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Abstract

Current characterization methods of the so-called Bulk Heterojunction (BHJ),

which is the main material of Organic Photovoltaic (OPV) solar cells, are limited

to the analysis of global fabrication parameters. This reduces the efficiency of

the BHJ design process, since it misses critical information about the local perfor-

mance bottlenecks in the morphology of the material. In this paper, we propose a

novel framework that fills this gap through visual characterization and exploration

of local structure-performance correlations. We also propose a formula that cor-

relates the structural features with the performance bottlenecks. Since research

into BHJ materials is highly multidisciplinary, our framework enables a visual

feedback strategy that allows scientists to build intuition about the best choices of

fabrication parameters. We evaluate the usefulness of our proposed system by ob-

taining new BHJ characterizations. Furthermore, we show that our approach could

substantially reduce the turnaround time.

1 Introduction

Organic photovoltaic solar cells (OPV) represent a promising low-cost, low-weight,

and flexible alternative for harnessing solar energy. An OPV is a device composed of

three main parts: the anode, the cathode, and the so-called Bulk Heterojunction (BHJ)

that is sandwiched in between the electrodes (anode and cathode) [24], as shown in

Fig. 1(a). The BHJ is a blend of two materials, called donor and acceptor, which are

separated by an “interface.” The BHJ has a very complex intermixed composition with

hierarchical structures spanning several spatial scales.

The photovoltaic process occurs in a sequence of stages: exciton generation, ex-

citon diffusion, charge separation, charge transport, and charge collection. This is il-

lustrated in Fig. 1(a). At each stage of the photovoltaic process, its performance is

critically affected by the morphology of the BHJ. The objective of the BHJ design

is to maximize the generated photoelectric current. This requires the charges (holes,

electrons) to reach the electrodes as fast as possible. To achieve this, the paths of the

charges should be as wide and as straight as possible. However, these design criteria

conflict with another requirement: increasing the area of the interface surface. In order

to harvest more excitons by the interface, the neighboring parts of the interface need to

be as curly and as close to each other as possible, in order to increase the probability of

excitons reaching the interface.
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Figure 1: (a) A 2D illustration of the underlying physics of the photoelectric current

generation process. (b) A 2D illustration of the bottleneck computation steps (for

the donor part). The figure illustrates the computation steps over one sample cross-

sectional area (S). We only refer to the donor in the current paper, since the acceptor

bottlenecks can be analogously extracted.

Even though OPV solar cells bear a great potential, before they will be able to

compete with other solar technologies, some challenges have to be addressed. The

most important of these are low efficiency and short life time. Several approaches

exist that have resulted in varying degrees of success. One promising approach is to

control the BHJ morphology during fabrication. Current BHJ exploration techniques

mainly depend on expensive and time-consuming lab tools. These traditional tools deal

with the morphologies as black boxes with no knowledge of the photoelectric current

within. Their workflow therefore depends on trial-and-error and does not efficiently

characterize complex BHJ morphologies with respect to many critical local properties.

Accordingly, scientists in OPV research are still lacking a sufficient understanding of

the best BHJ material design.

In this paper, we propose a novel framework for exploring one of the critical fea-

tures of OPV solar cells, called charge path bottlenecks. So far, scientists intuitively

refer to bottlenecks as the parts in the BHJ routes that cause contention of charges

and hence delay. However, they cannot detect and analyze these features since their

tools lack access to the geometric features underlying this phenomenon. Furthermore,

the detection of the design structures that reduce bottlenecks is complicated since it

involves conflicting design requirements. In our framework, we solve this problem

through the following contributions:

• A geometric model that formalizes a previously only intuitive bottleneck defini-

tion.

• The extraction of new structural features of the morphology that can be corre-

lated with the charge bottlenecks.

• The generation of an abstraction for the BHJ morphology – which we call the

BHJ backbone – that visualizes the topology of the structural features of interest.

In this way, visual clutter is removed, enabling spatial analysis of the BHJ mor-

phology. Moreover, this abstraction allows for multivariate analysis by sampling

the morphology into a minimal set of features that influences the correlation

analysis.

The main contribution of our work, however, we see in the description of the com-

plete framework for the analysis of the BHJ morphologies, which are given as three-

dimensional scalar fields.
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Figure 2: An overview of our framework comprising preprocessing, storage, and in-

teractive visual exploration. The workflow illustrates the dependency among different

system modules as well as typical steps performed by users for visual exploration.

We demonstrate the validity of our approach by showing how our framework gen-

erates new BHJ characterizations. In order to evaluate the results, we obtained user

feedback from domain experts. We also show that our proposed system has enabled

dramatic time savings in the exploration process of OPV data, which paves the way for

faster exploration of OPV materials in the future.

2 Related Work

This section discusses the most relevant related work grouped into three different cate-

gories.

2.1 Analysis of Charge Paths in Organic Photovoltaics

Domain scientists need to detect parts in the BHJ morphology with high charge den-

sities and understand the structural features that cause this problem. To support this

goal, scientists have designed a simulation of this phenomenon for sinusoidal struc-

tures [8], and have correlated the sine width to the charge density. This simulation is

suitable for regular structures but not random ones, such as the BHJ structures. Hence,

this simulation was later extended for BHJ [13]. However, it was still not possible to

correlate structural features with charge densities. As a result, domain scientists started

to move in the direction of studying the geometric features of charge paths rather than

the behavior of the charges themselves. For this purpose, scientists have developed an

approximation model [25] that extracts a representative set of charge paths that reflects

the physical intuition. However, that work depends only on statistical analysis and is

therefore not suitable for exploring geometric features such as bottlenecks. Further-

more, it is unable to explore the interplay between conflicting design parameters. We

address these limitations in the current work.

2.2 Morphology Abstraction and Feature Extraction

Our bottleneck model requires the extraction of local domain features as well as the

measurement of local properties such as their size. A Voronoi-like decomposition of

the pore-space of porous materials has been proposed [10] to aid the determination of

the pore space skeleton. In our approach, we employ a hierarchical watershed algo-

rithm [4, 6] on the distance map [12] with persistence-based simplification [7]. This

enables the decomposition of the BHJ morphology at potential bottlenecks. In addition,
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Figure 3: A 2D illustration of the invidivual steps of extracting the structural features

that are used for computing the bottleneck indicators and exciton diffusion probabili-

ties. Note that in our framework these steps are performed entirely in 3D.

we propose an abstract model that simplifies the BHJ structure. This model is based

on a conventional thinning algorithm [21]. Examples of other techniques to achieve

simplified representations include Reeb graphs [20], distance field-based methods [9],

extremum graphs [5], and other topological methods [3, 10]. Geometric path compu-

tation is also important to analyze molecular structures [15, 19], but these methods do

not apply to our application.

2.3 Geometric and Visual Path Analysis

In our work, we use graph-based models to enable knowledge-based exploration. Pre-

vious work applied knowledge-based visualization of charge paths to molecular data [2].

In this work, we exclusively focus on nanoscale data. One requirement for our method

is to visualize charge paths in relation to the surrounding geometry. Similar ideas have

been used before [11, 18], but employed vector fields resulting from simulations. In

our work, we instead employ a set of representative paths that are extracted based on

the intuition of domain scientists. This enables knowledge-based visual exploration.

Prior to rendering, abstractions are often needed to focus on important features, es-

pecially for comparative and statistical analysis. Path abstraction models include the

ones proposed in [23, 17, 10]. These abstractions can be rendered using simple lines

or triangulated tubes, but also with more advanced rendering methods [16, 14].

3 Overview

This section provides an overview of our framework, describing the type of data we are

dealing with, the crucial abstraction of charge paths, and the overall workflow.

3.1 BHJ Data

The BHJ morphologies that we are analyzing in this work result from computer simu-

lations (see Sec. 9 for details). Each morphology is given as discrete scalar field, where

each voxel is assigned an acceptor volume fraction value φ. These fraction values are

between 0 and 1. By tracing the distribution of these variables, individual phases can

be identified, i.e., φ = 0 corresponds to pure donor, while φ = 1 corresponds to pure

acceptor, respectively. In the regions separating individual phases, the volume fraction

changes smoothly across the thin interface. By reconstructing the iso-contour corre-
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sponding to the iso-value φ = 0.5, the interface can be identified. We use this interface

in our subsequent analysis.

3.2 Charge Path Approximation Model

A charge path is the trajectory of a charge from the point of its creation to the cor-

responding electrode (either anode or cathode). In this work, we study paths for two

types of charges: excitons and holes. Fig. 1(a) illustrates that (1) the path of an exciton

starts from the point of creation in the donor and ends at an interface, and (2) the path

of a hole starts from the point of creation on the interface and ends at some point on

the anode. Note that electrons can be handled in the same way as holes. The only

difference is that they travel through the acceptor to the cathode. We are interested in

the shape of the charge paths rather than tracking the charges themselves. For this pur-

pose, we use the set of shortest paths based on a model that has been proved to provide

sufficient information about the geometry of the whole charge paths vector field [24].

3.3 Workflow

We summarize the proposed system in Fig. 2. Our workflow is divided into three main

parts: preprocessing, storage, and interactive visual exploration.

In the preprocessing step, we compute the bottleneck indicator at certain points and

the geometric features of each charge path. The computation of the bottlenecks requires

extracting cross-sectional areas between neighboring parts of the interface. Before ex-

tracting these areas, we first simplify the morphology into its backbone, defined as the

medial axis of the morphology. The backbone provides a reduced view of the morphol-

ogy supporting correlation analysis as well as spatial exploration of the cluttered parts.

Then, we extract the areas around each voxel on the backbone only. Moreover, we

compute the set of shortest paths from the morphology as well as features of interest of

these paths.

In the storage step, we cache the data resulting from preprocessing to eliminate

unnecessary computations in the subsequent interactive visual exploration step.

For interactive visual exploration, we provide a variety of views: the backbone

view, the charge paths view, scatter plots, and volume rendering. The backbone visu-

alizes relevant information via user-defined color codings. Scatter plots visualize data

derived from the backbone. Users can explore multivariate correlations via the scatter

plots as well as filter a volume with respect to a certain range of parameters. For spatial

analysis, users select one point in the filtered volume, and retrieve the charge paths

around this point to explore their features. Users can select regions of interest from the

whole set of charge paths using simple GUI widgets.

4 Morphology Simplification

In order to be able to analyze the BHJ morphology more effectively in terms of charge

paths, we first need to simplify it. For this, we first compute the backbone of the BHJ

morphology. We then compute cross-sections of the morphology, which is important

for the calculation of the charge path bottleneck indicator that we will introduce in

Section 5.1.
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Figure 4: A 2D illustration of the cross-sectional area extraction guided by the 3D

segmentation and the backbone. The cross-sectional area at a backbone point is the

intersection between the plane perpendicular to the tangent at this point and the current

segment of the 3D segmentation. (a) illustrates how the plane of the cross-sectional

area is determined. (b) illustrates different examples of cross-sectional areas after in-

tersection with 3D segments. Note that we perform these computations entirely in 3D.

4.1 Backbone Computation

As a first step to analyze the morphology, we compute its backbone to provide a less

cluttered visual representation as well as to make the computations more efficient. The

backbone is defined as the medial axis of the morphology (see Fig. 3). To compute the

medial axis, we apply thinning [21] based on the Euclidean distance field of the donor

part with respect to the interface. The thinning is performed by removing voxel by

voxel from the segmented object until only a string of connected voxels (the skeleton)

remains. The voxel skeleton is then converted into a spatial graph that passes through

the medial axis of the donor. The Euclidean distance to the nearest boundary is stored at

every point in the spatial graph. This structure simplifies the multivariate morphology

analysis as discussed in the subsequent sections. Furthermore, it allows us to compute

cross-sections of the morphology along the backbone.

4.2 Extraction of Cross-Sectional Areas

In order to identify potential bottlenecks in the BHJ morphology, we need to segment

the whole morphology into areas that reflect the gradual change in the routes’ thickness

from wide to narrow regions. To achieve this, we start with a 3D segmentation of the

whole morphology that decomposes the donor morphology at the constrictions (Fig. 3).

For this, we first compute the signed Euclidean distance map, starting from all

interface voxels, such that the distance map inside the donor has negative values. We

then apply a watershed algorithm [6] on the distance map and subsequently apply a

persistence-based [7] merging step to create larger regions. To do so, we compare the

scalar minima of two regions to be merged with the scalar value at the potential merge

point. If the difference between one of the minima and the scalar value at the merge

point is below a user-defined threshold, we merge the two regions. Otherwise, the

regions are not merged.

In the following steps, we are only interested in the cross-sectional areas around

the points on the morphology backbone. To determine these cross-sections, we com-

pute the directional vectors (tangents) of the backbone in each point of the backbone.

The point on the backbone together with its directional vector determine the plane of

the cross-section. Now, we can easily compute the 2D cross-sectional area around
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each backbone point from the 3D segmented volume. This is done by intersecting the

plane given by the backbone point and the directional vector with the 3D volume seg-

mentation, yielding a 2D cross-sectional area as shown in Fig. 4. The cross-sectional

area includes all voxels in the plane that belong to the same region as the point on the

backbone.

5 Intuitive Geometric Models for Performance

This section introduces two geometric indicators related to the performance of a given

BHJ material (morphology).

5.1 Geometric Indicators for Bottlenecks

Intuitively, if a charge path s at any point on the path does not overlap with any other

charge path, then the charge that travels along the path s will be able to travel at maxi-

mum speed. Conversely, the more paths share the same voxels, the larger the possibility

that charge contention happens and hence that the delay increases. Paths merge when

they move from a wider area into a narrower one, similar to an hour glass. Based on

this observation, we define the bottleneck indicator K(S) at each cross-sectional area

S inside the morphology as follows. Let j : R3 → R be a scalar volume of path den-

sity. Considering a cross-sectional surface S (as illustrated in Fig. 1(b)), we obtain the

corresponding total bottleneck value K(S) as the surface integral of the magnitude of

the path density gradients, normalized by the area A of S:

K(S) =
1

A

∫
S

‖∇j‖dS. (1)

Areas with large K(S) indicate the bottlenecks that the domain scientists are interested

in.

5.2 Geometric Indicators for Exciton Diffusion

Another important measure for the effectiveness of the BHJ is the probability of an

exciton actually reaching the interface. This exciton diffusion probability can be com-

puted via the following equation [22, 26]:

W (d) = e−d/Ld , (2)

where d is the shortest distance from a point in the donor to the interface, and Ld is

a material-specific constant: the exciton diffusion length. Thus, our geometric model

for exciton diffusion is simply the distance field that was computed inside the donor

with respect to the interface (see Fig. 3). Hence, we can directly use the value of the

distance field as parameter d in Eq. 2 to obtain W (d) at any desired point.

6 Feature Extraction

This section describes how the BHJ features required for subsequent analysis are ex-

tracted in our framework.
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Figure 5: An illustration of spatial exploration of the backbone: The backbone is color-

coded via a user-defined transfer function that highlights values of interest for the user

(K(S) = 20 in this example). The user can then move a point probe to regions with

a high bottleneck value (here: yellow regions), and explore the surrounding area to

ascertain its shape and size. This information can guide experts in enhancing the mor-

phology, e.g, by increasing the sizes of cross-sectional areas.

6.1 Size of the Cross-Sectional Areas

Our domain science collaborators want to explore the correlation of the sizes of cross-

sectional areas to the bottleneck indicator defined in Eq. 1. We compute this size as the

number of voxels intersecting the cross-section, since this is also the smallest unit used

for the features of charge paths.

6.2 Distance between the Interface and the Backbone

W (d) (Eq. 2) is an important measure for the domain scientists, because correlating it

with d allows them to estimate the effectiveness of the BHJ. We propose to compute

d at the backbone points only since they provide the worst case for W (d), i.e., the

farthest distance from the neighboring parts of the interface. Moreover, by extracting

the bottleneck at the same backbone point as shown in Figs. 3 and 4, we get an ef-

fective minimal set of indicators for the trade-off between W (d) and K(S). For the

computation of W (d), in this paper we use an exciton diffusion length of Ld = 10 nm.

6.3 Charge Path Features

The bottleneck analysis discussed so far summarizes the behavior throughout the whole

morphology. However, scientists still need to explore the reasons behind this behav-

ior in detail. In order to support this, we allow scientists to visualize the charge paths

around each point on the backbone. Scientists can then explore details about the bot-

tleneck such as the corresponding path density (see Fig. 1).

One other feature of interest is the tortuosity. Bottlenecks are not the only source

of delay in the charge transport; the path length may also play an important role. We

allow scientists to explore this feature through the tortuosity indicator. This indicator

was also used by domain scientists in previous statistical contexts [25]. To compute the

tortuosity, we determine the length L of the shortest path from any point in the donor

to the electrode and relate it to the ideal path length C, i.e., the length of a straight line

between the ends of the path without constraints. The tortuosity τ then is

τ =
L

C
. (3)
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7 Visual Exploration

This section describes the capabilities for visualization and interactive exploration that

comprise the interactive visual exploration step of our framework, as illustrated in

Fig. 2.

7.1 Backbone Visualization

We visualize the topology of the backbone by rendering trace lines between all consec-

utive nodes (see Fig. 5).

Exploration of a variety of scalar attributes on the backbone is enabled via color-

coding (1D transfer functions). This is illustrated in Fig. 5. In order to facilitate the vi-

sualization of attributes, for each point on the backbone the preprocessing step has pre-

computed the bottleneck value, the area extracted by segmentation around this point,

and its shortest distance to the interface. From the latter we also compute and visualize

the exciton diffusion probability (Eq. 2).

7.2 Scatter Plots

We create scatter plots by mapping each point on the backbone to one point in the

scatter plot. The user can choose any two backbone attributes as x and y dimensions of

the scatter plot: bottleneck value, area size, distance to interface, and exciton diffusion

probability (see Fig. 6).

To reflect the number of voxels that are mapped to a single pixel in the scatter

plot, we use a heat map; red represents a large number, black a small one. We further

enhance the visualization of the path density by binning.

Our scatter plots serve two main purposes: (1) exploring correlations between

structural and performance features, and (2) filtering by brushing in the attribute do-

main.

Brushing in any scatter plot enables users to select regions according to attributes

to be investigated further using the spatial views, e.g., volume rendering. After a brush-

ing operation in a scatter plot, only voxels with values in the specified range will be

displayed and rendered (see Fig. 6).

7.3 Charge Path Visualization

Charge paths are rendered as trace lines to allow for studying their topology. These

lines are color-coded according to scalar attributes, such as tortuosity (Fig. 7), or path

density.

Interaction. We allow users to select a spatial region of interest to reduce visual

clutter in the path visualization. In order to explore the paths around a specific location,

the user needs to select this location in the spatial domain.

For this interaction, we use a point probe: a ball attached to three orthogonal lines

parallel to the x, y, and z dimensions, respectively. The user can interactively move this

probe to any point of interest inside the bounding box of the morphology. Then, the

system retrieves all paths that pass through a region of interest around the ball.

We also support further filtering via GUI widgets, such as the maximum size of

path bundles and the maximum path length in each bundle. This is illustrated in Fig. 7.
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Figure 6: A comparison between different time steps of thermal annealing of Morphol-

ogy A. Row 1 depicts the shape of the morphology at each time step. Row 2 illustrates

the corresponding backbone. Row 3 shows the correlation between the sizes of cross-

sectional areas and bottleneck values K(S) using scatter plots. The numbers indicate

the highest bottleneck value. Row 4 shows correlations between distances d and exci-

ton diffusion probablities W (d). The green lines show the value at d = 10 nm, while

the blue rectangle shows the interactive selection of all the points with d < 10 (this is

displayed only for morphologies that exhibit a distance of 10). The numbers indicate

the lowest probability value. Row 5 illustrates histograms of the bottleneck value dis-

tributions of the morphologies after filtering the corresponding backbone in Row 2 via

the blue rectangles in Row 4.

8 Implementation Details

To extract charge paths, we use the software GraSPI [25], which has been used success-

fully in previous OPV research. GraSPI is based on the Boost graph library. Details

can be found in [25]. We run the charge path computation process offline, generate

the corresponding topology, and store it in text files. Then, we load these data into our

visualization software. Our visualization approach is implemented in the Avizo frame-

work with both computation and interaction modules. The ZIB version of Amira [1]

on the other hand is used for generating the segmentation. GraSPI uses an equivalence

between voxel-wise data and a graph to effectively characterize the morphology.

By translating the discrete morphology into a graph, GraSPI can use standard graph

algorithms to find the shortest paths and connected components. The graph is con-

structed by considering each voxel in the morphology as a node. Each node (voxel)

gets a label: black for donors, white for acceptors, green for interface voxels, red for

anode, and blue for cathode. An edge is created between each voxel and its 26 neigh-

bors. Each edge is given a weight according to the distance between the two corre-

sponding voxels (i.e., 1,
√
2,
√
3). GraSPI then uses the standard Dijkstra algorithm to

extract the set of shortest paths from this graph.
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9 Evaluation

As case studies, we employ two different simulated data sets that represent two main

BHJ lab synthesis techniques, which are called Solvent-Based Fabrication [24], and

Thermal Annealing [25], respectively. The former is used to create morphologies with

different patterns and connectivity by manipulating physical parameters such as pres-

sure, donor/acceptor percentage, etc. The latter is used to enhance the morphology

performance by successively coarsening it. This is mainly achieved by exposing the

morphology to a certain temperature for a certain period of time. Scientists need to

make decisions for the parameters to use in these experiments.

The main analysis task performed by material scientists is characterization. Char-

acterization aims at finding correlations between the structural features and perfor-

mance features in order to decide how to design the BHJ morphology. By using the

previous tools and workflow for our case study, scientists characterize fractions of the

material with respect to a certain performance metric. For example, scientists need to

know which excitons (created in the donor) will possibly recombine before reaching

the interface. They already have knowledge that recombination will happen if the dis-

tance is longer than Ld = 10 nm [26]. Similarly, scientists need to study other features

such as the tortuosity that also should be less than a value of τ = 1.1 [25].

Accordingly, they need to know how thermal annealing influences these fractions

in order to learn their ideal values. Lab experiments cannot enable this type of char-

acterizations since they provide no access to this level of detail. A successful step

towards obtaining this characterization is through studying charge paths, as shown

in [24]. However, this earlier work only used standard statistical methods, which limits

it with respect to two major considerations: (1) It is unable to detect bottlenecks, and

(2) it can only study fractions as independent parameters without the critical interplay

between them. We show in our evaluation how our new proposed model succeeds in

removing these limitations.

The two data sets used in our evaluation are summarized in Table 1.

9.1 Feedback of Domain Experts

This section discusses feedback of our domain science collaborators on (1) producing

new BHJ characterizations, and (2) the value of the provided visual analysis capabili-

ties.

9.1.1 Producing New Characterizations

Fig. 6 demonstrates how our system enables scientists to extract novel BHJ character-

izations. These characterizations guide scientists to strategies of tailoring morphology

Data Set Time Steps

Morphology A 37

Morphology B 39

Dimensions 561× 141× 71 voxels

Table 1: The data sets used in our evaluation. We have used two 3D morphologies,

each of which consists of several time steps (one volume each) computed via thermal

annealing.
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Figure 7: Charge path exploration for a sample morphology: Time step 21 of Morphol-

ogy A. Typically, visualizing all charge paths results in too cluttered visualizations.

Hence, the user needs to navigate to a region of interest for which the paths are then

displayed. In the right column, the backbone of the data set as well as a big subset of

the charge paths are shown to provide a feeling for their cluttered nature. In the middle,

a user-selected region in a scatter plot filters the back bone down to only a few points.

Then, the user selects a region of interest (10 by 10 voxels), whose center is a point

interactively probed in the filtered volume, using the GUI shown in the center. Finally,

the final selected paths are color-coded according to tortuosity.

structures (in the lab) that have fewer bottlenecks and better path quality. The results

show that the maximum value of the bottleneck indicator K(S) decreases as thermal

annealing proceeds, while the opposite happens for exciton probability diffusion W(d).

Domain experts have commented that these correlations match their intuition and their

simulation results. The experts then selected the distances less than 10 nm (similar

to [26]). The results show that - until time step 21 - W(d) is 100% optimal while K(S)

has the highest values. Using this incorporation of K(S) with the W(d) analysis, the sci-

entists could observe that the optimal structures do not necessarily exist at the coarsest

morphology but earlier than the last time step (37). The determination of optimal time

steps can be made by using the multi-view brushing feature of our system. The experts

increased the size of the blue rectangle such that it encloses all points with smaller dis-

tance than 10 nm (Fig. 6, fourth row). They then generated filtered bottleneck volumes

at the backbone points corresponding to the brushed value. The histograms of the fil-

tered values are shown in the fifth row of Fig. 6. Scientists can conclude, for example,

that time step 24 is good, since the bottleneck values are in general not high while more

material fraction is distributed within the 10 nm distance.

Fig. 5 illustrates how spatial analysis is used to provide a detailed level of analysis.

The scientists explored if it is possible to make time step 21 match time step 24 more

closely by reducing the bottlenecks. First, they explored the whole backbone for points

with bottlenecks more than K(S) = 20 (an adequate value for comparison). Then,

they displayed the area around each point to ascertain its shape and size and to explore

strategies for editing it.

Fig. 7 illustrates the usefulness of the charge path visualization. After filtering the

volume to include only the useful material, the experts selected the lowest points, since

they have potential for higher tortuosity. In Fig. 7, they can see the charge paths with a

tortuosity higher than 1.1 and identify the route of these paths. The domain scientists
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Morphology A Morphology B

t = 10 t = 39t = 6 t = 37

Figure 8: A comparison between two different data sets (Morphology A, and Morphol-

ogy B). The backbone visualization reveals that almost all parts are well-connected

in Morphology A. However, Morphology B has many obvious islands (disconnected

parts) for all time steps of thermal annealing. The backbone helps with exploring this

feature even in the cluttered parts of the morphology. Scientists critically require this

information, because a higher number of islands leads to reduced charge transport.

have commented on this approach: “Having these regions identified, it is possible to

explore various ways for removing or mitigating the effect of bottlenecks, e.g., by in-

creasing the local cross-sectional area. This step is particularly important considering

the multi-step nature of the photovoltaic in organic solar cells, as an improvement of

one performance indicator can result in the deterioration of others.”

9.1.2 Feedback on the Visual Analysis

Besides deriving the novel characterizations mentioned in the previous section, the

scientists have also commented on the visual analysis framework that we provide.

First, they have made the following general comment on the framework: “The tool

provides means to develop intuition regarding linking morphology with performance.

Ultimately, we envision this tool to enable design of fabrication that leads to desired

morphologies with improved properties. An understanding how to improve perfor-

mance by locally modifying morphology is a very crucial step.”

On the other hand, the scientists have requested the following additions. First, they

found it helpful to enrich the backbone visualization. They showed particular interest

in the branching vertices, since they could quickly infer the potential for bottlenecks

from them. Moreover, they commented on the great benefit that the backbone provides,

besides the analysis introduced in this paper, since it reveals connectivity. It shows all

the routes from one point in the donor to the anode. Furthermore, it can instantaneously

detect islands as shown in Fig. 8. Connectivity is important because disconnected parts

(islands) will trap the charges rather than transport them. By a quick visual comparison,

scientists can see that Morphology B has a lot of disconnected parts vs. Morphology A

which indicates less charge transport. The scientists also showed interest in displaying

the segmentation as well, since similar conclusions can be made from the boundaries

between the segments.

One limitation of our framework pointed out by the domain scientists is the tor-

tuosity analysis. The current framework could visualize, for the first time, the local

tortuosity. However, it still depends on exploring each point in an exhaustive manner.

It would be useful to have a quick summary first, similar to the analysis in Fig. 6, which

requires creating a new model for this property.
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Action Avg. CPU Time [s]

Preprocessing 99

Stored Data Loading 6.83

Volume filtering via scatter plots 0.56

Selected lines: 1713068 lines 27.47

Selected lines: 3800 lines 0.75

Table 2: Running times for all steps of our framework.

9.2 Performance Analysis

The GraSPI run time for a typical 3D morphology (with 5.5M voxels) is 15 min on

a typical work station (Intel Xeon Quad 2 GHz, 12 GB of RAM). The visualization

is run on Intel Xeon X5550, 2.67 GHz processors, 24 GB RAM. The morphology

generation is run for 20 hours on a 160-nodes cluster, each node with dual quad core

AMD Barcelona 2.2 GHz and with 8 GB RAM.

The visualization time taken by the main interaction tasks is illustrated in Table 2.

We display the average time taken for Morphology A, time step 6, since it includes the

largest interface surface and the most complex structure. We notice that the most time-

consuming step is the preprocessing. However, once the data are generated and stored,

the rest of the actions are quite interactive except in case of too many lines selected

for visualization. However, usually users avoid a too large number of lines, since the

corresponding visualizations become too cluttered.

These results show that the time required to perform analysis tasks in general are

dramatically reduced, since the lab experiments that comprised our collaborators’ pre-

vious workflow can take days to generate a single sample, and it can therefore take

months to reach conclusions.

10 Conclusions and Future Work

We have proposed the first framework for visual detection and analysis of performance

bottlenecks in OPV materials based on geometric features of charge paths. To visu-

alize the complex BHJ morphologies, we use a novel visual representation called the

backbone, which provides a suitable geometric abstraction. We have shown how this

abstraction enables efficient multivariate analysis. Our framework has helped domain

scientists to produce novel characterizations, while at the same time drastically reduc-

ing the analysis time.

In the near future, we plan to extend the analysis to include more variables. More-

over, we plan to develop tools for editing the BHJ morphology to further accelerate the

design of improved OPV materials.

Furthermore, our novel framework could pave the way for analyzing similar com-

plex material morphologies, such as porous media, critical to other fields of science.
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