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Mathematical modeling and sensitivity analysis of

arterial anastomosis in arm arteries

R. Gul∗, Ch. Schuette†and S. Bernhard∗‡

Abstract

Cardiovascular diseases are one of the major problems in medicine today
and the number of patients increases worldwide. To find the most efficient
treatment, prior knowledge about function and dysfunction of the cardiovas-
cular system is required and methods need to be developed that identify the
disease in an early stage.

Mathematical modeling is a powerful tool for prediction and investigation
of cardiovascular diseases. It has been shown that the Windkessel model, being
based on an analogy between electrical circuits and fluid flow, is a simple but
effective method to model the human cardiovascular system.

In this paper, we have applied parametric local sensitivity analysis (LSA)
to a linear elastic model of the arm arteries, to find and rank sensitive param-
eters that may be helpful in clinical diagnosis. A computational model for
end-to-side anastomosis (superior ulnar collateral anastomosis with posterior
ulnar recurrent, SUC-PUR) is carried out to study the effects of some clinically
relevant haemodynamic parameters like blood flow resistance and terminal re-
sistance on pressure and flow at different locations of the arm artery. In this
context, we also discuss the spatio-temporal dependency of local sensitivities.

The sensitivities with respect to cardiovascular parameters reveal the flow
resistance and diameter of the vessels as most sensitive parameters. These
parameters play a key role in diagnosis of severe stenosis and aneurysms. In
contrast, wall thickness and elastic modulus are found to be less sensitive.
Keywords: computational cardiovascular model, cardiovascular parameters,
sensitivity analysis, anastomosis, Windkessel model.
AMS classification: 93B35, 70G60

1 Introduction

With growing interest in the prediction and diagnosis of cardiovascular diseases,
different mathematical models have been developed and applied. Windkessel models
(electrical analogy to fluid flow) have shown to be an effective approach in modeling
the human cardiovascular system [1–4, 6–9]. Westerhof, N. et al. [3] studied the
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design, construction and evaluation of an electrical analog model. Quarteroni, A.
et al. [1] introduced a multiscale approach, where local and systemic models are
coupled at a mathematical and numerical level. He also introduced the Windkessel
models for different inlet and outlet conditions.

Within the Windkessel model the hemodynamic state variables (pressure (p) and
flow (q)), are interrelated to the model parameters like elastic modulus (E), vessel
length (l) and its diameter (d), wall thickness (h), the density of blood (ρ) and
the network structure. Provided that the model parameters applied characterize
a certain cardiovascular disease, the Windkessel model is a good way to study
variations of parameters, which are difficult to modify in reality. Thus the model
parameters have a great impact on the result and validity of the simulations.

The basis for robust parameter estimation is on the one hand an optimal ex-
perimental measurement setup and on the other hand the development of models
that describe the hemodynamic state variables in a set of relevant parameters that
can be estimated with high accuracy. The design consists of several logical steps,
dealing with questions like:

• Which vascular system parameters are most influential on the hemodynamic
state variables pressure and flow?

• Which vascular system parameters are insignificant and may be fixed or elim-
inated?

• Which regions in flow and pressure waves are sensitive w.r.t. cardiovascular
parameters?

• How meaningful are the clinically relevant cardiovascular parameters in arte-
rial anastomosis?

Sensitivity analysis is a powerful approach to find sensitive and therefore important
cardiovascular system parameters [10–13]. The sensitive parameters can be further
used to design a measurement setup and to interpret measurements. In [14] for
example, Sato, T. et al. studied the effects of compliance, volume and resistance
on cardiac output using sensitivity analysis. Yih-Choung Yu et al. [15] used pa-
rameter sensitivity to construct a simple cardiovascular model. Leguy, C.A.D et
al. [20] applied global sensitivity analysis on the arm arteries and showed that the
elastic modulus is most sensitive parameter, while arterial length is a less sensitive
parameter.

1.1 Scope of the current work

In this paper, we are interested how structural changes, like for example anastomosis
influence local sensitivities. Anastomoses are the interconnection between vessels,
which provide a collateral circulation and also act as a second rout of blood flow
when main vessels are blocked by plaque, atherosclerosis or stenosis, to minimize
the damages at tissue level.

Another important concept found in the context of anastomosis is valve-less flow.
William Harvey published a report explaining ”impedance defined flow”, which
explained a mechanism for valve-less flow [16]. Later on, Weber [17] stated that
the heart is not able to pump blood alone, but there are other forces which help
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in circulation. There are several structural aspects in the cardiovascular system,
which control the blood flow or simply create valve-less flow like, viscous and inertial
effects and also elastic properties of two vessels [18]. Details of the valve-less flow
mechanism are given in [19] and will not be discussed here in detail. Further, we
will not discuss turbulent effects that appear in merging flows at the end-to-side
anastomosis, which mainly depend upon the angle and flow rate of the merging
vessels.

In this paper, we present a computational model of anastomosis around the el-
bow joint (SUC-PUR), using the lumped parameter approach. As luminal diameter
or equivalently the flow resistance is the most important parameter in blood flow
through anastomosis, we study the effects of viscous flow resistance and terminal
impedance on pressure and flow through anastomosis.

In a first instance, we apply local sensitivity analysis (without anastomosis) to
study the effects of cardiovascular parameters on the hemodynamic state variables.
We study time dependent sensitivities w.r.t. flow resistance, distensibility and in-
ertial forces to find sensitive regions in the pressure and flow waves. Due to the
network structure of the cardiovascular system it is helpful to determine and dis-
cuss the location dependent sensitivities, i.e. which locations in the arm arteries are
sensitive to which parameters. Further, in arterial anastomosis, we also discuss the
effects of flow control parameters, flow resistance and terminal resistance on cardio-
vascular pressure and flow at selected nodes. Finally, to quantify and compare the
results, we apply the concept of norms.

With this work, we intend to validate different methodologies of local sensitivity
analysis, using a simple example problem of the arm artery to show the principle
agreement with Ohm’s law of hydrodynamics. The method may then be used to
analyze more complex cardiovascular network structures in the future.

2 Derivation of the model equations

Under the assumption that the arterial tree is decomposed into short arterial seg-
ments of length l with a constant circular cross-section and linear elastic wall behav-
ior, the following one dimensional flow equations can be derived from the linearized
Navier-Stokes equation, the equation of continuity and the shell-equation for thin
walled, linear elastic tubes [1, 21]

−∂p
∂x

= Rq + L∂q
∂t
, (1)

− ∂q
∂x

=
p

Z + C ∂p
∂t
. (2)

Within these equations, the state variables are the flow, q and the transmural
pressure, p. The viscosity and inertial forces of blood flow are described by the
viscous flow resistance, R and blood inertia, L per unit length respectively. The
elastic properties of the wall are modeled by a compliance, C per unit length, while
Z is the terminal impedance [21].

Integration of the two partial differential eqns. (1) and (2) along the flow axis,
leads to a system of equations (3) commonly used to describe electrical circuits of
the form given in figure 1. In this type of model each segment of the arterial system
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Figure 1: Linear elastic model for fluid flow in non-terminal vessel segments (left)
and for terminal vessel segments (right).

is described by a set of two equations that are known as Windkessel equations. Here
(pin, qout) and (pin, pout) are the boundary conditions for non-terminal and terminal
nodes respectively. In this study, pressure is used as an input boundary condition
(see figure 2) and to model a mean venous pressure with a value of 15mmHg for
terminal nodes, the equation system is setup by including an additional terminal
node with terminal impedance, Z (see figure 1, (right) and eqn. 4). The matrix
form of the Windkessel eqns. with boundary conditions is

dX
dt

= AX +B, (3)

where X = {q1, p1, ..., qNs , pNs} is the state vector, A is the state matrix and B
contains the boundary conditions.
For non-terminal segments (figure 1, left) X = (qin, pout)

T

A =

(−R
L

−1
L

1
C 0

)
, B(pin, qout) =

(
pin
L
− qoutC

)

For terminal segments (figure 1, right) X = (qin, qout)
T

A =

(−R
L

−1
L

1
C − 1

ZC

)
, B(pin, pout) =

(
pin
L
−poutZC

)

A complete description of the state-space representation of a network structure
is given in section 2.3. The electrical parameters for i-th non-terminal and j-th
terminal segment are defined as,

Ri =
8νli
πr4
i

, Li =
ρli
πr2
i

, Ci =
2πr2

i li
Eihi

, Zj =
pj − pout
qout

(4)

where

E − Young modulus, l − length of vessel, r − radius of vessel

h − wall thickness, ν − blood viscosity, ρ− blood density

The vascular network parameters, to setup matrices A and B are given in Table 1.
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Figure 2: The input pressure time series and cardiac phases, which are used as an
input boundary condition.

Nodes E l d h R C L
units kgm−2s−2 m m m kgs−1m−4 m4s2kg−1 kgm−4

∗105 ∗10−2 ∗10−3 ∗10−4 ∗106 ∗10−11 ∗106

1 4 6.1 7.28 6.2 3.539 7.454 1.539
2 4 5.6 6.28 5.7 5.868 4.778 1.898
3 4 6.3 5.64 5.5 10.15 4.035 2.648
4 4 6.3 5.32 5.3 12.82 3.514 2.976
5 4 6.3 5 5.2 16.43 2.974 3.369
6 4 4.6 4.72 5 15.10 1.9 2.76
7 8 7.1 3.48 4.4 78.90 0.667 7.838
8 8 7.1 3.24 4.3 105 0.531 9.042
9 8 7.1 3 4.2 142.9 0.448 10.55
10 8 2.2 2.84 4.1 55.11 0.1207 3.647
11 8 6.7 4.3 4.9 31.94 1.067 4.844
12 16 7.9 1.82 2.8 1173 0.0834 31.88
13 8 6.7 4.06 4.7 40.19 0.9366 5.434
14 8 6.7 3.48 4.6 50.22 0.80 6.075
15 8 3.7 3.66 4.5 33.60 0.3958 3.693
16 8 6 2.3 1.95 349 0.366 15.16
17 8 6 2 1.7 611 0.277 20
18 16 6 1.8 1.53 931 0.112 24.75

Table 1: Numerical values of parameters for each node of the arm arteries (shown
in figure 4). The value of terminal resistance (Z) on three terminal nodes is 3.24 ∗
109 kgs−1m−4, ν = 0.004 kgs−1m−1 and ρ = 1050 kgm−3 [4, 5].

2.1 Network structure and model equations

To generate the model of the arm arteries (with and without anastomosis), we use
domain decomposition (DD) approach, in which the whole cardiovascular system is
decomposed into a number of vascular segments, where the parameters are approx-
imately constant. Each segment of the arm arteries in a network structure as given
in figure 4, is represented by an electrical circuit as shown in figure 1.
Decomposition into vascular segments, however, requires relations between the ar-
terial segments to reconstruct the network structure of the arterial tree. Therefore
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Figure 3: Model geometry for merging and diverging flows at junctions.

we define bifurcation conditions for the mother and daughter vessels as follows:

q1 = q2 + q3, (diverging) (5)

q3 = q1 + q2, (merging) (6)

p1 = p2 = p3 (7)

These conditions are derived from conservation of mass and momentum, i.e. pres-
sure is constant and flow has to be conserved at the bifurcation (see figure 3). For
more details see [9].

2.1.1 Model equations without anastomosis

In analogy to Kirchhoff’s current and voltage law (Ohm’s law of hydrodynamics),
the arterial structure given in figure 4, leads to the following system of coupled
ordinary differential equations for pressure and flow:
Flow equations:

q̇i =
pi−1 − pi −Riqi

Li
, i = 1, 2, ..., 15, and i 6= 11

q̇11 =
p6 − p11 −R11q11

L11
(8)

Pressure equations:

ṗi =
qi − qi+1

Ci
, i = 1, ..., 15 and i 6= 6, 10, 11, 12, 15

ṗ6 =
q6 − q11 − q7

C6
, ṗ11 =

q11 − q12 − q13

C11
(at bifurcation)

ṗ2i+8 =
q2i+8 − (p2i+8 − pout)/Zi

C2i+8
, i = 1, 2, 3 (at terminals) (9)

2.1.2 Model equations with anastomosis

From the network structure of the arm artery with SUC-PUR anastomosis (see fig-
ure 4), it is evident, that the flow will split at nodes 3 and 6, and will merge at
node 11. Further the inlet pressure at node 11 is the same as in nodes 6 and 18.
The additional equations for three nodes of SUC-PUR anastomosis are,
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Figure 4: Simplified anatomy of the arm arteries (left) and model geometry of
brachial, superior ulnar collateral anastomosis with posterior ulnar recurrent (SUC-
PUR), ulnar and radial arteries (right). The number of segments is Ns = 15 (with-
out anastomosis) and Nas = 18 (with anastomosis), both with Nt = 3 terminal
nodes.

Anastomosis flow equations:

q̇16 =
p3 − p16 −R16q16

L16
q̇17 =

p16 − p17 −R17q17

L17
q̇18 =

p17 − p6 −R18q18

L18
(10)

Anastomosis pressure equations:

ṗ3 =
q3 − q4 − q16

C3
, ṗ16 =

q16 − q17

C16
, ṗ17 =

q17 − q18

C17
, ṗ18 =

q18 + q6 − q11

C6 + C18
(11)

According to the conservation of momentum the pressure at nodes 18 and 6 is
identical.

2.2 Diverging and merging flows at junctions

Blood flow at junctions plays an important role in normal and pathological condi-
tions of the cardiovascular system. In this section, we briefly discuss pressure and
flow at junctions for both diverging (at bifurcations) and merging blood flows. In
the arterial system, merging flow conditions appear in the context of anastomosis.

2.2.1 Diverging blood flow

In the arm artery structure, given in figure 4, diverging flows occur at the bifurcation
of the vessels at nodes 3, 6 and 11. The mass conservation equation for linearized
system (eqns. 12, 13) at node 3 is, q3 = q16 + q4 and the total pressure is constant
at the bifurcation, i.e. the output pressure at node 3 is the input pressure for both
nodes 16 and 4. In this paper, we limit our study to symmetric and asymmetric
bifurcations with respect to the radius of the daughter vessels.

2.2.2 Merging blood flow

To model the merging flows at junctions has a great importance to understand the
effect of anastomosis and bypass in the cardiovascular system. These type of flows
occur also in vascular grafting and arteriovenous fistula (AVF). According to the
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conservation of mass, the flow at node 11 is, q18 +q6 = q11 and according to the law
of conservation of momentum, the total pressure remains continuous at node 11.

2.3 State-space representation

The state-space representation is a compact way to model a physical system as a set
of input, output and state variables related by first order differential equations [22].
In state-space form, we have a system of two equations: an equation for determining
state xt of the system (state equation), and another equation to describe the output
yt of the system (observation equation). The matrix form can be written as

ẋt = Axt +But, (12)

yt = Cxt +Dut. (13)

Here, xt, is the state vector of the system, ut the input vector and yt, the observation
vector. The dynamics of the system is described by the state dynamics matrix,
A ∈M(n× n). The input matrix, B ∈M(n× i) specifies the time dependency on
boundary conditions (BC) applied at in- and outflow locations and the observation
matrix, C ∈ M(m × n) defines the observation locations within the state-space
system, i.e. the nodal location in the network. Here, m denotes the number of
observations. Finally, the input to observation matrix, D ∈ M(m × i) models
the influence of the input vectors and accounts for the observation of the BC.
Besides its computational advantage, the state-space form allows for the integration
of experimental measurements (observations) into the model building process. This
step is essential for the adjacent model parameter estimation from experimental
measurements, that are planned in a future study.

The state vector, xt, contains the flow and pressure functions at all network
locations, whereas, the output vector, yt contains the flow and pressure at selected
nodes i. For a m = 4 dimensional observation vector, the output vector is y(t) =
(q5(t), p5(t), q6(t), p6(t))T , where y ∈ Rm at nodes 5 and 6. The state-space system
for the arm artery given in figure 4, using eqn. (8) and eqn. (9) is defined by

Aij =





−R i+1
2

L i+1
2

i = 1, 3, 5, ...29, j = i

1
C i

2

i = 2, 4, 6, ...30, j = i− 1

−1
L i+1

2

i = 1, 3, 5, ...29, j = i+ 1

1
L i+1

2

i = 3, 5, 7, ...29, j = i− 1 and i 6= 21, 25

also for i = 21, j = 12 and i = 25, j = 22
−1
C i

2

i = 2, 4, 6, ...30, j = i+ 1 and i 6= 20, 24

also for i = 12, j = 21 and i = 22, j = 25
−1

ZkC i
2

k = 1, 2, 3, i = 20, 24, 30, j = i

0 otherwise
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Bij =





1
Li

i = j = 1
1

Zj−1C i
2

i = 20, j = 2

1
Zj−1C i

2

i = 24, j = 3

1
Zj−1C i

2

i = 30, j = 4

0 otherwise

, Cij =

{
1 i = 1, 2, 3, 4, j = i+ 8

0 otherwise

and Dij = 0. The system with SUC-PUR anastomosis, we expand our state-space
model by using eqns. (10, 11). The system is solved using MATLAB built in solvers
’ode45’ and ’lsim’.

3 Methods of local sensitivity analysis

To understand how the cardiovascular model parameters influence the state vari-
ables, we perform sensitivity analysis. Mathematically the sensitivity coefficient can
be calculated as

Sij =
∂yi
∂θj

, (14)

where yi is the i-th model output and θj is the j-th model parameter.
The sensitivity coefficients Sij can also be computed by means of the direct

differential method (DDM), which solves the system of differential equations for
sensitivity coefficients (for complete derivation, see Appendix A)

Ṡ = fθ + J × S. (15)

The sensitivity coefficients matrix S = (Sij) can be obtained by solving model
equations (12, 13) simultaneously with the system (eqn. 15) using an appropriate
ODE solvers. A drawback associated with DDM is that the Jacobian needs to be
computed which is time consuming for large-scale problems [23].

3.1 Sensitivity by finite difference method

In local sensitivity analysis, parameters are varied segmentwise by some portion
around a fixed value (nominal value) and the effects of individual perturbations on
the observations are studied [23]. Using differential calculus the sensitivity coeffi-
cients are

Si =
∂yi
∂θ

= lim
∆θ→0

yi(θ + ∆θ)− yi(θ)
∆θ

, (16)

where, yi is the i-th model output, θ is the set of model input parameters and ∆θ
is the change in model parameters. There are various methods to compute the
sensitivity coefficients in eqn. (16). Within this work, we use a first order finite
difference for approximation

Si =
∂yi
∂θ
' yi(θ + ∆θ)− yi(θ)

∆θ
. (17)

Eqn. (17) produces a set of two sensitivity time series, Si(t) (one for pressure and
one for flow) per parameter and per network node (see figure 8).
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3.2 Sensitivities by using norms

Another method to quantify changes to the state variables due to a change in
model parameters is to introduce a norm. To obtain a measure that validates the
sensitivities, we compute the mean Euclidean distances of the observations made in
a model with different parameter sets θ1, θ2. Here θ1 is the nominal parameter set
and θ2 is a parameter set with ±10% change in θ1.

‖θ1, θ2‖:= mean
t∈T

‖ yi(θ2, t)− yi(θ1, t) ‖2
‖yi(θ1, t)‖2

i = 1, 2, 3...2×Ns,

4 Results and discussion

In this section, we discuss different scenarios for sensitivity analysis like, e.g. sen-
sitivity with respect to structural parameters, Eldh, electrical parameters, RCL
(without anastomosis), time and network location dependent sensitivities and im-
pact of blood flow resistance, R and terminal resistance, Z on state variables (with
anastomosis). The sensitivity results are finally compared to the 2-norm of the
distance vector of the state variables of two time series.

4.1 Sensitivities with respect to E, l, d and h

To study the effects of Eldh on pressure and flow, we first solve our model with
both ±10% variation of Eldh from its nominal values (see table 1). The sensitivities
are computed using eqn. (17) by setting θ either to E, l, d or h. The sensitivities for
pressure and flow w.r.t Eldh were calculated at node 7 (radial artery) and plotted
in figure 5.

From eqn. 4, elastic modulus, E is inversely proportional to the compliance of
the vessel, i.e. variation in elastic modulus changes the compliance of vessel, which
causes phase and amplitude shift of the pressure and flow waves, as a result the pulse
transit time (PTT) changes because pressure and flow wave speed is influenced. E
and h appear as factor pair in eqn. 4, thus their sensitivity is common and not
separable (see figure 5, A1, A2, A7, A8).

Phase and amplitude shift while changing l is due to the dependence of R,C
and L on vessel length (eqn. 4), also due to the longer and shorter travel time of
pressure and flow waves (see 5, A3, A4). Vessel length is most sensitive at early
systole, end systole and end diastole.

As diameter is directly proportional to blood flow rate, which means increasing
the diameter of the vessel will increase the flow and pressure and vice versa. From
figure 5 (A5, A6), it is clearly evident, that the diameter is most sensitive at the
peak systole and end systole.

4.2 Sensitivities with respect to R, C and L

The sensitivity of the electrical parameters R,C and L on cardiovascular pressure
and flow are found by solving eqns. (12) and (13) numerically using the CVODES
solver, which is a part of SUNDIALS software suit [24, 25] and then calculate the
sensitivities using eqn. (17). The sensitivity patterns in figure 7 where obtained by
variation of R,C and L in the arm arteries (with and without anastomosis). The
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Figure 5: Pressure and flow for a ±10% change in E, l, d and h in the radial
artery at node 7. The results reveal that d and l are sensitive parameters, while
E and h are less sensitive. Due to the linear appearance of E and h, the effect on
cardiovascular pressure and flow is identical.

matrix diagonal displays the local sensitivities within the segments of variation itself
and the off diagonals are related to the sensitivities of upstream and downstream
segments (figure 6).

The sensitivities of viscous flow resistance, R on flow in brachial artery indicate
only a local effect at inlet and a small downstream effect on radial and ulnar arteries,
while there is no upstream effect (see figure 7, C1). For pressure, changing R in
brachial artery has local effect with strong downstream sensitivity on radial and
ulnar while negligible effect was found from radial to ulnar and from ulnar, radial

11
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Figure 6: Sensitivity pattern in arm artery without anastomosis (left) and with
anastomosis (right), obtained by changing the values of cardiovascular parameter
R,C and L.

to brachial. Results show strong reflections from the terminal nodes, 10 12 and 15
(see figure 7, C2).

Further, the flow resistance, R in the parallel association of the ulnar and radial
arteries has negligible downstream and upstream sensitivities, because in parallel
arteries the total flow resistance is given by the fraction 1

Rtotal
= 1

Rulnar
+ 1

Rradial
,

i.e. due to the increment in total diameter, the over all flow resistance reduces.
Physically a change of R in one branch redirects the flow into the other branch
while the overall flow is maintained. The sensitivity of flow resistance in parallel
branches is thus smaller than in series connections.

The results indicate that the arterial compliance, C has small downstream in-
fluence on the flow for all segments of the arm artery and strong upstream global
sensitivity from radial to brachial and ulnar to brachial. This effect is evidently
caused by wave reflections at the terminal nodes, 10, 12 and 15 of the radial and ul-
nar artery respectively. In contrast, for the pressure, only local effects are observed
in terminal branches (see figure 7, C3, C4).

From eqn. (4), it is obvious, that the viscous resistance and the blood inertia
are inversely related to r4 and r2 respectively. Which means in large arteries blood
inertia plays an important role, while in small arteries viscous resistance is more
important. A variation of blood inertia in the inlet node of the brachial artery has
large local influence on flow, while for pressure, changing L in brachial artery has
downstream influence on all following nodes and upstream influence was observed
from the terminal nodes of the radial and ulnar artery due to reflections (see figure
7, C5, C6). Furthermore, due to the fact that the total inductance 1

Ltotal
= 1

Lulnar
+

1
Lradial

reduces at the bifurcation, the flow and pressure in the ulnar and radial
arteries are less sensitive with respect to L.

4.3 Time dependent sensitivity

For time dependent sensitivity, we first solve eqns. (12) and (13) with Matlab built
in solvers, then calculate sensitivity time series for both pressure and flow at nodes 5
and 7 by using eqn. (17). The results of time dependent sensitivity analysis contain
several aspects that are important especially in the estimation of cardiovascular
parameters from pressure and flow waves. It is well known, that parameters that are
sensitive for pressure and flow can be estimated with high accuracy, while insensitive
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Figure 7: Effects of viscous flow resistance R (top), vessel compliance C (middle)
and blood inertia L (bottom) on pressure and flow in the arm arteries. Changes
in the flow resistance, R, and blood inertia, L, in brachial artery have strong local
effects on flow and have significant downstream effects on radial and ulnar pressure.

parameters cannot be estimated at all. Thus the identification of sensitive regions
with the cardiac cycle could benefit parameter estimation. In other words, if only
sensitive regions of the flow and pressure waves are used then a better estimation
of parameters is expected.

In this section, we study +10% change in R, C and L in all locations. Pressure
and flow sensitivity time series w.r.t R, C and L were calculated at node 7 (see
figure 8) by using eqn. (17). The results are summarized as follows:
(a) R sensitivity time series: According to the hydrodynamic form of Ohm’s law,

the flow resistance, R can be calculated from the ratio of pressure gradient and
flow, i.e. R = ∆p

q . It is clear from figure 8 (B1, B2) that flow resistance has an
inverse relationship to blood flow, q and has linear relationship with the transmural
pressure, p. Due to the fact, the resistance increases for constricting arteries and
decreases for dilating arteries, the flow resistance is most sensitive in end systole,
early and end diastole of the flow wave, while it is less sensitive in the early systole.
On the other hand, sensitivity of flow resistance is proportional to the pressure and
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Figure 8: Sensitivity time series for both pressure and flow waves at node 7, with
respect to R (B1, B2), C (B3, B4) and L (B5, B6). Results show that the flow is
sensitive to variations of R at the end of systole and end of diastole, while the
pressure is sensitive in early systole and early diastole. In contrast the pressure is
sensitive to C in end systole and end diastole and to L in early systole and early
diastole.

significant sensitivities were found in early systole, early diastole and at pmax, while
flow resistance has less sensitivity at pmin, which shows a clear agreement with
Ohm’s law of hydrodynamics.

(b) C sensitivity time series: Compliance, C is the change in arterial blood vol-
ume dV , due to the change in arterial blood pressure dp, i.e. C = dV

dp . It is thus
the slope of the pressure-volume curve, so it depends on the pressure level at which
the compliance or elastance is calculated. The results reveal, the compliance has
a larger effect on systole and diastolic of the flow wave. For pressure, C is most
sensitive at end systole, end diastole and pmax. Low sensitivity was found at pmin
(see figure 8 (B3, B4)).

(c) L sensitivity time series: Blood inertia, L relates pressure drop with flow
rate i.e. L = ∆p

q̇ . Blood inertia plays a role in acceleration (in systole) and de-

celeration (in diastole) of the blood flow in the vessels. Figure 8 (B5, B6) clearly
shows, that L sensitivity time series has inverse relationship to the pressure and
flow waves. Blood inertia is sensitive at systole and diastole of the flow wave while
peak sensitivity was found for the pressure at early systole, early diastole and at
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end diastole. Furthermore, pressure is insensitive at pmax and pmin.

4.4 Network location dependent sensitivities

In order to identify important locations in arm arteries (without anastomosis), we
assume a non physiological network structure with identical node parameterization,
i.e. the parameters Ri, Ci and Li are identical to node 1. This leads to equally
weighted sensitivities in the network, thus the sensitivity is only influenced by lo-
cation and network structure of the arm artery.

Results show, R is sensitive for flow in brachial artery with small downstream
sensitivity on radial and ulnar arteries and almost no upstream sensitivity from
radial and ulnar to brachial artery (see figure 9, D1). On the other hand, changes
of R in brachial artery have local and strong downstream influence on pressure for
all following nodes of radial and ulnar arteries. However, no upstream sensitivities
were found from radial and ulnar to brachial artery. For pressure, results also show
the sensitivities from terminal segments, 10, 12 and 15 back to brachial artery due
to reflections (see figure 9, D2). In figure 9 (D3, D4, D5, D6), the sensitivity results
of C and L are scattered, which reveal that the effect of C and L can only be seen
if a physiological network structure like in figure 7 is taken.

4.5 Sensitivity with anastomosis

Blood flow in SUC-PUR anastomosis (collateral circulation) depends on the size
and mainly on the diameter of the anastomosis, smaller diameters reduce the flow
in anastomosis and vice versa. In this paper, we focus the study on end-to-side
anastomosis and show the sensitivity of the anastomosis structure on pressure and
flow by changing flow resistance, R and terminal impedance, Z. Moreover, we dis-
cuss four different scenarios of arterial anastomosis sensitivity, which are

(a) R sensitivity when, {RCL}a ' {RCL}b: In order to study the influence of
flow resistance through arterial anastomosis, identical values of RCL are taken for
both anastomosis and its parallel brachial artery, i.e. {RCL}a ' {RCL}b. Here
{RCL}a are parameter values of anastomosis nodes (16, 17 and 18) and {RCL}b are
parameter values of brachial nodes which appear in parallel to anastomosis nodes
(4, 5 and 6) and the equality means that corresponding anastomosis nodes have
identical parameter values, segmentwise as its counterpart brachial nodes.

As it is mentioned earlier, the diameter or equivalently the blood resistance
plays an important role in pressure and flow distribution of cardiovascular system,
so we limit our study in changing the blood resistance in the arterial anastomosis.
For flow, R is sensitive locally at nodes 1,2, and 3 specially most sensitive at inlet.
Due to identical network parameters, the downstream sensitivity from first three
nodes of brachial artery on anastomosis and its parallel brachial artery is the same.
More importantly, changing R in anastomosis or its counter part brachial artery
has the same local and upstream/downstream influence on each other (see figure
10, E1). For pressure, R is sensitive at first three nodes and has strong downstream
sensitivities on all following segments and upstream sensitivities can be seen from
the terminal nodes because of reflections (see figure 10, E2).
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Figure 9: Effects of viscous flow resistance R (D1, D2), vessel compliance C (D3, D4)
and blood inertia L (D5, D6) on pressure and flow in the arm artery (with identical
node values). From the results R is a sensitive parameter for local flow in brachial
artery and has both local (in brachial) and global downstream effect on pressure.

(b) R sensitivity for ideal case: A physiological network with an arterial anas-
tomosis is taken, based on parameter values given in table 1. From eqn. 4, it is
clear that a decrease in diameter or equivalently increase in total blood resistance
of anastomosis decreases the mean flow. For flow, R is locally sensitive at first three
nodes and has significant downstream influence on brachial artery particularly on
the anastomosis. The former sensitivity is because of backflow caused by pressure
drop resulting from the increased blood resistance of the anastomosis (see figure
10, E3). For pressure, R is sensitive locally at first three nodes and has strong
downstream sensitivity on radial, ulnar and SUC-PUR anastomosis (see figure 10,
E4).

(c) R sensitivity of ideal case with large Z: When a body has no physical activ-
ity then the terminal resistance (impedance) has a large value (here, ZL = 30Z).
By increasing Z, flow will reduce and pressure increase near the terminals. For
flow, R is sensitive at nodes 1, 2 and 3 with strong downstream sensitivities on the

16



R mean absolute sensitivity for flow ({RCL}
a
={RCL}

b
)

S
e

le
c

te
d

 n
o

d
e

s
 f

o
r 

fl
o

w

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

x 10
−14

E
1

R mean absolute sensitivity for pressure ({RCL}
a
={RCL}

b
)

S
e

le
c

te
d

 n
o

d
e

s
 f

o
r 

p
re

s
s

u
re

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

0.5

1

1.5

2

x 10
−5

E
2

R mean absolute sensitivity for flow (ideal case)

S
e
le

c
te

d
 n

o
d

e
s
 f

o
r 

fl
o

w

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

14

x 10
−12

E
3

R mean absolute sensitivity for pressure (ideal case)

S
e
le

c
te

d
 n

o
d

e
s
 f

o
r 

p
re

s
s
u

re

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

14

16

18
x 10

−4

E
4

R mean absolute sensitivity for flow (ideal case with large Z)

S
e

le
c

te
d

 n
o

d
e

s
 f

o
r 

fl
o

w

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

14

x 10
−12

E
5

R mean absolute sensitivity for pressure (ideal case with large Z)

S
e

le
c

te
d

 n
o

d
e

s
 f

o
r 

p
re

s
s
u

re

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−3

E
6

R mean absolute sensitivity for flow (ideal case with small Z)

S
e

le
c

te
d

 n
o

d
e

s
 f

o
r 

fl
o

w

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

14

16

18

x 10
−12

E
7

R mean absolute sensitivity for pressure (ideal case with small Z)

S
e
le

c
te

d
 n

o
d

e
s
 f

o
r 

p
re

s
s
u

re

Sensitivity nodes

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2

4

6

8

10

12

14
x 10

−4

E
8

Figure 10: Effects of viscous flow resistance R and terminal resistance Z on pressure
and flow at different locations of the arterial anastomosis. From the results, it is
seen that, for flow R is most sensitive at nodes 1, 2 and 3, and has downstream
influence, mainly on anastomosis and its parallel brachial artery. While for pressure
R is most sensitive locally at nodes 1, 2, and 3 with strong downstream effect on
radial, ulnar and anastomosis.

anastomosis and its counterpart brachial artery (see figure 10, E5). For pressure,
R is sensitive at nodes 1, 2 and 3 with strong downstream influence on all following
nodes and upstream effects from terminal nodes due to reflections (see figure 10, E6).

(d) R sensitivity of ideal case with small Z: Physical activities lead to a reduc-
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tion in terminal resistance, Z (in our study, ZS = Z
30 ), which increases the blood

flow and decreases mean cardiovascular pressure. As a result, the cardiac output
will increase. These are the temporary changes which appear only when we do some
physical exercise.

Another artificial reason for low terminal resistance is the implantation of ar-
teriovenous fistula (AVF), which is an abnormal connection between a peripheral
artery and a vein. Again for flow, R is sensitive locally at nodes 1, 2 and 3 and
has downstream effect on the remaining brachial nodes and on the anastomosis.
For pressure, R is most sensitive at first three nodes and has strong downstream
influence on all nodes. For flow, a variation in R within the anastomosis has small
upstream sensitivity on brachial artery, while for pressure there are small upstream
effects on ulnar, radial and brachial arteries (see figure 10, E7, E8).

4.6 Sensitivities by using a norm

Finally, we compare the results obtained by sensitivity analysis with those obtained
by using norms. We found that the diameter and length of vessel are most influential
parameters and that the norm computed for the wall thickness and elastic modulus
has identical values (see table 2 and table 3).
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5 Conclusion

The methods developed in this paper, are seen as a first step towards cardiovascu-
lar system identification from cardiovascular measurements. In this work, we have
applied different methods of sensitivity analysis on linear elastic Windkessel model
of the arm arteries with and without anastomosis. The results indicate a strong
dependence of the pressure and flow state variables onto a variation in vessel diam-
eter. Concerning to the elastic properties and the thickness of the arterial wall, a
much lower sensitivity was found.

Alternatively, changing R and L in brachial artery has shown local downstream
and global downstream effects on flow and pressure waves respectively. The flow,
C has a strong upstream global effect from radial to brachial and ulnar to brachial,
which is caused by wave reflections at the terminal nodes, 10, 12 and 15.

The method allows to determine time dependent sensitivities, which are helpful
in finding optimal regions in the cardiac cycle (e.g. early systole or end diastole),
from where we can get more information for estimation of parameters. For example,
from the results, it is evident that the flow is sensitive on R in end systole and end
diastole and pressure is sensitive in early systole and early diastole. Moreover, the
pressure is sensitive for C in end systole and end diastole, while it is sensitive for L
in early systole and early diastole.

Results reveal that by changing flow control parameters, R, has significant local
influences on flow at first three nodes (1, 2 and 3) and also have downstream sen-
sitivities on anastomosis and its counter part brachial artery. On the other hand,
pressure is most sensitive at first three nodes and all following nodes of radial, ulnar
and end-to-side anastomosis.

Finally, we have used the concept of norms to quantify the results and to compare
the variation in state variables according to parameter changes. We found a good
agreement to the results obtained by sensitivity analysis.

6 Future work

The methods applied, give satisfactory results if the cardiovascular parameters are
independent. In the real scenarios however, they are often interdependent like e.g.
the observation of a high correlation between the extension of the elastic walls and
the tangential tension caused by transmural pressure. To study these type of effects
in a more general way, global sensitivity analysis has to be applied, which deals
with variations in many parameters at a time.
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8 Appendix A: Direct Differential Method (DDM)

In the DDM approach, the sensitivity coefficients are derived by differentiating eqn.
(12) with respect to the model parameters, θ as

∂

∂θ

(
ẋi

)
=

∂

∂θ

(
Axi +Bu

)
=
∂fi(x, θ, t)

∂θ

applying the chain rule and Clairaut’s theorem, gives

∂

∂t

(∂xi
∂θ

)
= A′(θ)xi +A(θ)

∂xi
∂θ

+B′(θ)u

∂

∂t

(
Si

)
= A′(θ)xi +B′(θ)u

︸ ︷︷ ︸
fθ

+A(θ)
︸︷︷︸

J

∂xi
∂θ︸︷︷︸
S

Ṡ = fθ + J × S,

where J is n×n Jacobian matrix, f is right hand side function in eqn. (12), fθ = ∂fi
∂θ

and S = ∂xi
∂θ .
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