveral
hundreds or even more than thousand chemical species. These models can
be reduced by intrinsic low dimensional manifolds (ILDM), which were sug-
gested by Maas and Pope [8]. Thereby, only a small number of parameters
is needed to describe the chemical system to a certain accuracy if the system
state is tabulated as a function over those parameters [7]. In the simula-
tion of a diesel engine, for example, three reaction progress variables could
be chosen as parameters together with enthalpy, pressure and the mixture
fraction. This requires to tabulate a function with values in Rn, n ≥ 1000,
over a domain U ⊂ R6.

The usage of sparse grids for the tabulation of these functions was suggested
in [6] because they asymptically need far less knots than usual grids in higher
dimensions. In Sec. 1, the question is discussed to what extent sparse grids
can reduce the enormous amount of storage space. The time to access the
data is estimated in Sec. 2 where it turns out that the complexity of the
problem is not only determined by the amount of storage but by the speed of
vector interpolation as well. Sec. 3 and 4 describe the implementation and
the FORTRAN interface.

2

1 Storage Requirement

Mathematically speaking, the problem is to implement a function

f : U → Rn

wherein U is a subset of Rd and f is sufficiently smooth. If the set U is very
regular such as an interval, or a rectangle, the problem is well known and
has already been treated by Gauß or Lagrange. As we are mainly interested
in technically relevant accuracies like 1% or 5%, it does not seem to be very
hard. But it gets more difficult if d and n are large or if the geometry of U
is complicated.

The domain of an intrinsic low dimensional manifold can be quite compli-
cated due to the highly nonlinear structure and singularities at the boundary.
Because we want to step directly into applications, we do not try to resolve
the whole domain, but suppose that a subdomain can be figured out which
is sufficiently large for applications and can be transformed on a cube easily.
We therefore assume U to be the most simple domain at all, the unit cube.

Nevertheless, the problem remains difficult due to the enormous amount of
storage space needed. Coming back to the diesel engine example, we assume
d = 6 and n = 1000. If we knew that f is an exponential or a trigonometric
function, we could take special functions as an interpolation basis, but we do
not know anything of this kind in our case. Thus the easiest approach to our
problem is the application of a tensor product interpolation scheme with N
points in each direction, for instance with splines [3] or other polynomials.
We thus have nNd numbers to store. Because high accuracy is not required,
we confine ourselves to single precision representation (4 bytes per number)
and end up with 4nNd bytes to store. Fig. 1 shows the amount of storage
space in megabytes for different N .

N 3 4 5 6 7 8 9 10
MB 3 16 63 187 470 1050 2125 4000

Figure 1: Megabytes for N knots per direction in a tensor product grid.

A really good workstation will allow a table with up to 5 or perhaps even 6

3

knots per direction to be stored in the fast random access memory (RAM).
If hard disk storage is taken into account, 9 or maybe 10 knots are possible.

Piecewise polynomial interpolation schemes on adaptively refined rectangular
meshes as used in FEM have turned out to be much more powerful than the
tensor product approach. Starting with a very coarse grid that consists of a
few rectangles only (maybe 1), the value f(p) for each vertex p is computed
and stored. Then the errors on each rectangle are estimated and all rectangles
that do not meet a prescribed accuracy are marked. In the next step each
marked rectangle, called father, is subdivided into 2d smaller rectangles called
sons. Iterating this procedure a whole tree of subdivided rectangles is built
up.

r

r

r

r

r

r

r

r

r

r r

r

r

r r

r

r

r

r

Figure 2: Refined rectangular mesh

The usual procedure to get a value at a point θ from the table is as fol-
lows: First, the tree is searched for the smallest rectangle that contains θ.
Second, the data at the vertices is looked up. After that, a tensor product
interpolation scheme on the rectangle yields the result. If only the smallest
rectangle is taken, linear interpolation is used; if the father is considered also,
a quadratic tensor product polynomial can be set up on the father rectangle.
Considering neighbors or further fathers, cubic or quartic polynomials can
be built up.

A table with a polynomial interpolation scheme as above realizes an approx-
imation f̃ to f for which the following result is known to hold

‖ f(θ) − f̃(θ) ‖ ≤ C hp. (1)

Herein p is the order of our scheme, h is the meshsize of our grid and the
constant C depends on the dimension d, the function f and p. Typically p
has a close connection to the degree deg of the interpolating polynomials, we

4

usually have p = deg+1 that is order p = 2 for linear polynomials, p = 3 for
quadratic and so on.

Because too many interpolation knots cannot be allowed as seen in Fig. 1,
h = 0.1 will be a typical meshsize in the grid for d = 5 or d = 6. Thus a
crude approximation can be expected only for low orders unless the function
f is extremely smooth. If f is smooth enough, technical tolerances such as
1% or 10% might be met.
An adaptive grid refinement is no real remedy against the huge number of
knots because it is not possible to adapt the grid to all n components at the
same time. It may help to distribute the local errors better and cut off some
error peaks that are too large but it will not reduce the number of knots
drastically.

Is it possible to get rid of the curse of dimensionality? A new method, the
so-called sparse grids, was introduced by Zenger in 1990 [12]. This method
is based on a hierarchical basis decomposition of the approximation space
used for interpolation and leaves out certain knots in the above scheme.
Bungartz proved in [1] that in sparse grids the total number of knots only
grows with order O(N(log2N)d−1) instead of O(Nd) for arbitrary dimension
d. A meshsize h = 2−l and N = h−1 is assumed here. The approximation
error is only diminished by a logarithmic factor

‖ f(θ) − f̄(θ) ‖ ≤ C̄ hp (log2 h
−1)d−1 (2)

if an order p interpolation scheme is applied as shown in [2]. These order
arguments seem very promising, but in our case only large meshsizes h ≈ 0.1
are possible and the order arguments do not show anything. Let for instance
be d = 6 as above and allow a meshsize h = 0.125, then the logarithmic term
yields a factor 729 possibly dominating the error reduction by the hp term.
In order to decide which method should be taken, we rewrite equation (2)
with a new constant Ĉ as ‖Δf(θ)‖ ≤ Ĉhp and compare the constants C and
Ĉ. Comparable values for these constants derived by the same mathematical
techniques are given for p = 2 in [1] and for p = 3 in [2]. With the definitions

B2(l, d) =

(
1 +

d−1∑
i=1

(
3

4

)i
(

l + i− 1
i

))

B3(l, d) =

(
1 +

d−1∑
i=1

(
7

8

)i
(

l + i− 1
i

))

5

for the meshsizes h = 2−l, we have in the case p = 2

C2 = ‖ ∂2df

∂2x1 . . . ∂2xd
‖∞

d

6d

Ĉ2 = ‖ ∂2df

∂2x1 . . . ∂2xd
‖∞

B2(l, d)

6d

and in the case p = 3

C3 = ‖ ∂3df

∂3x1 . . . ∂3xd
‖∞

d

14d

Ĉ3 = ‖ ∂3df

∂3x1 . . . ∂3xd
‖∞

B3(l, d)

14d
.

Fig. 3 shows the the quotient q3 = Ĉ3/C3 for d = 6 and d = 4 and different
meshsizes h = 2−l. It is immediately clear that in the interesting domain

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Level

Fa
ct

or

Error Factors for Sparse Grids

d=4

d=6

Figure 3: Error factor q3 for d = 6 and d = 4

2 ≤ l ≤ 5 sparse grids need one, two or even three levels more to meet
the same accuracy requirement as the usual full grid. As sparse grids do
need much less knots per level than the associated full grids, they meet a
prescribed tolerance of 1% or 5% with as many or even fewer knots than
the full grids but the difference in the total number of knots does not exceed
±10%. This has also been confirmed by numerical experiments with different
functions. Sparse grids therefore provide no real improvement for technical
tolerances between 0.1% and 5% although the asymptotic order estimates
suggest that they should be much better. Additionly, the implementation is
much more difficult than for the simple full grids.

6

2 Response Time

The storage requirements of a table in dimension d = 5 or d = 6 can easily
exceed any resource if the function f is complicated. But we also have to
consider the amount of time that is needed to compute a value f̃ (θ) from our
table. In our case it turns out that the response time is very critical.

In the numerical simulation of a combustion process, partial differential equa-
tions such as the Navier-Stokes equations with nonlinear reaction terms have
to be solved in a two or three dimensional domain. In order to do this with a
finite difference method, a mesh of discrete points is introduced and the par-
tial derivatives are replaced by differences between the values at the chosen
meshpoints. After this, a very large nonlinear system of ordinary differential
equations remains to be solved. Roughly speaking, this is done by evaluating
the rates of change at each point in our mesh and adding those to the current
state.

Typical FDM or FEM meshes consist of a few thousands up to over a million
knots. Let us assume that we deal with a mesh ofK = 104 knots in two space
dimensions. At each knot (x1, x2) we have a certain system state given by the
parameters (θ1, . . . , θd). In order to compute the rate of change of our state,
we have to look up the tabulated values f(θ) for all points (x1, x2) in the
discretization mesh. Therefore, our table has to answer K requests in each
timestep of our integrator. As our integrator has to do a lot of timesteps, we
want our K requests to be answered very fast, in one or two seconds, say. As
a consequence we require that the whole table should be stored in the RAM
which is 105 times faster than the storage on harddisk. But even if we set
ahead a fast storage, a lot of time is spent in the numerical calculations.

How much numerical work in terms of floating point operations (flops) has
to be done to answer a single request? An order p interpolation method
requires pd knots to set up the interpolation scheme. Numbers are given in
Fig. 4. Taking for instance the Lagrangian basis defined by Li(zj) = dij, the
contributions of each knot must be added up:

f̃(θ) :=
pd∑
i=1

Li(θ)f(zi)

7

p \ d 2 3 4 5 6
2 4 8 16 32 64
3 9 27 81 243 729
4 16 64 256 1024 4096
5 25 125 625 3125 15625

Figure 4: Interpolation knots of an order p method in dimension d

where f(zi) denotes the data stored at the interpolation knot zi. Now each
data has n components. Thus each evaluation of f̃(θ) requires pd axpy oper-
ations1 with vectors of length n. Totally

A = pdnK

flops must be performed in each timestep.
Let us assume d = 6 in our diesel example. Using an order p = 5 method
to save storage space, we have to do 15625 axpy operations with vectors of
length n = 103 for one evaluation of f̃(θ). That is about 15 Mflops per
evaluation. Thus 150 Gflops would be necessary for K = 104 requests dur-
ing one timestep of integration. A real supercomputer2 might do this in 5
seconds whereas a very good single processor workstation would need about
100 minutes to do one single timestep.
Thus high orders are clearly very expensive and the idea of choosing higher
order methods to reduce the storage requirement as proposed in [10] is cer-
tainly misleading. Nothing would be different in our example if the table was
stored as a single tensor product polynomial of degree deg = 4 without any
grid or refinement. So we are confined to lower orders. Although, for d = 6,
an interpolation scheme with order p = 3 is about 20 times faster than the
order p = 5 method, it would still take 5 minutes on a really good worksta-
tion to answer all requests needed in a single timestep. So the computational
limitations are not only determined by the storage requirement but by the
speed of the vector interpolation as well.

In Sec. 1, it is shown that sparse grids have no real advantage over usual
interpolation techniques as far as the storage is concerned. What about the
acess time for sparse grids? Due to the hierarchical basis representation,

1An axpy operation is y = y + a · x and is counted with n flops.
2A CRAY T3D machine with 1000 processors in this case.

8

the value un = f(θ) on level n is evaluated as a sum of contributions from
different spaces:

un =
r∑

i=1

ui

We have r ≥ pd for an order p method on the lowest level already. But
in contrast to the nodal representation used above, new subspaces and new
contributions ui come in on each sparse grid level possibly increasing r far
beyond the pd mark. The increasing length of the sum to be evaluated in
the interpolation may be neglectable in the scalar case but it slows down the
interpolation time dramatically if n becomes considerably large. So sparse
grids are not useful to us.

Remark. Rheinboldt has reported that a multidimensional pathfollwing
method has been designed and implemented in the package MANPACK re-
cently [11]. Pathfollowing methods are very elegant in computations on im-
plicitly defined surfaces and may reduce the amount of storage space needed.
But they will be restricted to lower orders as well and face the same in-
terpolation problems. We therefore do not believe that there will be a real
advantage over an adaptively refined grid as far as storage and interpolation
is concerned. But pathfollowing methods may be a worthwhile tool in the
computation of the domain U , for instance ALCON [4] has been used a lot
for this task.

3 Implementation

An object orientated implementation in C++ is the easiest and best way
to transfer the adaptive grid structure described in Sec. 1 directly into a
module. Nevertheless, the FORTRAN subroutines in the BLAS and LA-
PACK packages are used to do the linear algebra work because they work
fast and reliable and optimized versions are available on many machines. A
very easy access to the table module from FORTRAN or C is provided by a
documented interface, which is described in Sec. 4.

Most interesting to the user is the class Table that performs all necessary

9

tasks.

class Table {
public:

Table(const char* dir, int d, int n);
virtual ˜Table();

...
Bool PrepareInterpolation(Vector<double> &p, Vector<double> &pp);
void GetValue(Vector<double> & u);
void GetJacobian(Matrix<double> & J);
void GetHessian(Matrix<double> & H);

...
Bool Write();
Bool Read();

...
};

In the construction, a table must be given three parameters. Each table
needs its own home directory dir where the data is stored, a dimension pa-
rameter d for the dimension of the domain and a dimension parameter n for
the data length.
The interpolation is done in two steps. The function PrepareInterpolation is
called first with the point p at which values are to be computed. The func-
tion checks if p is within the domain and transforms p onto the unit cube.
If p is not within the domain, pp is the projection of p onto the boundary
and all subsequent interpolations are done for pp instead of p. After that,
the function sets up the interpolation cube and searches the database for the
data.
Having prepared the interpolation tool, the user can obtain the interpolated
value u = f̃(p), the Jacobian matrix J = Df̃ (p) and the Hessian matrices
H = (D2f̃1, . . . , D

2f̃n). The Jacobian matrix J is stored columnwise as usual
in FORTRAN. H is an (d2, n) matrix and has in its k-th column the sym-
metric (d, d) Hessian matrix of the k-th component f̃k. A tensor product
interpolation scheme with piecewise quadratic polynomials (order 3) is ap-
plied by default. It has only order p = 2 for the Jacobian and p = 1 for the

10

Hessians, of course. Therefore the table must be rather accurate (0.1% or
better) to produce a useful Jacobian. For useful Hessian matrices an even
much more accurate table will be necessary in most cases. Compare example
2 to get an impression. To accelerate the interpolation, linear polynomials
could be chosen, but then no Jacobians and Hessians are available.

The user does not need to know the ingredients of a table for an immediate
application. But to ease the adaptation of the code to future needs, a short
description of some details is given. A Table consists of a class Domain and
a class UnitTable. The Domain performs the transformations between the
domain and the d dimensional unit cube:

class Domain {
public:
Domain(int d);
virtual ˜Domain();

...
Bool TransformOnUnitCube(Vector<double> &p,Vector<double> &x);
void TransformOnDomain(Vector<double> & x, Vector<double> & p);
void TransformJacobian(Matrix<double> & M, Matrix<double> & J);
void TransformHessian(Matrix<double> & M, Matrix<double> & H);

void ReadDomain(const char *dir);
...

};

Only linear domains (parallelepipeds) are implemented up to now. The do-
main description is given by the vertex with the smallest coordinates and the
d spanning vectors. The domain is read in from the file domain.dat in the
table directory dir during the construction of the table. A more complicated
domain can be treated by subdividing the domain in some linear ones or
by changing the implementation in domain.cc. Other parts of the code only
need the five element functions given above.

The UnitTable consists of the database DataArray and the refinement struc-
ture RefTree. It is derived from the base class ITool that does all interpolation
tasks. The RefTree is a very simple tree structure. Each knot is a pointer to
the 2d sons if the corresponding cube is refined and 0 otherwise. A special

11

cube in the tree can be referenced by a sequence (s1, s2, . . .) which denotes
the son s2 of the son s1 of the unit cube. The ITool sets up a reference
element and computes the interpolated value according to the nodal basis of
the element.

The DataArray is an associative array with a fast hierarchical searching al-
gorithm that can be visualized in Fig. 5. In dimension d = 1, the database

x1 = 0 x1 = .1 x1 = 1

x2 = 0 x2 = 0 x2 = 0

� � �

� � �

...
...

.... . .

. . .

Figure 5: Data structure of the associative array

consists of a vector of knots that contain a coordinate value and a pointer to
the data. In dimension d = 2, each pointer of a knot of the vector for d = 1
points to a vector of knots again. A recursive structure for higher dimen-
sions is thus obtained. The searching for the data at (x1, . . . , xd) proceeds
as follows: Take the vector for d = 1 and get the knot with the coordinate
x1. Then get the vector for d = 2 and get the knot with the coordinate x2

and so on. In each dimension a fast bisection algorithm is applied to find the
corresponding knot.

Finally, we want to describe how the setup of a table can be done. A special
class Setup is designed as a friend of Table and UnitTable and has access to
the private data of those classes.

typedef void (*IFunctionPtr)(const int* d, const double* p, const int* n,
const double* y0, double *y, double* rpar, int* ipar, int* err);

12

class Setup {
public:

Setup(Table* table, IFunctionPtr ptr, double* rpar, int* ipar);
S̃etup();

Bool Initialize();
Bool RefineLevel(int l);
Bool SetTable();

void SetTolerance(double tol);
void SetScalingThreshold(double s);
void SetMaxNumberOfKnots(int max);

...
};

The function y = f(p) is given as a pointer to the Setup class. It has the
usual FORTRAN or C calling convention. An initial vector y0 is passed to
the function that contains the interpolated value from the table set up so
far. The parameters rpar and ipar are not used in the table setup, they can
be used to transfer special parameters from outside to the function. See the
examples and the remarks and hints in the file Interface.cc for a detailed
description of all parameters.
The Setup class is associated with exactly one table. A pointer to that table is
handed over in the construction. There are two functions to set the desired
relative tolerance tol and a certain scaling parameter scal. All errors are
computed with respect to a scaled sup-norm

‖u− ũ‖ := sup
i=1,...,n

|ui − ũi|
max(|ui|, scal)

!≤ tol

This is equivalent to choosing an absolute tolerance atol = tol · scal. A third
function sets the maximum number of knots allowed in the table. The de-
fault value is 15000 knots.
There are two possible ways to set up a table. The function SetTable ini-
tializes the table and refines it until the specified tolerance or the maximal
number of knots is reached. A different approach is the refinement in single

13

steps using the Initialize and the RefineLevel functions. Initialize computes
the values f(p) at the vertices p of the domain and does one refinement step.
Since there are no values in the table during the computation of the values
at vertices, no initial values y0 are given and y0 = 0 is used instead.

In addition to the table modules, template classes for matrix and vectors
structures are included in the package. They are implemented in a FOR-
TRAN compatible format such that a large amount of linear algebra sub-
routines from LAPACK and BLAS can be accessed very easily via a special
interface. See the code for further details.

4 Interface

The usage of the Table class from FORTRAN or C is very simple. A static
TableManager holds a vector of pointers to the tables. Therefore each table
can be accessed by an integer that is nothing else but the index of that table.
Serveral functions can be called to perform actions on the desired table. The
most important functions are:

void crtab (const char* dir, int* nofp, int* n, int* num, int* err);
void rmtab (const int* num, int* err);

void rdtab (const int* num, int* err);
void wrtab (const int* num, int* err);

void settab (const int* num, IFunctionPtr, double* rpar, int* ipar, const
double* tol, const double* scal, const int* maxknots, int* err);

void initab (const int* num, IFunctionPtr, double* rpar, int* ipar,
int* err);

void reftab (const int* num, IFunctionPtr, double* rpar, int* ipar, const
double* tol, const double* scal, int* level, int* maxknots, int* err);

The terrible naming of these functions is a result of the FORTRAN 77 stan-
dard that names must not be longer than six letters. All functions end with

14

tab to indicate that a table handling function is used. The first two or three
letters indicate very cryptically which action is performed, so crtab means
create table, rmtabmeans remove table, rdtabmeans read, wrtab means write
and so on. The underscores are due to the usual FORTRAN linkage conven-
tion. Simply leave them away in the FORTRAN call and write call crtab(. . .)
for instance. In C however, the underscores must be written, crtab (. . .). See
the files example1.cc and example3.f for examples.

The function crtab returns the table number num that is used in all other
functions to identify the table. It should not be necessary to use the remove
function, except if you want to free memory space without aborting the
program. The functions settab, initab and reftab are used for the setup, the
initialization and the refinement as described in the preceding section. A
detailed description of the parameters and the calling is given in the file
Interface.cc. To obtain information from the table the following functions
can be used:

void slntab (const int* num, int* err);
void prptab (const int* num, const int* d, double* p,

int* isin, double* pp, int* err);
void valtab (const int* num, const int* n, double* z, int* err);
void jactab (const int* num, const int* d, const int* n, double* jac,

int* err);
void hestab (const int* num, const int* d, const int* n, double* hes,

int* err);

void noktab (const int* num, int* knots, int* err);
void noptab (const int* num, int* nofp, int* err);
void novtab (const int* num, int* nofval, int* err);
void noltab (const int* num, int* maxlevel, int* err);
void errtab (const int* num, double* errest, int* err);

The function slntab is used to fix d-linear interpolation instead of d-quadratic
interpolation used by default. prptab is the prepare function as described in
Sec. 4 and valtab, jactab and hestab are used to obtain the function values,
the Jacobian and the Hessian matrices. The functions no* return the number

15

of knots, parameters, data components or levels in the table and errtab gives
an estimate of the relative error of the table with respect to the scaling chosen
in the setup.

Acknowledgement

This work was supported by the DFG within the Schwerpunkt ”Ergodenthe-
orie, Analysis und effiziente Simulation dynamischer Systeme”.

References

[1] H. Bungartz: Dünne Gitter und deren Anwendung bei der adaptiven
Lösung der dreidimensionalen Poisson-Gleichung. PhD-thesis, Institut
für Informatik, TU München (1992)

[2] H. Bungartz: Higher Order Finite Elements on Sparse Grids. in: A.
V. llin and L. R. Scott (Eds.), Houston Journal of Mathematics: Pro-
ceedings of the 3rd Int. Conf. on Spectral and High Order Methods,
5.-9.6.1995, Houston pp. 159-170 (1995)

[3] C. de Boor: A Practical Guide to Splines. Springer-Verlag, Applied
Mathematical Sciences 27, (1978)

[4] P.Deuflhard, B. Fiedler, P.Kunkel: Efficient Numerical Pathfollowing
Beyond Critical Points. SIAM J. Numer. Anal. 24, pp. 912-927 (1987)

[5] P. Deuflhard, J. Heroth: Dynamic Dimension Reduction in ODE Mod-
els. in: F.Keil, W.Mackens, H.Voß, J.Werther (eds), Scientific Comput-
ing in Chemical Engeneering, Springer-Verlag, pp. 29-43 (1996)

[6] P. Deuflhard, J. Heroth, U. Maas: Towards Dynamic Dimension Reduc-
tion in Reactive Flow Problems. Konrad-Zuse-Zentrum Berlin, Preprint
SC 96-27 (1996). In: Proc. 3rd Workshop on Modelling of Chemical
Reaction Systems (CD-Version), Heidelberg (1996)

16

[7] U. Maas: Automatische Reduktion von Reaktionsmechanismen zur Sim-
ulation reaktiver Strömungen. Institut für Technische Verbrennung der
Universität Stuttgart, Habilitation thesis, (1993)

[8] U. Maas, S. B. Pope: Simplifying Chemical Kinetics: Intrinsic Low-
Dimensional Manifolds in Composition Space. Combustion and Flame,
vol 88, pp. 239-264, (1992)

[9] U. Maas, S. B. Pope. 24th Symposium (International) on Combustion.
The Combustion Institute, Pittsburgh (1992)

[10] H. Niemann, D. Schmidt, U. Maas: An Efficient Storage Scheme for
Reduced Chemical Kinetics Based on Orthogonal Polynomials. Preprint
SC 96-XX, Konrad-Zuse-Zentrum für Informationstechnik Berlin, (May
1996)

[11] W. C. Rheinboldt: MANPACK: A Set of Algorithms for Computations
on Implicititly Defined Manifolds. Technical Report ICMA-96-198, De-
partement of Mathematics and Statistics University of Pittsburgh (1996)

[12] Ch. Zenger: Sparse Grids. in: Parallel Algorithms for Partial Differen-
tial Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, January
1990. W.Hackbusch (ed.), Vieweg-Verlag, Braunschweig (1991)

17

