
Empirical Analysis of Solving Phases in Mixed Integer
Programming

Masterarbeit bei
Prof. Dr. Thorsten Koch

vorgelegt von
Gregor Hendel1

Technische Universität Berlin
Fachbereich Mathematik

Berlin, 27. August 2014

1Konrad Zuse Zentrum für Informationstechnik Berlin, hendel@zib.de

2

Hiermit versichere ich die selbstständige und eigenhändige Anfertigung dieser Ar-
beit an Eides statt.

(Ort, Datum) (Unterschrift)

Zusammenfassung

Viele Planungs- und Entscheidungsprobleme aus Industrie und Wirtschaft lassen
sich abstrakt als Gemischt-ganzzahliges Optimierungsproblem (engl.: Mixed Inte-
ger Program, MIP) formulieren. Moderne Lösungssoftware für allgemeine MIPs
kombiniert das sogenannte Branch-and-Bound-Verfahren mit einer Vielzahl von
Zusatzkomponenten wie zum Beispiel Primalheuristiken und Schnittebenenver-
fahren. Der Löseprozess lässt sich in die folgenden Phasen unterteilen: Am Anfang
steht die Zulässigkeitsphase, in der der Löser eine zulässige Lösung für das Prob-
lem sucht. Nach der ersten Lösung setzt die Verbesserungsphase ein. Diese dauert
an, bis eine Optimallösung für das vorgegebene Problem gefunden wurde. Die
verbleibende Zeit verbringt der Löser in der Beweisphase der Optimalität. In der
vorliegenden Arbeit befassen wir uns mit Fragestellungen, die das Ausnutzen von
Phaseninformationen für den Einsatz der eingangs erwähnten Löserkomponenten
betreffen:

1. Ist es möglich, den gesamten Löseprozess durch den Einsatz phasenspezifis-
cher Einstellungen und Komponenten in jeder Phase zu beschleunigen?

2. Gibt es Kriterien, auf deren Grundlage sich ein praxistauglicher Übergang
zwischen der Verbesserungsphase und der Beweisphase ermöglichen lässt?

Zur Beantwortung betrachten wir die Lösephasen zunächst getrennt voneinan-
der. Hier identifizieren wir Komponenten und dazugehörige Parameter des MIP-
Lösers Scip, von deren Einsatz wir auf der Grundlage von Kenntnissen aus der
einschlägigen MIP-Literatur eine Verkürzung der Phasendauer versprechen. Die
besten individuellen Einstellungen für die einzelnen Phasen aus einer Reihe von
Experimenten werden anschließend in einem phasen-basierenden Löser kombiniert.
Dieser kann die Lösezeit von Scip um bis zu 11% auf einer Reihe von schweren
Instanzen verbessern und drei zusätzliche Instanzen lösen. Die Erkennung des
Übergangs zwischen der Verbesserungs- und der Beweisphase erfolgt bis zu diesem
Zeitpunkt exakt.

Anschließend entwickeln wir Kriterien für einen heuristischen Phasenübergang.
Insgesamt drei verschiedene solcher heuristischen Ansätze werden in dieser Arbeit
vorgestellt. Das erste Kriterium nutzt eine stetige Approximation des diskreten pri-
malen Löseverlaufs mit Hilfe einer logarithmischen Regressionskurve. Die anderen
beiden Kriterien nutzen globale Informationen über den Zustand des Suchbaumes
für einen heuristischen Phasenübergang. Besonders erwähnt werden sollte hier

3

4

ein auf (noch zu definierenden) Knotenrängen basierendes Kriterium, mit dessen
Hilfe wir einen phasen-basierenden Löser realisieren konnten, der ein ähnlich gutes
Resultat wie der exakte phasen-basierende Löser hinsichtlich der Gesamtlösezeit
erzielt. Die Auswertungen zeigen, dass alle Kriterien dazu tendieren, den wahren
Phasenübergang in die Beweisphase zu unterschätzen. Dieser Umstand kann als In-
dikator dienen, ob die beste gefundene Lösung beim Erreichen des Zeitlimits schon
optimal ist oder nicht. Dies trifft insbesondere auf das best-estimate-Kriterium zu.

Im Rahmen dieser Arbeit wurden eine Knotenauswahlregel, eine Branchin-
gregel und zwei Primalheuristiken aus der aktuellen Literatur in Scip integriert.
Darüber hinaus stellen wir in dieser Arbeit zwei neuartige Modifikationen der
Standard-Branchingregel von Scip vor. Neben Entwicklungen am Löser stellen wir
außerdem mit dem ipet-Modul (Interactive Python evaluation tools) ein Python-
Paket zur Arbeit mit Benchmark-Daten zur Verfügung. Das Paket verfügt über
eine Benutzeroberfläche, die einige Funktionen zum Einlesen von Daten sowie deren
Visualisierung und Speicherung bereitstellt.

Danksagungen

Ganz besonders herzlich bedanken möchte ich mich bei Professor Koch für die
Themenstellung, die Begutachtung und zahlreiche Tipps zum Verfassen der vor-
liegenden Arbeit. Gleiches gilt auch für meinen Zweitgutachter Timo Berthold,
dem ich herzlich für seine allzeit offene Tür und viele interessante Diskussionen
sowohl zum Thema als auch darüber hinaus danken möchte. Beim Verfassen der
einzelnen Kapitel wurde ich mit vielen hilfreichen Kommentare durch meine Freun-
de Heide Hoppmann, Richard Sieg, Kai Hennig und Michael Winkler tatkräftig
unterstützt, dafür ein herzliches Dankeschön. Außerdem bedanke ich mich bei
meinen Kollegen und Schlagzeugern Tobias Achterberg, Matthias Miltenberger,
Gerald Gamrath und Ambros Gleixner sowie meinen Bürokollegen Yuji Shinano
und Stephen J Maher für die angenehme Arbeitsatmosphäre und viele interessante
Diskussionen zwischendurch.

Meine Freundin Katharina hat ebenso einen großen Anteil am Entstehen dieser
Arbeit durch eine ihr eigene Mischung aus aufmunternden Worten, viel Geduld,
und sogar Korrekturarbeit, die ich in Sushi-Einladungen gar nicht werde aufwiegen
können.

5

6

Contents

1 Introduction 9

2 Branch-and-bound solver components 13
2.1 Mixed integer programming and branch-and-bound 13
2.2 Scip– Solving Constraint Integer Programs 15
2.3 Components of Scip . 16

2.3.1 Branching rules . 16
2.3.2 Node selection strategies . 20
2.3.3 Primal heuristics . 21
2.3.4 Cutting plane separation . 22
2.3.5 Node presolving . 23

2.4 Component impact on Scip performance 24

3 Empirical mathematical programming 29
3.1 Comments on testing algorithms and test set selection 29
3.2 Metrics for MIP algorithm evaluation 31
3.3 Statistical analysis of algorithmic tests 34

3.3.1 Some stochastic preliminaries 34
3.3.2 Important distributions . 35
3.3.3 Tests for categorical data 37
3.3.4 Tests for continuous data 40

4 A 3-phase-approach for solving MIP 43
4.1 The parameter space of SCIP . 43
4.2 MIP solving phases . 44
4.3 Computational aspects of the three solving phases 46

4.3.1 The Feasibility phase . 46
4.3.2 The Improvement phase . 52
4.3.3 The Proof phase . 54

4.4 Heuristic phase transition criteria 57
4.4.1 The best-estimate criterion 57
4.4.2 The rank-1 criterion . 59
4.4.3 A logarithmic model of the solving progress 60

4.5 Estimates of search tree properties 63

7

8 CONTENTS

5 Computational results 67
5.1 Individual phase experiments . 67

5.1.1 Feasibility phase . 68
5.1.2 Improvement phase . 72
5.1.3 Proof phase . 77

5.2 Phase transition . 83
5.3 Combining the results . 88

6 Ipet–an interactive evaluation tool 93
6.1 Overview of the library . 94
6.2 Installation and prerequisites . 95
6.3 Starting the Ipet user interface . 96
6.4 Reading log files . 97
6.5 Widgets of the Ipet . 100

6.5.1 Table widget . 100
6.5.2 Output widget . 101
6.5.3 Scatter widget . 104
6.5.4 Further plot widgets . 105
6.5.5 Message widget . 106

6.6 Filters and aggregations . 106
6.7 Outlook . 107

7 Summary 109

Bibliography 115

H Appendix 117
H.1 Special settings files . 117

H.1.1 The setting agg . 117
H.1.2 The setting sepa . 121

H.2 Experimental results . 124

Chapter 1

Introduction

Numerous planning tasks in areas such as, e.g., infrastructure design, crew schedul-
ing, or various industrial problems have become too difficult to be solved efficiently
by hand. Many of the questions arising in those fields can be formulated in terms
of Mixed Integer Programs (MIPs). Sophisticated MIP solving software packages
combine the so-called branch-and-bound approach with a variety of additional
techniques such as, e.g., primal heuristics, presolving techniques, and cutting plane
separation. A lot of algorithmic decisions within a MIP solver are subject to user
parameter choices. These parameters are usually tuned to yield a good overall per-
formance on a variety of MIP problems when statically applied during the entire
search process.

In this thesis, we consider a decomposition of the solving process into a sequence
of three solving phases, each with a different phase objective. The objective of the
first phase is to find a feasible solution. During the second phase, a sequence of
incumbent solutions gets constructed until the incumbent is eventually optimal.
Proving optimality is the central objective of the remaining third phase. Our aim is
to construct a phase-based solver that dynamically reacts on phase transitions with
an appropriate setting, based on the MIP solver Scip [sci]. Two main questions
naturally arise from the concept of solving phases:

1. Can we make better use of the Scip components inside such a dynamic,
phase-based solver that reacts on phase transitions with an adaptation of its
settings, compared to a static setting throughout the solving process?

2. What possible heuristic criteria could be used to benefit of this concept in
practice, where it is in general not feasible to detect the optimality of an
incumbent solution prior to the termination of the solving process?

We give answers to these two questions by means of an empirical analysis.
First, we identify specific Scip components from which we expect the largest in-
fluence on the individual phase objectives. We extended Scip with the necessary
functionalities to detect and react on the phase transitions. Starting from a test
set of publicly available MIP instances, we collect individual problem sets for each
phase that we expect to be affected by our changes. During those experiments,

9

10 CHAPTER 1. INTRODUCTION

the detection of the phase transition between the second and the third phase is
performed by means of an oracle that knows the optimal solutions for all our test
instances.

Research on a heuristic replacement measure of the mentioned oracle is the
second focus of this thesis. We introduce three different heuristic criteria that
are all original work as to the author’s knowledge. The first criterion uses a log-
linear regression of the primal progress as continuous approximation of the solving
process. The other two criteria use global information about the search tree state
of the solver. One criterion uses the best-estimate by Benichou et al. [BGG+71] for
estimating the objective of the best attainable solution in a subtree; The incumbent
is assumed to be optimal when all open nodes have a best-estimate that is not
better than the current incumbent objective. The best-estimate is also the basis
for our notion of node ranks, which are the basis for a third heuristic criterion.
We present computational results, which indicate that the use of the node rank
criterium for heuristic phase transition yields speed-ups similar to those obtained
with a phase-based solver that exactly detects the phase transitions.

This thesis is organized as follows: First, we introduce notation and give defini-
tions of MIP and branch-and-bound in Chapter 2. We present an overview of the
components that are already included in Scip. Furthermore, Chapter 2 contains
a categorization of the algorithmic components based on their individual impact
on the primal and dual progress of the solver. This distinction served as a starting
point for later considerations regarding the solving phase experiments.

In Chapter 3, we discuss the performance measures that we use in this thesis
together with a review of the development of empirical algorithmic science. In
the second part of this chapter, we give an overview of non-parametric hypothesis
tests that we use to separate algorithmic improvement from random noise caused
by the phenomenon of performance variability [Dan08, KAA+11].

Chapter 4 introduces the decomposition of the solving process into a sequence of
three phases. A formal definition is followed by a discussion of the most important
techniques for each phase. We also describe newly implemented components from
the recent MIP-literature in detail. Furthermore, we introduce two modifications
to the reliability pseudo-cost branching rule for the third phase. Both modifications
are original developments by the author of this thesis. Finally, we give a detailed
presentation of the aforementioned heuristic criteria that we use for the phase
transition. The chapter also includes a presentation of historical work on tree size
estimates.

Chapter 5 gives an overview of the results that we obtained from computational
experiments with our modifications to Scip. In the order of the previous chapter,
we first evaluate the proposed changes individually for each phase. Then, we ana-
lyze the heuristic criteria w.r.t. their predictive performance. Finally, we combine
the best individual phase search algorithms in a phase-based solver that uses the
heuristic phase-transition criteria, which is compared to its exact counterpart, and
Scip with default settings.

In Chapter 6, we introduce Ipet, the Interactive Python evaluation tool. Ipet
is a graphical user interface written in the Python programming language by the

11

author of this thesis. It facilitates the handling of Scip benchmark data by col-
lecting more than 1000 distinct data fields from large log files, which are usually
generated during computational experiments with Scip. Additional data can be
quickly specified for reading through the interface. Furthermore, the interface of-
fers several ways for visualizing the data in tables or graphically. Finally, several
file formats such as e.g., CSV and LATEX, are supported to export the data for pub-
lications or for further evaluation with other software tools. The chapter serves
as a quick tutorial that covers the most important functionalities of the user in-
terface. We also give recipes for the use of the underlying Python library inside
custom scripts. Finally, our findings are briefly summarized in Chapter 7.

We show instance-wise experimental outcome for every of the conducted ex-
periments for Chapters 2 and 5 in the appendix.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Components of the
branch-and-bound MIP solver
Scip

This chapter familiarizes the reader with techniques utilized for solving general
Mixed Integer Programs (MIP). The MIP solving algorithm that we focus on
is the LP-based branch-and-bound method, which is part of all state-of-the-art
MIP solvers, both commercial ones such as, e.g., Cplex [cpl], Gurobi [gur],
Xpress [fic] or solvers such as Cbc [cbc] and Scip [sci]. There exist numerous
algorithms to support the branch-and-bound search such as, e.g., primal heuris-
tics or cutting plane algorithms, which we call "components" in this section. In
fact, the use of such auxiliary components increases the solving abilities of the
branch-and-bound search for many MIP models. After formal definitions of a
Mixed Integer Program and the branch-and-bound method, we introduce the MIP
solver Scip, which we use for the computations of this thesis and give an overview
of the components included in Scip.

2.1 Mixed integer programming and branch-and-bound

The following definition of a Mixed Integer Program introduces important notation
used throughout this thesis.

Definition 1 (Mixed Integer Program). Let n,m ∈ N, l, u ∈ Rn∞, A ∈ Rm×n a real
matrix, b ∈ Rm, and c ∈ Rn. Let further I ∪̇ C be a disjoint partition of {1, . . . , n}.
A Mixed Integer Program (MIP) is a minimization problem of the form

min ctx (2.1)
s.t. Ax ≤ b (2.2)

l ≤ x ≤ u (2.3)
xj ∈ Z ∀j ∈ I (2.4)

13

14 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

We call C and I the continuous and integer variables, respectively. Lower and
upper bounds on the variables are denoted by l, u. The restrictions (2.2), (2.3) and
(2.4) of a MIP P are called (linear) constraints, bound constraints, and integrality
restrictions, respectively. A vector y ∈ Rn is called a (feasible) solution of P , if it
satisfies all constraints of P . The set of solutions is the solution space of P , denoted
by S(P). A solution yopt ∈ S(P) with minimum objective value is called optimal
solution, and its objective value is the optimal objective value copt := ctyopt of
P . P is called feasible if it has a solution, and infeasible otherwise. If a MIP P
only contains continuous variables, i.e. I = ∅, we speak of P as a linear program
(LP). For a MIP P , we obtain its LP-relaxation PLP by ignoring the integrality
restrictions (2.4):

PLP := min{ctx : Ax ≤ b, l ≤ x ≤ u} (LP-relaxation)

Mixed integer programming in the stated, general form has been shown to be
NP-hard [GJ79], although some of its variants are solvable in polynomial time, in
particular LP [Kha79]. Whenever the LP-relaxation PLP is neither infeasible nor
unbounded, the objective value of an optimal solution yLP of PLP provides a lower
bound to the optimal objective value of P (if existent). This fact is used within
the basic variant of the branch-and-bound procedure, which starts by solving the
LP-relaxation of a MIP P to optimality. If the found, optimal LP-solution yLP is
feasible for P , it is also optimal for P . Otherwise, there exists an integer variable
j ∈ I whose LP-solution value yLPj is fractional. We call such variables fractionals
and use F to denote the set of fractionals. Whenever F 6= ∅, P is split into
subproblems P1, . . . , Pk, k ∈ N, in a way that

1. it is ensured that yLP is not feasible for any of the sub-LP-relaxations PLP
l ,

1 ≤ l ≤ k, but

2. for every solution y that is feasible for P , there exists a 1 ≤ l ≤ k such that
y is feasible for Pl.

This problem division is called branching. In this thesis, we will only consider
branching schemes with k = 2, where the subproblems P−, P+ are obtained by
extending P by an additional inequality xj ≤ byLPj c or xj ≥ dyLPj e, respectively,
for a fractional j. In our MIP-notation, such bound changes are reflected by
adjusting the upper or lower bound of j, u−j ← byLPj c and l+j ← dyLPj e. Clearly,
these bound changes render yLP infeasible for both sub-LP-relaxations, but every
feasible solution for P is feasible for exactly one of the two subproblems.

When performing a sequence of branchings, a tree T = (V,A) (the branch-and-
bound tree) is created, which has a node for every MIP created through branching,
and an arc (Q,Q′) if Q′ is obtained from Q by branching. We therefore call two
MIPs P and Q "nodes" if the relationship between P and Q is important, in
particular if Q arose from P by branching. For the bounding step of the procedure,
the algorithm keeps track of the best feasible solution found so far, the so-called
incumbent ŷ. Using the notation δ (Q) for the best calculated lower bound to the
optimal objective value of Q, a node Q can be pruned if δ (Q) ≥ ctŷ because no

2.2. SCIP– SOLVING CONSTRAINT INTEGER PROGRAMS 15

solution can be found in the subtree rooted at Q which is better than the current
incumbent. We call δ (Q) the dual bound of Q. For every arc from Q to Q′ in
the tree, we can immediately set δ (Q′) ← δ (Q) because Q′ arose from Q by a
branching. On the other hand, the dual bound of a node can be increased based
on the dual bounds of its children,

δ (Q) = min
(Q,Q′)∈A

{δ
(
Q′
)
}.

The incumbent is proven to be optimal if δ (P) = ctŷ for the root-MIP P of T ,
and the branch-and-bound procedure can be terminated.

There has been a lot of research conducted on strategies how to find "good"
fractionals to branch on, and on the order in which the tree nodes are explored.
We give an overview of such branching rules and node selection strategies as well
as the available literature in the sections 2.3.1 and 2.3.2, resp.

Other components that support the branch-and-bound procedure are also briefly
introduced in respective sections. Primal heuristics are algorithms which aim at
quickly finding a feasible solution or improving the incumbent. Cutting planes are
additional inequalities to strengthen the LP-relaxation of a MIP P which are valid
for the convex hull of feasible solutions of P . By node preprocessing, we denote al-
gorithms to tighten a MIP formulation, e.g., by inferring the redundancy of certain
constraints or by shrinking variable domains.

We now introduce the MIP solver Scip and give a very general overview of its
different components. After introducing the components, we will give computa-
tional results which reveal that all five components play an important role for the
performance of Scip.

2.2 Scip– Solving Constraint Integer Programs

The MIP solver which we used for all computations in this thesis is Scip (Solving
Constraint Integer Programs). Scip was started in 2002 by Tobias Achterberg
in the course of his dissertation [Ach07] (see also [Ach09]). In its current version
3.1, it combines various methods for both linear and nonlinear optimization. The
plug-in concept of Scip allows for an integration of custom solver components
such as, e.g., additional primal heuristics, see also Section 2.3.3. Scip is part of
the Scip Optimization Suite, which is developed at Zuse Institute Berlin and at
the universities of Darmstadt and Erlangen. For further information and a list of
the numerous people who have contributed to Scip in the past, we refer to [sci].
Furthermore, we use SoPlex [sop] in version 2.0 inside of Scip for solving the
node LP-relaxations.

16 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

Algorithm 1: generic branching rule
Input : Node P with fractional relaxation solution yLPP and non-empty

set of fractionals F 6= ∅
Output : branching variable j∗ ∈ F

1 Compute score sj for all j ∈ F ;
2 return j∗ = argmax

j∈F
{sj};

2.3 Components of Scip

2.3.1 Branching rules

The decision on which fractional variable to branch is crucial for the success of the
branch-and-bound search. As outlined in Algorithm 1, a branching rule assigns a
score sj to every fractional j ∈ F . The branching variable is the one maximizing
the score. Every branching rule which we present here is characterized by the score
function it uses.

A good branching rule keeps the size of the overall search tree after termination
as small as possible at affordable computational cost. More often than not, these
two goals are conflicting; while the least-infeasible- andmost-infeasible rules require
a computational effort that is linear in the number of fractionals but are considered
weak in keeping the tree size small, the strong branching rule yields relatively
small trees at a high computational cost at every node of the tree. Some of the
branching rules presented in this section use the following definition of up- and
down-fractionalities:

Definition 2 (Fractionalities). For a fractional j ∈ F in an LP-relaxation solution
yLP, we define its up-fractionality as

f+
j := d(yLP)je − (yLP)j

and its down-fractionality as

f−j := (yLP)j − b(yLP)jc = 1− f+
j .

Note that fractionalities are always positive. The least-infeasible and most-
infeasible rules are based solely on the notion of fractionalities to determine the
branching variable.

least-infeasible and most-infeasible rules

The most-infeasible rule chooses the fractional j ∈ F whose fractionality is closest
to 0.5 by considering the score

sj = min{f+
j , f

−
j }.

2.3. COMPONENTS OF SCIP 17

The score of the least-infeasible rule prefers variables with an almost integral so-
lution value:

sj = max{f+
j , f

−
j }.

Computational experiments conducted in [AKM04, Ach07] indicate a weak perfor-
mance for either of these two rules. One of the reason for this poor performance
might be the narrow view at a node provided by fractionalities alone. They neither
respect the problem structure, nor do they consider objective improvements in the
children of a node. Note, however, that Berthold et al. [BGS14] showed in a recent
experiment that considering the combined fractionalities of several LP solutions
decreases the number of branch-and-bound nodes required by the most-infeasible
rule by around 50%.

strong branching

The strong branching rule focuses on the gain in the objective function. It was
first proposed in the context of the Traveling Salesman Problem [ABCC95] and
first applied to general MIP within Cplex [cpl]. The strong branching score of a
fractional j ∈ FP at a node P with LP relaxation solution value c̄P := ctyLPP is

sstrj = max{c̄
P j−
− c̄P , ε} ·max{c̄

P j+
− c̄P , ε}

with ε = 10−6. Here, P j− and P j+ denote the two subproblems obtained after
branching on j. The information is collected through actually solving the relax-
ations of the children. It chooses the fractional which provides the locally best gain
in the dual bound of the children LP relaxations. The use of the product in the
above formula attempts to balance the two individual scores for the two branching
directions, in order to balance the size of the resulting subtrees. At every node P , a
series of 2 · |FP | child relaxations needs to be solved, which makes strong branching
the computationally most expensive branching rule presented here. Scip comes
with three branching rules that apply a strong branching approach: the first one,
which performs look-aheads on the full set of fractionals F , is called full strong
branching . The strong branching rule, however, imposes further restrictions on the
size of the candidate set F ′ ⊆ F for which strong branching is actually performed.
The look-aheads are only applied for at most |F ′| = 100 candidates, and stopped
whenever the best candidate w.r.t. the strong branching score has not changed af-
ter 8 consecutive candidate evaluations. A further restriction regards the number
of iterations performed for a single strong branching subproblem, which are limited
to twice the average LP iterations per LP used so far, but at most 500 iterations.

Although strong branching is generally attributed to produce the smallest trees
among all branching rules on single variables, the computational overhead for solv-
ing the high number of additionally required LP relaxations makes strong branch-
ing alone too expensive, even with the additional limitations discussed above. It
is therefore often used in combination with pseudo-cost branching as an initial
branching rule when sufficient pseudo-cost information is not available yet.

18 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

pseudo-cost branching and reliability pseudo-cost branching

The pseudo-costs of a variable are a typical measure to estimate its impact on the
children’s lower bounds after branching. Their definition and first use for MIP
date back to [BGG+71]. For a node P with LP solution value c̄P and a fractional
variable j ∈ FP , let P− and P+ be the two child problems of P obtained after
branching on j downwards and upwards, resp. Let c̄P− , c̄P+ be the values of
the respective child LP relaxations. With the variable fractionalities f+

j (P) :=

d(yLPP)je− (yLPP)j and f−j (P) := (yLPP)j−b(yLPP)jc, the unit gains in the respective
direction are defined as

ς−j (P) :=
c̄P− − c̄P
f−j

and ς+
j (P) :=

c̄P+ − c̄P
f+
j

.

Note that the unit gains are well defined because the fractionalities are positive.
Besides, the unit gains are always nonnegative.

Definition 3 (Pseudo-costs). For an integer variable j ∈ I of a MIP P , let
η−j , η

+
j > 0 denote the number of problems Q for which j was selected as branching

variable and the child nodes Q−, Q+ have been solved and were feasible, and let
σ−j , σ

+
j be the sums of obtained unit gains over all these problems. We define the

pseudo-costs of j in the respective directions as

Ψ−j =
σ−j

η−j
and Ψ+

j =
σ+
j

η+
j

. (2.5)

If there is a direction for which the number of problems is 0, we call j uninitialized
in this direction and set the corresponding pseudo-costs to 0.

The pseudo-costs Ψ−j and Ψ+
j measure the average unit gain observed after

branching on j downwards and upwards, resp. Note that pseudo-costs are subject
to change over time. Every time that a child problem is solved and feasible,
the pseudo-costs of the corresponding variable are updated. The disadvantage of
pseudo-costs is that all variables are uninitialized at the beginning of the search
such that pseudo-costs provide no information. The initialization to 0 is not the
only possible variant, neither is the choice of averaging the unit gains through the
complete history. Alternative suggestions include to take the most recent observed
unit gain after branching on a variable as pseudo-costs instead, or the very first
observation, see [LS97] for discussion, experiments, and further literature.

If sufficient pseudo-cost information is available, the estimated gain for branch-
ing up on j is Ψ+

j · f+
j (P), and the estimated gain after branching down on j is

Ψ−j · f−j (P). The pseudo-cost score of j is obtained via the product score function,

spsj = max{Ψ−j · f−j (P), ε} ·max{Ψ+
j · f+

j (P), ε},

ε = 10−6, which attempts to balance the size of the two subtrees obtained after
branching.

2.3. COMPONENTS OF SCIP 19

The pseudo-cost branching rule is an effective replacement of the strong branch-
ing rule at later stages of the search but lacks information at the beginning.
For that reason, some combinations of pseudo-cost branching and strong branch-
ing have been developed, some of which use a strong branching initialization on
uninitialized variables, and pseudo-costs for every initialized candidate, or strong
branching at the topmost x levels of the tree, and pseudo-cost branching at deeper
levels. The best combination introduced so far is based on the notion of reliabil-
ity [AKM04]: Given a reliability parameter ηrel > 0, the pseudo-costs of a variable
are considered unreliable as long as min{η−j , η+

j } < ηrel. On unreliable candidates,
strong branching is performed with the same restrictions on LP iterations and the
number of look-aheads without a new best candidate as in strong branching . This
rule is used by reliability pseudo-cost branching .

By the writing of this thesis, ηrel is set to 5. Setting ηrel = 1 resembles pseudo-
cost branching with strong branching initialization. The ηrel is dynamically ad-
justed at every node depending on the proportion of LP iterations during strong
branching and the total Simplex iterations regularly spent on node evaluation,
see [Ach07] for further details.

The use of a reliability parameter ηrel is superior to pseudo-cost branching
supported by strong branching at the topmost levels of the tree because it better
concentrates strong branching on variables with very little branching information.
In Section 4.3.3, we present a modification to this notion of reliability which we
base on the observed variance in the branching history of the candidate variables.

inference branching

While the strong branching and the pseudo-cost branching prefer variables with a
large impact on the dual bounds of the child nodes, the inference branching rule
considers the impact on the domain size of the subproblems. Similarly to pseudo-
costs, an inference score is kept for every variable based on history information.
Let j ∈ F be a fractional, for which a total of φ−j and φ+

j deductions on other
integer variables was observed after branching on j downwards and upwards, resp.
Let θ−j and θ+

j count the numbers of such branchings so far. The inference score
sj of j balances the average number of deductions in both directions

sinfj = max

{
φ−j

θ−j
, ε

}
·max

{
φ+
j

θ+
j

, ε

}
,

with ε = 10−6. Similarly to pseudo-costs, there is no inference history available
at the beginning of the search. Initial inference values for binary variables are
obtained from the probing presolver, see [Ach07] for further details.

reliability pseudo/inference branching

The default branching rule of Scip combines the individual scores srelj and sinfj of
reliability pseudo-cost branching and inference branching in a weighted sum. In
addition, two scores scutj and sconfj represent the number of times that branching on

20 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

j led to infeasible children and information obtained from conflict analysis [Ach07],
respectively. Let s̄conf, s̄inf, s̄rel, and s̄cut denote the average scores over all integer
variables. The score used by reliability pseudo/inference branching is composed as

sj = ωrel · f
(
srelj
s̄rel

)
+ ωinf · f

(
sinfj
s̄inf

)
+ ωcut · f

(
scutj

s̄cut

)
+ ωconf · f

(
sconfj

s̄conf

)
.

(2.6)

The function f(x) = x
x+1 is used to map all score values to a unified scale, namely

the interval [0, 1). By default, Scip uses weights of ωrel = 1, ωinf = 10−4, and
sconf = scut = 10−2. This choice of score weights makes reliability pseudo/infer-
ence branching very similar to reliability pseudo-cost branching , because the small
weights of the remaining score functions rather provide an alternative on problems
without an objective function.

In this thesis, we test a modification to the reliability pseudo/inference branch-
ing weights; instead of using fixed weights, we adjust the weights dynamically
based on the actual development observed in the branch-and-bound tree, see Sec-
tion 4.3.3 for further details.

2.3.2 Node selection strategies

The guidance into a good search tree region is crucial for the performance of a
branch-and-bound search. Node selection strategies have to deal with two con-
flicting goals: While feasible solutions are usually located at deeper levels of the
search tree, open nodes with better dual bounds usually lie in shallower regions. By
diving deep into the tree to search for feasible solutions, one risks to explore many
superfluous nodes, i.e. nodes which could have been pruned with the knowledge of
a better incumbent. In this section, we present node selection rules together with
a discussion of their strengths.

dfs and breadth-first node selection

The depth-first-search (dfs) strategy tends to stay as deep in the tree as possible
by preferring child nodes over siblings. The breadth-first node selection rule does
the opposite by exploring all open subproblems at the topmost level of the search
tree before continuing with subproblems located one level deeper. Both node se-
lection strategies have in common that they do not exploit additional node quality
information such as lower bounds.

An advantage of dfs consists of the small distance between two processed nodes
in the search tree; since the associated subproblems differ only slightly, usually by
one reduced variable domain in the case of a child node compared to its parent
node, dfs requires little adjustments from one processed node to the next (and
only few LP iterations) which reduces the overall node processing time. Moreover,
dfs benefits from the lower memory requirements. In the (most common) case of
a 2-way branching scheme, the number of open nodes does not exceed 2dmax + 1,
where dmax denotes the maximum depth of the branch-and-bound tree. Another

2.3. COMPONENTS OF SCIP 21

advantage of dfs is its potential in quickly generating conflict clauses (see, e.g.,
[Ach07]).

bfs and best-estimate search

The best-first-search (bfs) selects the dual-bound defining node to be explored
next. Unlike dfs methods, bfs is the node selection rule which takes the minimum
number of nodes until a problem is solved to proven optimality. Since the distance
between one solved subproblem and the next can be large, the processing costs per
node are usually significant higher compared to dfs when bfs is used.

In practice, the bfs node selection rule inside Scip uses both bfs and dfs in a
hybrid fashion: After a backtrack, a dual-bound defining node P ′ with δ (P ′) =
δ (P) is selected. The node selection rule iteratively chooses child nodes Q of the
previously explored node, as long as their dual bounds do not deviate too much
from the overall dual bound δ (P). The deviation of δ (Q)−δ (P) is measured w.r.t.
the maximum possible distance ctŷ − δ (P), whenever there exists an incumbent
ŷ 6= ∅, and a backtrack is performed if the deviation exceeds a threshold. This
threshold is subject to a user parameter, a default of 25% is used.

The best-estimate search (bes) works very similar to bfs, except that it uses
the best-estimate [BGG+71] (see also Section 4.4.1) of a node Q that estimates the
objective value of the best solution in the subtree rooted at Q. Like bfs, the best-
estimate search performs limited diving until the current node estimates along the
diving path deviate from the global dual bound by more than 25%. Additionally,
bes periodically selects a dual-bound defining node instead of the best-estimate
node. For more details about the best-estimate to estimate solution values inside
sub-trees, see Section 4.4.1.

2.3.3 Primal heuristics

Primal heuristics are incomplete search algorithms that aim at quickly finding
feasible solutions. They can be further classified by the strategies they apply into
rounding, propagation, diving, and LNS heuristics [FL10, Hen11, Ber06]. For an
overview of general MIP primal heuristics, we refer to [Ber06, FL10]. Rounding
and propagation heuristics are discussed, e.g., in [Hen11, ABH12].

Diving heuristics explore an auxiliary search tree in a dfs-fashion. They fasten
the search for primal solutions by providing a branch-and-bound solver with alter-
natives to the default branching rule. The main advantage is that the dives are
only conducted in a virtual tree but the branching decisions of the heuristics do
not create subproblems in the branch-and-bound search tree. Nevertheless, future
branching decisions of reliability pseudo/inference branching might be influenced
by pseudo-costs and/or inference information collected during the execution of div-
ing heuristics. For an overview of existing diving heuristics in Scip, we refer to
[Ach07, Ber06].

Large Neighborhood Search (LNS) heuristics solve auxiliary MIPs by making
use of reformulations of the MIP P at hand. The reformulations are chosen in such

22 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

a way that every solution in the auxiliary search space can be transformed to a
solution for P . An auxiliary MIP is also called sub-MIP because it is formulated
and solved during the solving process of another MIP. Although the reformulations
are typically smaller than P w.r.t. the number of variables and constraints, solving
them is still NP-hard in general. In order to make good use of LNS heuristics
inside of a branch-and-bound solver, strict limits on the solving process of the
sub-MIP should be imposed.

The use of primal heuristics inside a complete branch-and-bound solver mostly
yields good-quality solutions earlier during search than provided by feasible node
solutions alone. However, as soon as an incumbent is optimal, primal heuristics
cannot contribute to the search anymore, but may themselves consume a significant
amount of time, especially LNS heuristics.

Basically, primal heuristics of Scip are applied only at certain nodes of the
tree corresponding to their frequency-parameter: let f > 0 be the value of the
parameter, and let doff ≥ 0 be an offset for the depth, then the primal heuristic is
called at every node P whose depth dP satisfies

1. dP ≥ doff and

2. dP − doff ≡ 0 mod f .

Primal heuristics with a frequency f = 0 are only called at depth doff, typically
at the root node, and those with f = −1 are never applied. Certain heuristics are
only applicable in special situations; diving heuristics are only called after the node
selection has temporarily finished a dive without reaching a leaf-node. Hence, they
are never applied if the node selection rule is dfs or restartdfs.

The zoo of primal heuristics within Scip has constantly grown. Instead of de-
scribing them all, we restrict ourselves to the LNS heuristic Proximity search [FM14]
in Section 4.3.2 and the diving heuristic Distribution diving [PC11] in Section 4.3.1
as examples of the two aforementioned classes of LNS and diving heuristics, resp.
These were recently implemented in Scip by the author of this thesis. We also
describe parameters which are common to all primal heuristics of the specific cat-
egory, although each of the heuristics may slightly vary in their concrete usage of
the parameter. In Chapter 5, we test different values for the parameters in order
to improve the phase performance.

2.3.4 Cutting plane separation

A linear inequality atx ≤ b that is violated by the LP-solution of a node P , but
satisfied by all (optimal) solutions of P , is called a cutting plane. Cutting planes
can be used to strengthen the LP-relaxation at P and its descendants. Cutting
planes can be inferred from aggregating multiple constraints of the problem into a
new constraint, as it is done, e.g., in strong Chvatal-Gomory cuts [Chv73], or from
combinatorial information such as clique inequalities [JP82]. Gomory [Gom58] was
among the first to investigate cutting planes for integer programs. Gomory could
show that his cutting plane approach could in principle be used to solve every

2.3. COMPONENTS OF SCIP 23

integer program with rational data in a finite number of steps. For an overview of
cutting planes within Scip, we refer to [Ach07, Wol06].

When using cutting plane separation inside a MIP solver, a generation of too
many cutting planes can be disadvantageous for the solving process: every cutting
plane is an additional constraint which affects the (re-)solving time of the LP-
relaxation at all descendants of a node.

Inside Scip, cutting plane separators are organized partly as subroutines of the
constraint handlers and partly as separate plug-ins, all of which are (by default)
only applied at the root node P0 or completely disabled. A frequency parameter,
which is similar to the one for primal heuristics, can be used to enable cutting plane
separation inside the tree for individual plug-ins. Furthermore, the separation of
cutting planes is organized in rounds: During each round of the cut separation
loop, every active separation routine produces a set of cutting planes which enter
the separation storage. Let yLPP be the current node solution, and let R denote
the set of all generated cutting planes in the current round. The cutting planes
r ∈ R of the form atrx ≤ br are then selected in nonincreasing order of a score
value which is a weighted sum of

• the cut efficacy (atry
LP
P − br)/‖ar‖2,

• the objective parallelism |atrc|/(‖ar‖2 · ‖c‖2), and

• the orthogonality min{1− |atrar′ |/(‖ar‖2 · ‖ar′‖2) : r′ already selected},

until a maximum number of cuts has been added or the storage becomes empty.
In addition, the orthogonality to previously selected cuts must not go beneath
a threshold. Both the maximum number of separated cuts, and the minimum
orthogonality are subject to user parameters and are different for the root node P0

and subsequent nodes.
In Section 4.3.3, we describe in more detail the cutting plane separation pa-

rameters with which we obtained an improved solver performance regarding the
solving time and the number of branch-and-bound nodes when cutting planes are
(re)-activated during the third phase. The computational results are presented
in 5.1.3.

2.3.5 Node presolving

Node presolving denotes the process of inferring sequences of local domain reduc-
tions at the current node of the branch-and-bound search tree. The goal is to
shrink the size of the current subproblem as much as possible at affordable com-
putational cost. Inside Scip, presolving algorithms are applied at two different
stages of the MIP solving process. First, they are applied during presolving before
the search is started, in which case the deductions hold globally for the problem.
Second, they are used locally at nodes within the tree to infer reductions from the
branching decisions.

Reductions on variable bounds from linear constraint activity first appeared
in Brearly et al. [BMW75]. Savelsbergh [Sav94] proposed probing techniques on

24 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

binary variables and constraints, while Andersen and Andersen [AA95] exploited
further presolving techniques for linear programming. For an overview of available
node presolving algorithms used in Scip we refer to [Ach07].

We mention node presolving only for the sake of completeness. In the remainder
of this thesis, we do not alter the presolving algorithms. The next section shows
that presolving algorithms have a very balanced impact on the progress of Scip
w.r.t. both the primal and dual gap.

2.4 Component impact on Scip performance

The integration and execution of MIP solver components inside of a complete solver
can influence the overall solver performance in a positive or negative way. Branch-
ing and node selection rules affect the number of branch-and-bound nodes that
needs to be explored during the solving process. For primal heuristics, presolving
methods, and cutting plane separation, a negative influence is mainly observed on
MIPs for which these components incur a large computational overhead without
contributing to the solving process. In this thesis, we sometimes decompose the
performance of a solver into a primal and a dual part. For every feasible, bounded
MIP P for which we know the optimal objective value, we measure the relative
distance between the current incumbent and the optimal objective value in terms
of a primal gap function. A primal gap of 0% means that the incumbent is an
optimal solution, although this might not be proven so far because the dual bound
for P is less than the optimal objective. Similarly, we can use a dual gap function
to measure the relative distance between the optimal objective value of P and the
currently available dual bound for P . A formal definition of the primal and dual
gap functions is given in Section 3.2.

In a first experiment, we categorize components of the MIP solver Scip by the
influence they exhibit on the primal and dual progress of Scip. This progress is
measured in terms of the integral of the average primal and dual gap functions
over time. The primal integral was introduced in [ABH12]. A formal definition
can be found, as for the primal and dual gap, in Section 3.2. As a test set for

Table 2.1: The shifted geometric means for the primal and dual integrals for every
component setting. The means were calculated for the 161 instances of the test
set for which an optimal solution is known.

PrimalIntegral % DualIntegral %

default 4243.0 100.0 4259.7 100.0
random branch 4533.2 106.8 7534.6 176.9
no heuristics 8362.7 197.1 4492.9 105.5
dfs node sel 5263.0 124.0 5671.8 133.1
no presolving 5340.4 125.9 5667.9 133.1
no separation 4361.0 102.8 6731.0 158.0

2.4. COMPONENT IMPACT ON SCIP PERFORMANCE 25

ra
nd
om

br
an
ch

no
he
ur
is
ti
cs

df
s
no
de

se
l

no
pr
es
ol
vi
ng

no
se
pa
ra
ti
on

0

20

40

60

80

100
D

eg
ra

d
at

io
n

in
%

6.8

97.1

24.0 25.9

2.8

76.9

5.5

33.1 33.1

58.0

Primal

Dual

Figure 2.1: Percentage degradation compared to the Scip performance with default
settings regarding the primal and dual integral.

this and all following experiments, we use 168 MIP instances from the three pub-
licly available libraries Miplib 3.0 [BCMS98], Miplib 2003 [AKM06], and Miplib
2010 [KAA+11]. We excluded seven instances which are infeasible or for which
there is no optimal solution value known by the writing of this thesis, because
the evaluation method depends on the knowledge of an optimal solution value. In
contrast to the experiments in Chapter 5, we allowed the jobs to be processed in
parallel here, because we are rather interested in a rough categorization.

In order to categorize the component influence, we use settings where we dis-
able one set of components completely, e.g., turn off all of Scip’s primal heuristics.
We then compare the obtained primal and dual integrals to the values obtained
with Scip with default settings. For primal heuristics, cutting planes, and pre-
processing routines, we have one setting for each component where we disable all
algorithms belonging to this component. For the branching rule, we use a random-
ized branching variable selection instead of the reliability pseudo-cost branching
rule. Finally, the estimation-based node selection rule is replaced by a depth first
search node selection.

The shifted geometric means of the primal and dual integrals are shown in
Table 2.1 for all six obtained settings. A shift of 1000.0 was used, which corresponds
to finding no solution for 10 sec. The table shows that the absence of each of the
five component sets yields at least a slight degradation of the Scip performance
w.r.t. both the primal and dual integral. Instead of the absolute degradation, we
present the relative degradations w.r.t the default setting of Scip in Figure 2.1.

Replacing the default branching rule of Scip by a random branching increases
the value of the dual integral by about 76.9%. This is the most devastating dual
effect among all tested components. The second largest degradation of 58.0% is

26 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

branchrule

separation

nodeselection

presolving

heuristics

only dual both only primal

Figure 2.2: The components ordered along their primal and dual influence.

caused by turning off the separation components. The depth-first search node
selection rule performs 33.1% worse than the default estimation-based node selec-
tion rule. A similar effect can be observed when turning off presolving components
which raises the dual integral by 33.1%. A small degradation of the dual integral
can even be observed when primal heuristics are turned off.

Primal heuristics, however, exhibit their main potential on the primal side;
turning off primal heuristics deteriorates the primal performance by more than
97.1%. A strong influence on the primal integral can also be observed for presolving
because the primal integral is increased by an average of 25.9% on unpresolved
problems. The third most degrading setting is the absence of a node selection
rule, whereas separation and branching can be observed to be less influential.
These results indicate that all components except for presolving and node selection
mainly influence one of the two aspects considered here. The absence of presolving,
however, apparently weakens the remaining components, both primally and dually,
in a similar way.

We combine the relative influence on the primal and dual integrals to character-
ize the strengths of each Scip component. Figure 2.2 is presented as a conclusion
of the described experiment. In this figure, the components are ordered from left
to right by the difference of their percentaged primal and dual degradation. Primal
heuristics are the rightmost component because their influence is almost exclusively
of a primal nature. Presolving and node selection are closer to the center of the
axis because they influence the primal and dual progress almost evenly, whereas
the branching rule resides at the dual end of the line, followed by cutting plane
separation.

In Figure 2.3, we show the progress of both the average primal and dual gaps

2.4. COMPONENT IMPACT ON SCIP PERFORMANCE 27

over time for two of the non-default settings. The shaded region depicts the average
gap obtained by Scip with default settings, whereas the positive line shows the
average primal gap over time, and the negative line shows the average dual gap over
time, multiplied by −1, for the specified setting. The primal progress line of the
setting with disabled primal heuristics is clearly inferior to the progress obtained
by default Scip. However, as regards the dual gap, the default and the disabled
primal heuristics almost align with each other. A different picture is obtained
with a random branching rule, which mainly degrades the dual gap reduction. On
the primal side, the curve of random branching is beneath the default curve for
a short period at about 400 seconds before it is outperformed. The reason for
this behavior is the use of strong branching as long as pseudo-costs are unreliable
at the beginning of the search. The computationally expensive strong branching
procedure lets Scip spend more time solving the root node and subsequent "early"
nodes, but pays off later in the solving process by reducing the size of the tree.

28 CHAPTER 2. BRANCH-AND-BOUND SOLVER COMPONENTS

0 500 1000 1500 2000 2500 3000 3500

−40

−20

0

20

40

primal gap

dual gap

(a) no primal heuristics

0 500 1000 1500 2000 2500 3000 3500

−40

−20

0

20

40

primal gap

dual gap

(b) random branching rule

Figure 2.3: Average gaps over time for two of the non-default settings.

Chapter 3

Empirical mathematical
programming

Regarding the variety of practical applications of MIP-related research, it is not
surprising that almost every publication in this area contains a portion of compu-
tational results where the authors compare a newly developed algorithm against
existing, well-established methods. A convincing experimental design for testing
algorithmic performance involves a lot of choices: the selection of the compet-
ing algorithms, a representable collection of randomly generated or available test
instances, and a comparison metric.

Since each of these steps has its caveats, the need for an empirical science
of algorithm testing has been noted [Hoo94]. This section starts with a recap of
general discussions on algorithm testing. Consecutive sections discuss the selection
of test sets and metrics for comparison of mathematical programming software.
The remainder of this chapter gives an overview of available statistical tests that
are suitable for algorithm evaluation.

3.1 Comments on testing algorithms and test set selec-
tion

The advent of fast computer hardware enables an algorithm designer to try out
and experiment with new ideas at relatively low cost regarding the human time
spent on the conduction compared to other areas of science such as, e.g., biology
or psychology. One of the basic requirements of a scientific method is its repro-
ducibility. The variety of available hardware components, programming languages,
compilers, and, last but not least, programming skills can make it impossible for
other researchers to reproduce an interesting published result, see also [KMP13]
for a detailed discussion about the reproducibility of a 15-year old result. However,
there exist recommendations on reporting experiments in computer science.

Crowder et al. [CDM78] were among the first ones to ask for a thorough experi-
mental design including reproducibility. The authors address the issue of changing
technology and require that at least the authors themselves should be able to re-

29

30 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

produce a published experiment. Crowder et al. finish by presenting a check-list
of how to report experimental results.

In her survey [McG96], McGeoch collects literature from statistical analysis,
exploratory data analysis, and optimization. She presents a case-study for the
bin-packing problem and describes how to apply both graphical representations
and statistical reasoning to conduct a series of computational experiments. Some
typical hazards of simulation programs such as the problematic coping with only
limited problem size are also highlighted.

In [Hoo95], Hooker recommends a clear distinction between scientific testing
and software benchmarks. He claims that the latter ones are best suited for soft-
ware developers to measure their progress of accelerating their production code.
Researchers, however, should be relieved from what Hooker calls "dual responsi-
bility" of research and software development, and concentrate on effects which are
less code-sensitive than the overall running time such as the number of explored
branch-and-bound nodes for hypothesis testing.

All aforementioned authors address the problem of selecting a suitable test set
for conducting experiments. There exist two main possibilities: on the one hand
instances can be generated on a random basis by controlling a limited number of
parameters which influence the problem size, density, etc. Such randomly gener-
ated instances, however, hardly ever resemble instances from real applications, in
which a practitioner is really interested.

The second possibility is the use of an existing MIP library of real-world in-
stances. It is hard to judge in how far a test set of real-world instances is repre-
sentative of what can be called a general MIP instance. In this thesis, we use a
set of instances from the three publicly available libraries Miplib 3.0 [BCMS98],
Miplib 2003 [AKM06], and Miplib 2010 [KAA+11]. These libraries were origi-
nally compiled as heterogeneous MIP problem set of practical relevance. A public
call for instances for the Miplib 2010 [KAA+11] led to a library of more than 300
instances, 87 of which are comprised in the official benchmark, which is also part
of the test set we use for our computational experiments. For the Miplib 2010,
special care was taken to filter homogeneous instances. Due to this selection, the
resulting, publicly available library represents the current state-of-the-art set for
general MIP instances of academic or commercial interest.

There also exists a combination of randomization and real-world data by ran-
domly permuting the order of the variables and constraints of real-world library
instances. Although a permuted instance is essentially identical to its unpermuted
preimage, the running times of solvers can vary dramatically between the two. This
phenomenon is known as performance variability [Dan08, KAA+11]. Reasons for
performance variability are, e.g., the existence of different optimal LP-bases at a
node, the selection of which affects the outcome of primal heuristics and cutting
plane separators in an unpredictable way. A second reason lies in the tie-breaking
used for selecting, e.g., branching variables. If tie-breaking is imperfect, the selec-
tion of a variable for branching might depend on the input order of the fractional
candidates, such that the solver eventually creates a different tree.

In this thesis, we do not use permutations for increasing the size of our test

3.2. METRICS FOR MIP ALGORITHM EVALUATION 31

set. Instead, we make use of appropriate statistical tests for distinguishing be-
tween potential algorithmic improvements and noise that stems from performance
variability.

3.2 Metrics for MIP algorithm evaluation

Experimenting with MIP solving software requires the selection of one or several
performance metrics, depending on the aims of the study. Since a main objective
of MIP solver development is the reduction of the solving time on a broad number
of MIP problems arising in practical applications, the solving time is certainly the
most common metric used for computational tests.

The overall solving time of a MIP instance is the time in seconds that the
solver needs to find an optimal solution and prove its optimality (or prove that no
such solution exists). Other time-related metrics include the time until a first or
an optimal solution are found.

Despite its practical interest, the use of the solving times for computational
experiments has a number of shortcomings which have to be considered: The solv-
ing time is very sensitive towards external factors such as the used hardware, the
compiler, and the operating system in use. This restricts the reproducibility of
computational studies which report the solving time because an identical configu-
ration of hard- and software components might be unavailable. Furthermore, most
experimenters impose a time limit to reduce the resource consumption of their
studies. If the software is not able to finish within the time limit, its execution is
stopped at an intermediate stage, and the time limit is reported as (a lower bound
for) the solving time on this particular instance.

The number of branch-and-bound nodes accounts for the number of evaluated
nodes before termination. Unlike the solving time, the number of nodes should
be stable across platforms and system configurations if the algorithm works in a
deterministic fashion. A small number of nodes is usually associated with a short
solving time, which, in general, does not hold if the time spent on every node is
high. Such behavior can be encountered, e.g., for node selection rules exploring
the tree in a best-first manner: although such node selection rules outperform
simple depth-first-search node selection regarding the number of branch-and-bound
nodes, the time spent on each node is considerably higher, cf. Section 5.1.1. For
solvers hitting the time limit, it is not clear how to use the node number for fair
comparisons. If between two solvers A and B, only A hits the time limit, but
evaluates less solving nodes than B, the smaller number of solving nodes is no
criterion for preferring A over B. Thus, an evaluation of the solving nodes should
be restricted to the subset of instances for which both A and B finished within
the time limit.

A third possible measure is the solution quality at termination. The solution
quality is usually reported as a relative distance of the objective value of the best
found solution w.r.t. the optimal value or at least a best known value for this
particular instance. Public benchmark libraries such as Miplib 2010 [KAA+11]

32 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

usually come with such data. The solution quality is not a criterion on infeasible
MIPs or instances without an objective function. With a slight abuse of notation,
we write c(t) to denote the primal bound, i.e. the incumbent objective at a specific
moment in time t ≥ 0.

Definition 4 (Incumbent and gap function). Let S be a solver, P be a MIP
with nonempty solution space S(P) and known optimal solution value copt. Let
ŷ : R+ → S(P) ∪ {∅} be the incumbent function of S, which maps every point
in time t to the incumbent solution ŷ(t) found by S until t, or to ŷ(t) = ∅ if no
such solution is found until t. We will call γ : R+ → R+ a gap function if γ is
monotonously decreasing, and γ(t) = 0 if and only if c(t) = copt.

Note that the definition of the gap function implicitly uses the optimal solution
value copt. This general definition of a gap function is realized differently across
different MIP solvers. In this thesis, we are interested in a gap function that is
bounded by 1 (or 100%) for normalization purposes. This requirement holds for
the gap-function

γ(t) =


100 %, if ŷ(t) = ∅ or c(t) · copt < 0,
0 %, if c(t) = copt,

100 % · |c(t)−copt|
max{|c(t)|,|copt|} , else,

(3.1)

which we use as primal gap function in this thesis. A dual gap function γ∗(t)
can be analogously defined using the dual bound δ (P, t) at time t instead of the
incumbent objective (primal bound) function in Equation (3.1). By replacing the
optimal solution value copt in Equation (3.1) by the dual bound δ (P, t) (here
also as function of time), we obtain a primal-dual gap function. The MIP solver
Cplex [cpl], e.g., reports this primal-dual gap function during search, with the
slight difference that no gap is reported as long as ŷ(t) = ∅.

Based on this gap-definition, it is possible to express the entire evolution of the
primal gap in the following measure:

Definition 5 (Primal and dual integral [ABH12]). Let P be a MIP with optimal
objective value copt ∈ R, let S be a solver with primal gap function γ and dual gap
function γ∗, and let T ≥ 0. We call

Γ(T) =

T∫
0

γ(t) dt (3.2)

the primal integral of S for P . For T > 0, we define Γ(T)/T to be the average
primal gap of S for P . Analogously, a dual integral is defined as

Γ∗(T) =

T∫
0

γ∗(t) dt. (3.3)

3.2. METRICS FOR MIP ALGORITHM EVALUATION 33

The primal integral was first used in [ABH12] to analyze the impact of dif-
ferent classes of primal heuristics on the primal gap. The use of the integral is a
combination of two individual measures of the quality of a solution and the time
during search when it was found. We already used Γ and Γ∗ in Section 2.4 in order
to categorize the Scip components w.r.t. their influence on the primal and dual
bound evolution during the search.

From an algorithmic improvement, we expect a reduction in one or several
performance metrics in question on an instance set. All performance metrics,
the solving time, the number of branch-and-bound nodes, and the primal and dual
integral act on scales of several orders of magnitude. Observed solving times during
our experiments 5, e.g., ranged from less than a second to 2 hours, the maximum
time limit we used. Rather than in absolute differences between two solvers A and
B, we are interested in the proportion XA

XB , where XA and XB denote the value of
a performance metric X for A and B, respectively. If these factors are constantly
smaller than 1 over a whole set of instances, we consider A to be better method
than B w.r.t. X. This view makes a geometric mean the method of choice when
A and B should be compared over an instance set. A geometric mean still has the
disadvantage that it can be strongly influenced by instances which lie at the lower
end of the scale; although an absolute difference of 0.2 seconds is only a negligible
improvement, it is encountered as a 20% improvement if XA = 0.8 seconds and
XB = 1.0 seconds. Hence, when we compute an average performance metric over
a set of instances, we use the shifted geometric mean throughout this thesis:

Definition 6 (Shifted geometric mean). Let X = (Xi : 1 ≤ i ≤ q) be a series of
observations of a performance metric on a set of q MIP instances (Pi)1≤i≤q, and
let τ > 0. We call

X̄τ =

(
q∏
i=1

(Xi + τ)

) 1
q

− τ (3.4)

the shifted geometric mean over (Pi).

The rationale of using shifted geometric means is a reduction of the influence
of extreme instances w.r.t. the performance metric in question, e.g., instances with
a very small or very large solving time. The shift value τ is responsible for outliers
at the low end of the scale, which may exhibit undesired large relative variations
between two solvers A and B on an instance. For the improvement of 0.2 seconds
discussed above and using a shifted quotient with τ = 10 seconds, we obtain with
0.8+10
1.0+10 ≈ 0.98 a more moderate improvement of only 2%. We use shifts of 10
seconds, 100 branch-and-bound nodes, and a shift of 1000 for the primal and dual
integrals.

Although the influence of outliers regarding the scale of the performance metric
is reduced, even shifted geometric means can be influenced by outliers regarding the
shifted quotient. The made up series of observationsA andB presented in Table 3.1
yield shifted geometric means of Āτ = 156.36 and B̄τ = 108.88, which does not
reflect the fact that Ai+10

Bi+10 ≈ 0.5 for 4 of the eight observations. The statistic
is dominated by the extreme result at i = 8. Though made up, this example is

34 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

Table 3.1: An example of a series of eight observations with two solvers A and B,
where the shifted geometric mean values with τ = 10 are extremely influenced by
the result for i = 8.

i 1 2 3 4 5 6 7 8

Ai 100 100 100 100 100 100 100 3000
Bi 200 201 199 202 99 101 102 5

symptomatic for reporting mean values alone. In the next section, we introduce
statistical tests which consider rank-statistics of an entire set of observations that
come in pairs, as in this example. They can be used to gain additional insights if
we observed a real algorithmic improvement.

3.3 Statistical analysis of algorithmic tests

The previous section revised common metrics used in MIP software benchmarks.
The aim of this section is to familiarize the reader with statistical hypothesis tests
that are applicable for empirical analysis of mathematical programming algorithms.
An excellent survey of the applicability of significance tests on a number of case
studies from algorithm evaluation is given by Coffin & Saltzman [CS00]. A very
illuminating book about applied mathematical statistic is [FBM03].

This section tries to give detailed descriptions of available statistical methods
which can be applied to MIP software analysis. The methods are separated into
different classes depending on whether they can be applied to continuous data or
categorical data. We start with some basic definitions about random variables and
probability theory.

3.3.1 Some stochastic preliminaries

This section covers the most basic definitions from probability theory. We only
aim to provide the necessary definitions for random variables and distribution
functions. A standard text book about probability theory is, e.g., [BT08].

A measurable space is a tuple (Ω,Σ) with Σ ⊆ 2Ω a σ-algebra of a ground set
Ω. A map P : Σ → [0, 1] is called probability measure if P(∅) = 0, P(Ω) = 1,
and P(

⋃
i∈I

Ei) =
∑
i∈I

P(Ei) for all countable, disjoint collections (Ei)i∈I ⊆ Σ. A

triple (Ω,Σ,P) is called probability space if (Ω,Σ) is a measurable space and P is a
probability measure on (Ω,Σ). The elements of Σ are often referred to as events,
and the probability of an event S ∈ Σ is, of course, P(S).

Two events S, T ∈ Σ are said to be stochastically independent if P(S ∩ T) =
P(S)·P(T). A random variable is a map X : (Ω,Σ,P)→ (Ω′,Σ′) from a probability
space to a measurable space such that X−1(S′) ∈ Σ ∀S′ ∈ Σ′. Random variables

3.3. STATISTICAL ANALYSIS OF ALGORITHMIC TESTS 35

can be used to define probability measures on their image space. One can check
that the map P′X : Σ′ → [0, 1] such that P′X(S′) := P(X−1(S′)) is a well-defined
probability measure on (Ω′,Σ′).

For A ∈ Σ′, we define the indicator function 1A(X) to yield 1, if X ∈ A,
and 0 otherwise. If the image space Ω′ = R of a random variable are the real
numbers, we define the (cumulative) distribution function FX(t) := P(X ≤ t) of X
as probability that X takes a value not larger than t, for t ∈ Σ

′ . If there exists a
nonnegative function fX : R→ R+

0 such that FX(x) =
∫ x
−∞ fX(t)dt for all x ∈ R,

we call fX probability density function of X.
Finally, the mean of a real valued random variable X is defined as

E(X) :=


∑

x∈X(Ω)

x · P(X = x), if X is discrete,∫
R
fX(t)t dt, if X has a probability density function fX .

(3.5)

In (3.5), we neglect random variables that are neither discrete nor have a probabil-
ity density function because they are irrelevant for this thesis. If the mean E(X)
is finite, we define the variance of X as

V(X) := E((X − E(X))2). (3.6)

3.3.2 Important distributions

In this section, we give a brief overview of the distributions that are relevant for
the statistical tests in Sections 3.3.3 and 3.3.4.

The normal distribution

The normal distribution is characterized by its probability density function

fµ,σ2(x) =
1

2
√
π
e−

(x−µ)2

2σ2

where µ is the mean of the distribution and σ2 is its variance. The normal distribu-
tion with parameters µ and σ2 is denoted by N (µ, σ2). N (0, 1) is called standard
normal distribution. For the cumulative distribution function of the standard nor-
mal distribution, we write

Φ(x) := FN (0,1)(x) =

x∫
−∞

f0,1(t)dt. (3.7)

The χ2-distribution

The sum of squares of n independent, N (0, 1)-distributed variables is called χ2-
distribution with n degrees of freedom. Its density fn(x) reads

fn(x) =
1

2
n
2 Γ(n2)

x
n
2
−1e−

x
2 ,

36 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

0 10 20 30 40 50 60 70

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f n
(x

)

n = 20

n = 40

n = 60

Figure 3.1: probability density of a χ2-distribution with n = 20, 40, 60 degrees of
freedom.

with the gamma-function

Γ(x) =

∞∫
0

tx−1e−tdt, x > 0.

A χ2-distributed variable X with n degrees of freedom has a mean E(X) = n
and a variance V(X) = 2n. Figure 3.1 depicts the density functions of three
χ2-distributions with different degrees of freedom.

The binomial distribution

The sum X of an independent series of n random trials Xi ∈ {0, 1}, i = 1, . . . , n,
each with success probability p = P(Xi = 1), takes the value k, k = 0, . . . , n with
probability

P(X = k) =

(
n

k

)
pk(1− p)n−k. (3.8)

We call X binomially distributed with parameters n, p and write X ∼ B(n, p).
If p = q

r is rational, B(n, p) models the probability to draw k white balls with
replacement from a bin containing q white balls out of a total of r ≥ q balls.
If the experiment is conducted without replacement of previously drawn balls, p
is not constant anymore (unless q = r or q = 0), leading to the hypergeometric
distribution.

3.3. STATISTICAL ANALYSIS OF ALGORITHMIC TESTS 37

0 5 10 15 20 25 30

k

0.00

0.05

0.10

0.15

P
(X

=
k
)

Figure 3.2: Probability mass function of a hypergeometrically distributed variable
X ∼ H(90, 40, 30).

The hypergeometric distribution

Given a bin containing a total of r black and white balls, with r − q and q the
number of black balls and white balls, respectively, the hypergeometric distribution
describes the probability that a selection of n balls without replacement from the
bin contains exactly k white balls for k = 1, . . . , n.

A random variableX is said to be hypergeometrically distributed,X ∼ H(r, q, n),
if 0 ≤ n ≤ q, and

P(X = k) =

(
q
k

)
·
(
r−q
n−k
)(

r
n

) , k = 1, . . . , n.

3.3.3 Tests for categorical data

Categorical data arise when the realization of an observation is drawn from a
finite set of values without order relation. Examples of such categorical data in
MIP benchmarks are events of the form "Solver finished within time limit" and
"Solver found a feasible/optimal solution" with binary realizations Xi ∈ {yes, no},
or comparing n different settings from a set {1, . . . , n}.

When dealing with categorical data, one often has to base the evaluation on
counting the number of occurrences of each value in the actual observation. Let
(X1, Y1), . . . , (Xn, Yn) be n independent observations, where Xi ∈ A and Yi ∈ B
for i = 1, . . . , n, for finite sets A and B.

38 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

If both A and B contain only two elements A = {a1, a2} and B = {b1, b2},
respectively, a series of observations (Xi, Yi) can be summarized in a 2-by-2 table
along with its row and column sums:

#{Xi\Yi ∈ . . . } b1 b2
a1 na1b1 na1b2

∑
= na1·

a2 na2b1 na2b2
∑

= na2·∑
= n·b1

∑
= n·b2

∑
= n

A contingency table N is an |A| × |B|-matrix with entries

na,b =

n∑
i=1

1{a}(Xi) · 1{b}(Yi), a ∈ A, b ∈ B.

The total number of observations Xi = a for a ∈ A is given as the sum of elements
in row a of N and is denoted as na·. The total number of observations Yi = b for
b ∈ B is the sum of column entries of column b and denoted by n·b.

A MIP-related example of a contingency table is given in Table 5.10 for the
common frequency of heuristic phase transition criteria and the optimality of the
incumbent when the solver hit the time limit.

The row and column sums na· and n·b of the contingency table are also referred
to as margins and play an important role for the following tests. For these tests,
we consider a contingency table N as a realization of random frequencies νab for all
a ∈ A, b ∈ B. The exact Fisher test and the χ2-test for independence measure the
probability p to obtain a realization at least as extreme as N under the hypothesis
that X and Y are independent. If p is small, we reject the hypothesis and assume
instead a dependence between X and Y .

Fisher’s test for independence

The Fisher test for independence can be used to test against the hypothesis that
X and Y are independent. Under the hypothesis H0 that X and Y are inde-
pendent, the frequency νab a ∈ A, b ∈ B is hyper-geometrically distributed,
νab ∼ H(n, na·, n·b) (for a proof, see, e.g.,[FBM03]). The likelihood p to observe a
value of nab or a more extreme value as frequency of a and b under the hypothesis
H0 is thus given by

p =

n∑
k = 1

P(νab = k) ≤ P(νab = nab)

P(νab = k), (3.9)

and H0 can be rejected for very small p.

The χ2-test for independence of X and Y

Given a batch of categorical observations (Xi, Yi), we can use the deviations of an
observed contingency table entry nab from its expectation n̂a,b under the assump-
tion that X and Y are independent. More precise, if X and Y are independent,

3.3. STATISTICAL ANALYSIS OF ALGORITHMIC TESTS 39

the expected number n̂ab is a function of the two corresponding marginal densities

n̂ab = n · P(X = a, Y = b) = n · P(X = a) · P(Y = b) ∼ n · na·
n
· n·b
n

=
na· · n·b
n
(3.10)

The actual relative deviations of the table entries from their expected counter-
parts can be summed up to obtain a test statistic

S :=
∑

a∈A,b∈B

(nab − n̂ab)2

n̂ab
. (3.11)

Under the assumption of X and Y being independent, S is distributed along a
χ2-distribution with (|A| − 1) · (|B| − 1) degrees of freedom. Hence, a very large
value of S speaks against the null hypothesis that X and Y were independent.

In the special case of |A| = |B| = 2, the calculation of S simplifies to

S =
(na1b1na2b2 − na2b1na1b2)2 · n

na1·na2·n·b1n·b2
, (3.12)

and S is distributed along a χ2-distribution with one degree of freedom [Coh95].

McNemar’s test

We consider a 2-by-2 contingency table of 2n observations (Xi, Yi), i = 1, . . . , n,
where each Xi, Yi ∈ {0, 1}. In the context of MIP solving, we can think of two
solvers X and Y , which are tested on a set of n instances, and a categorical
observation is made for both X and Y on each instance i such as whether the time
limit was hit or an optimal solution was found. For an empirical software analysis,
we are interested in the question whether, e.g., the probability that X solves an
instance which Y does not solve is different from the probability that the opposite
holds.

The relevant information is found in the anti-diagonal of the contingency table
N . Denote by a := n1,0 the number of observations for which Xi = 1 and Yi = 0,
and let b := n0,1 denote the other element of the anti-diagonal. Our hypothesis,
under which we know a distribution of a and b, is

H0 : P(X = 0, Y = 1) = P(X = 1, Y = 0). (3.13)

Intuitively, if a and b are close to (a + b)/2, H0 cannot be rejected. Restricting
ourselves to the subset of a + b observations that fell in either of the two groups,
the entries N0,1 and N1,0 of the contingency table are binomially distributed with
parameters a + b and probability of success p = 1/2. A binomial test is therefore
applicable, which reports as p-value

p = 2 ·
min{a,b}∑
k=1

(
a+ b

k

)
· 2−k · 2−(n−k) = 21−n ·

min{a,b}∑
k=1

(
a+ b

k

)
.

40 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

For larger n, the distribution of

Z :=
(a− (a+ b)/2)2

(a+ b)/2
+

(b− (a+ b)/2)2

(a+ b)/2
=

(a− b)2

a+ b

can be approximated by a χ2-distribution with one degree of freedom. The reported
p-value in this case is

p = 1− Fχ2(Z),

where Fχ2(Z) denotes the cumulative density function of a χ2-distribution with
one degree of freedom. This test is called McNemar test as a tribute to his author
Quinn McNemar, who presented it in 1947 [McN47].

3.3.4 Tests for continuous data

This section gives an overview of available hypothesis tests for continuous data.
The most frequent such data in testing mathematical programming software are
the individual solving times observed on a set of instances.

Wilcoxon signed rank test for pairs of samples

Let n ∈ N, and (X1, . . . , Xn) and (Y1, . . . , Yn) be two independent and nonnegative
observations that come in pairs (Xi, Yi) for 1 ≤ i ≤ n. An example of such paired
observations are benchmark results of two MIP solvers X and Y on a set of n MIP
instances, such that Xi and Yi are the observed realizations of one of the discussed
performance metrics such as the solving time on the i-th instance.

We noted before that MIP benchmark results such as the total solving time can
vary between instances by orders of magnitude, which is why we are more interested
in relative improvements or deteriorations X/Y than in absolute improvements.

Let 1 ≤ i ≤ n, and let τ > 0 be a shift value as used for the shifted geometric
mean (cf. Section 3.2). We define the logarithmic shifted quotient

Qi := log

(
Xi + τ

Yi + τ

)
. (3.14)

Note that Qi is well-defined because (Xi + τ)/(Yi + τ) > 0 since Xi and Yi are
nonnegative. A logarithmic shifted quotient Qi < 0 is negative if and only if Xi <
Yi. The transformed samples remain independent because of the independence of
the sample data. Furthermore, we can assume that allQi are identically distributed
along an unknown distribution F (x) for all 1 ≤ i ≤ n. The use of the logarithm
is an order-preserving transformation of the shifted quotients with the additional
property that an improvement by 1 + ε, 1 > Xi+τ

Yi+τ
= 1

1+ε > 0 and a deterioration
by ε, i.e. Xj+τ

Yj+τ
= 1 + ε, yields the same absolutes for Qi and Qj :

|Qi| =
∣∣∣∣log

(
Xi + τ

Yi + τ

)∣∣∣∣ =

∣∣∣∣log

(
1

1 + ε

)∣∣∣∣ = |log 1− log (1 + ε)| = log (1 + ε) = |Qj |.

3.3. STATISTICAL ANALYSIS OF ALGORITHMIC TESTS 41

The Wilcoxon signed rank test is a nonparametric alternative to the paired
t-test [FBM03] if the underlying distribution cannot be assumed as normal. We
test against the hypothesis H0 that the underlying distributions of X and Y are
equal. Under H0, the distribution of Qi is centered about the origin. Without loss
of generality, we assume that |Q1| < |Q2| < · · · < |Qn|, and that |Q1| 6= 0. Each
index i also represents the rank of the i-th sample. In practice, the samples are
reduced by filtering all occurrences of Qi = 0, and ties between ranks are solved
by assigning the average rank to each of the samples in question.

We compute the Wilcoxon sum statistics W+, W− as

W+ :=

n∑
i=1

1(0,∞)(Qi) · i and W− :=

n∑
i=1

1(∞,0)(Qi) · i. (3.15)

Notably, W+ and W− always sum up to n · (n+ 1)/2, the sum of all ranks. Under
the hypothesis H0, W+ and W− are identically distributed about a mean µ =
n · (n + 1)/4 with variance σ2 := n(n + 1)(2n + 1)/24, and can be approximated
by means of a normal distribution z ∼ N (µ, σ2), if n is sufficiently large. Let
Wmin := min{W−,W+} denote the minimum of W− and W+, and let α ∈ (0, 1) be
a fixed error rate which we use as threshold for rejecting H0. Let z(1−α/2) denote
the α/2-quantile of the standard normal distribution, i.e.

P
(
z − µ
σ
≥ z(1−α/2)

)
=
α

2
.

We reject H0 if the condition Wmin ≤ µ− z(1−α/2)σ is satisfied:

P
(
Wmin ≤ z ≤

n(n+ 1)

2
−Wmin

)
=P
(
Wmin − µ

σ
≤ z − µ

σ
≤ µ−Wmin

σ

)
≥P
(
−z(1−α/2) ≤

z − µ
σ
≤ z(1−α/2)

)
= 1− α.

The inequality holds because of the condition on Wmin, and because of the sym-
metry of the standard normal distribution.

We presented a short description of a two-sided Wilcoxon signed rank test.
The hypothesis H0 was that the Qi are distributed about the origin, whereas the
alternative hypothesis locates the median of the underlying distribution of the Qi
values somewhere different from the origin. There also exist two one-sided versions
of the Wilcoxon-signed rank test, where one tests H0: The median of the Qi is
nonnegative against H1: the median is negative. The second version of the one-
sided test is equivalent to the first one if we interchange the roles of X and Y . For
the one-sided test, Wmin needs to be replaced by W+, and instead of z1−α/2, it
already suffices to consider z1−α, because very large values for W+ are in line with
the one-sided hypothesis H0.

42 CHAPTER 3. EMPIRICAL MATHEMATICAL PROGRAMMING

Mann-Whitney U test

For n,m ∈ N, let (X1, . . . , Xn) be a batch of independent sample observations, and
let independently (Y1, . . . , Ym) be a second batch of independent observations. In
contrast to the Wilcoxon signed rank test, the two batches, called groups, do not
come in pairs (Xi, Yi), and may even differ in size. Let the X-group and the Y -
group be sampled along (unknown) continuous distributions F and G, respectively.
In order to test against the hypothesis H0 that F = G, we consider the ranks of
the Y -group in the combined sample.

Let all samples be distinct. Without loss of generality, we may assume that
Y1 < Y2 < · · · < Ym and X1 < X2 < · · · < Xn. With this ordering, every index i
denotes also the rank of Xi in the X-group, and every index j denotes the rank of
Yj in the Y -group. The rank RYj of Yj in the combined groups of X and Y can
be written with the help of indicator functions as

RYj = j +
n∑
i=1

1(−∞,Yj](Xi), (3.16)

where j is the rank of Yj in the Y -group, and the sum is increased by 1 by every
Xi < Yj . With the help of the ranks (3.16), we define the Um,n-statistic

Um,n :=

m∑
j=1

RYj −
m(m+ 1)

2
. (3.17)

The Um,n-statistic is the rank-sum of the Y -group in the combined sample corrected
by the contribution of the Yj themselves. Note that it always holds that Um,n ∈
{0, . . . ,mn}. Under the assumptions of H0, it holds that

E(Um,n) = mn/2, and V(Um,n) = mn(m+ n+ 1)/12. (3.18)

For a proof of (3.18), see, e.g., [FBM03]. For sufficiently large m,n, we can ap-
proximate the distribution of

Z :=
Um,n −mn/2√

nm(m+ n+ 1)/12

by means of a standard normal distribution with cumulative distribution function
Φ(x), see, e.g., [Ser08]. The reported p-value for the Mann-Whitney U test is

p = 1− Φ(|Z|) + Φ(−|Z|) (3.19)

the probability to observe an even more extreme value of |Z|, approximated by a
standard normal distribution.

The Mann-Whitney U test is sometimes referred to as Wilcoxon test or U
test. It is only applicable for two treatment groups X and Y . The Kruskal-Wallis
test [KW52] is a nonparametric test to check for significant differences of group
medians at the presence of two or more groups.

Chapter 4

A 3-phase-approach for solving
MIP

This chapter introduces a tripartion of the solving process into three phases, where
the goal of each phase is different from the previous phase. After a formal definition
of the phases, we dedicate Section 4.3 to discuss relevant parameters and techniques
to achieve the goals of each phase. Furthermore, we introduce newly implemented
components in Scip together with the phase the component was tested for; uct
node selection [SSR12] and Distribution diving [PC11] for the Feasibility phase,
Proximity search search [FM14] for the Improvement phase, and two modifications
to the reliability pseudo/inference branching rule for the Proof phase.

In Section 4.4, we introduce three heuristic criteria for a heuristic phase transi-
tion between the Improvement phase and the Proof phase; the best-estimate criterion
compares the minimum best-estimate [BGG+71] over all open subproblems of the
tree, which we call the active estimate, and the current incumbent. The rank-1
criterion introduces the notion of rank-1 nodes, which are open subproblems with
a best-estimate as least as good as the best previously solved node at the same
depth. The third criterion uses a logarithmic model to approximate the progress
of the primal bound.

In the remainder of the chapter, we present some of the related work from the
literature in Section 4.5. Most of the prior work focused on estimating properties of
the search tree, such as the number of branch-and-bound nodes after completion.

4.1 The parameter space of SCIP

The behaviour and performance of MIP solving algorithms drastically depend on
the choice of user parameters. Throughout the development of the software, ex-
haustive computational experiments are dedicated to the search for parameter
settings having a good performance on a heterogeneous set of MIP instances, cf.
Section 3.1. Scip currently features more than 1000 parameters falling into three
different categories: real, integer, and categorical (cf. Table 4.1). The product space

43

44 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Table 4.1: Different classes of MIP solver parameters

parameter class description

real Real parameters ρ ∈ Dρ where Dρ is an interval subset of
R∪ {−∞,∞}. The maximum time until the solving is aborted
(the time limit) is a real parameter with parameter domain
[0,∞[∪{∞}.

integer Integer parameters ι have interval domains Dι ⊆ Z. An LP
iteration limit is such an integer parameter.

categorical a categorical domain is a discrete domain without a reasonable
order-relation. Binary parameters fall into this group. Other
(crucial) categorical parameters are the choice of a branching
or node selection strategy.

of all parameter domains is the parameter space of SCIP,

S :=
⊗
p∈P

Dp

and every element of the parameter space is called setting. Naturally, we are
interested in a setting that guarantee short running times on our instances. The
size of the parameter space, however, makes an enumeration of all possible settings
impractical. Parameter-tuning is the task of discovering settings with a good
overall performance. Recent years have seen several automated approaches to find
good parameter settings [ADL06, HHLBS09]. These methods have shown to be
quite beneficial on sets of homogeneous instances, whereas the most common, very
heterogeneous MIP benchmark sets such as [KAA+11] remain challenging even for
sophisticated automated tuning tools.

4.2 MIP solving phases

The main idea addressed in this thesis is a partition of the solving process of a MIP
into a set of phases. Our hypothesis is that an adaptive behavior of a solver w. r. t.
the current phase can yield substantial performance improvements compared to a
static, global parameter setting. Each of the phases emphasizes a different goal of
the solving process, so that it seems natural to pursue these goals with different
parameter settings, which are tailored to achieve the phase objective as fast as
possible. We suggest a tripartition of the solving process as follows:

Definition 7. Let P be a feasible MIP with optimal objective value copt ∈ R, and
let S be a solver for P with incumbent function ŷ and dual bound function δ (P, ·).

4.2. MIP SOLVING PHASES 45

We define the three solving phases P1, P2, and P3 of S for P as follows:

P1 := {t ≥ 0 : ŷ(t) = ∅},
P2 := {t ≥ 0 : ŷ(t) 6= ∅, c(t) > copt}, and
P3 := {t ≥ 0 : c(t) = copt, copt > δ (P, t)}.

Clearly, the phases are disjoint. Furthermore, if T is the total time spent by
S for solving P to optimality, the phases are a tripartition of the interval [0, T].
The central objective during P1 is a first feasible solution, whose solution quality
only plays a minor role. Therefore, we call P1 Feasibility phase. Feasible solutions
are either provided by a node’s LP-relaxation solution or by primal heuristics.
The first feasible solution plays an important role for the solving process: First, it
indicates the feasibility of the model to the user. Second, the bounding procedure
of the branch-and-bound algorithm and some propagation routines depend on an
incumbent solution. Furthermore, several primal heuristics, such as, e.g., Proximity
search ([FM14], cf. Section 4.3.2), require a feasible solution as starting point to
search for improvements.

After an initial feasible solution was found, the search for an optimal solution
is conducted during the Improvement phase. During the Improvement phase, a
sequence of IP-feasible solutions with decreasing objective value is constructed
until the solver eventually finds an optimal solution.

The remaining time P3 of the solving process is spent on proving the optimal-
ity of the incumbent solution. Such a proof requires the full exploration of the
remaining search tree until there are no more open nodes with a dual bound lower
than the optimal primal objective value.

The only phase that is always nonempty is the Feasibility phase because we
assume that a solving process always starts at time 0 without an incumbent. It is
possible that the first feasible solution is also an optimal one, hence P2 = ∅. It can
also occur that the best possible dual bound is found before an incumbent with
this optimal objective value is constructed, so that no additional computational
time is required for the Proof phase, i.e. P3 = ∅, or a combination of the latter
two.

For the use of improved phase settings for each phase, we need to determine
the point in time when the solving process enters the next phase. The following
definition of phase transitions describes the desired moment in time when a phase-
based solver should react to by a settings change. Since nonempty phases are
right-open interval subsets of R+

0 , we use supremum, whereas the union of all
previous phases deals with a probably empty P2.

Definition 8 (Phase transition). Let P1,P2,P3 be the solving phases of a solver
S for a MIP P . For i = 1 and 2, we call t∗i with

t∗i := sup
i⋃

j=1

Pj

the i-th phase transition.

46 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Note that the solving phases and phase transitions are well-defined even if the
solving process itself is not finite or if P2 = ∅. The phase transitions are always
positive because P1 6= ∅. Finally, it holds that t∗1 ≤ t∗2 because it it is the supremum
of a subset of P1 ∪ P2. The values are equal if and only if P2 = ∅, i.e. the first
solution is already optimal for P . The recognition of the second phase transition t∗2
after the Improvement phase requires knowledge about the optimality of the current
incumbent prior to the termination of the solving process. Note that it is in general
not possible to detect this phase transition during the solving process except for
trivial cases, where P3 = ∅. When P3 6= ∅, the decision problem of proving that
there exists no solution better than ŷ(t∗2) for our input MIP P remains to be solved.
This decision problem is still NP-complete in general.

A bipartion of the solving process has already been suggested in the litera-
ture, see [LS97] for an overview and further references. Those phases fold the
Improvement phase and Proof phase into one phase, while the proposed strategies
solely involve the node selection in use. The three-phase approach used in this
thesis gives a more refined control of the solver behaviour. In practice, however,
a guess has to be made at which point to assume the incumbent to be optimal.
This assumption needs to be based on heuristic criteria that are not guaranteed
to decide the optimality of an incumbent correctly. We present possible criteria
for this heuristic phase transition in Section 4.4. Parameter considerations for the
three solving phases are subject to the following section.

4.3 Computational aspects of the three solving phases

In this section, we discuss techniques to accelerate the achieving of the differ-
ent phase objectives. The discussed components and parameters are the basis
for the conducted computational experiments in Chapter 5. Apart from existing
components, some of which were briefly introduced in Section 2.3.1 and 2.3.2, we
introduce new components that were added to Scip for this master thesis. While
the Distribution diving primal heuristic [PC11] and the uct node selection [SSR12]
are introduced in the context of the Feasibility phase, the Proximity search pri-
mal heuristic [FM14] is introduced for the Improvement phase. For the Proof
phase, we discuss two modifications to the reliability pseudo/inference branching
rule [AKM04]. Along with the new components, we discuss common parameters
which influence the component performance for the individual phase objectives.

4.3.1 The Feasibility phase

The goal of the Feasibility phase is to find a first feasible solution for a given MIP P .
The objective of the solution only plays a minor role during this phase. Feasible
solutions are either found by solving the LP-relaxation at a node, or by means of
primal heuristics.

Although it can happen that the LP-relaxation solution at the root node is
already feasible (and hence optimal for P), feasible solutions are usually located at

4.3. COMPUTATIONAL ASPECTS OF THE THREE SOLVING PHASES 47

deeper levels of the search tree. The search for feasible solutions through branch-
and-bound should reflect this by a suitable node selection strategy. We introduced
some basic node selection rules in Section 2.3.2. A dfs node selection rule is quickest
for reaching deep levels of the search tree. In the context of LP-based branch-and-
bound search, the dfs rule takes advantage of the warmstart capabilities of the dual
simplex algorithm. The disadvantage of pure dfs is the absence of a backtracking
mechanism; the dfs node selection might get trapped in infeasible parts of the
search, especially if the infeasibility was introduced by early branching decisions.
A way to circumvent this is to restart the dfs node selection periodically from a
shallow open node in the tree. Inside Scip, such a periodic restart is performed
by the restartdfs node selection rule, which behaves like standard dfs, except for a
backtrack to the dual-bound defining node after 100 explored leaf nodes. This can
be seen as a variant of hybrid bfs/dfs node selection with an emphasis on diving.
The cost of restartdfs is an increased number of LP iterations every time a restart
is performed.

Another disadvantage of dfs-based node selection is the risk of evaluating su-
perfluous nodes, i.e. nodes with a lower bound greater than the optimal solution
value in case it exists. Pruning, however, can only be performed after a feasible
solution was found. It is not possible during the Feasibility phase discussed here.
Note that furthermore, during the Feasibility phase, it is not decided whether the
MIP in question is infeasible. Proving infeasibility requires a full exploration of
the search tree, which is performed quickest via dfs-based methods.

Another node selection strategy is the new uct rule that was presented quite
recently [SSR12] in the context of MIP solving, see below for further information.
In this thesis, we also experiment with two-level node selection strategies in order
to overcome the weaknesses of previous approaches. With an initial node selection
rule, we let the solver explore a limited number of branch-and-bound nodes. If this
limit is reasonably small, one can even use bfs, breadth-first , or uct as initial node
selection rule, and use their explorative strength. Since the subproblems at the top
part of the tree are similar enough, the increased number of LP-iterations per node
are affordable. After the limit has been reached, and the solving process has not
been finished, we switch the node selection rule, typically to a rule that prioritizes
the exploration of child nodes for making better use of warmstart capabilities such
as, e.g., restartdfs or hybrid best-estimate/dfs.

The choice of the branching rule also influences the phase-1 performance. In
our tests, we concentrate on two branching rules: a pure inference branching rule
and a hybrid reliability pseudo/inference branching rule, cf. Section 2.3.1. While
the former selects the branching candidate on its inference history observed so far,
the latter uses a weighted sum of the pseudo-cost, inference, and cutoff histories of
the candidate variables. Recall that reliability pseudo/inference branching is the
default branching rule used by Scip. The weights are parameters, and their default
values emphasize the pseudo-cost score. The initial absence of reliable pseudo-cost
information is overcome by strong-branching look-aheads. Although reliability
pseudo/inference branching is still the state-of-the-art technique for solving MIP,
its computational overhead compared to inference branching or a distribution-

48 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

based branching rule [PC11] is substantial at early stages of the search, in particular
during the Feasibility phase. On feasibility problems with no objective function,
e.g., reliability pseudo/inference branching decides similarly to inference branching ,
but with the additional LP iterations during strong branching. Using a different
branching rule at the beginning of the search can have dramatic effects on the
ability of the solver to complete the search because branching decisions at the
top of the tree are crucial for keeping the overall tree size small. In practical
situations it is often beneficial to explore alternatives to the branching rule. In
Scip, alternative branching rules are periodically applied inside diving heuristics,
cf. Section 2.3.3.

For a comparison of the phase-1 performance of different node selection rules
and branching strategies, see Section 5.1.1. In the remainder of this section, we
introduce uct node selection and Distribution diving .

uct node selection

The letters uct name a node selection rule that has been recently proposed [SSR12]
as node selection strategy for MIP branch-and-bound trees. The abbreviation
stands for "Upper Confidence Bounds for Trees" and originates from the field of
game tree search. The idea of uct is to balance exploration and exploitation of
the search tree in a single score. Therefore, the notion of visits of a node is used;
for a node Q of the branch-and-bound search tree, its visits vQ is the number of
explored nodes that have Q as an ancestor. The root node Q0 has therefore n− 1
visits for n the number of search tree nodes explored so far. The uct-score U(Q)
of a non-root node Q with parent Q′ reads

U(Q) :=
δ (Q0)− δ (Q)

max{1,min{|δ (Q0) |, |δ (Q) |}} + ε · vQ′

vQ + 1
.

The first summand of U(Q) is the relative gap of the node’s dual bound to the root
dual bound. The normalization is necessary to make the left and right summand
comparable. The right side compares the number of visits of the parent node to
the visits of the node itself. The weight ε is used as a balancing parameter. Since
uct originates from game tree search, after an open node was explored, a new path
is traversed. At every intermediate node, starting at the root node, the child with
higher uct-score U(Q) is selected, until an open node R is reached. After R has
been processed, the visit counters are increased by 1 along the path from the root
to R. While uct is bound-driven at the beginning of the search and very much
resembles bfs in this respect, the visit factor gradually gains importance. The
authors suggest to use uct only at the very beginning of the search.

The implementation of uct in Scip was done by the author of the thesis. As
suggested by the description in [SSR12], the user needs to set a concrete limit on
the number of nodes evaluated by uct before Scip switches to the node selection
method with second highest priority. Note that the tree of Scip does not support
the required forward path data structure to seek paths starting at the root node.
Instead, the current implementation of uct in Scip compares the open nodes Q

4.3. COMPUTATIONAL ASPECTS OF THE THREE SOLVING PHASES 49

and R by following their paths until they intersect in a node S. The two children
of S, S− and S+, are then evaluated as representatives of Q and R, and the
open node with the higher representative score is kept as best node. The uct
implementation in Scip iterates over all open nodes of the tree and keeps track of
the best open node found w.r.t the uct-score in every iteration. Since we use uct
in our experiments only for a very limited number of tree nodes–31, to be precise–
this implementation does not cause substantial overhead compared to a runtime
optimized implementation.

Distribution diving and Active constraint diving

We present the Distribution diving heuristic, which was originally proposed as a
branching rule in [PC11]. Since the authors aim at finding feasible solutions rather
than proving optimality, the approach was implemented as a diving heuristic for
Scip by the author of this thesis.

The score for the heuristic tries to estimate the solution density of a subtree,
i.e. the percentage of leaf nodes of the subtree that contain feasible solutions. Let
all variable bounds be finite, i.e. let l, u at the current subproblem have finite
norm. Now, we formally replace the variables xj by random variables Xj following
a uniform distribution over their domain, with mean value and variance

E(Xj) =
lj + uj

2
V(Xj) =

{
(uj−lj+1)2−1

12 , if j ∈ I,
(uj−lj)2

12 , else.
(4.1)

Constraint activities become random variables, as well. Assuming the variables to
be independent, we obtain for X = (X1, . . . , Xn)t and for every constraint atix ≤ bi
of the subproblem a mean value µi and a variance σ2

i for the constraint activity
by summation:

µi = E(atiX) =

n∑
j=1

aijE(Xj), and σ2
i = V(atiX) =

n∑
j=1

a2
ijV(Xj). (4.2)

In order to estimate the solution density for constraint i, we approximate
the probability P(atiX ≤ bi) by means of a normally distributed variable zi ∼
N (µi, σ

2
i), cf. Section 3.3.2. For a proof of convergence that uses the Lyapunov

central limit theorem, we refer to [PQ08]. Figure 4.1 shows the relevant distri-
butions for an example constraint x + 0.5y + z ≤ 10 that involves three integer
variables x, z ∈ {0, . . . , 5}, and y ∈ {0, 10}. The activity of the constraint is mod-
eled as a random variable Q with mean value µ = 7.5 and variance σ2 ≈ 8.3,
calculated via (4.2). The top picture shows the probabilities that Q takes any
particular value t ∈ {0, 0.5, 1, . . . , 15}. It also shows the probability density func-
tion fµ,σ2(t) of a normally distributed variable R ∼ N (µ, σ2). The second dia-
gram reveals the close relationship between the cumulative distribution functions
of Q and R; the actual probability P(Q ≤ 10) ≈ 0.82 is approximated well by
Φµ,σ2(10) = P(R ≤ 10) ≈ 0.81.

50 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fµ,σ2(t)

P (aTX = t)

0 2 4 6 8 10 12 14

t

0.0

0.2

0.4

0.6

0.8

1.0

P (aTX ≤ t)
Φµ,σ2(t)

Figure 4.1: The actual probability density of Q := X + 0.5Y + Z, where
X,Z ∼ U ({0, . . . , 5}) and Y ∼ U ({0, . . . , 10}), and its approximation by a normal
distribution N (µ, σ2). The actual solution density is P(Q ≤ 10) ≈ 0.82, whereas
the normal approximation yields 0.81.

If there is a variable j ∈ I ∪ C with infinite domain and nonzero coefficient
aij 6= 0 for constraint i, we cannot apply the mean and variance calculation (4.1).
If j is unbounded in the satisfying direction of i, i.e. aij > 0 and lj = −∞ or aij < 0
and uj =∞, j can always be used to "repair" any partial assignment of the other
variables of i. We therefore associate a probability of 1 to the satisfaction of i.
If j is only unbounded in the violating direction of i, there either exists another
variable j′ 6= j which is unbounded in the satisfying direction of i, in which case we
assume a probability of 1 that we can satisfy i by repairing the activity of i using
j′. If, however, there is no such j′, we can instead infer a finite bound for j by
using the minimum activity of i. In order to account for infinite bounds, we only
need to keep counters for the number of infinite bounds in the satisfying direction
of i. If the counter is not zero, we assign a probability of 1 as the approximated
probability for i. If the counter becomes zero, we use the normal approximation
for the calculation of the solution density for i.

Let Pi the approximated probability to satisfy constraint i at node P , and
let P+

i (j) and P−i (j) the altered probabilities after branching on variable j ∈ FP .
Note that all probabilities lie in the unit interval [0, 1]. Thus, they provide a
normalized comparison between constraints whose activities may otherwise act
on different scales. Based on this notion, different scoring functions are possi-

4.3. COMPUTATIONAL ASPECTS OF THE THREE SOLVING PHASES 51

ble. For each of the scoring functions below, we only consider the score for the
branching direction upwards (s+

j). The score s−j for branching downwards is de-
fined analogously. A candidate variable j∗ ∈ F is taken which has the maximum
score sj = max{s−j , s+

j }. The maximizing direction determines the child node that
should be explored first. We use Mj to denote all constraints with nonzero co-
efficients for variable j. In total, our Scip-implementation of Distribution diving
features five different score functions which use the solution-density probabilities:

1. Branch on the variable with the highest probability for any constraint

s+
j = max

i∈Mj

{P+
i (j)}

2. Branch on the variable with the lowest probability

s+
j = max

i∈Mj

{1− P+
i (j)}

3. Branch on the variable with most violating votes in one direction

s+
j = |{i ∈Mj : {P+

i (j) < P−i (j)}|

4. Branch on the variable with most satisfying votes in one direction

s+
j = |{i ∈Mj : {P+

i (j) > P−i (j)}|

5. Branch on the variable with the largest difference between the current and
the child probability

s+
j = max

i∈Mj

{Pi − P+
i (j)}

While the scores 1–4 are taken from [PC11], we added a difference score 5 as
fifth scoring possibility. Chinneck and Pryor [PC11] report good results when using
a score with decreasing constraint probabilities from the parent to the child node.
The rationale behind this is that forcing variables into a direction that decreases
the constraint probability leads to many additional fixings of other variables in
the child node through propagation. For our SCIP-implementation of Distribution
diving , we could not identify a score function inside Distribution diving which
clearly outperformed the other scores. By default, Distribution diving in its current
implementation revolves through the score functions, using one score function per
dive.

A variant of the score function 3, also mentioned in [PC11], is to consider only
the subset of active constraints at the current node. A constraint i : atix ≤ bi is
active at a node Q if the LP-solution yLPQ satisfies i with equality: atiy

LP
Q = bi. If

j ∈ FQ has a nonzero coefficient aij in an active constraint i, branching on j in
the violating direction, i.e. upwards for aij > 0 or downwards for aij < 0, renders
yLPQ infeasible for i in the child nodes and thus increases the chance to shrink
other variable domains further through domain propagation. The Active constraint

52 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

diving heuristic inside Scip makes use of this observation for its branching score.
It prioritizes variables and branching directions with a large violating impact on
the active constraints at the current node.

Other diving heuristics inside Scip employ scores based on, e.g., the fraction-
ality of the candidates, the number of up- and down-locks, or the variable pseudo-
costs, see [Ach07] for more details. All diving heuristics of Scip employ a limit of
the number of LP iterations, which is calculated in proportion to the total number
κScip of LP iterations that Scip needed so far. Let h be a diving heuristic, let κh
be the number of LP iterations that h consumed so far, and let yh (y∗h) denote the
number of (incumbent) solutions that h found in the past. Let ch be the number
of times the heuristic has been previously called. By using a quotient κquoth ≥ 0
and an offset κoffh ≥ 0, The new iteration limit κmax

h is then calculated as

κmax
h =

(10y∗h + yh) + 1

ch + 1
· κquoth · κScip + κoffh − κh. (4.3)

The heuristic is not executed if κmax
h ≤ 0, i.e. if it already consumed too many

iterations in the past, compared to its success in finding solutions. Otherwise, it is
allowed to perform max{κmax

h , 10000} iterations. Scip with default settings uses
κquoth = 0.05 and an offset of κoffh = 1000 for all diving heuristics.

In an aggressive setting, we tested increased values for the parameters κquoth

and κquoth , together with a more frequent execution schedule by using a frequency
of 1 for each diving heuristic. Computational results in Section 5.1.1 indicate that
the phase-1 running time performance of Scip is slightly improved through this
aggressive diving schedule.

4.3.2 The Improvement phase

The experiment in Section 2.4 has revealed that primal heuristics have the highest
impact on the primal integral among the different components. Hence, we focus on
adjustments of the execution strategy of primal heuristics within Scip for improv-
ing the performance during the Improvement phase. Apart from diving heuristics,
which we discussed in the previous section, Large Neighboorhood Search heuristics
(cf. Section 2.3.3) are another subclass of primal heuristics which are particularly
powerful for improving the incumbent solution. However, LNS-heuristics are the
computationally most expensive primal heuristics inside Scip because they solve a
MIP themselves at every execution. Both the execution frequency of LNS heuris-
tics during the search and the limitations to the solving process of the sub-MIP
have to be carefully constrained. We discuss some important parameters which
are common to all LNS-heuristics in the following introduction of the Proximity
search heuristic, which was introduced in [FM14] and implemented in Scip by the
author of the thesis.

The Proximity search heuristic [FM14]

Proximity search is a Large Neighborhood Search heuristic which solves a sub-MIP
with a different objective function. For the reformulated sub-MIP inside Proximity

4.3. COMPUTATIONAL ASPECTS OF THE THREE SOLVING PHASES 53

search, the objective c of the original MIP P is replaced by a distance function
between a solution x and the current incumbent ŷ of P . An objective cutoff is
given as a hard constraint instead. For the distance function ‖·‖, we only consider
the binary variables B of the problem,

B = {j ∈ I : lj = 0, uj = 1}.

The distance function between x and ŷ is the Hamming-distance between the two:

‖x− ŷ‖ =
∑

j∈B,ŷj=0

xj +
∑

j∈B,ŷj=1

1− xj .

The distance between values on integer variables I \ B is not used for practical
reasons because the linear formulation would require auxiliary variables. If B = ∅,
the heuristic is not applied.

Let θ > 0 be an objective cutoff. The sub-MIP is formulated as

min ‖x− ŷ‖
s.t. Ax ≤ b

ctx ≤ ctŷ − θ
l ≤ x ≤ u
xj ∈ Z ∀j ∈ I

(Proximity search sub-MIP)

Clearly, every feasible solution for (Proximity search sub-MIP) is feasible for P .
Furthermore, the use of the objective cutoff makes every feasible solution a new
incumbent for P . The Local branching heuristic [FL03], which is also available in
Scip, uses the Hamming-distance as a constraint; The solution space is reduced
to solutions x with ‖x− ŷ‖ ≤ k for a suitable k > 0.

For determining the objective cutoff θ, our implementation uses a fixed fraction
p ∈ [0, 1] by which Proximity search should at least improve the current incumbent:

θ = p · (ctŷ − δ (P))

The parameter p is called minimprove and also used inside other LNS heuristics.
Its default value is p = 0.01, i.e. a 1%-improvement. The solving process of the
sub-MIP is restricted by delimiting the number of nodes and LP iterations allowed
in the sub-MIP. Let n be the number of branch-and-bound nodes explored so far.

The maximum number of nodes nproxi which Proximity search is allowed to
consume is calculated as

nproxi = min{qproxi · n+ noffproxi − nusedproxi, n
max
proxi},

where each of qproxi, noffproxi, and n
max
proxi are subject to the user parameters nodesquot,

nodesoff, and maxnodes, respectively. Similarly, the number of LP-iterations
κproxi for the Proximity search sub-MIP is bounded by 20% of the number of LP
iterations spent on the original root node LP-relaxation of P . On the one hand,
κproxi is used for the root node of the sub-MIP, and on the other hand, the eval-
uation of subsequent nodes is restricted further to take at most κproxi/nproxi LP

54 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

iterations. The rationale is to abort the search very early if the sub-MIP is not
substantially easier to solve than the original one. Furthermore, all LNS-heuristics
of Scip come with a parameter to specify the minimum number of nodes between
a new incumbent was found, and the execution of the heuristic with this new
incumbent.

For our Improvement phase experiments, we compared the normal heuristic
execution strategy to more aggressive strategies, which involved either all heuristics
or only affected the execution of LNS-heuristics.

4.3.3 The Proof phase

The Proof phase begins when the solver has found an optimal solution during
search. Optimality then needs to be proven by traversing the remaining search
tree. The use of the simplex-algorithm with its warm-start capabilities makes a
dfs node selection the method of choice in this scenario. Besides, primal heuristics
cannot further contribute to the solution process during the Proof phase. It is
therefore consequent to turn off primal heuristics completely in order to further
reduce the node processing time.

Cutting plane separation has been shown to be effective for reducing the dual
integral in Section 2.4. We test a setting where we reactivate cutting plane sepa-
ration when we enter the Proof phase for further reducing the tree size.

The largest impact on the progress of the dual bound, however, was observed for
the branching rule. In the following, we discuss two modifications to the reliability
pseudo/inference branching branching rule which can be beneficial for tree size
reduction.

The variance of pseudo-costs

Pseudo-costs ([BGG+71], see also Definition 3) become more reliable over time
when branching information for the variables is observed. In order to grant good
branching decisions at early stages of the search, the branching variable selec-
tion is performed by strong branching and pseudo-costs are updated based on
the gathered cost information. Since strong branching is computationally expen-
sive, one is interested in restricting strong branching calls only on variables for
which not enough pseudo-cost information has been gathered so far. Achterberg
et al. [AKM04] defined the current state-of-the-art scheme to decide whether to
apply strong branching by introducing reliability pseudo-cost branching. For a re-
liability parameter ηrel > 0, strong branching is performed only on variables j ∈ F
for which the number of branching observations η+

j , η
−
j in at least one branching

direction is smaller than ηrel. Empirical results [AKM04] indicate that reliability
pseudo-cost branching is superior to pure strong branching, which is computation-
ally too expensive, and pure pseudo-cost branching, which suffers from unreliable
information at the beginning of the search.

The drawback of reliability pseudo-cost branching is that one fixed parame-
ter ηrel is supposed to account for the reliability of all variables of the problem

4.3. COMPUTATIONAL ASPECTS OF THE THREE SOLVING PHASES 55

equally well. Intuitively, it seems desirable to have a more individual look at the
pseudo-cost information of every variable and to continue strong branching on
those candidates whose pseudo-cost estimates fail to converge. Since the variable
pseudo-costs are a sample mean, we might also want to use the sample variance for
a refined reliability criterion, provided we have observed at least 2 gain samples.

Definition 9. Let X1, . . . , Xn be independent, identically distributed samples. The
corrected sample variance about the sample mean X̄ is given by

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
. (4.4)

The corrected sample variance is an unbiased estimate of the variance of the
underlying distribution of the Xi. Equation (4.4) can be rewritten to allow for
constant-time updates of s2 every time a new sample X is observed:

(n− 1) · s2 =

n∑
i=1

(
Xi − X̄

)2
=

n∑
i=1

(
X2
i − 2XiX̄ + X̄2

)
=

n∑
i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

=

n∑
i=1

X2
i − nX̄2

=

n∑
i=1

X2
i −

1

n

(
n∑
i=1

Xi

)2

With increasing n, we can expect X̄ to approach the mean of the distribution from
the law of large numbers. Under the assumption that the samples X1, . . . , Xn are
drawn from a normal distribution with unknown mean µ and variance σ2, the
random variable

T =
X̄ − µ
s/
√
n

is distributed along a Student’s t-distribution with n−1 degrees of freedom [FBM03].
This relation can be used to construct confidence intervals for the true value of µ
for any fixed error-rate 0 < α < 1: with the help of the α-percentile tα,n−1 > 0
such that

1− α = P (−tα,n−1 ≤ T ≤ tα,n−1) , (4.5)

the confidence interval C which contains the true value of µ with a probability of
1− α is

C =

[
X̄ − tα,n−1

s√
n
, X̄ + tα,n−1

s√
n

]
. (4.6)

56 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Moreover, we can estimate the relative error of our estimation as

εrel = tα,n−1 ·
s√
n|X̄| . (4.7)

whenever |X̄| > 0.
Applied to pseudo-costs, we determine the relative error for the pseudo-costs

associated with every variable. Whenever a new unit gain for for variable j ∈ F in
the upwards branching direction at a node P was observed, we increase the counter
η+
j by 1, update the sum of unit gains σ+

j = σ+
j + ς+

j (P) and, in addition, keep
track of the sum of squared unit gains (ς+

j (P))2. This enables us to calculate the

sample variance
(
s+
j

)2
whenever η+ ≥ 2. At a node Q, we calculate the relative

error ε+j of the current pseudo-costs Ψ+
j as

ε+j = 1.96 ·
s+
j√

η+
j Ψ+

j

. (4.8)

In (4.8), we substitute tα,n−1 from (4.7) by the constant 1.96, which represents the
limit α-percentile limη+j →∞

tα,η+j −1 for α = 0.05. Thus, we slightly underestimate
the relative error of the pseudo-cost at a confidence level of 95%. Recall that
pseudo-costs are always non-negative. Hence, we can omit the absolute in the
denominator of (4.7). Furthermore, if the upwards pseudo-costs of j are equal to

0, this also holds for the sample variance
(
s+
j

)2
. We therefore set the relative error

to 0 in this case.
Similarly to the reliability threshold ηrel, we use a confidence-threshold ηconf

which we set to 0.5. If the relative error in any of the directions max{ε+j , ε−j } ex-
ceeds ηconf, the variable is considered unreliable, and strong branching is performed
again.

Adjusting score weights

In Section 2, we introduced the individual score weights of the reliability pseu-
do/inference branching branching rule in Scip. By default, they prioritize the
pseudo-costs of the variables for a branching decision. The other available scores
for the variable conflicts as well as the inference and cutoff history of a variable
have small weights, which makes them a tie-breaker if two candidate variables have
the same pseudo-cost score, in particular on problems without an objective. Even
on problems with an objective function and varying pseudo-costs between the can-
didates, it is not clear a priori that the default weight configuration is indeed the
best available. In order to adapt the configuration to the problem at hand, we
keep track of the number of different leaves of the branch-and-bound tree of the
following kind:

• nobj the number of leave nodes which could be pruned because their dual
bound exceeded the current incumbent, and

4.4. HEURISTIC PHASE TRANSITION CRITERIA 57

• ncut the number of leave nodes which were detected to be infeasible.

Based on the leaf ratio q = (ncut+1)/(nobj+1), we adjust the weights for the cutoff-
and conflict scores of reliability pseudo/inference branching by ωcut ← ωcut · q,
ωconf ← ωconf · q. If ncut � nobj, more emphasis is put on selecting variables which
have a high cutoff- and/or conflict-score, while the influence of pseudo-costs on the
selection of the branching variable gets reduced. On the contrary, if the terminal
states are dominated by nodes pruned because of their dual bound, we decrease
the influence of the conflict and cutoff weights on the scoring function further.
Note that because of q > 0, we do not decrease a weight to 0.

The counters do not account for nodes which have been explored during strong-
branching. We only perform this adjustment once when entering the Proof phase.
Here, we assume that by the time we reach the Proof phase, we have already
explored a portion of the tree with sufficiently many leaves falling into the above
categories. In practice, however, it might be beneficial to adjust the score weights
independently of the phase, especially, if the second phase transition happens early
during the search before a good leaf ratio has been determined.

4.4 Heuristic phase transition criteria

Because of the practical impossibility to detect t∗2 exactly before the solving pro-
cess finishes, we present in this section criteria that we use to determine a heuristic
phase transition for our phase-based solver. By the time a criterion is met, which
we denote by tcrit2 , we assume that the current incumbent is optimal and let the
solver react on this assumption by switching to settings for the Proof phase. We
use the term "heuristic phase transition" in order to emphasize that there is no
guarantee in general for the criterion-based assumption of optimality of the in-
cumbent ŷ(tcrit2) to hold. In practice, the criteria possibly under- or overestimate
the true phase transition t∗2. A phase-based solver that uses different settings after
the heuristic phase transition remains exact; the use of different settings based on
the heuristic phase transition might only influence the performance of the solver
to finish the solving process.

We present three criteria, which establish properties of the tree and the solving
process. This work has not been proposed elsewhere as to the author’s knowledge.

4.4.1 The best-estimate criterion

Pseudo-costs (cf. Definition 3) are an estimate for the lower bound gain after
branching on a variable. After sufficient pseudo-cost information is available,
pseudo-cost estimates replace the computationally expensive procedure of strong
branching in Scip. Recall that the estimated gain for branching up on j is
Ψ+
j · f+

j (P), and the estimated gain after branching down on j is Ψ−j · f−j (P).
Apart from their use in the selection of the best candidate for branching, pseudo-
costs can also be applied to estimate the best solution attainable from a node P .

58 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Whenever FP 6= ∅, we define

Ψ∗j (P) := min{Ψ−j · f−j (P),Ψ+
j · f+

j (P)} (4.9)

as the estimated minimum cost to make j ∈ FP integer.

Definition 10 (Best-estimate [BGG+71]). The best-estimate for a MIP P for
which the LP-relaxation has been solved is given by the formula

ĉP = ctyLP
P +

∑
j∈FP

Ψ∗j (P). (4.10)

The best-estimate is an estimate of the optimal value of P . Note that the
best-estimate (4.10) is exact for all nodes P for which FP = ∅. The rationale
behind (4.10) is to independently consider the cost of making every single j ∈
FP integer. The best-estimate does not account for a possible interplay between
variables j, k ∈ FP to influence the integrality of each other. This observation
makes ĉP likely to overestimate the actual objective value of the best attainable
solution from the subtree rooted at P . Another important aspect concerns a
possible degeneracy of the LP-relaxation: Whenever there exist different optima
to the node LP-relaxation, they might lead to different estimates.

In order to determine an estimate of an open node Q, for which the LP-
relaxation has not been solved, we infer an estimate from the parent of Q. Let
Q be the child of another node P after branching upwards on j ∈ FP . An initial
estimate of Q can be calculated via

ĉQ = ĉP −Ψ∗j (P) + Ψ+
j · f+

j (P).

It is noteworthy that the node estimates in Scip are not updated dynamically
together with the pseudo-costs due to running-time considerations, i.e. Q keeps its
initial estimate during the entire time it is in Q, although more recent pseudo-cost
information on the branching variable j is available.

We call the minimum best-estimate among the set of open nodes Q,

ĉmin
Q = min{ĉQ : Q ∈ Q} (4.11)

the active estimate. As first heuristic phase transition, we compare the incumbent
solution with the active estimate and assume the current incumbent to be optimal
if the active estimate is not better than the incumbent objective anymore:

testim2 := min
{
t ≥ t∗1 : c(t) ≤ ĉmin

Q (t)
}

(4.12)

Note that by requiring t ≥ t∗1, we make sure that there is indeed an incumbent
ŷ(t) 6= ∅.

4.4. HEURISTIC PHASE TRANSITION CRITERIA 59

4.4.2 The rank-1 criterion

With an increasing number of explored branch-and-bound nodes, it becomes less
and less likely to encounter a solution better than the current incumbent. On
the other hand, every unprocessed node Q ∈ Q has the potential to contain a
better solution in its subtree. The second criterion for heuristic phase transition
is based on the following definition of node ranks. The rank rgQ represents the
minimum position of node Q in any list PdQ that contains all nodes at depth dQ
in nondecreasing order of their optimal solution.

Definition 11. Let T be the search tree after termination, and define coptQ be the
optimal objective value for node Q ∈ T (or ∞ if there is no feasible solution for
Q). We define the rank rgQ of Q as

rgQ :=
∣∣∣{Q′ ∈ T : dQ′ = dQ, c

opt
Q′ < coptQ }

∣∣∣+ 1. (4.13)

The root node P0 trivially has a rank of 1, because it is the only node at depth
0. Indeed, if T were known in advance, the rank is defined in such a way that an
optimal solution can be found by following a path of nodes of rank 1, starting at
the root node.

Although such information is practically unavailable, we still pursue the idea of
node ranks. If the solving process has not uncovered an optimal solution yet, there
exists a rank-1 node among the open nodes Q. Note, however, that there may even
be rank-1 nodes although the current incumbent is already optimal. As for the
best-estimate criterion, we use the best-estimate (cf. Definition 10) to circumvent
the absence of true knowledge about best solutions in the unexplored subtrees.
For every depth d, we keep track of the minimum node estimate at this particular
depth so far, including feasible nodes, i.e. subproblems with feasible LP-relaxation
solutions. We impose a partial order relation on the nodes by

Q′ < Q ⇔ Q′ was processed before Q, ∀Q′, Q ∈ T,Q′ 6= Q.

With this partial order relation, we define the set of rank-1 nodes

Qrank-1 := {Q ∈ Q : ĉQ ≤ inf{ĉQ′ : Q′ < Q, dQ′ = dQ}} (4.14)

as the set of all active nodes with a best-estimate at least as good as the best
evaluated node at the same depth. If there is an open node Q at a depth dQ which
was not yet explored by the solving process, it holds that Q ∈ Qrank-1 since

ĉQ ≤ inf{ĉQ′ : Q′ < Q, dQ′ = dQ} = inf ∅ =∞.

Every time a node is branched on, its two children are inserted in an array Qd
of open nodes at their depth d. Qd is sorted in nondecreasing order of the best-
estimates of the nodes. In order to keep the set Qrank-1 updated, we maintain the
minimum best-estimate of every processed node for every depth of the branch-and-
bound tree. After a node Q ∈ Qrank-1 was selected to be explored next, we delete
all nodes with a larger best-estimate from QdQ .

60 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Using the following rank-1 criterion, we assume that the current incumbent is
optimal when Qrank-1 becomes empty:

trank-12 := min{t ≥ t∗1 : Qrank-1(t) = ∅}. (4.15)

Recall that the rank-1 criterion Qrank-1 = ∅ is never satisfied as long as there
exist open nodes which are deeper in the tree than any previously explored node.
The main difference between the rank-1 and the best-estimate criteria in (4.12) is
that no direct comparison between an incumbent solution objective and the node
estimates is performed.

4.4.3 A logarithmic model of the solving progress

In this section, we discuss the use of a logarithmic model of the solving progress
for heuristic phase transition. Let P be a feasible MIP with nonzero objective
c 6= 0, and let S be a solver to be used for solving P . After S has been started
to solve P , over time we observe a series of k ≥ 0 incumbent solutions (ti, ŷ(ti)),
i = 1 . . . , k, at discrete points in time ti > ti−1 > 0 for all i > 1, and with strictly
decreasing objective value c(i) := c(ti). For k ≥ 1, we model the progress of S as
a logarithmic function:

Definition 12 (logarithmic primal progress). Let S be a solver to solve a MIP P .
Let k ≥ 1 denote the number of incumbent solutions ŷ(ti) for P found by S at time
ti for 1 ≤ i ≤ k. We call a logarithmic function q : R+ → R,

q(t) = α log t+ β

the logarithmic primal progress of S for P with intercept β and slope α, if q
minimizes the least-square-sum error

k∑
i=1

(q(ti)− c(i))2 = min
a,b∈R

k∑
i=1

(a log(ti) + b− c(i))2. (4.16)

For k = 1 solution, the logarithmic primal progress is not unique. Every
function r = ar log(t) + br such that

ar log(t1) + br = c(1)

is a logarithmic primal progress. For k = 2, α and β can be determined by solving
the linear system (

log(t1) 1
log(t2) 1

)(
α
β

)
=

(
c(1)
c(2)

)
which always has a unique solution because the matrix has full rank due to the
requirement t1 6= t2. The interesting case is k ≥ 3.

Lemma 1. Let S be a solver, which found k ≥ 3 incumbent solutions for a MIP
P at points in time tk > tk−1 > · · · > t1 > 0. Let xi := log(ti) for all 1 ≤ i ≤ k.

4.4. HEURISTIC PHASE TRANSITION CRITERIA 61

The logarithmic primal progress q of S is unique, and its coefficients α, and β can
be written as

α =

k∑
i=1

c(i)xi − 1
k

k∑
i=1

xi
k∑
i=1

c(i)

k∑
i=1

x2
i − 1

k

(
k∑
i=1

xi

)2 (4.17)

and

β =

1
k

k∑
i=1

c(i)
k∑
i=1

x2
i − 1

k

k∑
i=1

c(i)xi

k∑
i=1

x2
i − 1

k

(
k∑
i=1

xi

)2 . (4.18)

Proof. Lemma 1 can be proven by setting the partial derivatives of (4.16) w.r.t. a
and b to zero.

The interesting observation about the regression coefficients of the logarithmic
primal progress is that they only require constant-time operations for an update,
if a new incumbent is found. Algorithm 2 formalizes the update procedure for
the regression coefficients. It is called every time a new incumbent is found. The
procedure maintains sum variables S∗ for the relevant pieces of the primal bound
history. In line 6, the procedure makes sure that if more than solution is found
at time ti, we keep only the last one. Otherwise, k is increased by 1. Hence, the
solution times ti represented by k are indeed all distinct. If the number of incum-
bent solutions k at distinct points in time is at least 3, we update the coefficients
of the logarithmic primal progress.

The logarithmic primal progress provides us with a continuous function that
approximates the (discrete) evolution of the primal bound of a MIP P over time.
Although the logarithmic primal progress q(t) is divergent for t→∞, its derivative
∂q/∂t = α/t tends to 0.

In order to use the logarithmic primal progress information for phase transition,
we need to measure the convergence of its derivative. Note that α and β depend on
the scale upon which the objective function of the MIP acts. Since the objective
scales can differ by orders of magnitude between two MIPs, it would be problematic
to impose a general threshold δ on the value of the derivative of q for triggering
the phase transition if (the absolute of) the derivative falls below δ. The following
definition uses the tangent of the logarithmic primal progress. At every point in
time t ≥ tk, the tangent of the primal progress has the form

lt(u) =
α

t
(u− t) + α log(t) + β =

α

t
u −α+ α log(t) + β︸ ︷︷ ︸
y-intercept dy(t).

(4.19)

As heuristic phase transition, we wait for the tangent y-intercept to go below
c(k). We use the relation between the first incumbent solution value c(1), the
last incumbent solution value c(k), and the y-intercept of the tangent of q as a
scale-neutral alternative which we call progress factor:

62 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

Algorithm 2: update-regression
Input : new incumbent objective c(k + 1) at time tk+1

Output : updated regression coefficients α, β of the logarithmic primal
progress

1 Set xk+1 := log(tk+1);
2 if k = 0 then
3 Initialize Sc2 , Sc, Scx, Sx, Sx2 := 0;
4 end
5 Update Sc2 := Sc2 + c(k + 1)2, Sc := Sc + c(k + 1),
Scx := Scx + c(k + 1)xk+1, Sx := Sx + xk+1, and Sx2 := Sx2 + x2

k+1;
6 if k ≥ 1 and xk+1 = xk then
7 Sc2 := Sc2 − c(k)2, Sc := Sc − c(k), Scx := Scx − c(k)xk, Sx := Sx − xk,

and Sx2 := Sx2 − x2
k;

8 else
9 Set k := k + 1 ;

10 end
11 if k ≥ 3 then

12 α :=
Scx− 1

k
ScSx

Sx2−
1
k
S2
x
;

13 β :=
1
k
ScSx2−

1
k
Scx

Sx2−
1
k
S2
x

;

14 else
15 α, β := ∅;
16 end
17 return α, β;

Definition 13. Let α, β ∈ R be the coefficients of a logarithmic primal progress
q, k ≥ 3 the number of incumbent solutions, and t′ > tk. Let dy(t′) denote the
y-intercept of the tangent of q as a function of time. We define the progress factor
λ(t′) as

λ(t′) :=
c(k)− dy(t′)
c(k)− c(1)

. (4.20)

Requiring that the y-intercept dy(t′) falls below c(k) is equivalent to λ(t′) ≤ 0.
If there were at least 3 distinct incumbent solutions found, the third of which

at time t3, we assume the current incumbent to be optimal when

tlog2 := min{t ≥ t3 : λ(t) ≤ 0}. (4.21)

We call the condition λ(t) ≤ 0 in (4.21) logarithmic criterion. This idea is best
illustrated in Figure 4.2, which shows the evolution of the primal bound over
time as points (ti, c(i)) for the instance csched010 obtained with Scip during a
computational experiment for Section 5.2 Note that although an optimal solution
was found after 689 seconds for this instance, the Proof phase was not finished after

4.5. ESTIMATES OF SEARCH TREE PROPERTIES 63

0 200 400 600 800 1000

t in sec.

350

400

450

500

550

600

650

O
b

je
ct

iv
e

q(t)

lt∗2 (t)

(ti, c(i))

copt

Figure 4.2: Example of a logarithmic primal progress q(t) and its tangent lt∗2(t).

a time limit of two hours. The rightmost point (tk, c(k)) belongs to an optimal
solution for this instance, as indicated by the dotted line. The logarithmic curve
is the logarithmic primal progress q(t) for all depicted points. Finally, the tangent
lt∗2 of q at the second phase transition is shown. The y-intercept of the tangent
is clearly above c(k) = copt, yielding a progress factor λ(t∗2) ≈ 0.16. Thus, the
logarithmic criterion is not reached at time t∗2. For t′ > t∗2 the progress factor is
monotonously decreasing and reaches 0 at tlog2 ≈ 1306 seconds.

The use of the logarithmic primal progress has its limitations: We require at
least three incumbent solutions. Furthermore, the use of time in all precedent
equations can cause problems for the reproducibility of an experiment, when the
time-measurement itself is non-deterministic, as in the case of Scip.

For our experiments, we replace the time ti, after which incumbent i for 1 ≤
i ≤ k was found, by the number of branch-and-bound nodes ni and the number of
LP-iterations κi. As a consequence, the number k of incumbent solutions might
be different if we exchange the measure. If, e.g., we measure the number of nodes
and a series of incumbent solutions is found during the root node, only the most
recent is stored in the sums of Algorithm 2.

4.5 Estimates of search tree properties

In this section, we review some of the existing work on search tree size-/cost
predictions for the branch-and-bound tree. Early work focused on predictions of

64 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

the number of explored tree nodes at termination. Let T denote the explored tree
after termination of branch-and-bound. In general, we are interested in the value
of a tree property

φ(T) =
∑
v∈T

φ(v).

In this setting, different tree characteristics can be modeled by suitable choices
for φ(); the number of tree nodes can be counted with φ(v) = 1∀v ∈ T . Other
tree characteristics of interest are the solving time in sec., or the total amount
of LP iterations. Indicator functions can be used to count the number of nodes
that satisfy a certain property, as, e.g., leaf nodes. In practice, before the search
has terminated, we have to rely on a suitable estimate φ̂(T) based on incomplete
information. Let t ⊆ T be the subtree explored so far at some intermediate stage
of the search. Let dmax

t denote the maximum depth of t.
Early work in this direction was conducted by Knuth [Knu74], who established

an estimate φ̂(T) of φ(T) for backtracking search. For this, repeated sample dives
are performed, starting at the root node. For a sample p ∈ N, the created subtree
t(p) is a single path in which at every depth i, i = 0, . . . , dmax

t(p)
− 1, one of the fi

possible child nodes 1 ≤ j ≤ fi is chosen at random following a uniform distri-
bution, i.e. with probability pi(j) = 1

fi
, and expanded next. The dive terminates

when fi = 0. No backtracking is performed.
From the collected branching factors fi, an estimate of the total number of

nodes of T is constructed as

φ̂(p)(T) =

dmax
t(p)∑
i=0

i−1∏
j=0

fi,

where vi is the node expanded at depth i in t(p). Knuth verifies this estimate to
be unbiased, i.e.

E
(
φ̂(p)(T)

)
= φ(T) ∀p ∈ N,

so that from the law of large numbers, we have

lim
p→∞

1

p

p∑
i=1

φ̂(i)(T) = φ(T) almost surely.

Knuth notes, however, that such an estimator exhibits a large variance. In order
to reduce the variance, he suggests to perform the child selection on a probability
distribution other than uniform. It is shown that there exists an optimal choice
for pi(j) making the estimator perfect, i.e. the estimator variance is zero. Such a
sequence of probability distributions is, however, hard to find without knowledge
of the entire tree.

Chen [Che92] describes a generalization of Knuth’s sampling technique. Here,
the nodes of the tree are partitioned into k different strata Sα, 1 ≤ α ≤ k, such
that

T =
k⋃

α=1

Sα, and Sα ∩ Sβ = ∅, β 6= α.

4.5. ESTIMATES OF SEARCH TREE PROPERTIES 65

Furthermore, the strata are ordered top to bottom such that for every edge (s, t) ∈
T , s ∈ sα, t ∈ Sβ , we have α > β.

For a given stratification of the nodes into k strata, Chen’s heuristic sampling
expands a subtree of at most k nodes in a top to bottom manner. Each stratum
Sα is represented by a single tree node sα, together with an estimate of the size
of this stratum ωα. Strata which have not been processed so far are kept in a
priority queue Q, sorted w.r.t the order relation on the strata. In every iteration,
the maximum element (sα, ωα) is selected and removed from Q. For every child
node t of sα, the associated stratum α(t) is determined. If no representative
for α(t) is present in Q, (t, ωα) is added to Q. Otherwise, if α(t) already has
some representative (sα(t), ωα(t)) ∈ Q, ωα(t) is increased by ωα, and t replaces the
current representative sα(t) in Q with a positive probability. The sampling method
terminates when Q is empty.

The estimator for φ(t) then reads

φ̂(T) =
k∑

α=1

ωαφ(sα).

Choosing the (negative) depth as a stratifier, heuristic sampling becomes Knuth’s
sampling method.

In [CKL06], Cornuéjols et al. present a method to estimate the final size of the
branch-and-bound tree early during the solving process. At every depth level i,
0 ≤ i ≤ dmax

t , their method counts the number of explored tree nodes wt(i) during
the solving process so far. The quotients γj = wt(j+1)

wt(j)
for 0 ≤ j ≤ dmax

t define the
so-called γ-sequence of t. By its γ-sequence, the authors characterize the shape of
t using the last full level lt := min{j : γj < 2}, the waist bt := argmaxj{wt(j)},
and the maximum depth dmax

t . Up to lt, t is a complete binary tree. The authors
observe that many branch-and-bound trees are complete binary trees at shallow
depths, and that the profile of t, (wt(0), . . . , wt(d

max
t)), is monotonously increasing

for 0 ≤ j ≤ bt, and monotonously decreasing afterwards.
Based on the assumption that the characteristics lt, bt, and dmax

t of the partial
tree t resemble those of the final branch-and-bound tree T after termination, the
authors construct an estimated γ-sequence γ̂ for T as follows:

γ̂j :=


2, 0 ≤ j ≤ lt − 1,

2− j−lt+1
bt−lt+1 , lt ≤ j ≤ bt − 1,

1− j−bt+1
dmax
t −bt+1 , bt ≤ j ≤ dmax

t .

From these estimations, an estimate n̂T of the number of nodes nT is given by

n̂T := 1 +

dmax
t∑
i=1

ŵT (i) =

dmax
t∑
i=1

i−1∏
j=0

γ̂j

The advantage of the latter model is that it can be updated during search tree ex-
ploration and is computationally cheaper than the methods of Knuth’s and Chen’s

66 CHAPTER 4. A 3-PHASE-APPROACH FOR SOLVING MIP

which require a number of independent sample dives into the tree starting from the
root node. Both Knuth and Chen noted that their method is applicable to branch-
and-bound search if the optimal objective value is known beforehand. Therefore,
such methods are best employed at the beginning of the Proof phase in order to
estimate the remaining effort to complete the search.

Chapter 5

Computational results

This chapter comprises all computational experiments conducted for working on
the MIP phases. First, a beneficial mixture of components is determined individu-
ally for each phase in Section 5.1. Results for the heuristic phase transition criteria
from the Improvement phase to the Proof phase are subject to Section 5.2. Finally,
we combine beneficial phase settings for each phase inside a phase-based solver,
which uses the presented criteria for a heuristic phase transition. We compare our
approach to Scip with default settings and a phase-based solver that can exactly
determine the phase-transitions.

Figure 5.1 serves as a motivation for the conducted experiments. It shows
how the overall solving time is distributed over the three phases, where we restrict
the diagram to instances for which the solving time in our setup lies between 10
seconds and 2 hours. On average, the Scip default settings spend approximately
13% during P1, 45.5% on P2, and 41.5% during P3. The figure shows that the
solving process spends more than 50% time for a proof of optimality on roughly a
third of the instances.

5.1 Individual phase experiments

In Section 4.2, we partitioned the solving process into a Feasibility phase, an Im-
provement phase, and a Proof phase. For each of the phases, we conducted com-
putational experiments with different settings of Scip. The selection of settings
was based on the discussion Section 4.3 of MIP-solver components and their use
regarding the phase objectives.

For the experiments in this section, we used an oracle that could exactly de-
termine the phase transition from the Improvement phase to the Proof phase, see
also Section 5.1.2. All computations were performed on a cluster of 32 computers.
Each computer runs with a 64bit Intel Xeon X5672 CPUs at 3.20GHz with 12MB
cache and 48GB main memory. The operating system was Ubuntu 14.4. A gcc
compiler was used in version 4.8.2. Hyperthreading and Turboboost were disabled.
We ran only one job per computer in order to minimize the random noise in the
measured running time that might be caused by cache-misses if multiple processes

67

68 CHAPTER 5. COMPUTATIONAL RESULTS

le
c
ts

ch
e
d
-4

-o
b

j
b
le

y
x
l1

tr
ip

ti
m

1
a
c
c
-t

ig
h
t5

e
x
9

n
e
o
s-

8
4
9
7
0
2

c
o
re

2
5
3
6
-6

9
1

b
n
a
tt

3
5
0

ro
c
II

-4
-1

1
o
p
m

2
-z

7
-s

2
1
0
te

a
m

s
m

in
e
-1

6
6
-5

m
z
z
v
4
2
z

a
ir

0
4

e
il

B
1
0
1

n
s1

2
0
8
4
0
0

n
e
o
s1

3
a
ir

0
5

ta
n
g
le

g
ra

m
1

n
w

0
4

n
e
o
s-

4
7
6
2
8
3

p
g
5
3
4

sp
9
8
ir

n
s1

6
8
8
3
4
7

ii
s-

p
im

a
-c

o
v

h
a
rp

2
n
e
o
s-

6
8
6
1
9
0

fa
st

0
5
0
7

m
c
sc

h
e
d

m
o
d
0
1
1

e
il

3
3
-2

a
fl

o
w

3
0
a

b
ie

ll
a
1

m
z
z
v
1
1

sa
te

ll
it

e
s1

-2
5

rm
in

e
6

ro
u
t

ta
n
g
le

g
ra

m
2

m
in

e
-9

0
-1

0
m

a
p
1
8

ra
il

5
0
7

u
n
it

c
a
l 7

rm
a
tr

1
0
0
-p

5
n
e
o
s-

1
3
9
6
1
2
5

a
p
p
1
-2

q
iu

ro
c
o
c
o
C

1
0
-0

0
1
0
0
0

n
e
o
s-

9
1
6
7
9
2

rm
a
tr

1
0
0
-p

1
0

n
s1

8
3
0
6
5
3

3
0
n
2
0
b
8

n
o
sw

o
t

n
e
o
s1

8
n
e
t1

2
n
e
w

d
a
n
o

b
ie

n
st

2
re

b
lo

ck
6
7

m
sp

p
1
6

d
fn

-g
w

in
-U

U
M

m
a
p
2
0

tr
1
2
-3

0
a
fl

o
w

4
0
b

p
k
1

n
4
-3

ra
n
1
6
x
1
6

st
e
in

4
5

ti
m

ta
b
1

m
is

c
0
7

n
e
o
s-

1
1
0
9
8
2
4

d
a
n
o
in

t
m

a
s7

4
b
in

k
a
r1

0
1

ii
s-

1
0
0
-0

-c
o
v

ii
s-

b
u
p
a
-c

o
v

z
ib

5
4
-U

U
E

p
w

-m
y
c
ie

l4
m

a
s7

6
m

ik
-2

5
0
-1

-1
0
0
-1

0

20

40

60

80

100

%
of

so
lv

in
g

ti
m

e

P1

P2

P3

Figure 5.1: Percentaged distribution of overall solving time on individual phases.

share common resources. If not otherwise stated, the experiments were run with a
time limit of 1h and a 24GB memory limit. As Scip version, we used Scip 3.1.0,
which we extended by the Distribution diving heuristic ([PC11], cf. Section 4.3.1)
and several event handlers to store additional information and to trigger the phase
transition. We use SoPlex [sop] in version 2.0 as solver for the LP-relaxations at
each node.

5.1.1 Feasibility phase

The goal of the Feasibility phase is a guidance of the solving process to a first
feasible solution. We suggest settings which influence the branch-and-bound search
alone. Thus, our experimental setup to compare different settings w.r.t. their
performance to find a first feasible solution involves only instances from our library
(cf. Section 3.1) for which Scip with default settings is not able to provide a feasible
solution until the root node is finished. Further, we excluded three instances which
are infeasible, and the instance stp3d, for which Scip did not finish solving the
root node within the time limit of 1h with any of the suggested settings. These
restrictions yield a remaining test set of 32 instances.

We tested nine different settings, which are summarized in Table 5.1. The
setting default represents the default settings of Scip. In the setting act&dist,
we activated two additional diving heuristics: Distribution diving and Active con-
straint diving [PC11], each with a frequency of 3. For details about these heuris-
tics, see 4.3.1. In a third setting aggrdive, we set the frequency parameter to 1

5.1. INDIVIDUAL PHASE EXPERIMENTS 69

Table 5.1: Scip settings tested during the Feasibility phase experiment.

Setting Explanation

default Scip with default settings

act&dist Scip default settings together with two more div-
ing heuristics

aggrdive more aggressive diving heuristics

inf use of inference branching rule
dfs inf dfs node selection and inference branching rule
rdfs inf dfs node selection with periodic restarts and in-

ference branching

uct inf Scip default settings with uct node selection for
the first 31 nodes.

uct-rdfs inf uct node selection for 31 nodes, then like rdfs
inf.

br-rdfs inf breadth-first node selection for 31 nodes, then like
rdfs inf

for all diving heuristics and increased the limits on LP iterations before the diving
is terminated. The inference branching rule was tested together with various node
selection rules: inf uses the default node selection of Scip, while dfs inf and
rdfs inf use the dfs and restartdfs node selection rules, respectively. The last
group of tested settings uses two-level node selection strategies: At the very top
levels of the search tree, exploratory node selection rules are used, whereas after
a small number of nodes, the node selection is switched to a different rule. All
of the settings in this group use an inference branching rule, and switch the node
selection after 31 nodes, corresponding to a complete binary tree of depth 5. In uct
inf, we apply the uct [SSR12] node selector for the first 31 nodes before switching
back to the default estimate-based node selection of Scip. The setting uct-rdfs
inf uses the rdfs inf setting after an initial search tree exploration via uct . The
last setting br-rdfs inf first uses a breadth-first search, and then switches to a
restartdfs node selection. Finally, we set a solution limit of 1 for every setting.

The results of the experiment are summarized in the Tables 5.2 and 5.3. For
an instance-wise outcome, we refer to the Tables H.1–H.5 in the appendix.

We use four different measures for evaluation: The first column t>0 shows
the time span in seconds after the solve of the root node was finished until the
first solution was found, or the time limit of 1h was reached. The second column n
shows the number of explored branch-and-bound nodes before termination because
a feasible solution was found, or the time limit was hit. The average LP iterations
per node that were performed after the root node solve was finished are presented
in total (κ/n) and without strong branching iterations(κ−sb/n), respectively. The
shown results are shifted geometric means with a shift of 10 sec, 100 nodes, and 100

70 CHAPTER 5. COMPUTATIONAL RESULTS

Table 5.2: Shifted geometric means of the time after root t>0 and the number of
nodes with a shift of 10 sec and 100 nodes.

t>0 % p n % p

act&dist 68.8 99.6 0.792 332.2 100.0 0.936
aggrdive 64.3 93.0 0.632 275.8 83.0 0.277
br-rdfs inf 34.4 49.7 0.001 269.7 81.2 0.583
default 69.1 100.0 332.3 100.0
dfs inf 51.7 74.9 0.117 1304.5 392.6 0.003
inf 49.7 71.9 0.166 491.6 147.9 0.290
rdfs inf 29.4 42.5 0.000 572.9 172.4 0.045
uct inf 36.7 53.1 0.004 228.5 68.8 0.125
uct-rdfs inf 31.7 45.9 0.000 318.4 95.8 0.969

LP iterations per node. We also give a percentage for every measure compared to
the default setting. Percentages lower than 100% are an improvement, while per-
centages above 100% denote a deterioration of the phase-1 performance. In a third
column named p, we show the two-sided p-value obtained from a Wilcoxon-signed-
rank test, see Section 3.3.4, between default and the setting in the corresponding
row. Small p-values indicate that the changes in the corresponding mean value
come from an improved (deteriorated) behavior over the test set, rather than only
a few outliers.

All non-default settings outperform default w.r.t. the time measure, albeit the
improvement observed for the act&dist setting is negligible. The setting aggrdive
yields an improvement of 7% over the default setting.

A more significant time reduction can be observed for the remaining settings
using an inference branching rule. Replacing the default branching rule by an
inference branching rule improved the time after root mean by 28%. The best
setting in this respect is rdfs inf, which reduces the time by almost 60%. The
dfs inf setting is the slowest amongst all settings which incorporate inference
branching . Yet, it is 25% faster in the shifted geometric mean than the default
setting. It should also be noted that dfs inf could not find feasible solutions
within the time limit on 3 instances. In these cases, the time after root is an actual
lower bound for the true time this setting will take until it finds a feasible solution.
There are two other settings that could not find solutions for every instance within
the time limit: inf fails on 2 instances, rdfs inf on 1. The fastest setting which
finds feasible solutions for all 32 instances is uct-rdfs inf, closely followed by
br-rdfs inf.

Also the uct inf setting shows a substantial improvement over the default
setting with a time reduction of about 47%.

It is not surprising that especially those settings which do not use strong branch-
ing outperform the default setting w.r.t. time, because strong branching often
consumes almost twice as many LP iterations as the tree search itself. The column
κ/n shows the LP iterations per node after the root solve was finished, including

5.1. INDIVIDUAL PHASE EXPERIMENTS 71

Table 5.3: Shifted geometric means of the LP iterations after root κ/n and κ−sb/n
with and without counting iterations used within strong branching . A shift of 100
iterations was used.

κ/n % p κ−sb/n % p

act&dist 1615.4 108.3 0.687 680.6 107.7 0.687
aggrdive 1795.5 120.4 0.084 766.1 121.2 0.030
br-rdfs inf 707.5 47.4 0.005 707.5 112.0 0.614
default 1491.7 100.0 631.9 100.0
dfs inf 110.2 7.4 0.000 110.2 17.4 0.000
inf 462.0 31.0 0.000 462.0 73.1 0.166
rdfs inf 125.4 8.4 0.000 125.4 19.9 0.000
uct inf 833.6 55.9 0.030 833.6 131.9 0.155
uct-rdfs inf 572.0 38.3 0.001 572.0 90.5 0.681

strong branching iterations. The iteration columns include LP iterations performed
during the execution of diving heuristics. Between the default setting and the
rdfs inf setting, a factor of 12 times more LP iterations per node is encountered
for the default setting. Even more LP iterations are performed by the settings
act&dist and aggrdive. Since more than 50% of the LP iterations are spent dur-
ing strong branching , we subtract the LP iterations used for strong branching in
the column κ−sb/n. The shifted geometric means are equal for all settings using an
inference branching rule. Even if strong branching iterations are not counted, the
inf setting needs 27% less iterations per node on the average than Scip with de-
fault settings. Both the dfs inf and rdfs inf settings show a reduction of more
than 80% iterations per node. Combining restartdfs with an exploratory search at
the beginning, the reduction of rdfs inf and the higher iteration numbers caused
by an initial uct or breadth-first node selection are within 12% of the iterations
per node consumed by the default setting, uct-rdfs inf taking less iterations
than br-rdfs inf. Recall that backtracking from a non-terminal node of the tree
causes both the LP relaxation to take more iterations and triggers the execution
of a diving heuristic. The small number encountered for rdfs inf compared to
uct inf also stems from the fact that Scip does not apply diving heuristics at
all when using dfs or restartdfs search. The use of an aggressive diving schedule
or uct inf in addition to the default node selection rule increases the iterations
count per node by 21% and 31% w.r.t. the default settings, respectively.

The n column shows uct inf as best setting with a node reduction of 31%
compared to the default setting. A very aggressive diving strategy applied by
the setting aggrdive also yields a substantial node reduction of 17%. The setting
rdfs inf requires 72% more nodes than the default setting. Note that n does not
account for auxiliary search nodes explored by default within diving heuristics.
The use of pure dfs or restartdfs node selection rules increases the number of
phase-1 nodes, by a factor of almost 4 for the dfs inf setting. A comparison of
the inference branching and uct inf columns reveals an interesting observation:

72 CHAPTER 5. COMPUTATIONAL RESULTS

While the use of an inference branching rule together with the Scip default node
selection rule increases the phase-1 number of nodes by 47% in the mean, the
use of uct for an initial exploration almost reverts this degradation into a node
reduction of 31%.

We conclude that adjustments to the default settings of Scip can substantially
improve the solver performance whenever no feasible solution was found during
the processing of the root node. The results show in particular that the use of an
inference branching rule outperforms a reliability pseudo/inference branching rule,
which is the default in Scip, if in addition the node selection strategy is altered.
Note that giving more weight to the inference score in the hybrid rule reliabil-
ity pseudo/inference branching is an alternative to the use of inference branching
alone. For a discussion of the weights, we refer to Sections 2.3.1 and 4.3.3.

As we expected, dfs without any backtracking strategy gets sometimes trapped
in infeasible portions of the search tree. This behavior is partially repaired by a
simple backtrack strategy such as periodic restarts after 100 leaf nodes. The time
improvement is highest for a restartdfs node selection and an inference branching
rule. This setting outperforms a pure dfs node selection in all respects. One
should keep in mind, however, that diving heuristics, which diversify the search
algorithm by providing alternatives to the main branching rule, are not applied in
this setting. Still, rdfs inf could not find a solution for the instance rd-rplusc-
21. Two-level strategies uct inf, uct-rdfs inf and br-rdfs inf were almost as
fast as rdfs inf, but find feasible solutions for all instances. We conclude that
these strategies are best suited for the Feasibility phase amongst all tested settings
because their trade-off between exploration, exploitation, and the application of
alternative branching strategies through diving heuristics outperforms the default
settings significantly without missing a solution.

Furthermore, the results indicate that the use of a two-level node selection rule
such as uct-rdfs inf, uct-rdfs inf, or br-rdfs inf can be useful inside LNS-
heuristics, where every feasible solution is a new incumbent to the original MIP.
Another, yet less substantial improvement of the Feasibility phase performance was
observed for a more aggressive schedule of all diving heuristics of Scip, whereas the
use of two additional, feasibility-driven diving heuristics alone, Active constraint
diving and Distribution diving , does not substantially alter the Feasibility phase
performance when used inside Scip.

Although we observed significant speed-ups compared to the default Feasibility
phase performance of Scip, altering the branching rule to inference branching
during that phase may lead to an undesired growth of the overall search tree and
make it harder or even impossible to achieve the goals of the Improvement phase
and the Proof phase.

5.1.2 Improvement phase

The goal of the Improvement phase is to guide the branch-and-bound search to-
wards an optimal solution after the feasibility of the model has been proven during
the Feasibility phase. In order to compare settings for the Improvement phase, we

5.1. INDIVIDUAL PHASE EXPERIMENTS 73

selected all feasible models from our test set for which Scip with default settings
does not find the first solution and an optimal solution at the same node of the
branch-and-bound tree. In particular, this excludes instances for which the first
found solution is already optimal (thereby omitting the Improvement phase). We
excluded another four instances for which the optimal objective value is unknown
by the time of this writing. Finally, we excluded the instances markshare1 and
harp2 for which numerical troubles led to a slight infeasibility of the incumbent
when reaching the time limit in two cases. The remaining test set consists of 120
instances.

The settings we tested in this section put different emphasis on how primal
heuristics are applied during the Improvement phase, in particular LNS-heuristics.
Apart from the default settings of Scip, we tested aggressive heuristic settings agg.
In addition to a more frequent execution strategy for the Scip primal heuristics, the
limits for diving and LNS-heuristics concerning LP iterations and sub-MIP node
limits, respectively, are less strict than in the default setting. For a detailed list
of changed parameters for the agg setting, we refer to Section H.1.1. The l-agg
setting uses aggressive settings only for the LNS-heuristics, while other heuris-
tics, in particular diving heuristics, are applied as by the default settings of Scip.
Another setting, agg05, is based on the aggressive setting agg for heuristic execu-
tion and, additionally, decreases the minimprove parameter for all LNS-heuristics
from 0.01 to 0.005. Three more settings alter the node selection rule used within
the sub-MIPs of the LNS-heuristics; l-uct, agg l-uct, and l-agg l-uct, which
adapt the settings default, agg, and l-agg, respectively, and additionally use a
uct node selection for the exploration of the first 31 nodes of the sub-MIPs, yield-
ing a two-level node selection rule inside LNS-heuristics. We test the two-level
strategy for solving sub-MIPs as a consequence of the Feasibility phase experiment,
where the two-level strategies were the quickest to find solutions on all tested in-
stances. Recall that every feasible solution to a sub-MIP is a new incumbent for
the original MIP.

We altered the code of Scip to read in the optimal solution values from a file
and interrupt the solving process as soon as an incumbent with optimal solution
value is found. Some of the known optimal solutions are only precise up to a certain
number of decimal digits. We allow slight relative deviations from the reference
values by using a tolerance of 10−9. Values a, b are considered equal if

|a− b| ≤ 10−9 ·max (|a|, |b|, 1) . (5.1)

Alternative possibilities such as passing the optimal value either as a constraint or
by setting an objective limit would have an effect on the solving process itself.

Scip was run with default settings until a first feasible solution was found. After
the first feasible solution was found, the settings were altered as described above.
We only present aggregated results in this section, for an instancewise outcome,
we refer to Table H.6. We present Table 5.4 to compare the tested settings w.r.t.
the number of instances for which they provided optimal solutions within the time
limit. From the 120 instances, the default setting finishes the Improvement phase
within the time limit on 89. The best settings in this respect are agg05, l-agg,

74 CHAPTER 5. COMPUTATIONAL RESULTS

Table 5.4: The number of instances for which an optimal solution was found.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

optimal 89 91 90 92 92 92 91

Table 5.5: Shifted geometric means for the Improvement phase regarding the solving
time, and nodes on 88 instances for which all settings could finish the phase. The
shifts used are 10 sec., and 100 nodes

tP2 % p nP2 % p

default 62.5 100.0 1202.4 100.0
agg 62.0 99.2 0.473 818.0 68.0 0.000
agg l-uct 69.0 110.5 0.029 900.5 74.9 0.001
agg05 62.1 99.4 0.237 837.8 69.7 0.000
l-agg 61.2 97.9 0.448 825.3 68.6 0.000
l-agg l-uct 67.0 107.2 0.157 959.9 79.8 0.001
l-uct 60.4 96.7 0.090 1178.6 98.0 0.152
virtual 42.9 68.6 0.000 464.8 38.7 0.000

and l-agg l-uct, each of which finds optimal solutions for 92 instances. There
are 94 instances in total for which at least one setting finished the Improvement
phase. All seven settings succeed on 88 instances. These instances constitute the
basis for the time and node performance comparison.

On the subset of 88 instances for which all settings could find optimal solu-
tions, we present the shifted geometric mean time and number of nodes during the
Improvement phase only, i.e., between the first and second phase transition. The
results are shown in Table 5.5. The p-column shows the two-sided p-value obtained
from a Wilcoxon-signed rank test between the corresponding setting and default.
The table also shows the results for a virtual setting, which we would obtain if we
were able to choose the best setting instance-wise. Note that the virtual setting
can be different depending on the choice of only the phase-2 time or the phase-2
nodes as a criterion. The time column shows slight improvements for four of the
actual settings, the best setting being l-uct which reduced the phase-2 time by
3.3% in the shifted geometric mean. Two settings, agg l-uct and l-agg l-uct,
performed worse than default by 10.5% and 7.2%, respectively. The virtual best
setting requires only 68.6% of the phase-2 time compared to the default settings.

The number of phase-2 nodes, which is shown in column nP2 , shows significant
reductions with all five aggressive heuristic settings by 20%–32%. The p-column
indicates these reductions to be significant on a 1%-level. Even the setting l-uct
yields a slight improvement of 2%. A virtual best setting could outperform the
default settings in this respect by more than 60%. The performance profile in
Figure 5.2 depicts the node reductions graphically. A performance profile shows
for every factor k the percentage of instances that a setting could finish within

5.1. INDIVIDUAL PHASE EXPERIMENTS 75

1 2 3 4 5 6
factor within best nP2

0

20

40

60

80

100
%

o
f

in
st

an
ce

s

default

agg

agg l-uct
agg05

l-agg

l-uct l-agg

l-uct

Figure 5.2: phase-2 node performance on 88 instances for which all settings finish
the Improvement phase within the time limit of 1 hour.

k times the result of the virtual best solver. The five aggressive settings clearly
lie above the default settings in this respect, which is also slightly inferior to the
l-uct setting. On the other hand, there is no setting which comes closer than a
factor of 2 on 80% of the instances.

We restrict this evaluation to the instances where all settings finished the second
phase within the time limit because we generally suggest settings which increase the
computation times per node by applying more heuristics per node, or by increasing
the running time of LNS-heuristics with a more exploratory node selection rule
(at the beginning), thereby consuming more simplex iterations per node on the
average. We now compare the different settings regarding their primal integral
during the Improvement phase. The advantage of this measure is that it accounts
for both the objective value of an incumbent and the solving time until it was
found, which allows us to include the instances which hit the time limit.

In Table 5.6, we show the shifted geometric mean integrals of the Improvement
phase only. We use a shift of 1000 which corresponds to a gap of 100% over 10
seconds. The settings agg and agg05 improve the integral obtained with default
by 5.4% and 3.7%, respectively, whereas l-agg only shows a minor improvement
of 2.4%. A Wilcoxon signed rank test does not reveal a significant improvement for
any of the non-default settings. We also show a performance profile of the primal-
optimal gap at termination in Figure 5.3. We compare primal-optimal gaps on 32
instances for which at least one setting did not finish the Improvement phase. We
see that the curve for default lies centered along all factors k we present here.
None of the other settings can dominate the default settings of Scip for all factors

76 CHAPTER 5. COMPUTATIONAL RESULTS

Table 5.6: Shifted geometric means for the primal integral during the Feasibility
phase with a shift of 1000.

ΓP2(T) % p

default 2796.7 100.0
agg 2644.6 94.6 0.166
agg l-uct 2652.3 94.8 0.331
agg05 2694.0 96.3 0.336
l-agg 2729.2 97.6 0.434
l-agg l-uct 2706.7 96.8 0.451
l-uct 2762.1 98.8 0.350
virtual 2222.3 79.5 0.000

Table 5.7: Shifted geometric mean time in seconds for the Improvement phase over
all 120 instances with a virtual setting that uses the better of the two settings.
Values on the diagonal show the shifted geometric mean time for this setting.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

default 208.8 176.8 185.7 179.5 171.0 180.0 194.1
agg 203.0 191.8 190.5 173.7 182.0 174.3
agg l-uct 217.7 191.2 180.2 190.6 182.9
agg05 204.3 172.4 182.8 178.9
l-agg 196.2 184.2 169.4
l-agg l-uct 210.0 179.4
l-uct 200.4

k ∈ [1, 5], although the settings l-agg l-uct and agg show a better performance
in this respect for factors of 2 and above.

Table 5.7 shows the shifted geometric mean phase-2 time in seconds for each
individual setting on the diagonal. In contrast to the previous Table 5.5, we include
all tested instances into the calculation of the mean. In every entry other than the
diagonal, we present shifted geometric mean phase-2 times if we were to choose
the better of the settings in the corresponding row and column on each individual
instance. The table shows that an optimal combination of l-agg l-uct and l-agg
with a combined mean of 169.4 sec. comes closest to the virtual best solver over
all settings, which takes 138.9 sec. Table 5.7 also reveals l-agg to be the most
beneficial complement for every setting except for l-agg l-uct and l-agg itself.

The results show that the primal heuristics of Scip, which are our main focus in
this section, are already well-tuned for the Improvement phase. Although the tested
settings could increase the total number of instances for which the Improvement
phase is finished within the time limit, none of them could significantly outperform
the P2 performance of the Scip default settings regarding time or the primal
integral. From the significant node reduction using an aggressive primal heuristic
policy, we assume that there exists a trade-off setting that can outperform the

5.1. INDIVIDUAL PHASE EXPERIMENTS 77

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

factor within best primal gap

0

20

40

60

80

100
%

of
in

st
an

ce
s

default

agg

agg l-uct
agg05

l-agg

l-uct l-agg

l-uct

Figure 5.3: Profile of the primal gap after termination on 32 instances for which
at least one setting did not finish the Improvement phase within the time limit of
1 hour.

default settings regarding both time and nodes. The results obtained by a virtual
best setting indicate the potential of the tested settings together inside a parallel
MIP solver such as [SAB+12].

The small differences between the l-agg and the agg setting in this experi-
ment indicate that the positive effects for the Improvement phase can be mainly
attributed to the LNS-heuristics. Another observation concerns the use of a two-
level node selection strategy inside LNS-heuristics. While we could improve the
default settings in all respects by using a uct node selection rule for the sub-MIP
solving process inside LNS-heuristics, the opposite is true if we apply a two-level
node selection in combination with a more aggressive execution strategy of the
LNS-heuristics. This result motivates further experiments for finding a beneficial
search strategy to be used by the LNS-heuristics inside Scip.

5.1.3 Proof phase

In this section, we concentrate on the solver performance after an optimal solution
has been found. We call this final phase the Proof phase of the search, cf. Sec-
tion 4.2. In practice, the Proof phase can only be detected at its very end, when
the dual bound and the primal bound of the problem are equal.

For the experiments in this section, we use a time limit of 2h. From our test
set, we collected the subset of 103 instances for which Scip finds an optimal so-
lution within 2h, but the proof of optimality requires the solving of at least 1
additional node. Scip was run with default settings until an optimal incumbent

78 CHAPTER 5. COMPUTATIONAL RESULTS

was found. We consider six different settings for the Proof phase: Apart from Scip
with default settings, we test a setting with all primal heuristics disabled and a
pure dfs node selection, dfsHeuroff. Furthermore, we compare two different mod-
ifications to the reliability pseudo/inference branching branching rule. The setting
weights rebalances the individual weights for the cutoff, conflict, and pseudo-cost
score weights of the candidate variables. The rebalancing compares the number
of pruned infeasible nodes to the number of nodes that could be bounded, and
adjusts the weights accordingly to better reflect this ratio which we introduced as
leaf ratio in Section 4.3.3.

In the error based setting, we use a relative error criterion for the reliability of
candidate pseudo-costs; If the relative error, which we introduced in Section 4.3.3,
of the observed unit gains of a candidate variable is above ηconf = 50 %, we consider
the pseudo-costs unreliable and perform strong branching for this candidate.

The sepa setting intensifies the use of cutting plane algorithms. Especially, cut-
ting plane algorithms are also applied at other nodes than only the root node. For
an overview of the individual parameters of the setting, we refer to Section H.1.2
a last setting combined, we apply the three settings weights, dfsHeuroff, and
sepa together.

We focus on 97 instances of the test set that could be solved within the time
limit by all settings. We further subdivide these instances into an easy set of
instances which could be solved within less than 200 seconds by all of the tested
settings, and a group of hard instances for which at least one setting needed more
than 200 sec. The easy and hard sets contain 48 and 49 instances, respectively.
We measure the individual time and nodes, tP3 and nP3 , respectively, after an
optimal solution was found (and the settings were changed) until the Proof phase
was finished. The shifted geometric means are presented in Table 5.8 for the easy
and the hard instances individually, together with the overall solving time t (sec).
We used a shift of 10 seconds and 100 nodes, respectively. The third column p
shows the two-sided p-values obtained from a Wilcoxon signed-rank test between
the corresponding rows compared with the default setting.

First we compare default and dfsHeuroff. On the set of easy instances,
dfsHeuroff has a better performance than default w.r.t. both the phase-3 time
and the overall solving time. It takes dfsHeuroff 11% less time to finish the
Proof phase on average. The improvement regarding the overall solving time,
which includes the time for the Feasibility phase and the Improvement phase, is
still 4.8% on average, while the required number of nodes changes by less than
0.1%. On the hard instances, however, the use of a dfsHeuroff setting increases
tP3 by 1.0% on average, and the overall solving time by 4.0%. Furthermore, we
observe an increase of the required solving nodes in the third phase by 9.9% on the
hard instances. Both time columns show p-values of less than 1%, although the
percentage difference compared to the default settings is rather small, especially
for the phase-3 time. The reason for this is a single outlier, enlight13, for which the
use of dfsHeuroff increases the phase-3 time by a factor of 36, and the number
of nodes by a factor of 143.

Figure 5.4 shows a histogram of the distribution of the logarithmic shifted

5.1. INDIVIDUAL PHASE EXPERIMENTS 79

Table 5.8: Results for the Proof phase for 48 easy and 49 hard instances separately,
and for all instances.

(a) easy instances: solved to optimality by every setting in no more than 200 sec.

t (sec) % p tP3
% p nP3

% p

weights 14.5 100.4 0.167 6.5 100.7 0.156 658.0 100.0 0.457
combined 14.4 100.0 0.450 6.4 99.8 0.275 637.7 96.9 0.003
default 14.4 100.0 6.4 100.0 658.2 100.0
dfsHeuroff 13.7 95.2 0.050 5.7 89.0 0.000 658.3 100.0 0.426
error based 14.7 102.3 0.014 6.9 108.0 0.010 557.1 84.6 0.001
sepa 15.3 106.4 0.000 7.2 112.2 0.007 637.8 96.9 0.001

(b) hard instances: solved to optimality in more than 200 seconds by at least 1 setting.

t (sec) % p tP3 % p nP3 % p

weights 693.4 100.0 0.089 233.4 98.1 0.206 11583.4 97.0 0.392
combined 671.0 96.8 0.000 216.4 90.9 0.000 10656.3 89.2 0.000
default 693.3 100.0 238.0 100.0 11939.9 100.0
dfsHeuroff 721.0 104.0 0.001 240.3 101.0 0.001 13072.4 109.5 0.316
error based 753.8 108.7 0.023 259.9 109.2 0.099 11703.3 98.0 0.002
sepa 684.6 98.7 0.340 230.1 96.7 0.206 9984.1 83.6 0.000

(c) all instances in 5.8a or 5.8b.

t (sec) % p tP3
% p nP3

% p

weights 123.5 100.1 0.073 54.2 99.1 0.101 2918.2 98.4 0.458
combined 121.2 98.2 0.001 51.8 94.6 0.000 2756.2 93.0 0.000
default 123.3 100.0 54.7 100.0 2964.7 100.0
dfsHeuroff 124.0 100.6 0.000 53.6 98.0 0.000 3107.2 104.8 0.353
error based 129.9 105.4 0.002 58.5 107.1 0.010 2726.7 92.0 0.000
sepa 125.0 101.3 0.037 55.1 100.8 0.235 2664.6 89.9 0.000

phase-3 time quotients that are responsible for the p-values. Instances with a
shifted logarithmic quotient below 0 are the instances where dfsHeuroff outper-
forms default. The figure shows an asymmetric distribution in favor of dfsHeuroff
except for a single outlier enlight13 to the right. Over the entire set of instances,
we observe a reduction of the phase-3 time by 2.0% compared to the default set.
In addition, we could solve one more instance to optimality within the time limit
using dfsHeuroff.

In order to keep the comparison fair, we remove the most extreme outliers on
both sides. We present in Table 5.9 the results for all 97 instances if we dropped
the single leftmost and rightmost outliers w.r.t. the shifted quotients. Each row of
the table shows the changed shifted geometric means for the corresponding setting
and for the default settings after the removal of the two outliers. The column left
out shows the instance for which default was outperformed the most regarding
the shifted quotients, the right out-column contains the instance with the largest

80 CHAPTER 5. COMPUTATIONAL RESULTS

−1 0 1 2 3 4
logarithmic shifted quotient tP3

0

5

10

15

20

25

30

35

40

N
o
.

of
in

st
a
n

ce
s

Figure 5.4: Distribution of logarithmic shifted geometric quotients comparing
dfsHeuroff and default settings. The bin width is 0.1.

shifted quotient, i.e. the most extreme case in favor of default. Note the almost
exclusive presence of the two instances satellites1-25 and enlight13 as leftmost and
rightmost outliers, respectively, for both phase-3 time and nodes.

After the removal of outliers, we observe a 5.5% phase-3 time improvement
for dfsHeuroff and no significant change of the number of phase-3 nodes com-
pared with default. The error based-setting shows the highest percentaged
node reduction of 11.2%, but comes with a running time deterioration of 4.4%.
By adjusting branching weights, we do not obtain a significant node reduction.
More aggressive cutting plane separation yields a significant improvement regard-
ing the number of phase-3 nodes. The combination of more aggressive separation,
adjusting branching weights, and dfsHeuroff yields a percentaged improvement
over default of 6.1% time and 8% nodes.

We show two profiles for the nP3- and tP3-performance for the hard instances
only. The first profile in Figure 5.5a shows the dominance of the combined set-
ting regarding the phase-3 time. While the lines for the weights setting and the
default are close to each other, we note a slight advantage of the former setting,
which never performs much worse than twice a virtual best setting. The graph
of the error based setting is perceived the slowest in this respect. The second
performance profile in Figure 5.5b indicates a superior phase-3 node performance
of the sepa and combined setting, which even outperform error based. The re-
maining two graphs of dfsHeuroff and weights almost align with the graph of

5.1. INDIVIDUAL PHASE EXPERIMENTS 81

Table 5.9: Revised results on all instances if most extreme outliers regarding shifted
quotients are dropped.

(a) Revised results w.r.t. tP3 .

tP3
default % p left out right out

weights 53.2 53.2 100.0 0.1 satellites1-25 reblock67
combined 51.5 54.8 93.9 0.0 satellites1-25 enlight13
dfsHeuroff 51.8 54.8 94.5 0.0 satellites1-25 enlight13
error based 57.2 54.8 104.4 0.0 satellites1-25 enlight13
sepa 52.1 51.7 100.9 0.2 satellites1-25 mspp16

(b) Revised results w.r.t. nP3 .

nP3 default % p left out right out

weights 3019.7 3042.0 99.3 0.5 satellites1-25 eil33-2
combined 2694.5 2932.9 91.9 0.0 satellites1-25 enlight13
dfsHeuroff 2929.1 2932.9 99.9 0.4 satellites1-25 enlight13
error based 2631.0 2962.4 88.8 0.0 modglob enlight13
sepa 2777.9 3080.2 90.2 0.0 satellites1-25 mspp16

82 CHAPTER 5. COMPUTATIONAL RESULTS

1.0 1.5 2.0 2.5 3.0
factor within best tP3

0

20

40

60

80

100

%
of

in
st

an
ce

s

weights

combined

default

dfsHeuroff

relerror

sepa

(a) Performance profile for the phase-3 time on hard instances (max t > 200 seconds).

1.0 1.5 2.0 2.5 3.0
factor within best nP3

0

20

40

60

80

100

%
of

in
st

an
ce

s

weights

combined

default

dfsHeuroff

relerror

sepa

(b) Performance profile for the phase-3 nodes on hard instances (max t > 200 seconds).

Figure 5.5: Performance profile for the phase-3 time and nodes on hard instances
(max t > 200 seconds).

5.2. PHASE TRANSITION 83

default.
In this section, we have tested several modifications to Scip for improving

the remaining search performance after an optimal incumbent was detected. The
improvement was highest for a setting that combined more aggressive separation,
adjusting branching weights, did not use primal heuristics, and explored the tree
with depth first search.

The error based setting significantly decreases the number of solving nodes,
but increases the processing time of each node because it requires more strong
branching iterations than the default branching rule of Scip with fixed reliabilty
thresholds. By adjusting branching weights alone, we could not observe a signifi-
cant node reduction.

Note that in this experiment, we focused on the phase transition between the
Improvement phase and the Proof phase and modified branching weights only once
during the solving process. One may assume that modified weights could even be
beneficial throughout the search, independently from the discussed solving phases.
A dynamic setting could periodically adjust the weights for the hybrid branching
rule depending on the observed frequencies of infeasible and bounded leaves.

5.2 Phase transition

The experiments from the previous section were based on an oracle that could
exactly determine the transition between the Improvement phase and the Proof
phase. In this section, we investigate heuristic alternatives for this oracle. Three
approaches were introduced in Section 4.4. While two of the approaches, the rank-
1 criterion and the best-estimate criterion, maintain different global views on the
set of all open nodes of the search tree, the last approach summarizes the history
of incumbent solutions by means of a logarithmic primal progress.

We ran Scip with default settings and a time limit of 2h on a test set of
161 instances of our library after excluding the three infeasible instances because
they are irrelevant for the phase transition between the Improvement phase and
the Proof phase. Besides, we excluded the four instances for which, by the time of
this writing, the optimal objective value is unknown, because it is not possible to
determine the actual phase transition t∗2. We tested four criteria: best-estimate,
rank-1, and the logarithmic progress factor of the logarithmic primal progress as
a function of the number of branch-and-bound nodes and the number of simplex
iterations. After every solved branch-and-bound node, we tested if a criterion
had been reached, but we waited for the Feasibility phase to be finished before
the testing began. When a criterion was met, we recorded the solving time in
seconds as heuristic phase transition indicated by this criterion. For the rank-1
and the best-estimate criterion, we also required that at least 50 branch-and-
bound nodes were explored. For the progress factor, we required at least three
solutions at distinct measurement points, i.e., solutions at three different nodes or
solutions that were found after three distinct invocations of the LP-solver. This
means in particular that the logarithmic criterion using LP iterations could have

84 CHAPTER 5. COMPUTATIONAL RESULTS

0

5

10

15

20

25

30

In
st

a
n

ce
s

rank-1

best-estimate

−5 −4 −3 −2 −1 0 1 2 3

log. shif. quot. of tcrit2 and t∗2

0

5

10

15

20

25

30

In
st

an
ce

s

log n

log κ

Figure 5.6: The distribution of logarithmic shifted quotients of tcrit2 and t∗2 on
instances where both values are smaller than 7200 seconds in our test.

already been satisfied at the root node of the branch-and-bound search, whereas
the nodes criterion required the search to explore at least three nodes. All required
information was collected by means of several event handlers. The implementation
was done by the author of the thesis. Instance-wise results are given in Table H.8.

We present Figure 5.6 to compare the true second phase transition t∗2 and the
phase transition tcrit2 that we recorded for each of the four criteria. The histogram
uses a bin width of 0.25. We measure the distance between the two points in time by
means of their logarithmic shifted quotient log

(
(tcrit2 + τ)/(t∗2 + τ)

)
using a shift of

τ = 10 seconds. A nonnegative logarithmic shifted quotient for an instance means
that a heuristic phase transition would have been triggered by the criterion after
the incumbent solution was truly optimal, i.e., during the Proof phase. A negative
logarithmic quotient, however, is encountered for instances where the criterion was
met during the Improvement phase. Note that the rank-1 and the best-estimate
criterion are trivially met whenever there is no open node left in the tree, i.e. after
the search was completed. We do not show such instances in the figure. We see in
the figure that the bars for all four criteria are centered about zero, with a tendency
to take negative values, i.e. to underestimate the second phase transition. The
rank-1 and the best-estimate criteria are met more often, especially in the most
important bin right to zero, which accounts for instances where the criterion was
met shortly after the optimal solution was found. Note that even if a heuristic
phase transition were triggered before t∗2, the use of settings for the Proof phase

5.2. PHASE TRANSITION 85

0 2 4 6 8 10

k

0

10

20

30

40

50

In
st

a
n

ce
s
P

w
it

h
u

n
p

ro
ve

n
γ

(t
c
r
it

2
)
≤
k

rank-1

best-estimate

log n

log κ

Figure 5.7: The number of instances for which the primal gap γ(tcrit2) ≤ k, but the
primal-dual gap is larger than k, as a function of k.

might still be beneficial if the incumbent objective is close enough to that of an
optimal solution. We measure the incumbent quality by means of the primal gap
function (cf. (3.1)).

Figure 5.7 shows for all criteria and for k ∈ [0, 10] in steps of 0.5 the number
of instances with a primal gap γ(tcrit2) ≤ k by the time the criterion was met, but
the primal-dual gap is still larger than k. Recall that the opposite can never be
true because the primal-dual gap is an upper bound of the primal gap. In contrast
to the last figure, we do not require an optimal solution found within the time
limit. The rank-1 curve is the highest for k ≤ 3, with a peak at k = 1, where it
is higher than the best-estimate curve by almost 10 instances. The best-estimate
curve reaches its peak for k = 4 and remains the highest curve for all 3.5 ≤ k ≤ 10.
The logarithmic criteria have lower curves, which is also due to the fact that they
are less often met during the search. The curve for the logarithmic criterion as a
function of LP iterations is above the line for the logarithmic nodes criterion for
all 0 ≤ k ≤ 10 by an almost constant margin of 6–8 instances.

For the instance stp-3d, no incumbent solution is found within two hours, so
that none of the criteria is met by definition. Among the remaining 36 instances
that hit the time limit with an incumbent, there are 6 for which the incumbent is
already optimal. We present in Table 5.10 a contingency table for each criterion
and two categories: Whether the criterion was reached within the time limit or
not and whether the incumbent solution at termination was already optimal. Note

86 CHAPTER 5. COMPUTATIONAL RESULTS

Table 5.10: Contingency tables that group the 36 time limit instances into four
categories whether the criterion was reached, and whether the incumbent at ter-
mination is optimal.

(a) Criterion:estim

no yes All

reached 9 5 14
not reached 21 1 22
All 30 6 36

(b) Criterion:rank-1

no yes All

reached 15 4 19
not reached 15 2 17
All 30 6 36

(c) Criterion:log-n

no yes All

reached 23 6 29
not reached 7 0 7
All 30 6 36

(d) Criterion:log-it

no yes All

reached 24 6 30
not reached 6 0 6
All 30 6 36

that we measure only if a criterion was met at some point during the search, not
if it was met precisely at termination. For the estim-criterion, we see that for
5 out of 14 instances for which the criterion was reached, Scip finds an optimal
solution. However, when the criterion is never reached, this is in line with a
suboptimal incumbent at termination in 21 out of 22 cases. An exact Fisher test
(cf. Section 3.3.3) for this table yields a p-value of 0.02415 under the null hypothesis
of independence between the criterion and the optimality of the incumbent. The
table for the rank-1-criterion does not show a similar result. Here, instances with
suboptimal incumbent and with optimal incumbent are spread almost evenly across
the two groups for this criterion. The tables for the two logarithmic criteria are
very similar. Notably, either of the two criteria was not reached only on instances
from our test set for which no optimal solution could be found within the time
limit, either. This relation, however, is not indicated to be significant by a Fisher
test, which yields p-values of 0.31715 and 0.56102 for the log-n and the log-it
criterion, respectively. The reason is that both criteria were reached too often.

Figure 5.8 shows the primal gap at termination for the 36 instances of the test
set that could not be solved to optimality within the time limit. For each criterion,
the instances are grouped into two groups depending on whether the criterion was
reached until T = 7200 seconds or not. The number of instances in each group is
shown at the top of the box plot. A sample of gaps is presented by means of a box
plot, where the median of each sample is indicated by a black line. The filled boxes
range from the 25% to the 75%-quartile of the distribution, above and below which
a whisker usually indicates the minimum and maximum element of the sample.
Outliers beyond the whiskers are indicated by crosses. Samples are considered
outliers if they are not contained in the interval [x1−1.5·(x3−x1), x3+1.5·(x3−x1)]
with x1 and x3 being the 25% and 75%-quartiles, respectively. For each of the

5.2. PHASE TRANSITION 87

best-estimate rank-1 log n log κ

Criterion

0

20

40

60

80

100

P
ri

m
a
l

G
a
p

22 14 17 19 7 29 6 30

Crit. not reached Criterion reached

Figure 5.8: Box plots of the primal gap at termination for 36 instances which could
not be solved within the time limit.

four criteria, we present two box plots for the groups of instances for which the
criterion was not reached (left box) and for which it was reached (right box). For
all four criteria, there is a clear tendency of the right group towards zero. At
the top of each plot, we show the size of the corresponding group. Despite some
of the groups being quite small, we apply a Mann-Whitney-U test. We present
the obtained values of the U -statistic and the obtained p-values in Table 5.11.
Instances that hit the time limit were grouped into those for which the criterion
was met, and those for which the criterion was not met within the time limit. In
the table we use abbreviations for the settings: estim denotes the best-estimate
criterion, rank-1 the rank-1 criterion, while log-n and log-it denote the nodes-
based and iterations-based logarithmic criteria. We see that the obtained p-values
for the criteria log-it and log-n are below 1%, and the p-value for estim is
0.0148.

We present Figure 5.9 where we grouped the 36 time limit instances into two

Table 5.11: The results of a Mann-Whitney-U test for each criterion.

Setting estim rank-1 log-n log-it

Um,n 86.5 113.0 31.0 26.0
p 0.0148 0.0640 0.0026 0.0035

88 CHAPTER 5. COMPUTATIONAL RESULTS

suboptimal optimal
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

λ
(t

)
w

h
en

ti
m

e
li

m
it

w
a
s

h
it

Figure 5.9: Box plots for the logarithmic progress factor at termination for in-
stances with an optimal and suboptimal incumbent at termination.

groups depending on whether an optimal solution for them was found within the
time limit or not. For each group, we show a box plot of the progress factor, see
Section 4.4.3, at termination. The progress factors are calculated for the loga-
rithmic primal progress regarding time, but similar pictures are obtained for the
logarithmic primal progress regarding nodes or iterations. This picture is different
from the previous results in that it refers to a specific progress factor at termina-
tion. We observe that the progress factor acts on a very small scale between -1.6
and 1.5 across the different MIP instances. This is important for the use of the cri-
terion, which uses a constant threshold of 0.0 for the progress factor for a heuristic
phase transition. Besides, the optimal group has a clear tendency towards smaller
progress factors, which are all negative. The figure suggests that we could improve
the logarithmic criteria by lowering the threshold for the progress factor to, e.g.,
−0.4.

5.3 Combining the results

In this section, we tie up the loose ends by combining promising settings for each
phase and the discussed phase transition strategies. For the Feasibility phase, we
use a uct-rdfs inf setting, which was the fastest setting in our Feasibility phase
experiment that also found feasible solutions for all instances within the time limit
of 1h in Section 5.1.1. During the Improvement phase, we employ a setting l-uct,

5.3. COMBINING THE RESULTS 89

Table 5.12: The number of instances (out of 164) that could be solved to optimality
by each setting within two hours.

default estim log-n log-it oracle rank-1

solved 127 129 130 129 130 128

see Section 5.1.2. After a heuristic phase transition, which depends on the choice
of the transition criterion, we apply the combined setting from Section 5.1.3 for
the remainder of the search. As before, by default, we denote the default settings
of Scip used throughout all three phases. The setting oracle detects the second
phase transition exactly. The other settings make use of the proposed heuristic
alternatives to the oracle as follows: estim uses the best-estimate criterion (4.12)
for heuristic phase transition, rank-1 the rank-1 criterion (4.15), whereas the two
remaining settings log-n and log-it keep track of the logarithmic primal his-
tory as a function of the number of branch-and-bound nodes and the number of
LP-iterations, respectively. The latter settings use the sign of the corresponding
progress factor (cf. Definition 12) for phase transition. For all runs, we set a time
limit of two hours.

We present the number of instances that were solved to optimality in Table 5.12.
For a tabular presentation of the instance-wise outcome, we refer to Table H.9. The
default setting could solve 127 instances within the time limit. All other settings
solved between 1 and 3 instances more in total. The best settings in this respect
are the settings oracle and log-n, which solve 130 instances each. 125 instances
were solved by all settings.

The shifted geometric mean solving time is shown in Table 5.13, where we
use a shift of τ = 10 seconds. The table shows the results obtained over all
164 instances as well as the obtained results for two groups of 71 easy and 93
hard instances. Apart from the shifted geometric mean solving time, we present
the percentage change compared to default as well as p-values obtained from a
two-sided Wilcoxon signed rank test as described in Section 3.3.4. An instance

Table 5.13: Shifted geometric mean results for t (sec) for all 164 instances and
grouped into 93 hard and 71 easy instances.

all instances easy (max t ≤ 200) hard (max t > 200)
t (sec) % p t (sec) % p t (sec) % p

default 257.0 100.0 10.4 100.0 1888.7 100.0
estim 245.0 95.3 0.905 10.5 100.9 0.454 1734.4 91.8 0.479
log-n 248.8 96.8 0.399 10.4 99.5 0.877 1790.6 94.8 0.349
log-it 258.9 100.7 0.919 10.7 102.8 0.439 1891.5 100.1 0.702
oracle 242.7 94.4 0.013 11.1 105.9 0.292 1674.7 88.7 0.000
rank-1 243.1 94.6 0.008 10.2 97.3 0.357 1736.4 91.9 0.017
virtual 221.7 86.3 0.000 9.5 90.6 0.000 1525.3 80.8 0.000

90 CHAPTER 5. COMPUTATIONAL RESULTS

is considered easy if all settings could solve it within 200 seconds, and hard if at
least one solver needed more than 200 sec. We also present the results for a virtual
solver that always picks the best setting for an instance. Over the entire test set, we
observe improvements in the shifted geometric mean solving time for every setting
except log-it compared to the default settings of Scip. The best setting is indeed
the oracle-setting, which is about 14 seconds or 5.6% faster than default in the
shifted geometric mean. With the rank-1 setting, we obtain a similar speed-up of
5.4%. These two improvements are accompanied by small p-values of 0.013 and
0.008, whereas the improvements shown for estim and log-n are not significant
according to the Wilcoxon test.

On the easy instances, we surprisingly observe the largest increase in the shifted
geometric mean solving time for the oracle setting, by almost 6%. While rank-1
is the fastest amongst the tested settings, the p-values do not reveal any of the
settings to be significantly different from default. On the hard instances, however,
we observe improvements of up to 11.3% with the oracle setting. The setting
estim improves the shifted geometric mean time by 8.2% but the corresponding p-
value of 0.479 does not identify this improvement as significant. The improvement
of the shifted geometric mean for this setting is mainly due to the speed-up on
a single instance, acc-tight5, by a factor of 23. This instance is a pure feasibility
instance in the sense that the dual bound is already provided by the initial LP
relaxation and a feasible solution of this objective needs to be found. Thus, the
performance on this instance is greatly affected by our modifications to the settings
of Scip during the Feasibility phase. Recall that we deactivate strong branching
completely until a first feasible solution is found. The other phase-transition based
settings yield the same speed-up for acc-tight5. Yet, an improvement of 8% in the
shifted geometric mean with the rank-1 setting is accompanied by a p-value of less
than 2 %, which indicates that the rank-1 criterion is the better criterion w.r.t.
the solving time. The instance is responsible for approximately 3% improvement
in the group of hard instances.

Table 5.14 shows the shifted geometric mean results for all settings regarding
the number of branch-and-bound nodes until optimality was proven. As before, we
restrict the instances for the node comparison to the subset which could be solved
to optimality within the time limit. The table also shows the results for the 71
easy instances and 54 hard instances of this set of instances. For the calculation
of the mean, we use a shift of 100 nodes. The oracle setting improves the overall
shifted geometric mean of the default setting by 10%, which can be split into
a 4%-deterioration on the easy instances and a 20%-improvement on the hard
instances. While the p-value on the easy instances does not indicate a significant
effect, it is less than 0.1% for the set of hard instances and for the overall test
set. For the criteria estim and rank-1, we also observe a reduction of the overall
shifted geometric mean of nodes by 6.5% and 4.6%, respectively. In this case,
however, the p-column does not indicate the latter improvements as significant.
The split into easy and hard instances attributes the observed reductions mainly
to the hard instances, where the estim-setting shows an improvement of more than
12% compared to default.

5.3. COMBINING THE RESULTS 91

Table 5.14: Shifted geometric mean results for the number of branch-and-bound
nodes n. Results are restricted to 125 instances for which all settings could finish
the solve within two hours. The easy and hard groups contain 71 and 54 instances,
respectively.

all instances easy (max t ≤ 200) hard (max t > 200)
n % p n % p n % p

default 1353.8 100.0 445.6 100.0 19720.2 100.0
estim 1265.2 93.5 0.199 458.1 102.8 0.706 17348.8 88.0 0.031
log-n 1408.9 104.1 0.831 462.5 103.8 0.604 21796.6 110.5 0.907
log-it 1358.4 100.3 0.689 466.0 104.6 0.942 20213.1 102.5 0.498
oracle 1216.9 89.9 0.000 466.3 104.6 0.506 15855.4 80.4 0.000
rank-1 1291.7 95.4 0.175 447.2 100.4 0.750 18549.3 94.1 0.148
virtual 1058.5 78.2 0.000 401.2 90.0 0.000 14072.8 71.4 0.000

In Table 5.15, we present the shifted geometric mean values of the primal and
dual integrals over the set of 161 feasible instances. The oracle setting outper-
forms the default settings of Scip by 6.4% regarding the primal integral. An
even better primal integral is observed for the estim setting, which shows an im-
provement of 7.% over the default settings. Both settings using the logarithmic
primal progress for phase-transition have higher primal integrals than default in
the shifted geometric mean, in particular log-it, which increases the shifted ge-
ometric mean of the primal integral by 8.6%. Regarding the dual integral Γ∗(T),
we note an increase in the shifted geometric mean for every phase-transition based
setting by up to 19% with the log-it setting. Even the setting oracle yields an
increase of the shifted geometric mean dual integral by 6%. The least percentage
increase of 2.8% was observed for the setting estim. Furthermore, the p-column
shows p-values of less than 0.1% for every except estim.

The results in this section indicate that a phase-based solver indeed outperforms
the default settings of Scip. A phase-based solver that combines beneficial phase-
specific settings decreases the shifted geometric mean time and nodes by more than

Table 5.15: Shifted geometric mean results for the primal integral Γ(T) and dual
integral Γ∗(T) over 161 feasible instances. A shift of 1000 was used.

Γ(T) % p Γ∗(T) % p

default 3692.1 100.0 3891.4 100.0
estim 3430.2 92.9 0.870 3998.7 102.8 0.062
log-n 3741.6 101.3 0.435 4376.3 112.5 0.000
log-it 4010.4 108.6 0.029 4645.3 119.4 0.000
oracle 3456.2 93.6 0.769 4134.1 106.2 0.000
rank-1 3689.7 99.9 0.194 4340.4 111.5 0.000
virtual 3101.4 84.0 0.000 3736.3 96.0 0.000

92 CHAPTER 5. COMPUTATIONAL RESULTS

5% and 10%, respectively. The improvements are mainly observed for instances
which we categorized as hard. With this setting, we also solved three additional
instances to optimality that could not be solved by the default settings within the
time limit.

Using the rank-1 criterion for phase transition, we obtain a solving time im-
provement that is similar to the improvement obtained with the oracle setting. By
employing an estim-based phase transition, we observed the highest improvement
regarding the number of solving nodes, second to oracle. Finally, by using the
logarithmic primal progress measured as function of the nodes for phase transi-
tion, we could also solve 130 instances to optimality. Comparing the results for
an oracle-based phase transition and the heuristic phase-transition criteria that
we introduced, we conclude that the rank-1-criterion is sufficient in practice to
achieve a solving-time performance similar to what can be obtained in principle if
we could determine the phase transition exactly. A critical result is the increase of
the shifted geometric mean dual integrals, which is an indication that we sacrifice
progress on the dual side, most likely by the use of an inference branching rule at
the beginning of the search.

Chapter 6

Ipet–an interactive evaluation
tool

Dealing with solver benchmark data is sometimes quite involved. The execution of
the software is usually performed via a command line interface. The visual output
during the branch-and-bound solve is reduced to sporadic text table information
streamed to the console. This compact representation has the advantage of an
improved solving performance, compared to the computational overhead from a
graphical interface. After the optimization process was terminated, some more
information is usually displayed to summarize the solving process.

Existing scripts that come with Scip already help with parsing and summa-
rizing benchmark log files. However, their customization takes time, especially for
self-tailored data other than solving time or nodes. Further, they do not provide
an interactive mode. The output generated by these scripts is completely textual.
In contrast, the Paver 2.0 [BDV14] tool comes with some benchmark data visu-
alization, such as bar charts for performance differences between settings. Paver
also features a solver-independent solution checker. However, Paver requires the
data to be prepared in a special file format, which can be generated by the above
mentioned Scip scripts, or by user-written scripts in between.

In order to combine such features and further facilitate benchmark evaluations
also for specific data, we developed the Ipet (Interactive Python evaluation tool).
It is designed to aggregate raw log files in a more interactive fashion. The main
features of Ipet comprise:

1. a predefined set of readers that already read more than 1000 distinct pieces
of data per instance from a Scip log file. The reader set can quickly be
extended to match custom data not covered.

2. Tables for user-specified sub sets of the data, both instance-wise and aggre-
gated.

3. Tools for filtering instances or customized aggregations.

4. Graphical visualizations of the data to look for trends or outliers.

93

94 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

5. A well-tested Python library, which can be easily imported inside command
line scripts.

We use the term "ipet" to denote both the Python package and the user interface
therein. Whenever we refer to the package, i.e., everything that can be imported
into the Python name space through

import ipet

we write ipet. By Ipet, we mean the tools provided by the graphical user interface
– which are part of ipet.

The code is entirely written in Python 2.7, and makes use of the libraries
pandas [McK12] for data operations and storage, Tkinter for the development
of the user interface, and matplotlib [Hun07] for visualization. Python has been
the language of choice for this project for several reasons. First of all, it features a
variety of libraries such as the aforementioned pandas library or the matplotlib,
which come with an excellent documentation and can be used free of charge inside
projects. Furthermore, Python combines the qualities of a scripting language,
such as, e.g., concise string-processing methods, with those of an object-oriented
programming language such as, e.g., Java or C++, which facilitates the work on a
user interface.

Although the focus of this section is on presenting an overview of the graphical
user interface, we will also give command line recipes for important tasks. Such
recipes can be used inside user-written scripts that import the ipet library. For the
data acquisition and evaluation for the computational experiments in this thesis,
we used customized scripts based on the ipet-functionalities and the cited libraries.

6.1 Overview of the library

The ipet library consists of two main parts: a back end, which is responsible for
data acquisition, data storage, and file IO, and a front end, which consists of the
necessary components to interact with the back end data through a user interface.
The central back end controller class is called Comparator, and resides in a module
of the same name. In order to acquire Scip benchmark data, we have to feed
our program with Scip output in the form of log files. See Section 6.4 for the
specifications of an expected log file that can be read by the Comparator. It is safe
to rely on the format of ".out"-files that are generated by Scip when running the
make test command.

An object of the Comparator class comprises an arbitrary number of TestRun
instances, which are associated to a (list of) Scip log files. Data are read by means
of StatisticReader instances. A newly constructed Comparator instance comes with
a large variety of available readers for parsing the solving time and number of
branch-and-bound nodes, but also more advanced readers that read in complete
tables, or so-called histories; the latter combine column output from the periodic
Scip status table, such as the development of the primal bound as a function of
the solving time. It is also possible to add additional readers and reevaluate the
log file information.

6.2. INSTALLATION AND PREREQUISITES 95

After the collection of the data has been finished, the acquired data for each
TestRun is stored as DataFrame object of the pandas library [McK12]. Data frames
allow for fast data manipulations such as grouping data, transformations, aggrega-
tions, and combinations of them. The data can also be exported to several formats
such as, e.g., LATEX, Microsoft Excel ".xls"-format, or ".csv"-files.

The Comparator further provides filters and aggregations to reduce the data to
an interesting subset or aggregate numeric data into dense results tables in order
to prove the success of their tested method(s).

6.2 Installation and prerequisites

This section covers the installation of Ipet. We assume that you have a working
Python 2.7 installation. On top of that, we require

• matplotlib version 1.3.1 or higher

• Tkinter with Tcl/Tk version 8.5 or higher

• pandas version 0.12.0 or higher

• for some distributions, the Pillow library as a replacement for the PIL library.

A zipped folder of the ipet-package will be made available upon request from
the author, but we are planning to soon make it publicly available. After extract-
ing the file into a directory "some/dir/name" of your choice, open a terminal or
command line, and change to the directory "some/dir/name". In order to install
the ipet-module and its contents to the python path and thus make it importable
from every working directory you are in, run the command:

python setup.py install [--user]

This will install the ipet-package to your Python distribution, and make it im-
portable from every working directory in the file system. If you do not have ad-
ministrator rights on your system, append --user in order to install the package
to your local Python libraries. If you now start an interactive python interpreter
from any working directory, you can import ipet as a module into your Python
scripts and use its methods. The user interface uses the Python Image Library
(PIL) to display button images via PNG files. In case you have an error that says
PIL could not be found, install Pillow via

pip install Pillow [--user]

or

python easy_install Pillow [--user]

96 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

Figure 6.1: A screenshot of the Table widget.

6.3 Starting the Ipet user interface

It is now possible to run the start-up script startipet.py for the user interface,
which is located in the scripts subdirectory of the ipet-directory, from every
working directory. Under Windows, double-click on the icon "startipet" in the
scripts subdirectory of the ipet home directory.

After the application has started, Ipet starts with focus on the (initially empty)
table widget. The main area of the Ipet lets the user switch between four sub-
windows, so-called widgets:

• a Table widget which is open after starting the Ipet to present an arbitrary
subset of the acquired data instancewise, and aggregated.

• an Output widget, which lets the user browse the log file output of a particular
instance and define additional readers.

• a Scatter plot widget to scatter two arbitrary data columns and search for
trends or outliers.

• a Message widget to display the past messages from the Ipet.

The Ipet lets the user browse back and forth between the widgets by clicking
on their register tab. The Ipet also features a menu and a navigation panel at
the top, as well as a status bar at the bottom. Some of the widgets feature an

6.4. READING LOG FILES 97

@01 instances/CP/linking.cip ===========
...
<Additional SCIP output >
...
=ready=

Figure 6.2: Minimum sample log file for correct instance recognition by ipet
readers. The first line indicates the beginning of the log output for an instance
The last line indicates that the output for this instance is finished. Every parsed
input in between is saved for the index linking, where the directory path and the
file extension are dropped for more readable indices.

additional navigation panel, which allows for widget-specific interaction with the
data.

6.4 Reading log files

By the term log file, we denote an ASCII-encoded file that contains the command
line output by Scip when it is invoked for a (set of) MIP instances. If multiple
MIP instances are present in the log file, we expect every output for a single
instance as a consecutive portion of the log-file, i.e., outputs for different instances
are not mixed. The output for each instance should be preceded a unique starting
expression, @01, followed by a whitespace and a unique identifier for this instance.
If the identifier is the file name of this instance, both a preceding path name to
the file and the file extension will be dropped to yield a shorter identifier. In
order to guarantee the correct match of instances to their data, we need make sure
that every instance is represented by a unique file name. The expression =ready=
should be contained after every instance to indicate that all information for this
instance is now available. A sample log file format is shown in Figure 6.2.

In the most common use case, a single log file contains the output of Scip
with a single setting on a set of test instances. Different log files then differ in the
setting they apply, but the instance set remains the same for all tested settings.
Although Ipet allows for different settings on each instance within a single log file,
it will be identified by the setting used for the first instance.

The easiest way to generate log-files that match all specifications is to use
the test scripts that are already provided by Scip. Specify a test set as a file
"Instances.test" with the extension ".test" that contains the paths to the instances
so that Scip can find them, and run make test TEST=Instances from the Scip
home directory. This will create a file in the sub-directory "check/results" of the
Scip home directory with the extension ".out".

While it is possible to link a TestRun to arbitrarily many log files through the
library methods, see also Recipe 6.1, the user interface currently supports only
one log file per TestRun. In order to do so, click on the Add log files-button in
the navigation panel, or choose "Add log file(s)" from the Comparator-menu. It is

98 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

use ’#’ for comments
#<modifier > <instance > [<optimal or best known primal bound >]
e.g.
=opt= linking -15.00
=inf= infeas_1
#...

Figure 6.3: File format for .solu-file to contain additional solution information.

possible to select multiple log files from the file browser. Each selected file will be
associated with a newly created TestRun instance.

from ipet.Comparator import Comparator
from ipet.TestRun import TestRun

comp = Comparator ()
tr = TestRun ()

comp.addLogFile("path/to/logfile1_1.out", tr)
comp.addLogFile("path/to/logfile1_2.out", tr)
tr now has two associated log files which
will be opened in the order they were added

Recipe 6.1: Passing a TestRun instance as optional argument to addLogFile allows
to add multiple log files to this test run.

It is also possible to associate log file information to all test runs. This is
particularly helpful for passing, e.g., information about optimal solution values
for the tested instances, if such information is available. Such information can
then be used by the Comparator to verify the outcome of the tests and warn the
user if a particular outcome contradicts the instance information. The easiest
way to achieve this is to pass such information as solution file to the Comparator.
Figure 6.3 shows a sample file, which could be directly passed to a Comparator.
Every line should contain a modifier indicating the current knowledge about the
optimum objective of this instance: Possible modifiers are =inf= for infeasible
instances, =opt= for instances whose optimal objective value is known, =best= for
instances for which an optimal solution value is not known, or the optimality of
the given primal bound was not proven. The modifier is followed by the instance
identifier (cf. sample log file 6.2). If the modifier is not =inf=, a primal bound
needs to be given as reference value. Solution files have .solu as preferred file
extension. Solution files passed to the Comparator will be appended to the file list
of each TestRun instance when the data collection is invoked. Users can pass one or
several solution files via the Add Solu File(s)-button or the corresponding entry
in the Comparator-menu. The command line method is addSoluFile().

After all desired log files have been added to the Comparator, data acquisi-
tion can be triggered via the Collect data-button in the top navigation panel,
or via the corresponding entry in the Comparator-menu. In a script, call the

6.4. READING LOG FILES 99

Table 6.1: The most important data keys.

Key Description

SolvingTime The total solving time in seconds for an instance as reported
by Scip.

Nodes The total number of explored branch-and-bound nodes.
TimeToFirst The time in seconds until a feasible solution was found.
Status ok if solver correctly solved the instance, TimeLimit,

MemoryLimit, or NodeLimit, if the solving process reached
one of those limits, abort, if solving process prematurely ex-
ited, maybe due to a bug in the solver, or fail, if the solver
terminated with a result that is not in line with the solution
file information.

GitHash The git hash that was used to solve this instance.
Settings The settings file that was used to solve this instance.
DateTime_Start The date and time when a solving process was started.
DateTime_End The date and time when the solving process was finished.

collectData()-method of a Comparator object. The log files for each TestRun
are traversed in the order they were appended to it. If an instance identifier ap-
pears more than once, only the last log file output will be taken into account for the
statistics by overriding previous information. An exception is solution information,
which is naturally passed separately from the actual output. If data acquisition is
invoked through the user interface, its progress is indicated as a progress bar at
the bottom of the Ipet.

During the data acquisition, each reader reads the specified log files line by
line. Every line is checked for a possible match with a (set of) regular expression
pattern(s) of this reader. From a matching line, it parses one or several pieces of
data from that line and adds them to the internal data storage for the current
TestRun under a specific data key for the current instance identifier. Some of these
data keys are presented in Table 6.3. Similar data keys come in groups such as, e.g.,
the execution times of primal heuristics. All execution times of primal heuristics
that are displayed in the log file statistics are parsed and stored under a unique
data key of the form HeurTime_<heuristic name>. The underscore in the data
key indicates to the Ipet a data key group. Groups can be nested as, e.g., the
number of separated cutting planes through the linear constraint handler of Scip
is stored as Constraints_cuts_linear.

After the data collection has been finished, it is possible to display instance-
wise tables of the desired data pieces. For more on displaying tabular data, see
Section 6.5.1. If an experiment requires the acquisition of custom data that are
not provided by the default readers, additional readers can be specified through
the user interface via the Output widget. For details, see Section 6.5.2.

100 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

6.5 Widgets of the Ipet

In the Tkinter toolkit of Python, Widget is the general term for all graphical
components of a graphical user interface. We adapt this term for the Ipet, where
Widgets are windows inside the interface, which provide the necessary controls to
perform a distinct task of data visualization. In particular, widgets work inde-
pendently from the current preference settings other widgets. Currently, the Ipet
features four widgets for data visualization. The most important widget is certainly
the Table widget, which can be used for creating custom table representations of
the data.

6.5.1 Table widget

The Table widget is the default focus widget after starting Ipet. In order to
make use of this widget, it is necessary to collect some log file data first. The
acquisition of data is described in detail in Section 6.4. A new table can be created
through a configuration window, which is opened via the Create Table-button in
the navigation panel at the top of this widget. The configuration window presents
all acquired data keys in a tree-like hierarchy. The hierarchy groups similar data
keys together. Groups need to be expanded to access the underlying data keys,
and can be collapsed afterwards.

In order to populate a table with data, select one or multiple data keys as well
as the TestRun instances which should be added to the table. The selection of
multiple entries is possible through holding the Shift or Ctrl-key while clicking on
an entry. Use the Add current selection-button to add the current selection of
test runs and data keys to the table. The Table widget is instantaneously populated
by a tabular representation of the requested data in two windows. The top window
shows an instance-wise outcome of the results, where one column is devoted to each
possible combination of requested data keys and test runs. Each row represents
the results for a single instance. As row index, the instance identifier, which is used
to store the instance results in the internal data storage, is shown. It is possible
to truncate very long identifiers by modifying the index width-parameter, which
is accessible through the Options-menu of the Table widget. Entries for which
no data are stored for the combination (instance, data key) are represented by
NaN-values (NaN stands for "Not a Number").

The second table shows aggregated results for each column of the table. The
currently displayed aggregations are the arithmetic mean and the shifted geometric
mean (cf. Section 3.2) of a column as well as its minimum entry, maximum entry,
and size. The size denotes the number of entries in this column including NaN-
entries. At the presence of NaN-entries in a column, certain aggregations yield NaN
as well. This also holds if a column is nonnumeric such as, e.g., the columns for
the data keys DateTime_Start and DateTime_End.

A column can be selected by a double click into the column area. A triple
click on an entry highlights the corresponding row and column of that entry. For
a selected column, a context menu is opened with the right mouse button. The

6.5. WIDGETS OF THE IPET 101

Table 6.2: File extensions for data export currently supported by the Table widget.

Name Extension Description

Text table .txt Saves a text representation of the current table.
Latex table .tex Converts and saves the table as a LATEX-table.
CSV table .csv Saves the current table in CSV-format.
Excel table1 .xls, .xlsx Exports the table directly into a spreadsheet,

which is readable by, e.g., Microsoft Excel and
Open Office.

context menu shows a list of column operations that can be applied to the table.
The menu allows to sort the table w.r.t. the specified column or w.r.t. the index.
Furthermore, the sub-menu Data Plots allows for graphical visualizations of the
selected column. By selecting one of the entries from the Data Plots-menu, a
quick wizard opens if additional information is required for a plot. A scatter plot,
e.g., asks the user to select a second column from a drop down menu, which will
be used as y-coordinate for the scatter points. For a histogram, the width of the
bins needs to be given.

The table shows the acquired data for each instance that was not filtered by
one of the active filters in the Filtermanager of the Comparator instance. Filters
can be modified via the Filtermanager-menu in the menu bar of the Ipet. For
more about filters, we refer to the corresponding paragraph in Section 6.6.

The data can be exported to several file formats. Use the entry field in the
navigation panel of the Table widget to specify a file name and extension, and use
the Export-button to convert and save the table to a specified format. The format
is specified by the file extension. All supported file extensions are presented in
Table 6.2. If the file extension is omitted or an unknown file extension is used, the
table will be exported in textual format to this file.

6.5.2 Output widget

The Output widget displays the log file output for a single instance. The output
serves two purposes. First, it is the basis for many evaluations. If a newly tested
setting worked very well (poorly) for a particular instance, looking at the Scip
periodic status line and statistics can give insight which component of Scip may
have caused this impact. The Output widget recognizes the periodic status line of
Scip and the statistics after the solving process was finished. It allows to toggle
either of them to concentrate on the remaining part and reduce the necessary
amount of scrolling.

The second intention behind the Output widget is to facilitate the creation of
customized readers for data acquisition. If a log-file contains numeric information

1This option requires some additional Python packages and should be considered experimental.
If it does not work well on a particular Python distribution, it is safe to use the CSV-export
functionality instead. CSV files can be imported to both Microsoft Excel and Open Office.

102 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

Figure 6.4: The Reader wizard called for the creation of a customized reader.

about the instances that is not parsed by any of the available readers, approach
a number with the mouse and double click on it. This will highlight the selected
number and a form sheet for creating a new reader for the selected data, the Reader
Wizard, can be opened via the Open Reader Wizard-button. In many cases, it is
sufficient to click on the Create Reader-button to create a CustomReader instance
that is applied in subsequent data collections to parse the selected piece of data.
Sometimes, it might be desirable to rename the data key suggestion, or the reader
name before creating the reader.

The data key suggestion of the wizard contains an underscore. Recall that un-
derscores indicate that a data key belongs to a group, and are later accessible inside
this group in the tree-hierarchy for data key selection. It is perfectly admissible
to use Custom_ or another suitable group prefix instead of the suggestion to fold
data that were read by CustomReaders under a single item of the tree-hierarchy.
The number of interest is characterized through its index, which specifies the po-
sition of this particular number among all numbers that are found in a line which
matches the line pattern. The index of the first number in the line is 0. Numbers
are integer or floating point values contained in the line. Both floating point and
scientific notation (by means of an exponent) is admissible.

The recognition of the data element is subject to the matching of two patterns:
a line pattern and an activation pattern. While a simple word or the empty string
is sufficient to define a pattern, regular expression syntax is also supported to
allow for more complex patterns. The line pattern is used for the recognition of
the line in the log file that contains the specified piece of data. The line pattern

6.5. WIDGETS OF THE IPET 103

Original Problem :
Problem name : ...
Variables : 5 (3 binary , 2 integer , 0 implicit integer , ...
...

Presolved Problem :
Problem name : ...
Variables : 4 (3 binary , 1 integer , 0 implicit integer , ...
...

Figure 6.5: A typical situation where an activation pattern is necessary for a clear
distinction.

time | node | left |LP iter |...| cuts |confs|strbr| dual ...
0.1s| 1 | 0 | 96 |...| 0 | 0 | 0 | 7.163...
...

Figure 6.6: A sample of the periodic status line of Scip.

should therefore be precise enough to rule out as many conflicting lines as possible.
However, it should not contain instance-specific information, which is not matched
on other instances.

Sometimes, it is not possible to rule out all conflicting lines of a Scip log file
by a single line pattern alone, see, e.g., Figure 6.5. The output sample contains
two different lines that start with Variables. Since their nonnumeric content is
identical, an activation pattern such as, e.g., Original Problem, should be used
to identify the correct line from which the number should be parsed.

Thus, the reader is inactive at the beginning of the data acquisition, and after
an instance output was finished. While a reader is inactive, it scans the lines for
its activation pattern. If a line contains the activation pattern, the reader becomes
active. Only active readers search for possible matches of their line pattern to
parse the desired data. After the line pattern was matched, the reader becomes
inactive until another line matches the activation pattern. Whenever the line
pattern suffices for a unique line recognition, the activation pattern can be left
empty.

With this rule in mind, it is clear how to treat information that occurs repeat-
edly in the output for a single instance. If an activation pattern is used which
precedes the first occurrence, only the first occurrence of the line pattern will be
used for data acquisition if the activation pattern is unique. A unique activation
pattern is @01, in which case the reader is active from the beginning. If the acti-
vation pattern is instead left empty, the reader stores the specified number from
the latest line which was matched by the line pattern.

Besides the CustomReader-class the ipet-package features another customiz-
able reader class, namely a CustomHistoryReader. By the term history, we denote
the common evolution of two or more quantities during the course of the solving
process, as shown in the periodic status line of Scip. An example of a history is

104 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

the evolution of the primal bound over time. This information is already provided
as data key PrimalBoundHistory. A sample output of the periodic status line of
Scip is shown in Figure 6.6. One usually combines a monotonous measure such
as the time, number of nodes, or number of LP iterations, and one or more pieces
of additional data provided by the status line such as, e.g., the number of open
subproblems in the tree, or the number of conflict clauses generated. Recipe 6.2
shows how a CustomHistoryReader can be added to a Comparator. In this recipe,
we are interested in the primal bound as a function of the number of nodes. All it
takes to create the reader is a specification of the relevant header tags of the status
line, in this case node and primalbound, which are passed to the constructor as a
list.

from ipet.Comparator import Comparator
from ipet.StatisticReader_CustomHistoryReader import \

CustomHistoryReader

comparator = Comparator ()
reader = CustomHistoryReader(

listofheaders =[’node’, ’primalbound ’]
)

comparator.addReader(reader)

Recipe 6.2: Recipe to add a CustomHistoryReader to a Comparator

6.5.3 Scatter widget

The Scatter widget provides a visualization of the acquired data as scatter plot.
We need to select the TestRun instances and data keys for the x- and y-axis of the
plot. When both TestRuns and data keys are selected, a scatter plot appears in the
window. Besides the scattered points, which represent instances and have as x-
and y-coordinate the values of the selected TestRuns and data keys, respectively.
Instances for which one or both values are missing, are not shown in the plot.
Besides the scatter plot, a diagonal is drawn to facilitate the search for trends in
the plot. If an outlier or otherwise interesting point is localized, a click with the
left mouse button shows the instance to which the selected point corresponds. If
several points are close to each other, the information is displayed for all of them.

The Tool bar at the bottom of the widget allows for zooming or panning the
visible area of the plot. The different views obtained through zooming or panning
can be undone and redone. Note that the points of the scatter plot are only
clickable if the selection-mode is active. It is also possible to resize the plot area,
edit axis and curve properties, or save the plot to a file. The list of available file
formats is long and includes JPEG, PDF, SVG etc. For a complete list, see the
File type-option in the Save dialog. For a list of available options in the Tool
bar, see also Table 6.3.

6.5. WIDGETS OF THE IPET 105

Table 6.3: Available tools from the Tool bar at the bottom of each plot window.

Position Name Function

1 Reset undo all previous actions in pan or zoom-mode.
2 Back undo last change in pan or zoom-mode.
3 Forward redo last change in pan or zoom-mode.
4 Pan toggle pan-mode. In pan-mode, you can move the

center of the visible plot area or zoom.
5 Zoom toggle zoom-mode. In zoom-mode, you can spec-

ify a rectangle to zoom into. Draw the rectangle
with the left mouse button to zoom in, and with
the right mouse button to zoom out.

6 Configure resizing options for the plot area w.r.t. the sur-
rounding frame

7 Save Save the figure to a file on disk.
8 Edit Open a dialog to edit general properties of the

plot area as well as properties of plotted elements
such as curves or scattered points.

6.5.4 Further plot widgets

Graphical visualizations of the data are either provided by the stand-alone Scatter
widget, see Section 6.5.3, or accessible through the context menu of the Table
widget as Data plots. The latter take the selected column of the displayed table
as input. If additional input is needed before the plot can be drawn, a dialog
is shown to set the required arguments. If a scatter plot should be drawn, the
selected column data defines the x-values of the scatter points. The column for
the y-values needs to be selected (or confirmed) in the dialog.

The dialog only offers columns which are in the table. The New Plot check box
can be used to make the resulting plot appear in a new window, or if the desired
plot should be added to the last plot window. The latter option is only possible,
if the last created plot window was not closed yet.

A histogram of the selected data is also available. As before, selected columns
can either be appended to the last created plot or drawn in a fresh window. When
columns are added to a histogram, the available horizontal space for every bin
is equally distributed among the columns for which a histogram is shown. The
bin width can be specified either as a fixed number of bins or via the bin width.
If the bin number is positive, it gets precedence over a bin width specification.
Furthermore, the range for the bins needs to be specified.

The Ipet remembers the bin configuration so that every further column can
be added without the need to adjust the bin parameters.

106 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

Figure 6.7: Example of a scatter plot for two columns of the Table widget.

6.5.5 Message widget

The Message widget displays the past message stream. Normal messages are dis-
played in black, while error messages are displayed in red. This feature is mainly
used for debugging purposes.

6.6 Filters and aggregations

Filters and aggregations have already been mentioned before. Filters can be used
to exclude instances which do not satisfy a certain criterion. One may wish to
view a table only for instances that hit the time limit, instances that were solved
to optimality within at most 10 seconds, instances that required one of the present
TestRuns at least 50 branch-and-bound nodes to solve, or the intersection of the
latter two subsets of instances. The Comparator provides a set of filters, which can
be edited through the Filter browser of the Ipet. The Filter browser shows all
filters in a list. One or multiple filters can be selected. The current selection can
be (de)-activated. Deactivated filters are highlighted by a red background color.
Every filter is displayed through a name that already explains its use. An active
filter of the name "any SolvingTime ≥ 100" only accepts instances for which at
least one of the present TestRuns needed at least 100 seconds to solve. All other
instances are dropped and will therefore not be displayed in created tables and
aggregated statistics or data visualizations until the filter is deactivated.

A filter can also be edited through the Filter browser. A double click on a
filter name opens a form sheet to edit the filter attributes. (Un)-check the left
box to indicate whether filter condition should hold for at least one TestRun, or

6.7. OUTLOOK 107

all of them. The filter condition itself consists of three fields: Two expressions
and a binary operator in between. If you are done editing an entry, click on the
Go-button to refresh the reader. You can see that its name changes if your entry
was successful. As expression, data keys as well as integer, floating point, or string
expressions are accepted. The filter examples above could be realized as follows:

• instances for which all TestRuns hit the time limit:

(any/all) (Expr 1) (Op) (Expr 2)
all Status == TimeLimit

• instances that were solved to optimality within at most 10 seconds:

all SolvingTime <= 10

• instances for which one TestRun needed at least 50 nodes:

any Nodes >= 50

Aggregations follow the same convention. They can be browsed by their name
like filters. Only active aggregations are displayed in the aggregated table results.
Their names can be edited through the browser. Only for shifted geometric means,
it is currently possible to change the behaviour of the aggregation by editing the
shift value.

6.7 Outlook

The Ipet in its current version provides basic functionalities to work with MIP
benchmark data that come in the form of raw log files. The intention behind both
the user interface and the underlying ipet-package was an easy-to-use interface to
common MIP benchmark evaluation tasks. For special tasks/evaluations that it is
not capable of, the Ipet facilitates the export of the benchmark data to formats
readable by many available general data evaluation software products. We benefit
from the use of the Python language and its highly sophisticated libraries such as
the pandas or matplotlib libraries, which provide most of the required functional-
ities for data storage, export, and visualization. The ipet-package separates data
acquisition from the both data evaluation and data visualization and export. It is
therefore suitable for the inclusion inside custom evaluation scripts, which in turn
benefit from an improved readability and maintainability.

Besides an obvious inclusion of more options, visualizations, filters, etc., there
exist many interesting possibilities for a future development of the package and
user interface such as, e.g., the following:

108 CHAPTER 6. IPET–AN INTERACTIVE EVALUATION TOOL

• an extension of the parsing of log files of solvers other than Scip, which can
be directly influenced through the user interface. Currently, the detection of
a solver used for a log file is limited to the following solvers: Scip, Cplex,
Gurobi, Xpress, Cbc. Only six readers such as, e.g., the SolvingTimeReader
and the PrimalBoundHistoryReader can be used for all of them, while the
majority of readers will proceed with their Scip setup.

• The possibility of user-defined transformations to the data, and an applica-
tion of statistical hypothesis tests.

• An automatic generation of command line scripts to repeat an evaluation
with other log files in an almost automatic fashion. This is partly possible
through the Comparator object, by removing all TestRuns and saving the
resulting Comparator object. All readers, filters, aggregations are maintained
and can be reused.

• Another future possibility includes the development of a benchmark library
that the user interface can be connected with. Interesting benchmark results
could be compared to past results stored in such a library.

The Ipet is currently in a beta-stadium, but will be made available upon
request from the author of this thesis.

Chapter 7

Summary

In this thesis, we partitioned the branch-and-bound solving process into three
solving phases and developed a MIP solver that adapts to the current solving
phase. Three main contributions for working with solving phases are presented in
this thesis:

i. an improved use of MIP solver components for the individual phase objectives
with speed-ups of more than 50% for the Feasibility phase,

ii. computational results that show an improved overall performance for a phase-
based solver that combines phase-specific settings for each phase, in particular
an improved running-time of 11% over a test set of instances that we classified
as hard, as well as

iii. the introduction and evaluation of three possible criteria for a heuristic phase
transition. Switching to settings for the Proof phase guided by one of these
criteria, we could observe a similar overall speed-up as for the phase-based
solver that can exactly determine the phase transitions.

The phase-specific settings, which emphasized different component classes after
every phase transition, can certainly be further improved, especially for the second
phase, for which we could not find a setting that could outperform the running
time of Scip with default settings significantly. Apart from a concrete realization
inside a phase-based solver, the view on the overall optimization process as a set of
phases emphasizing different objectives helps in understanding the actual impact
of the different component classes on the solving process inside MIP solvers such as
Scip. Such an understanding is necessary for the development of new components
and a more dynamic use of existing ones.

During the course of this thesis, we extended Scip by several components. We
implemented a branching rule together with a diving heuristic, a Large Neighbor-
hood Search heuristic, and a node selection rule from the recent MIP literature.
Furthermore, we developed two modifications to the hybrid reliability pseudo-
cost/inference branching rule. All components will be made available as default

109

110 CHAPTER 7. SUMMARY

plug-ins for the Scip Optimization Suite. Furthermore, we developed the ipet-
package for the work with MIP benchmark data. It is written in the Python
programming language and comes with a graphical user interface.

For practical applications, it is often sufficient to require only a feasible solution
to a problem, or one that is good enough, whenever a proof of optimality needs to
be sacrificed due to time or memory restrictions. The phase experiments in this
thesis may serve as a guideline to the practitioner how to make better use of Scip
for a particular purpose.

Bibliography

[AA95] Erling D. Andersen and Knut D. Andersen. Presolving in linear pro-
gramming. Mathematical programming, 71:221–245, 1995.

[ABCC95] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J.
Cook. Finding cuts in the TSP (A preliminary report). Technical
Report 95-05, DIMACS, 1995.

[ABH12] Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and
propagation heuristics for mixed integer programming. In Diethard
Klatte, Hans-Jakob Lüthi, and Karl Schmedders, editors, Operations
Research Proceedings 2011, pages 71–76. Springer Berlin Heidelberg,
2012.

[Ach07] Tobias Achterberg. Constraint Integer Programming. PhD thesis,
Technische Universität Berlin, 2007.

[Ach09] Tobias Achterberg. SCIP: Solving constraint integer programs. Math-
ematical Programming Computation, 1(1):1–41, 2009.

[ADL06] Belarmino Adenso-Diaz and Manuel Laguna. Fine-tuning of algo-
rithms using fractional experimental designs and local search. Opera-
tions Research, 54(1):99–114, 2006.

[AKM04] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching
rules revisited. Operations Research Letters, 33(1):42–54, 2004.

[AKM06] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB
2003. Operations Research Letters, 34(4):1–12, 2006.

[BCMS98] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Mar-
tin W.P. Savelsbergh. An updated mixed integer programming library:
MIPLIB 3.0. Optima, 58:12–15, 1998.

[BDV14] Michael R. Bussieck, Steven P. Dirkse, and Stefan Vigerske. Paver 2.0:
An open source environment for automated performance analysis of
benchmarking data. Journal of Global Optimization, 59(2-3):259–275,
2014.

111

112 BIBLIOGRAPHY

[Ber06] Timo Berthold. Primal heuristics for mixed integer programs. Diploma
thesis, Technische Universität Berlin, 2006.

[BGG+71] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hent-
ges, Gerard Ribière, and O. Vincent. Experiments in mixed-integer
programming. Mathematical Programming, 1:76–94, 1971.

[BGS14] Timo Berthold, Gerald Gamrath, and Domenico Salvagnin.
Cloud branching. Presentation slides from Mixed Integer
Programming Workshop at Ohio State University. https:
//mip2014.engineering.osu.edu/sites/mip2014.engineering.
osu.edu/files/uploads/Berthold_MIP2014_Cloud.pdf, 2014.

[BMW75] A.L. Brearley, G. Mitra, and H.P. Williams. Analysis of mathemat-
ical programming problems prior to applying the simplex algorithm.
Mathematical Programming, 8:54–83, 1975.

[BT08] Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probabil-
ity. Athena Scientific, 2nd edition, 2008.

[cbc] COIN-OR branch-and-cut MIP solver. https://projects.coin-or.
org/Cbc.

[CDM78] Harlan P. Crowder, Ron S. Dembo, and John M. Mulvey. Reporting
computational experiments in mathematical programming. Mathe-
matical Programming, 15(1):316–329, 1978.

[Che92] Pang C. Chen. Heuristic sampling: A method for predicting the per-
formance of tree searching programs. SIAM Journal on Computing,
21(2):295–315, 1992.

[Chv73] Vasek Chvátal. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete Mathematics, 4(4):305–337, 1973.

[CKL06] Gérard Cornuéjols, Miroslav Karamanov, and Yanjun Li. Early esti-
mates of the size of branch-and-bound trees. INFORMS Journal on
Computing, 18(1):86–96, 2006.

[Coh95] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1995.

[cpl] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

[CS00] Marie Coffin and Matthew J. Saltzman. Statistical analysis of com-
putational tests of algorithms and heuristics. INFORMS Journal on
Computing, 12(1):24–44, 2000.

https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/files/uploads/Berthold_MIP2014_Cloud.pdf
https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/files/uploads/Berthold_MIP2014_Cloud.pdf
https://mip2014.engineering.osu.edu/sites/mip2014.engineering.osu.edu/files/uploads/Berthold_MIP2014_Cloud.pdf
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

BIBLIOGRAPHY 113

[Dan08] Emilie Danna. Performance variability in mixed integer programming.
Presentation slides from MIP workshop in New York City. http://
coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf, 2008.

[FBM03] Michael Falk, Rainer Becker, and Frank Marohn. Angewandte Statis-
tik: Eine Einführung mit Programmbeispielen in SAS. Springer-Verlag
GmbH, 2003.

[fic] FICO Xpress-Optimizer. http://www.fico.com/en/Products/
DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx.

[FL03] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical
Programming, 98(1-3):23–47, 2003.

[FL10] Matteo Fischetti and Andrea Lodi. Heuristics in mixed integer pro-
gramming. In James J. Cochran, Louis A. Cox, Pinar Keskinocak,
Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons,
Inc., 2010. Online publication.

[FM14] Matteo Fischetti and Michele Monaci. Proximity search for 0-1 mixed-
integer convex programming. Technical report, DEI - Università di
Padova, 2014.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1979.

[Gom58] Ralph E. Gomory. Outline of an algorithm for integer solutions to
linear programs. Bulletin of the American Mathematical Society,
64(5):275–278, 1958.

[gur] GUROBI Optimizer. http://www.gurobi.com/products/
gurobi-optimizer/gurobi-overview.

[Hen11] Gregor Hendel. New rounding and propagation heuristics for mixed
integer programming. Bachelor thesis, 2011.

[HHLBS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stützle. ParamILS: An automatic algorithm configuration framework.
Journal of Artificial Intelligence Research, 36(1):267–306, 2009.

[Hoo94] John Hooker. Needed: An empirical science of algorithms. Operations
Research, 42(2):201–212, 1994.

[Hoo95] John Hooker. Testing heuristics: We have it all wrong. Journal of
Heuristics, 1(1):33–42, 1995.

[Hun07] John D. Hunter. Matplotlib: A 2D graphics environment. Computing
In Science & Engineering, 9(3):90–95, 2007.

http://coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf
http://coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview

114 BIBLIOGRAPHY

[JP82] Ellis L. Johnson and Manfred W. Padberg. Degree two inequalities,
clique facets, and biperfect graphs. Annals of Discrete Mathematics,
16:169–187, 1982.

[KAA+11] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert,
Timo Berthold, Robert E. Bixby, Emilie Danna, Gerald Gamrath,
Ambros M. Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann,
Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and Kati Wolter.
MIPLIB 2010. Mathematical Programming Computation, 3(2):103–
163, 2011.

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244(5):1093–1096, 1979. english trans-
lation in Soviet Math. Dokl. 20(1):191–194, 1979.

[KMP13] Thorsten Koch, Alexander Martin, and Marc E. Pfetsch. Progress
in academic computational integer programming. In Michael Jünger
and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 483–506. Springer, 2013.

[Knu74] Donald E. Knuth. Estimating the efficiency of backtrack programs.
Technical report, Stanford University, Stanford, CA, USA, 1974.

[KW52] William H. Kruskal and W. Allen Wallis. Use of Ranks in One-
Criterion Variance Analysis. Journal of the American Statistical As-
sociation, 47(260):583–621, 1952.

[LS97] Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational
study of search strategies for mixed integer programming. INFORMS
Journal on Computing, 11:173–187, 1997.

[McG96] Catherine C. McGeoch. Toward an experimental method for algorithm
simulation. INFORMS Journal on Computing, 8(1):1–15, 1996.

[McK12] Wes McKinney. Python for Data Analysis: Data Wrangling with Pan-
das, NumPy, and IPython. O’Reilly Media, 2012.

[McN47] Quinn McNemar. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika, 12(2):153–157,
1947.

[PC11] Jennifer Pryor and John W. Chinneck. Faster integer-feasibility in
mixed-integer linear programs by branching to force change. Comput-
ers & Operations Research, 38(8):1143 – 1152, 2011.

[PQ08] Gilles Pesant and Claude-Guy Quimper. Counting solutions of knap-
sack constraints. In Laurent Perron and Michael A. Trick, editors,
CPAIOR, volume 5015 of Lecture Notes in Computer Science, pages
203–217. Springer, 2008.

BIBLIOGRAPHY 115

[SAB+12] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and
Thorsten Koch. ParaSCIP – a parallel extension of SCIP. In Chris-
tian Bischof, Heinz-Gerd Hegering, Wolfgang E. Nagel, and Gabriel
Wittum, editors, Competence in High Performance Computing 2010,
pages 135–148. Springer, 2012.

[Sav94] Martin W. P. Savelsbergh. Preprocessing and probing techniques for
mixed integer programming problems. ORSA Journal on Computing,
6:445–454, 1994.

[sci] SCIP. Solving Constraint Integer Programs. http://scip.zib.de/.

[Ser08] Robert J. Serfling. Approximation Theorems of Mathematical Statis-
tics. John Wiley & Sons, Inc., 2008.

[sop] SoPlex. An open source LP solver implementing the revised simplex
algorithm. http://soplex.zib.de/.

[SSR12] Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding
combinatorial optimization with UCT. In Nicolas Beldiceanu, Naren-
dra Jussien, and Eric Pinson, editors, CPAIOR, volume 7298 of Lec-
ture Notes in Computer Science, pages 356–361. Springer, 2012.

[Wol06] Kati Wolter. Implementation of cutting plane separators for mixed
integer programs. Diploma thesis, Technische Universität Berlin, 2006.

http://scip.zib.de/
http://soplex.zib.de/

116 BIBLIOGRAPHY

Chapter H

Appendix

H.1 Special settings files

This section covers settings files used for the experiments which influence many
parameters at once. Parameter values are only shown for parameters that are
different from the default parameter value.

H.1.1 The setting agg

The following settings are used inside an aggressive heuristic setting agg. It is also
the basis for the two settings agg05 and agg l-uct. The subset of the parameter
values affecting only diving heuristics is aggrdive, and the subset that affects
LNS-heuristics is l-agg.

SCIP vers ion 3 .1 . 0 . 1

frequency for c a l l i n g primal h eu r i s t i c <actconsdiving> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / ac t consd iv ing / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <c l i que> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / c l i q u e / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <coefd iv ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / c o e f d i v i n g / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / c o e f d i v i n g /maxlp iterquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / c o e f d i v i n g /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <crossover> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 30]
h e u r i s t i c s / c r o s s ove r / f r e q = 15

number of nodes without incumbent change tha t h eu r i s t i c should wait
[type : longint , range : [0 ,9223372036854775807] , d e f au l t : 200]

117

118 CHAPTER H. APPENDIX

h e u r i s t i c s / c r o s s ove r / nwait ingnodes = 20

contingent of sub problem nodes in r e l a t i on to the number of nodes of the
↪→ o r i g i na l problem

[type : real , range : [0 , 1] , d e f au l t : 0 . 1]
h e u r i s t i c s / c r o s s ove r /nodesquot = 0.15

minimum percentage of in teger va r i a b l e s tha t have to be f i x ed
[type : real , range : [0 , 1] , d e f au l t : 0 .666]
h e u r i s t i c s / c r o s s ove r /m in f i x i ng ra t e = 0 .5

should the nwaitingnodes parameter be ignored at the root node?
[type : bool , range : {TRUE,FALSE} , de f au l t : FALSE]
h e u r i s t i c s / c r o s s ove r / dontwai tat root = TRUE

frequency for c a l l i n g primal h eu r i s t i c <dins> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / d ins / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <d i s t r i bu t i ond i v ing > (−1: never , 0: only
↪→ at depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / d i s t r i b u t i o nd i v i n g / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <feaspump> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
h e u r i s t i c s / feaspump/ f r e q = 10

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .01]
h e u r i s t i c s / feaspump/maxlp iterquot = 0.015

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / feaspump/max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <f ixand in fer> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / f i x a nd i n f e r / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <fracd iv ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / f r a cd i v i n g / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / f r a cd i v i n g /maxlp i terquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / f r a cd i v i n g /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <guideddiving> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / gu idedd iv ing / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / gu idedd iv ing /maxlp iterquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / gu idedd iv ing /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <zeroobj> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / ze roob j / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <intd iv ing> (−1: never , 0: only at depth
↪→ f r e q o f s)

H.1. SPECIAL SETTINGS FILES 119

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / i n td i v i n g / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <in t s h i f t i n g > (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / i n t s h i f t i n g / f r e q = 5

frequency for c a l l i n g primal h eu r i s t i c <l inesearchd iv ing> (−1: never , 0: only
↪→ at depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / l i n e s e a r c hd i v i n g / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / l i n e s e a r c hd i v i n g /maxlp iterquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / l i n e s e a r c hd i v i n g /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <loca lbranching> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / l o ca lb ranch ing / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <nlpdiv ing> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / n lpd iv ing / f r e q = 5

frequency for c a l l i n g primal h eu r i s t i c <mutation> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s /mutation/ f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <ob jpscos td iv ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
h e u r i s t i c s / ob jp s co s td i v i ng / f r e q = 10

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to t o t a l i t e r a t i on number
[type : real , range : [0 , 1] , d e f au l t : 0 .01]
h e u r i s t i c s / ob jp s co s td i v i ng /maxlp i terquot = 0.015

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / ob jp s co s td i v i ng /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <octane> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / octane / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <proximity> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / proximity / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <pscos td iv ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / p s co s td i v i ng / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / p s co s td i v i ng /maxlp iterquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / p s co s td i v i ng /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <randrounding> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
h e u r i s t i c s / randrounding / f r e q = 10

120 CHAPTER H. APPENDIX

frequency for c a l l i n g primal h eu r i s t i c <rens> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
h e u r i s t i c s / rens / f r e q = 20

minimum percentage of in teger va r i a b l e s tha t have to be f i x a b l e
[type : real , range : [0 , 1] , d e f au l t : 0 . 5]
h e u r i s t i c s / rens /min f i x i ng ra t e = 0 .3

number of nodes added to the cont ingent of the t o t a l nodes
[type : longint , range : [0 ,9223372036854775807] , d e f au l t : 500]
h e u r i s t i c s / rens / nodeso f s = 2000

frequency for c a l l i n g primal h eu r i s t i c <rins> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 25]
h e u r i s t i c s / r i n s / f r e q = 13

frequency for c a l l i n g primal h eu r i s t i c <roo t so ld i v ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
h e u r i s t i c s / r o o t s o l d i v i n g / f r e q = 10

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .01]
h e u r i s t i c s / r o o t s o l d i v i n g /maxlp iterquot = 0.015

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / r o o t s o l d i v i n g /max lp i t e r o f s = 1500

frequency for c a l l i n g primal h eu r i s t i c <shi f tandpropagate> (−1: never , 0: only
↪→ at depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
h e u r i s t i c s / sh i f tandpropagate / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <sh i f t i n g > (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / s h i f t i n g / f r e q = 5

frequency for c a l l i n g primal h eu r i s t i c <t r i v i a l > (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
h e u r i s t i c s / t r i v i a l / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <twoopt> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s / twoopt/ f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <undercover> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
h e u r i s t i c s / undercover / f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <vbounds> (−1: never , 0: only at depth
↪→ f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
h e u r i s t i c s /vbounds/ f r e q = 20

frequency for c a l l i n g primal h eu r i s t i c <vec lendiv ing> (−1: never , 0: only at
↪→ depth f r e q o f s)

[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
h e u r i s t i c s / ve c l end iv ing / f r e q = 5

maximal f rac t i on of d iv ing LP i t e r a t i on s compared to node LP i t e r a t i on s
[type : real , range : [0 ,1.79769313486232 e+308] , d e f au l t : 0 .05]
h e u r i s t i c s / ve c l end iv ing /maxlp iterquot = 0.075

add i t i ona l number of a l lowed LP i t e r a t i on s
[type : int , range : [0 ,2147483647] , d e f au l t : 1000]
h e u r i s t i c s / ve c l end iv ing /max lp i t e r o f s = 1500

H.1. SPECIAL SETTINGS FILES 121

H.1.2 The setting sepa

The following non-default parameters were used inside an aggressive cutting plane
separation setting:

SCIP vers ion 3 .1 . 0 . 1

minimal or thogona l i t y for a cut to enter the LP in the root node
[type : real , range : [0 , 1] , d e f au l t : 0 . 5]
s epa ra t ing /minorthoroot = 0 .1

maximal number of separat ion rounds in the root node of a subsequent run (−1:
↪→ unl imited)

[type : int , range : [−1 ,2147483647] , d e f au l t : 1]
s epa ra t ing /maxroundsrootsubrun = 5

maximal add i t i ona l number of separat ion rounds in subsequent price−and−cut
↪→ loops (−1: no add i t i ona l r e s t r i c t i o n)

[type : int , range : [−1 ,2147483647] , d e f au l t : 1]
s epa ra t ing /maxaddrounds = 5

maximal number of separated cuts at the root node (0 : d i s a b l e root node
↪→ separat ion)

[type : int , range : [0 ,2147483647] , d e f au l t : 2000]
s epa ra t ing /maxcutsroot = 5000

separat ion frequency for the g l o b a l cut pool (−1: d i s a b l e g l o ba l cut pool , 0:
↪→ only separate pool at the root)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / poo l f r e q = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s / l i n e a r / s epa f r eq = 10

maximal number of cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 200]
c on s t r a i n t s / l i n e a r /maxsepacutsroot = 500

should a l l cons t ra in t s be sub j e c t to ca rd ina l i t y cut generat ion ins tead of only
↪→ the ones with non−zero dual va lue?

[type : bool , range : {TRUE,FALSE} , de f au l t : FALSE]
c on s t r a i n t s / l i n e a r / s e p a r a t e a l l = TRUE

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / bounddis junct ion / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / con junct ion / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / count so l s / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / d i s j un c t i o n / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / i n t e g r a l / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /knapsack/ s epa f r eq = 10

maximal number of cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 200]
c on s t r a i n t s /knapsack/maxsepacutsroot = 500

frequency for separat ing cuts (−1: never , 0: only in root node)

122 CHAPTER H. APPENDIX

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s / l o g i c o r / s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /or/ s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / pseudoboolean / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s / setppc / s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /SOS1/ s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /SOS2/ s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / supe r i nd i c a t o r / s epa f r eq = 0

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /varbound/ s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
c on s t r a i n t s /xor / s epa f r eq = 10

frequency for separat ing cuts (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
c on s t r a i n t s / l i n p r o j e c t i o n / s epa f r eq = 0

frequency for c a l l i n g separator <c l i que> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / c l i q u e / f r e q = 20

frequency for c a l l i n g separator <c losecuts> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
s epa ra t ing / c l o s e c u t s / f r e q = 0

frequency for c a l l i n g separator <cmir> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / cmir / f r e q = 20

maximal number of cmir separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
s epa ra t ing / cmir /maxroundsroot = 15

maximal number of consecut ive unsuccess fu l aggregat ion t r i e s in the root node
↪→ (−1: unl imited)

[type : int , range : [−1 ,2147483647] , d e f au l t : 100]
s epa ra t ing / cmir /max fa i l s r oo t = 200

maximal number of cmir cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 500]
s epa ra t ing / cmir /maxsepacutsroot = 1000

frequency for c a l l i n g separator <flowcover> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / f l owcover / f r e q = 20

maximal number of separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 15]
s epa ra t ing / f l owcover /maxroundsroot = 22

maximal number of f low cover cuts separated per separat ion round in the root
[type : int , range : [0 ,2147483647] , d e f au l t : 200]
s epa ra t ing / f l owcover /maxsepacutsroot = 400

H.1. SPECIAL SETTINGS FILES 123

frequency for c a l l i n g separator <gomory> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing /gomory/ f r e q = 20

maximal number of gomory separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
s epa ra t ing /gomory/maxroundsroot = 15

maximal number of gomory cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 200]
s epa ra t ing /gomory/maxsepacutsroot = 400

frequency for c a l l i n g separator <impliedbounds> (−1: never , 0: only in root
↪→ node)

[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / impliedbounds / f r e q = 20

frequency for c a l l i n g separator <mcf> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing /mcf/ f r e q = 20

maximal number of d i f f e r e n t d e l t a s to t ry (−1: unl imited) −− de f au l t
↪→ separat ion

[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
s epa ra t ing /mcf/maxtestde l ta = −1

should negat ive va lues a l so be t e s t ed in sca l ing ?
[type : bool , range : {TRUE,FALSE} , de f au l t : FALSE]
s epa ra t ing /mcf/ t r yn eg s c a l i n g = TRUE

maximal number of mcf cuts separated per separat ion round in the root node −−
↪→ de f au l t separat ion

[type : int , range : [−1 ,2147483647] , d e f au l t : 200]
s epa ra t ing /mcf/maxsepacutsroot = 400

frequency for c a l l i n g separator <oddcycle> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
s epa ra t ing / oddcyc le / f r e q = 0

maximal number of oddcycle cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 5000]
s epa ra t ing / oddcyc le /maxsepacutsroot = 10000

maximal number of oddcycle separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
s epa ra t ing / oddcyc le /maxroundsroot = 15

frequency for c a l l i n g separator <rapid learning> (−1: never , 0: only in root
↪→ node)

[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
s epa ra t ing / r ap i d l e a rn i ng / f r e q = 0

frequency for c a l l i n g separator <strongcg> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : 0]
s epa ra t ing / st rongcg / f r e q = 20

maximal number of strong CG separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 20]
s epa ra t ing / st rongcg /maxroundsroot = 30

maximal number of strong CG cuts separated per separat ion round in the root
↪→ node

[type : int , range : [0 ,2147483647] , d e f au l t : 500]
s epa ra t ing / st rongcg /maxsepacutsroot = 1000

frequency for c a l l i n g separator <zeroha l f> (−1: never , 0: only in root node)
[type : int , range : [−1 ,2147483647] , d e f au l t : −1]
s epa ra t ing / z e r oha l f / f r e q = 0

maximal number of z e roha l f separat ion rounds in the root node (−1: unl imited)
[type : int , range : [−1 ,2147483647] , d e f au l t : 10]
s epa ra t ing / z e r oha l f /maxroundsroot = 15

maximal number of {0,1/2}− cuts separated per separat ion round in the root node
[type : int , range : [0 ,2147483647] , d e f au l t : 500]
s epa ra t ing / z e r oha l f /maxsepacutsroot = 1000

124 CHAPTER H. APPENDIX

H.2 Experimental results

The tables of this section contain the complete experimental data used in this
thesis.

H
.2.

E
X
P
E
R
IM

E
N
T
A
L
R
E
SU

LT
S

125
Table H.1: The additional time t>0 after the branch and bound search started.

act&dist aggrdive br-rdfs inf default dfs inf inf rdfs inf uct inf uct-rdfs inf

10teams 10.90 11.00 3.40 12.20 0.10 4.20 0.10 6.90 4.10
acc-tight5 385.30 672.50 108.90 1408.20 431.10 402.60 393.00 196.70 53.10
arki001 27.00 6.10 3.10 1.70 14.50 22.90 1.80 17.20 2.70
atlanta-ip 492.80 422.60 169.40 524.90 122.90 740.40 241.20 98.00 97.90
bab5 110.00 109.80 80.50 121.70 7.00 88.00 7.00 202.80 84.80
bnatt350 469.30 646.80 677.30 1458.10 790.60 551.60 634.90 280.40 810.50
csched010 93.10 111.10 44.30 63.30 3593.80 436.50 11.80 54.40 24.00
danoint 5.80 5.90 0.00 6.10 53.40 0.10 1.60 0.20 0.20
dcmulti 0.20 0.20 0.10 0.10 0.10 0.00 0.10 0.10 0.10
enigma 0.70 0.60 0.20 0.50 0.10 0.40 0.00 0.20 0.60
flugpl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l152lav 0.40 0.50 0.10 0.70 0.10 0.00 0.10 0.20 0.20
lectsched-4-obj 16.60 16.60 18.00 16.80 6.30 16.50 3.60 18.30 12.80
misc03 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.00 0.10
misc07 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.00 0.10
momentum2 2206.80 889.70 426.40 358.70 3547.20 1265.40 433.40 90.60 246.90
msc98-ip 2956.00 1411.70 260.00 2920.80 59.90 88.60 178.30 3115.10 509.60
neos-1109824 1.70 1.70 3.90 1.70 0.10 0.10 0.10 4.40 4.20
neos-1337307 77.70 78.90 39.60 53.80 4.10 35.00 4.30 32.20 36.60
neos-1601936 287.20 288.10 247.70 274.40 85.40 200.10 161.20 205.50 205.70
neos-686190 16.70 17.30 3.10 27.50 3598.20 6.90 12.10 1.40 1.80
neos-849702 426.20 214.30 1028.60 166.30 2054.90 394.60 207.90 480.70 556.30
net12 93.40 93.70 6.40 842.90 72.20 6.40 93.80 6.40 6.50
ns1208400 1735.30 1641.90 373.50 1781.20 3179.70 3580.10 495.80 937.10 250.50
ns1688347 337.10 331.30 27.10 171.40 10.20 13.50 6.10 25.10 25.80
ns1830653 7.80 7.60 6.00 7.60 0.90 14.30 0.90 8.90 6.70
rd-rplusc-21 438.30 438.70 174.10 437.30 219.20 3540.80 3541.30 239.20 776.10
rocII-4-11 16.70 17.10 9.40 17.30 0.90 7.00 0.90 8.40 7.70
timtab1 0.30 0.30 0.30 0.30 0.10 0.30 0.10 0.20 0.10
timtab2 5.50 8.80 0.90 10.40 0.80 1.30 0.30 1.60 0.90
triptim1 937.60 934.80 246.80 1148.70 142.10 380.10 140.30 185.00 188.50
vpphard 227.00 269.60 112.80 172.90 32.60 79.70 32.40 74.90 74.70

126
C
H
A
P
T
E
R

H
.
A
P
P
E
N
D
IX

Table H.2: The number of nodes spent during the Feasibility phase.

act&dist aggrdive br-rdfs inf default dfs inf inf rdfs inf uct inf uct-rdfs inf

10teams 125 125 101 266 21 587 21 306 257
acc-tight5 3843 7131 876 16931 5401 3628 5084 1473 608
arki001 3261 177 261 32 1941 4776 469 3501 224
atlanta-ip 192 32 18 128 522 266 880 15 15
bab5 47 47 98 61 98 84 98 426 116
bnatt350 4829 9574 12586 21343 16077 8298 10577 2775 14092
csched010 6368 8265 11934 4270 896863 55621 2626 3570 5167
danoint 16 16 3 16 12845 9 312 6 6
dcmulti 15 15 3 15 31 7 31 4 4
enigma 954 954 1172 954 870 1851 460 568 2759
flugpl 4 4 3 4 46 52 46 3 3
l152lav 6 6 4 6 8 6 8 4 4
lectsched-4-obj 289 289 548 289 2002 512 414 214 309
misc03 2 2 3 2 3 3 3 3 3
misc07 4 4 4 4 5 5 5 4 4
momentum2 5695 3303 4635 928 81871 10078 5872 70 2891
msc98-ip 2099 537 1460 1444 1456 23 3344 1147 4341
neos-1109824 10 10 16 10 12 6 12 14 14
neos-1337307 109 101 44 42 82 46 82 42 303
neos-1601936 215 215 17 179 744 98 420 17 17
neos-686190 49 49 16 381 1396308 105 3729 5 5
neos-849702 22854 6255 72407 6115 111664 20666 19942 26089 48917
net12 19 19 3 1000 459 3 440 3 3
ns1208400 1597 1565 3335 3027 64184 9908 7694 4909 2455
ns1688347 2258 2258 53 1065 394 147 263 100 142
ns1830653 13 13 116 13 139 367 139 134 135
rd-rplusc-21 122 122 81 122 7140 78072 93542 301 10863
rocII-4-11 12 12 124 12 125 204 125 60 63
timtab1 14 14 78 14 86 30 86 18 18
timtab2 833 1337 379 2392 2215 313 577 258 147
triptim1 23 23 3 33 54 30 54 4 4
vpphard 52 46 16 39 134 65 134 16 16

H
.2.

E
X
P
E
R
IM

E
N
T
A
L
R
E
SU

LT
S

127
Table H.3: The number of LP iterations after branching started until a solution has been found, including those spent on strong
branching

act&dist aggrdive br-rdfs inf default dfs inf inf rdfs inf uct inf uct-rdfs inf

10teams 132328 132328 26774 146780 1814 52147 1814 60488 33113
acc-tight5 2685808 4676262 728932 9763187 3039025 2704908 2689526 1301975 349948
arki001 199295 44564 23863 12111 89430 190826 10290 148202 20381
atlanta-ip 975485 824201 270167 974012 284074 1429744 562993 157153 157153
bab5 230708 230708 115983 247392 11357 133240 11357 327763 120301
bnatt350 3263248 4520593 5153166 10608167 6210402 4029155 4822553 1861039 6194612
csched010 1256583 1492877 517756 854521 43136873 5511879 146198 674911 259212
danoint 122863 122863 5683 122863 891403 6114 30241 7628 7628
dcmulti 16127 16127 799 16127 831 516 831 820 820
enigma 14503 14503 5835 14503 2284 5844 1180 4617 9321
flugpl 236 236 21 236 34 102 34 21 21
l152lav 6385 6385 987 6385 165 317 165 987 987
lectsched-4-obj 177094 177094 138713 177094 38763 138486 27615 140213 97818
misc03 3870 3870 99 3870 89 89 89 99 99
misc07 6979 6979 815 6979 184 184 184 815 815
momentum2 2356747 1217060 453393 483432 2500624 1453667 517274 117314 282625
msc98-ip 7027954 3103686 600518 6716372 154466 185136 464943 6456065 1294336
neos-1109824 13695 13695 8762 13695 559 791 559 9028 9028
neos-1337307 304002 305880 186912 217930 14296 170437 14296 116252 127924
neos-1601936 1011263 1011263 1002805 955051 290308 652186 529575 763845 763845
neos-686190 105035 105035 9444 152070 8109551 27429 44575 4338 4338
neos-849702 3694447 1786567 9352204 1315111 18356317 3603406 1812627 4210679 4820557
net12 376492 376492 22231 2922665 238984 22231 298946 22231 22231
ns1208400 7823712 7788604 1854466 8564525 17711433 17559188 2685722 4314902 1230806
ns1688347 2075161 2075161 139728 1183777 61325 68753 35560 138090 143065
ns1830653 101685 101685 43502 101685 7314 116665 7314 73338 54780
rd-rplusc-21 138461 138461 26823 138461 15966 215430 257311 34465 84890
rocII-4-11 142944 142944 33654 142944 3734 34346 3734 33800 28699
timtab1 13737 13737 8972 13737 846 9464 846 6252 6252
timtab2 126279 199301 19207 251069 7622 30191 6493 38916 21023
triptim1 657029 657029 149615 807937 96948 234727 96948 117313 117313
vpphard 267362 312803 87272 206045 39069 80990 39069 52835 52835

128
C
H
A
P
T
E
R

H
.
A
P
P
E
N
D
IX

Table H.4: The number of LP iterations after branching started until a solution has been found, including those spent on strong
branching

act&dist aggrdive br-rdfs inf default dfs inf inf rdfs inf uct inf uct-rdfs inf

10teams 17664 17664 26774 27160 1814 52147 1814 60488 33113
acc-tight5 1739405 3117724 728932 7320476 3039025 2704908 2689526 1301975 349948
arki001 180434 36306 23863 5635 89430 190826 10290 148202 20381
atlanta-ip 709463 592387 270167 670096 284074 1429744 562993 157153 157153
bab5 67208 67208 115983 79557 11357 133240 11357 327763 120301
bnatt350 2354753 3423008 5153166 8579123 6210402 4029155 4822553 1861039 6194612
csched010 833871 1004216 517756 504954 43136873 5511879 146198 674911 259212
danoint 23924 23924 5683 23924 891403 6114 30241 7628 7628
dcmulti 6159 6159 799 6159 831 516 831 820 820
enigma 6321 6321 5835 6321 2284 5844 1180 4617 9321
flugpl 96 96 21 96 34 102 34 21 21
l152lav 1055 1055 987 1055 165 317 165 987 987
lectsched-4-obj 32235 32235 138713 32235 38763 138486 27615 140213 97818
misc03 1953 1953 99 1953 89 89 89 99 99
misc07 2912 2912 815 2912 184 184 184 815 815
momentum2 1778688 798491 453393 279335 2500624 1453667 517274 117314 282625
msc98-ip 5234230 2456402 600518 5019177 154466 185136 464943 6456065 1294336
neos-1109824 4097 4097 8762 4097 559 791 559 9028 9028
neos-1337307 129896 131774 186912 61712 14296 170437 14296 116252 127924
neos-1601936 594799 594799 1002805 557693 290308 652186 529575 763845 763845
neos-686190 17826 17826 9444 35549 8109551 27429 44575 4338 4338
neos-849702 2744880 1151180 9352204 825834 18356317 3603406 1812627 4210679 4820557
net12 186951 186951 22231 2087361 238984 22231 298946 22231 22231
ns1208400 5775883 5781632 1854466 6322817 17711433 17559188 2685722 4314902 1230806
ns1688347 1229174 1229174 139728 622213 61325 68753 35560 138090 143065
ns1830653 22441 22441 43502 22441 7314 116665 7314 73338 54780
rd-rplusc-21 29750 29750 26823 29750 15966 215430 257311 34465 84890
rocII-4-11 19300 19300 33654 19300 3734 34346 3734 33800 28699
timtab1 2770 2770 8972 2770 846 9464 846 6252 6252
timtab2 47027 119584 19207 170855 7622 30191 6493 38916 21023
triptim1 308777 308777 149615 446417 96948 234727 96948 117313 117313
vpphard 110211 146629 87272 58440 39069 80990 39069 52835 52835

H
.2.

E
X
P
E
R
IM

E
N
T
A
L
R
E
SU

LT
S

129
Table H.5: Successful termination of the Feasibility phase for every combination instance/setting. Missing check marks indicate
that no solution was found until the solver hit the time limit of 1h.

act&dist aggrdive br-rdfs inf default dfs inf inf rdfs inf uct inf uct-rdfs inf

10teams X X X X X X X X X
acc-tight5 X X X X X X X X X
arki001 X X X X X X X X X
atlanta-ip X X X X X X X X X
bab5 X X X X X X X X X
bnatt350 X X X X X X X X X
csched010 X X X X X X X X
danoint X X X X X X X X X
dcmulti X X X X X X X X X
enigma X X X X X X X X X
flugpl X X X X X X X X X
l152lav X X X X X X X X X
lectsched-4-obj X X X X X X X X X
misc03 X X X X X X X X X
misc07 X X X X X X X X X
momentum2 X X X X X X X X
msc98-ip X X X X X X X X X
neos-1109824 X X X X X X X X X
neos-1337307 X X X X X X X X X
neos-1601936 X X X X X X X X X
neos-686190 X X X X X X X X
neos-849702 X X X X X X X X X
net12 X X X X X X X X X
ns1208400 X X X X X X X X
ns1688347 X X X X X X X X X
ns1830653 X X X X X X X X X
rd-rplusc-21 X X X X X X X
rocII-4-11 X X X X X X X X X
timtab1 X X X X X X X X X
timtab2 X X X X X X X X X
triptim1 X X X X X X X X X
vpphard X X X X X X X X X

130 CHAPTER H. APPENDIX

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2. For each instance and setting, we show the number of branch-and-bound
nodes nP2 , the solving time tP2 , and the value of the primal integral ΓP2(T) during
the Improvement phase, as well as the primal bound ctŷ at termination.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

10teams nP2
931.0 872.0 872.0 872.0 973.0 973.0 931.0

tP2
10.7 18.9 20.4 18.7 24.9 27.1 11.0

ctŷ 924.0 924.0 924.0 924.0 924.0 924.0 924.0
ΓP2

(T) 50.0 24.5 24.9 24.3 125.8 137.6 48.8
a1c1s1 nP2

289271.0 156359.0 172980.0 140762.0 195321.0 205853.0 234413.0
tP2

3599.6 3599.6 3599.5 3599.6 3599.6 3599.6 3599.6
ctŷ 11711.5 11505.4 11531.5 11507.4 11624.4 11587.8 11513.4
ΓP2

(T) 9958.3 6312.0 8028.2 6546.3 9567.0 9028.4 4956.6
aflow30a nP2

124.0 0.0 0.0 0.0 0.0 0.0 124.0
tP2

10.2 5.4 5.3 5.6 6.0 6.1 9.7
ctŷ 1158.0 1158.0 1158.0 1158.0 1158.0 1158.0 1158.0
ΓP2

(T) 373.7 99.1 99.1 102.0 412.3 410.1 378.2
aflow40b nP2

5546.0 20063.0 10146.0 20063.0 5085.0 22089.0 46898.0
tP2

124.1 319.1 193.5 321.5 153.9 286.2 554.0
ctŷ 1168.0 1168.0 1168.0 1168.0 1168.0 1168.0 1168.0
ΓP2

(T) 1719.3 2018.6 1841.9 2025.9 1873.9 2148.7 2391.9
air04 nP2

178.0 162.0 162.0 162.0 162.0 162.0 178.0
tP2

64.2 59.7 59.0 61.4 59.2 59.8 63.6
ctŷ 56137.0 56137.0 56137.0 56137.0 56137.0 56137.0 56137.0
ΓP2

(T) 246.4 172.0 169.2 177.8 170.6 176.1 244.1
air05 nP2

128.0 128.0 128.0 128.0 128.0 128.0 128.0
tP2

32.6 34.1 33.2 34.1 33.1 33.2 32.8
ctŷ 26374.0 26374.0 26374.0 26374.0 26374.0 26374.0 26374.0
ΓP2

(T) 194.6 200.9 195.9 195.8 194.9 192.6 192.9
app1-2 nP2

3.0 3.0 3.0 3.0 3.0 3.0 3.0
tP2

589.3 809.5 953.6 809.6 774.6 944.3 587.9
ctŷ -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0
ΓP2

(T) 25887.3 34201.0 40511.2 34188.6 32676.5 40105.3 25805.9
arki001 nP2

58768.0 65452.0 136688.0 40475.0 54894.0 90292.0 32223.0
tP2

405.1 681.9 1546.6 350.9 548.0 772.3 292.5
ctŷ 7580813.0 7580813.0 7580813.0 7580813.0 7580813.0 7580813.0 7580813.0
ΓP2

(T) 4.5 0.0 0.5 4.0 0.0 0.5 4.6
atlanta-ip nP2

4317.0 3754.0 3396.0 3327.0 4094.0 2993.0 3974.0
tP2

2967.0 2967.0 2969.2 2971.1 2969.4 2970.7 2968.4
ctŷ 91.0 93.0 94.0 95.0 95.0 92.0 94.0
ΓP2

(T) 10492.1 17110.1 19493.7 17988.0 20972.8 16603.4 14759.6
bab5 nP2

11295.0 5684.0 5191.0 7057.0 8165.0 9269.0 9219.0
tP2

3397.3 3396.8 3396.4 3393.1 3398.5 3397.5 3396.5
ctŷ -106199.4 -106253.6 -106254.1 -106195.7 -106261.4 -106247.3 -106246.9
ΓP2

(T) 2146.1 2235.7 2497.5 2632.8 2190.4 1891.9 2207.4
beasleyC3 nP2

366597.0 354561.0 418463.0 393899.0 459286.0 466682.0 517819.0
tP2

3600.0 3599.9 3599.9 3599.9 3599.9 3599.9 3599.9
ctŷ 765.0 759.0 759.0 761.0 761.0 758.0 759.0
ΓP2

(T) 5925.9 3402.9 3177.0 4072.7 4346.4 3553.2 4060.1
bell5 nP2

145.0 127.0 127.0 127.0 101.0 101.0 145.0
tP2

0.2 0.2 0.3 0.2 0.2 0.2 0.2
ctŷ 8966406.5 8966406.5 8966406.5 8966406.5 8966406.5 8966406.5 8966406.5
ΓP2

(T) 0.1 0.0 0.2 0.0 0.2 0.2 0.1
biella1 nP2

1371.0 4975.0 4371.0 1783.0 673.0 1586.0 1832.0
tP2

576.9 1549.6 2348.4 1217.0 413.0 1047.3 474.2
ctŷ 3065005.8 3065005.8 3065005.8 3065005.8 3065005.8 3065005.8 3065005.8
ΓP2

(T) 5637.8 4843.1 5964.2 5148.4 4106.9 5666.8 3087.3
bienst2 nP2

13355.0 14435.0 10952.0 14435.0 48169.0 60019.0 13355.0
tP2

86.7 97.0 86.5 97.8 195.9 241.0 86.8
ctŷ 54.6 54.6 54.6 54.6 54.6 54.6 54.6
ΓP2

(T) 230.0 239.8 236.7 239.1 294.9 245.2 231.7
binkar10_1 nP2

731.0 4206.0 3457.0 3289.0 49512.0 2624.0 858.0
tP2

5.5 32.6 33.6 30.4 113.6 31.9 5.5
ctŷ 6742.2 6742.2 6742.2 6742.2 6742.2 6742.2 6742.2
ΓP2

(T) 62.0 76.0 68.1 64.9 62.9 57.7 51.3
blend2 nP2

67.0 108.0 108.0 108.0 67.0 67.0 67.0
tP2

0.4 0.7 0.7 0.4 0.6 0.5 0.2

continued on next page

H.2. EXPERIMENTAL RESULTS 131

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

ctŷ 7.6 7.6 7.6 7.6 7.6 7.6 7.6
ΓP2

(T) 0.0 0.3 0.0 0.0 0.0 0.0 0.4
bley_xl1 nP2

19.0 28.0 28.0 28.0 19.0 19.0 19.0
tP2

102.3 136.4 137.5 136.7 101.6 102.5 100.7
ctŷ 190.0 190.0 190.0 190.0 190.0 190.0 190.0
ΓP2

(T) 4208.4 1853.0 1829.9 1855.5 4186.1 4198.4 4144.9
cap6000 nP2

1611.0 1365.0 1377.0 1377.0 1165.0 1165.0 1611.0
tP2

2.0 3.2 3.6 3.4 3.3 3.3 1.9
ctŷ -2451377.0 -2451377.0 -2451377.0 -2451377.0 -2451377.0 -2451377.0 -2451377.0
ΓP2

(T) 12.4 40.2 52.1 48.6 13.2 3.9 4.6
core2536-691 nP2

217.0 283.0 283.0 283.0 186.0 186.0 217.0
tP2

308.3 371.2 378.4 371.8 335.2 345.5 312.1
ctŷ 689.0 689.0 689.0 689.0 689.0 689.0 689.0
ΓP2

(T) 320.9 364.9 371.0 363.8 321.0 352.8 341.0
cov1075 nP2

255.0 90.0 90.0 90.0 150.0 150.0 255.0
tP2

15.3 13.4 12.6 12.7 13.5 13.9 14.9
ctŷ 20.0 20.0 20.0 20.0 20.0 20.0 20.0
ΓP2

(T) 254.4 140.7 130.3 142.8 177.8 186.7 239.0
csched010 nP2

71248.0 14690.0 71124.0 13934.0 33398.0 52256.0 34613.0
tP2

618.3 221.4 710.3 188.1 417.8 490.3 309.7
ctŷ 408.0 408.0 408.0 408.0 408.0 408.0 408.0
ΓP2

(T) 1786.4 2653.8 4278.8 2330.4 4131.7 2753.6 1482.1
danoint nP2

1121.0 1038.0 500.0 1038.0 686.0 686.0 1121.0
tP2

24.8 31.6 18.6 33.8 23.5 21.8 24.6
ctŷ 65.7 65.7 65.7 65.7 65.7 65.7 65.7
ΓP2

(T) 137.3 131.9 121.2 134.8 127.1 118.3 136.9
dcmulti nP2

292.0 292.0 292.0 292.0 292.0 292.0 292.0
tP2

0.4 0.4 0.5 0.5 0.4 0.5 0.4
ctŷ 188182.0 188182.0 188182.0 188182.0 188182.0 188182.0 188182.0
ΓP2

(T) 0.0 0.6 0.5 0.0 0.6 0.0 0.5
dfn-gwin-UUM nP2

2409.0 2214.0 364.0 1317.0 600.0 2473.0 1396.0
tP2

26.4 48.3 34.5 43.4 32.6 54.3 18.9
ctŷ 38752.0 38752.0 38752.0 38752.0 38752.0 38752.0 38752.0
ΓP2

(T) 438.6 1198.3 1109.3 1176.7 864.2 1024.8 412.9
ds nP2

327.0 269.0 269.0 262.0 239.0 272.0 318.0
tP2

3594.0 3594.0 3594.0 3594.0 3593.9 3594.0 3594.0
ctŷ 458.4 358.1 353.0 323.2 316.4 368.9 336.6
ΓP2

(T) 297823.4 290672.8 283503.2 276653.9 274168.8 283498.3 278749.0
dsbmip nP2

14.0 0.0 0.0 0.0 0.0 0.0 14.0
tP2

1.0 0.7 0.9 0.7 0.9 0.9 1.1
ctŷ -305.2 -305.2 -305.2 -305.2 -305.2 -305.2 -305.2
ΓP2

(T) 47.4 37.1 52.0 38.1 46.4 45.3 53.3
eil33-2 nP2

362.0 362.0 362.0 362.0 362.0 362.0 362.0
tP2

40.2 43.5 43.0 43.0 41.0 41.3 39.6
ctŷ 934.0 934.0 934.0 934.0 934.0 934.0 934.0
ΓP2

(T) 439.2 492.4 476.7 478.4 437.1 443.6 425.8
eilB101 nP2

7804.0 3768.0 3768.0 3768.0 4447.0 4447.0 5858.0
tP2

424.0 345.4 358.8 346.6 361.5 369.6 342.1
ctŷ 1216.9 1216.9 1216.9 1216.9 1216.9 1216.9 1216.9
ΓP2

(T) 1245.4 1312.0 1349.9 1306.6 1342.4 1375.8 1252.0
fast0507 nP2

799.0 349.0 349.0 349.0 233.0 233.0 799.0
tP2

494.7 209.7 211.8 210.7 163.2 163.8 494.2
ctŷ 174.0 174.0 174.0 174.0 174.0 174.0 174.0
ΓP2

(T) 904.7 640.8 642.2 644.8 609.1 614.8 916.1
flugpl nP2

12.0 16.0 16.0 16.0 12.0 12.0 12.0
tP2

0.0 0.0 0.0 0.0 0.0 0.0 0.0
ctŷ 1201500.0 1201500.0 1201500.0 1201500.0 1201500.0 1201500.0 1201500.0
ΓP2

(T) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gesa2-o nP2

1.0 0.0 0.0 0.0 0.0 0.0 1.0
tP2

1.5 0.8 1.1 1.0 0.8 0.8 1.3
ctŷ 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4
ΓP2

(T) 6.4 5.0 6.4 6.4 4.4 5.2 7.1
gesa3_o nP2

2.0 2.0 2.0 2.0 2.0 2.0 2.0
tP2

1.8 1.9 1.9 1.9 1.8 1.6 1.7
ctŷ 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6
ΓP2

(T) 9.6 9.5 9.5 9.5 7.2 7.4 9.5

continued on next page

132 CHAPTER H. APPENDIX

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

glass4 nP2
8127712.0 6274756.0 7334537.0 6579326.0 7639007.0 6777628.0 7703955.0

tP2
3598.2 3598.3 3598.5 3598.4 3598.3 3598.2 3598.4

ctŷ 1550014550.0 1500013450.0 1500012966.7 1475013050.0 1600013400.0 1550015800.0 1566682933.3
ΓP2

(T) 84430.6 81001.4 82703.6 69623.7 90965.3 89142.9 86870.0
gmu-35-40 nP2

5973738.0 5894603.0 5882942.0 5705752.0 5050597.0 6157128.0 6924541.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ -2406528.8 -2405954.4 -2405976.2 -2406037.4 -2406287.5 -2406412.1 -2406328.9
ΓP2

(T) 89.4 200.8 218.5 165.0 105.2 88.0 98.3
iis-100-0-cov nP2

518.0 316.0 316.0 316.0 101.0 101.0 796.0
tP2

49.5 51.4 48.1 49.9 32.4 32.8 55.9
ctŷ 29.0 29.0 29.0 29.0 29.0 29.0 29.0
ΓP2

(T) 633.1 701.0 665.8 674.3 548.6 554.4 648.4
iis-bupa-cov nP2

826.0 111.0 1.0 111.0 1.0 1.0 472.0
tP2

150.8 206.0 110.7 207.0 93.6 93.6 130.8
ctŷ 36.0 36.0 36.0 36.0 36.0 36.0 36.0
ΓP2

(T) 1434.3 2627.0 2446.1 2645.4 2344.7 2345.6 1112.2
iis-pima-cov nP2

17161.0 216.0 200.0 216.0 1.0 17224.0 17110.0
tP2

1230.3 199.3 161.1 200.1 57.1 1579.6 1241.7
ctŷ 33.0 33.0 33.0 33.0 33.0 33.0 33.0
ΓP2

(T) 4285.5 1790.6 1812.9 1789.7 1316.0 6095.5 4412.0
l152lav nP2

38.0 38.0 38.0 38.0 38.0 38.0 38.0
tP2

1.5 1.5 1.5 1.8 1.5 1.6 1.5
ctŷ 4722.0 4722.0 4722.0 4722.0 4722.0 4722.0 4722.0
ΓP2

(T) 0.0 1.0 1.0 0.2 1.0 1.0 0.0
lectsched-4-obj nP2

23933.0 9509.0 4008.0 9509.0 43767.0 13007.0 11640.0
tP2

367.3 328.0 157.8 329.1 489.9 286.3 246.0
ctŷ 4.0 4.0 4.0 4.0 4.0 4.0 4.0
ΓP2

(T) 18713.8 20311.2 8868.6 20359.9 23010.4 15937.6 13773.2
lseu nP2

282.0 200.0 398.0 200.0 398.0 376.0 282.0
tP2

0.7 0.8 0.9 1.1 0.8 0.9 0.5
ctŷ 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0
ΓP2

(T) 1.5 2.1 2.4 2.8 2.2 2.2 1.2
m100n500k4r1 nP2

3671393.0 3346326.0 3320497.0 3315109.0 3581072.0 3526732.0 3413839.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ -24.0 -24.0 -24.0 -24.0 -24.0 -24.0 -24.0
ΓP2

(T) 14555.0 14670.6 14687.6 14679.8 14774.0 14809.2 14506.2
macrophage nP2

540923.0 414801.0 392595.0 375258.0 530241.0 549327.0 513521.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ 380.0 376.0 375.0 377.0 376.0 377.0 376.0
ΓP2

(T) 7014.1 3434.7 2965.6 4854.1 5231.3 3974.2 3081.1
map18 nP2

83.0 0.0 0.0 0.0 0.0 0.0 0.0
tP2

269.6 107.6 85.5 108.3 86.8 76.5 75.8
ctŷ -847.0 -847.0 -847.0 -847.0 -847.0 -847.0 -847.0
ΓP2

(T) 3451.5 4595.0 3988.6 4635.1 3987.1 3689.7 3669.2
markshare2 nP2

33127583.0 27233740.0 26205218.0 27069884.0 28161250.0 28563823.0 32241464.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ 18.0 15.0 12.0 17.0 15.0 14.0 17.0
ΓP2

(T) 340708.4 339448.0 337551.5 341147.6 340217.2 337002.5 340273.9
mas74 nP2

36761.0 1151.0 286613.0 1151.0 159291.0 1046767.0 36761.0
tP2

21.0 5.9 134.9 6.7 84.8 327.2 21.4
ctŷ 11801.2 11801.2 11801.2 11801.2 11801.2 11801.2 11801.2
ΓP2

(T) 83.3 40.8 250.8 45.8 339.2 401.1 86.2
mcsched nP2

16140.0 7927.0 7927.0 14008.0 10340.0 10340.0 16140.0
tP2

174.6 122.8 130.1 212.2 138.1 146.2 177.6
ctŷ 211913.0 211913.0 211913.0 211913.0 211913.0 211913.0 211913.0
ΓP2

(T) 234.8 233.4 233.6 189.0 237.8 237.0 231.3
mine-166-5 nP2

1717.0 262.0 67.0 4391.0 82.0 146.0 1717.0
tP2

30.0 33.7 35.4 75.3 32.5 32.9 30.2
ctŷ -566395707.9 -566395707.9 -566395707.9 -566395707.9 -566395707.9 -566395707.9 -566395707.9
ΓP2

(T) 1604.2 1990.9 1969.6 5071.2 1948.0 1883.6 1602.9
mine-90-10 nP2

44693.0 426195.0 404159.0 56632.0 157675.0 131019.0 53503.0
tP2

177.9 1495.8 1458.1 274.1 679.7 485.8 189.1
ctŷ -784302337.6 -784302337.6 -784302337.6 -784302337.6 -784302337.6 -784302337.6 -784302337.6
ΓP2

(T) 2078.3 2681.4 2699.1 3239.9 2929.1 2492.4 1830.9
misc07 nP2

51.0 51.0 51.0 51.0 51.0 51.0 51.0
tP2

1.1 0.7 0.7 0.7 0.7 0.7 0.8

continued on next page

H.2. EXPERIMENTAL RESULTS 133

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

ctŷ 2810.0 2810.0 2810.0 2810.0 2810.0 2810.0 2810.0
ΓP2

(T) 5.0 4.7 4.7 2.8 4.6 5.2 6.1
mkc nP2

1098250.0 1100760.0 938504.0 913397.0 1106178.0 933574.0 1311091.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ -562.7 -563.2 -562.8 -561.3 -563.3 -562.1 -563.6
ΓP2

(T) 1830.7 1396.2 1638.2 2220.7 1555.7 1802.6 1916.3
mod011 nP2

324.0 1.0 78.0 1.0 84.0 101.0 324.0
tP2

104.7 27.8 141.0 28.3 199.4 158.1 104.8
ctŷ -54558535.0 -54558535.0 -54558535.0 -54558535.0 -54558535.0 -54558535.0 -54558535.0
ΓP2

(T) 1579.5 1317.5 1399.7 1343.4 1352.2 1536.3 1570.6
modglob nP2

261.0 0.0 0.0 0.0 0.0 0.0 261.0
tP2

1.2 0.9 1.2 1.1 0.9 0.7 1.1
ctŷ 20740508.1 20740508.1 20740508.1 20740508.1 20740508.1 20740508.1 20740508.1
ΓP2

(T) 0.0 0.0 7.9 7.9 0.0 0.0 0.0
momentum1 nP2

15865.0 7410.0 8104.0 7422.0 9938.0 5639.0 7469.0
tP2

3594.7 3594.5 3594.7 3594.6 3594.8 3594.8 3594.6
ctŷ 115610.8 128486.2 128465.5 128488.6 122040.7 128470.5 115648.2
ΓP2

(T) 93143.3 63772.2 65476.5 63798.9 46004.6 62819.2 70560.2
momentum2 nP2

12265.0 7262.0 9310.0 6223.0 13108.0 11870.0 10926.0
tP2

3184.3 3181.8 3182.9 3179.8 3182.1 3181.7 3179.6
ctŷ 13812.6 12415.8 13812.3 15421.6 13814.5 13813.0 13813.0
ΓP2

(T) 41827.4 54587.9 49326.8 68882.4 41247.1 42700.1 61972.9
msc98-ip nP2

285.0 296.0 305.0 308.0 239.0 269.0 284.0
tP2

628.8 624.5 634.5 635.3 625.2 634.6 619.5
ctŷ 25250796.0 30681010.0 30681010.0 30681010.0 30681010.0 30681010.0 26778562.0
ΓP2

(T) 18586.9 22064.7 22420.5 22448.0 22093.3 22400.5 19530.9
mzzv11 nP2

1038.0 913.0 913.0 1171.0 802.0 1000.0 1038.0
tP2

197.5 264.8 260.4 278.9 335.2 322.7 198.0
ctŷ -21718.0 -21718.0 -21718.0 -21718.0 -21718.0 -21718.0 -21718.0
ΓP2

(T) 12441.0 12063.9 12071.9 12049.4 12551.0 12603.8 12445.0
mzzv42z nP2

513.0 257.0 257.0 257.0 131.0 131.0 513.0
tP2

329.4 137.8 137.4 137.3 162.1 163.9 331.2
ctŷ -20540.0 -20540.0 -20540.0 -20540.0 -20540.0 -20540.0 -20540.0
ΓP2

(T) 12011.8 7698.5 7779.0 7790.4 8297.2 8399.4 12110.5
n3div36 nP2

112508.0 93000.0 90445.0 92365.0 20392.0 15398.0 112648.0
tP2

3597.8 3597.7 3597.8 3597.7 1175.9 976.5 3597.4
ctŷ 131000.0 131000.0 132800.0 131000.0 130800.0 130800.0 131000.0
ΓP2

(T) 5009.8 3357.4 8929.4 3359.1 5178.9 5042.7 5010.7
n3seq24 nP2

145.0 213.0 198.0 229.0 86.0 81.0 145.0
tP2

3576.9 3576.0 3577.2 3578.4 3577.8 3577.3 3577.3
ctŷ 62800.0 54400.0 53000.0 55400.0 60800.0 59000.0 62800.0
ΓP2

(T) 113142.8 147594.9 153717.2 150378.0 119564.6 120273.0 114442.9
n4-3 nP2

933.0 467.0 459.0 364.0 435.0 512.0 968.0
tP2

61.8 73.1 92.4 60.9 72.9 80.5 65.0
ctŷ 8993.0 8993.0 8993.0 8993.0 8993.0 8993.0 8993.0
ΓP2

(T) 1397.8 811.7 875.7 703.8 894.5 837.8 1412.0
neos-1109824 nP2

7.0 7.0 7.0 7.0 7.0 7.0 7.0
tP2

2.3 2.5 2.3 2.3 2.3 2.6 2.3
ctŷ 378.0 378.0 378.0 378.0 378.0 378.0 378.0
ΓP2

(T) 28.5 29.4 28.5 26.9 28.3 29.8 29.3
neos-1337307 nP2

2657.0 454.0 946.0 454.0 953.0 608.0 2657.0
tP2

236.8 131.6 206.8 129.6 143.9 131.2 236.6
ctŷ -202319.0 -202319.0 -202319.0 -202319.0 -202319.0 -202319.0 -202319.0
ΓP2

(T) 10.8 8.9 10.6 8.9 17.1 20.8 6.8
neos-1396125 nP2

20598.0 7395.0 13159.0 14371.0 17843.0 10237.0 16446.0
tP2

423.0 352.5 470.1 540.2 670.0 443.0 434.6
ctŷ 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
ΓP2

(T) 2794.8 637.2 555.1 4074.6 4225.6 644.2 4202.7
neos-1601936 nP2

2689.0 1948.0 1948.0 1948.0 2119.0 1915.0 2689.0
tP2

3242.9 3243.5 3240.6 3242.0 3244.5 3244.7 3243.1
ctŷ 4.0 4.0 4.0 4.0 4.0 5.0 4.0
ΓP2

(T) 125832.1 133812.1 134306.1 133788.0 148522.4 150318.8 125927.7
neos-476283 nP2

295.0 130.0 105.0 105.0 175.0 175.0 295.0
tP2

168.4 211.7 225.8 214.8 245.1 267.0 171.1
ctŷ 406.4 406.4 406.4 406.4 406.4 406.4 406.4
ΓP2

(T) 593.3 592.9 610.9 582.0 608.4 624.2 629.4

continued on next page

134 CHAPTER H. APPENDIX

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

neos-686190 nP2
5008.0 6739.0 3689.0 6188.0 5272.0 5272.0 5328.0

tP2
50.3 81.9 61.9 77.4 59.0 67.4 53.2

ctŷ 6730.0 6730.0 6730.0 6730.0 6730.0 6730.0 6730.0
ΓP2

(T) 883.8 1103.0 1166.7 1057.4 587.6 710.9 881.4
neos-916792 nP2

25938.0 1081.0 26032.0 17855.0 75929.0 30819.0 53258.0
tP2

208.9 60.3 261.3 214.3 406.0 302.6 257.9
ctŷ 31.9 31.9 31.9 31.9 31.9 31.9 31.9
ΓP2

(T) 835.3 715.5 1055.7 961.9 1036.8 1315.0 795.3
neos-934278 nP2

377.0 573.0 203.0 573.0 348.0 331.0 264.0
tP2

3600.0 3600.0 3599.9 3600.0 3599.9 3599.9 3599.9
ctŷ 283.0 263.0 280.0 263.0 270.0 266.0 1290.0
ΓP2

(T) 108576.1 52359.2 81597.8 52360.3 63700.1 56271.1 294029.7
neos13 nP2

3963.0 2213.0 0.0 453.0 559.0 584.0 3014.0
tP2

1479.3 3598.6 1046.9 3598.7 3598.8 3598.7 1695.9
ctŷ -95.5 -94.1 -95.5 -94.4 -93.3 -95.3 -95.5
ΓP2

(T) 40712.1 54987.8 25205.0 56138.2 69156.5 56470.5 44522.9
neos18 nP2

340.0 103.0 103.0 209.0 149.0 149.0 340.0
tP2

13.2 12.3 13.2 15.6 14.2 14.3 13.2
ctŷ 16.0 16.0 16.0 16.0 16.0 16.0 16.0
ΓP2

(T) 356.2 225.4 254.7 221.7 244.5 256.2 360.0
net12 nP2

265.0 170.0 170.0 170.0 404.0 404.0 265.0
tP2

168.8 140.6 141.5 141.1 334.6 340.2 169.4
ctŷ 214.0 214.0 214.0 214.0 214.0 214.0 214.0
ΓP2

(T) 4596.2 3620.7 3658.7 3623.8 7057.7 7150.0 4607.7
netdiversion nP2

58.0 36.0 36.0 36.0 54.0 58.0 58.0
tP2

3595.0 3603.0 3581.8 3593.5 3582.0 3603.2 3587.4
ctŷ 251.0 4900438.0 4900438.0 4900438.0 251.0 251.0 251.0
ΓP2

(T) 343615.5 358171.3 358159.3 358177.3 346994.8 344382.8 342847.2
newdano nP2

538282.0 409477.0 358327.0 376318.0 381392.0 55822.0 538282.0
tP2

1158.5 1065.3 951.4 944.1 988.4 225.0 1160.7
ctŷ 65.7 65.7 65.7 65.7 65.7 65.7 65.7
ΓP2

(T) 1825.5 2161.2 1793.2 1430.9 1654.9 717.1 1841.5
noswot nP2

260.0 261.0 96.0 171.0 260.0 200.0 260.0
tP2

0.9 0.9 1.5 1.3 1.1 1.5 0.8
ctŷ -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0
ΓP2

(T) 8.9 7.8 8.9 9.2 7.5 8.5 8.2
ns1688347 nP2

2701.0 5581.0 5581.0 6170.0 495.0 495.0 2701.0
tP2

411.0 560.8 565.5 764.3 228.7 244.8 412.6
ctŷ 27.0 27.0 27.0 27.0 27.0 27.0 27.0
ΓP2

(T) 7825.0 6978.4 7067.9 12926.0 4419.3 4745.5 7841.2
ns1758913 nP2

0.0 0.0 0.0 0.0 0.0 0.0 0.0
tP2

2930.1 2929.9 2929.4 2929.3 2929.4 2928.6 2928.8
ctŷ -236.8 -285.5 -285.5 -285.5 -236.8 -236.8 -236.8
ΓP2

(T) 245314.6 235487.8 235452.6 235450.9 245256.0 245182.2 245200.2
ns1830653 nP2

13090.0 25963.0 25188.0 25963.0 7920.0 39663.0 13090.0
tP2

198.9 396.9 404.2 400.2 201.4 541.8 200.0
ctŷ 20622.0 20622.0 20622.0 20622.0 20622.0 20622.0 20622.0
ΓP2

(T) 7272.0 10699.5 10186.2 10847.6 8456.7 12214.1 7293.9
nsrand-ipx nP2

696764.0 541349.0 503443.0 523390.0 782402.0 582085.0 661141.0
tP2

3599.0 3599.2 3599.0 3599.1 3599.1 3599.0 3599.3
ctŷ 51840.0 52000.0 51360.0 52000.0 51360.0 51840.0 51680.0
ΓP2

(T) 7372.6 6978.6 5262.5 6981.8 5521.2 6447.8 6945.7
opm2-z7-s2 nP2

2056.0 1041.0 3613.0 2530.0 1830.0 1894.0 2056.0
tP2

784.6 442.6 914.0 692.9 568.9 565.3 787.9
ctŷ -10280.0 -10280.0 -10280.0 -10280.0 -10280.0 -10280.0 -10280.0
ΓP2

(T) 8024.1 10591.0 10727.5 11884.7 11106.8 11352.3 8054.7
p0201 nP2

34.0 6.0 6.0 6.0 7.0 7.0 34.0
tP2

1.3 1.1 1.4 1.3 1.1 1.1 1.4
ctŷ 7615.0 7615.0 7615.0 7615.0 7615.0 7615.0 7615.0
ΓP2

(T) 17.1 10.1 18.1 17.4 8.2 12.4 17.6
p2756 nP2

135.0 2.0 2.0 2.0 5.0 5.0 135.0
tP2

1.6 1.3 1.3 1.4 1.3 1.3 1.6
ctŷ 3124.0 3124.0 3124.0 3124.0 3124.0 3124.0 3124.0
ΓP2

(T) 10.1 1.9 2.9 2.7 8.2 8.4 6.5
pg5_34 nP2

241713.0 79857.0 274157.0 79846.0 71854.0 165395.0 179289.0
tP2

1185.7 644.8 1643.5 648.1 625.2 1057.5 1045.2

continued on next page

H.2. EXPERIMENTAL RESULTS 135

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

ctŷ -14339.4 -14339.4 -14339.4 -14339.4 -14339.4 -14339.4 -14339.4
ΓP2

(T) 172.7 175.2 208.4 166.3 146.7 176.5 186.0
pigeon-10 nP2

200.0 1.0 1.0 1.0 1.0 1.0 200.0
tP2

4.9 1.4 1.7 1.6 1.8 1.5 4.9
ctŷ -9000.0 -9000.0 -9000.0 -9000.0 -9000.0 -9000.0 -9000.0
ΓP2

(T) 489.0 140.0 169.0 160.0 180.0 150.0 490.0
pk1 nP2

15661.0 43672.0 40463.0 16279.0 49691.0 20648.0 15661.0
tP2

9.1 41.4 36.7 22.3 32.5 20.8 9.3
ctŷ 11.0 11.0 11.0 11.0 11.0 11.0 11.0
ΓP2

(T) 324.7 1140.4 821.1 723.4 728.7 655.9 322.9
pp08a nP2

132.0 132.0 132.0 132.0 132.0 132.0 132.0
tP2

1.3 1.5 1.4 1.3 1.1 1.3 1.4
ctŷ 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0
ΓP2

(T) 26.2 26.3 27.9 26.2 14.8 21.8 27.7
pp08aCUTS nP2

83.0 83.0 83.0 83.0 83.0 83.0 83.0
tP2

1.1 1.8 1.6 1.6 2.1 1.5 1.1
ctŷ 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0
ΓP2

(T) 18.8 38.7 23.3 30.7 34.2 21.9 21.9
protfold nP2

5511.0 3963.0 2589.0 2859.0 5438.0 5777.0 5511.0
tP2

3599.9 3599.8 3599.7 3599.9 3599.8 3599.8 3599.9
ctŷ -23.0 -22.0 -26.0 -25.0 -24.0 -24.0 -23.0
ΓP2

(T) 158297.1 114870.3 73553.1 80700.6 104861.9 120935.1 158632.6
pw-myciel4 nP2

532.0 310.0 310.0 632.0 100.0 100.0 532.0
tP2

52.5 55.1 65.0 76.2 38.3 38.5 51.6
ctŷ 10.0 10.0 10.0 10.0 10.0 10.0 10.0
ΓP2

(T) 1802.3 1536.6 1656.5 1723.0 1270.7 1277.6 1755.2
qiu nP2

776.0 824.0 638.0 824.0 589.0 589.0 776.0
tP2

22.5 26.0 25.5 26.7 23.7 23.7 22.7
ctŷ -132.9 -132.9 -132.9 -132.9 -132.9 -132.9 -132.9
ΓP2

(T) 2128.9 2063.1 1853.0 2037.4 2183.4 2174.4 2150.0
qnet1 nP2

30.0 3.0 3.0 3.0 4.0 4.0 30.0
tP2

8.3 4.7 4.0 4.6 4.7 4.5 8.2
ctŷ 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7
ΓP2

(T) 79.7 23.3 18.6 23.1 22.5 22.9 79.6
qnet1_o nP2

13.0 0.0 0.0 0.0 0.0 0.0 13.0
tP2

7.5 2.1 2.2 2.2 2.2 2.4 6.8
ctŷ 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7
ΓP2

(T) 74.1 9.5 9.5 10.5 8.5 10.5 61.7
rail507 nP2

293.0 1014.0 1014.0 1014.0 293.0 293.0 293.0
tP2

146.5 447.3 443.5 449.1 159.0 158.2 142.3
ctŷ 174.0 174.0 174.0 174.0 174.0 174.0 174.0
ΓP2

(T) 381.7 589.8 575.8 595.7 386.4 384.6 361.0
ran16x16 nP2

17474.0 16502.0 33779.0 37899.0 83374.0 39734.0 54013.0
tP2

32.3 43.3 70.0 72.6 112.3 71.4 69.4
ctŷ 3823.0 3823.0 3823.0 3823.0 3823.0 3823.0 3823.0
ΓP2

(T) 69.0 99.2 146.3 137.4 113.9 89.0 103.8
rd-rplusc-21 nP2

30555.0 24194.0 22595.0 20464.0 24084.0 21895.0 30589.0
tP2

3027.3 3031.4 3030.1 3022.3 3028.2 3027.0 3030.1
ctŷ 166009.7 166227.5 165797.0 166009.7 167644.0 168174.6 166009.7
ΓP2

(T) 2730.6 3757.3 2471.1 2191.2 5561.5 6109.1 2711.7
reblock67 nP2

8158.0 8638.0 25750.0 26525.0 47596.0 21751.0 8158.0
tP2

58.0 55.4 108.2 104.5 157.2 105.0 57.9
ctŷ -34630648.4 -34630648.4 -34630648.4 -34630648.4 -34630648.4 -34630648.4 -34630648.4
ΓP2

(T) 1653.7 838.3 853.3 955.6 1696.6 1685.5 1608.0
rgn nP2

0.0 0.0 0.0 0.0 0.0 0.0 0.0
tP2

0.1 0.4 0.4 0.4 0.3 0.3 0.2
ctŷ 82.2 82.2 82.2 82.2 82.2 82.2 82.2
ΓP2

(T) 7.2 20.5 20.5 19.5 22.5 22.5 15.3
rmatr100-p10 nP2

161.0 0.0 0.0 0.0 0.0 0.0 161.0
tP2

65.7 76.5 69.0 76.5 67.5 77.0 65.4
ctŷ 423.0 423.0 423.0 423.0 423.0 423.0 423.0
ΓP2

(T) 842.1 977.5 895.4 974.2 876.6 980.6 840.0
rmatr100-p5 nP2

98.0 0.0 0.0 0.0 0.0 0.0 0.0
tP2

189.2 48.1 55.4 48.1 44.1 49.5 47.3
ctŷ 976.0 976.0 976.0 976.0 976.0 976.0 976.0
ΓP2

(T) 1426.3 1281.4 1469.8 1282.7 1174.6 1318.7 1261.3

continued on next page

136 CHAPTER H. APPENDIX

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

rmine6 nP2
1076121.0 444842.0 974763.0 788139.0 280041.0 321144.0 323495.0

tP2
3600.0 1822.8 3600.0 2864.2 1155.8 1257.7 1161.8

ctŷ -457.2 -457.2 -457.2 -457.2 -457.2 -457.2 -457.2
ΓP2

(T) 335.4 360.5 353.8 350.3 339.8 353.5 312.4
rocII-4-11 nP2

40433.0 22151.0 29346.0 38557.0 4343.0 19430.0 40433.0
tP2

433.2 383.1 445.6 499.2 118.4 353.9 431.9
ctŷ -6.7 -6.7 -6.7 -6.7 -6.7 -6.7 -6.7
ΓP2

(T) 8933.3 11746.5 10824.7 12850.8 5167.2 9120.2 8922.3
rococoC10-001000 nP2

98574.0 115614.0 30311.0 13619.0 218079.0 48479.0 53888.0
tP2

647.1 822.8 354.3 238.8 1433.8 408.3 392.9
ctŷ 11460.0 11460.0 11460.0 11460.0 11460.0 11460.0 11460.0
ΓP2

(T) 745.3 1035.5 1233.9 848.9 1824.5 787.3 916.5
roll3000 nP2

1285318.0 50239.0 44506.0 138637.0 34994.0 156994.0 293299.0
tP2

3595.5 373.6 346.0 722.5 291.2 646.0 1034.6
ctŷ 12899.0 12890.0 12890.0 12890.0 12890.0 12890.0 12890.0
ΓP2

(T) 866.3 769.1 511.8 886.5 608.7 441.2 486.7
rout nP2

12519.0 858.0 4219.0 858.0 10407.0 5161.0 6448.0
tP2

27.7 10.0 23.7 10.4 31.6 28.4 24.3
ctŷ 1077.6 1077.6 1077.6 1077.6 1077.6 1077.6 1077.6
ΓP2

(T) 156.0 115.2 111.9 105.7 172.0 155.1 190.5
satellites1-25 nP2

1297.0 200.0 200.0 200.0 845.0 845.0 1297.0
tP2

475.9 341.9 342.2 342.3 474.2 486.1 477.0
ctŷ -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0
ΓP2

(T) 30130.0 22916.0 22943.0 22926.0 28109.0 28579.0 30226.0
set1ch nP2

4.0 0.0 0.0 0.0 0.0 0.0 4.0
tP2

1.1 1.1 1.0 1.1 0.9 0.7 0.9
ctŷ 54537.8 54537.8 54537.8 54537.8 54537.8 54537.8 54537.8
ΓP2

(T) 24.3 25.3 24.7 27.2 20.3 13.7 21.3
seymour nP2

65643.0 63487.0 54138.0 62953.0 60203.0 62467.0 67338.0
tP2

3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
ctŷ 426.0 424.0 424.0 424.0 424.0 426.0 424.0
ΓP2

(T) 3332.3 2886.4 2838.7 2886.5 2508.3 3731.7 2136.0
sp97ar nP2

2217.0 1860.0 2128.0 2002.0 1866.0 2022.0 2385.0
tP2

3598.4 3598.3 3598.4 3598.1 3598.3 3598.3 3598.3
ctŷ 710063477.9 685616215.2 674738738.8 681876238.1 687058465.1 693990313.0 713253304.8
ΓP2

(T) 34864.4 16031.0 11543.4 12960.1 18511.9 20612.7 36885.6
sp98ic nP2

52188.0 55923.0 45032.0 58237.0 68697.0 59754.0 60231.0
tP2

3598.4 3598.2 3598.5 3598.5 3598.5 3598.5 3598.5
ctŷ 461315936.0 452326876.8 450686589.4 452153055.0 457372164.0 450852689.3 453891327.8
ΓP2

(T) 12605.0 4170.0 6595.4 3624.2 7961.1 3069.0 6748.5
sp98ir nP2

6877.0 1692.0 1216.0 1153.0 1222.0 2639.0 8148.0
tP2

95.4 61.8 55.3 50.1 52.2 79.7 103.6
ctŷ 219676790.4 219676790.4 219676790.4 219676790.4 219676790.4 219676790.4 219676790.4
ΓP2

(T) 266.0 240.4 218.0 212.2 208.9 220.4 267.3
stein45 nP2

1399.0 2739.0 201.0 2739.0 2045.0 2045.0 1399.0
tP2

1.4 2.3 1.4 2.8 2.3 2.2 1.4
ctŷ 30.0 30.0 30.0 30.0 30.0 30.0 30.0
ΓP2

(T) 4.7 7.0 5.1 9.8 8.6 8.9 5.4
swath nP2

564580.0 246660.0 505684.0 129245.0 42489.0 77464.0 545394.0
tP2

3599.8 1927.8 3599.9 1184.5 514.1 825.2 3599.8
ctŷ 472.6 467.4 478.0 467.4 467.4 467.4 483.8
ΓP2

(T) 10765.5 6908.1 10872.3 5336.8 3742.7 3366.4 16144.6
tanglegram1 nP2

29.0 26.0 26.0 26.0 29.0 29.0 29.0
tP2

1059.3 1023.7 1026.3 1022.1 1079.8 1076.1 1064.3
ctŷ 5182.0 5182.0 5182.0 5182.0 5182.0 5182.0 5182.0
ΓP2

(T) 15585.5 16195.5 16227.7 16183.7 15933.2 15898.6 15623.5
tanglegram2 nP2

3.0 2.0 2.0 2.0 2.0 2.0 3.0
tP2

10.4 8.3 8.3 8.3 8.2 8.2 10.3
ctŷ 443.0 443.0 443.0 443.0 443.0 443.0 443.0
ΓP2

(T) 704.1 556.4 556.5 562.1 547.7 547.8 697.5
timtab1 nP2

68220.0 201503.0 98553.0 17768.0 65269.0 45101.0 68220.0
tP2

39.3 136.6 78.5 25.3 52.9 48.8 37.6
ctŷ 764772.0 764772.0 764772.0 764772.0 764772.0 764772.0 764772.0
ΓP2

(T) 282.0 201.3 142.3 176.0 207.8 262.6 263.7
timtab2 nP2

4167352.0 3616261.0 3804951.0 3356244.0 3739038.0 3819528.0 4065888.0
tP2

3578.0 3577.7 3579.7 3280.0 3579.4 3579.2 3576.7

continued on next page

H.2. EXPERIMENTAL RESULTS 137

Table H.6: Instancewise results for the Improvement phase experiment, see Sec-
tion 5.1.2.

default agg agg l-uct agg05 l-agg l-agg l-uct l-uct

ctŷ 1136721.0 1145403.0 1150047.0 1096557.0 1146606.0 1115393.0 1139205.0
ΓP2

(T) 24388.5 19433.4 25848.0 12650.4 26426.2 18974.6 27150.3
tr12-30 nP2

186641.0 48399.0 227530.0 348284.0 577.0 66111.0 488956.0
tP2

280.0 145.6 426.1 590.2 29.5 157.8 677.1
ctŷ 130596.0 130596.0 130596.0 130596.0 130596.0 130596.0 130596.0
ΓP2

(T) 50.9 69.3 77.4 85.2 72.4 64.3 55.9
triptim1 nP2

14.0 14.0 14.0 14.0 14.0 14.0 14.0
tP2

842.4 908.2 896.2 889.5 838.2 839.5 834.9
ctŷ 22.9 22.9 22.9 22.9 22.9 22.9 22.9
ΓP2

(T) 1.5 43.6 27.0 42.7 33.3 35.3 6.1
unitcal_7 nP2

1964.0 4108.0 2133.0 3543.0 165.0 4241.0 1110.0
tP2

363.5 867.0 936.2 901.7 301.9 1098.5 280.9
ctŷ 19635558.2 19635558.2 19635558.2 19635558.2 19635558.2 19635558.2 19635558.2
ΓP2

(T) 190.5 346.1 325.7 307.0 256.6 273.1 190.0
vpphard nP2

2690.0 941.0 1660.0 941.0 1376.0 1078.0 2689.0
tP2

3339.7 3341.9 3340.0 3341.7 3341.9 3343.2 3341.6
ctŷ 9.0 12.0 8.0 12.0 9.0 22.0 9.0
ΓP2

(T) 216253.8 239513.0 228421.2 239532.5 207614.1 275050.0 216303.5
zib54-UUE nP2

2543.0 1538.0 1401.0 1318.0 2333.0 4788.0 1028.0
tP2

77.1 111.0 93.1 78.9 92.0 125.8 51.9
ctŷ 10334015.8 10334015.8 10334015.8 10334015.8 10334015.8 10334015.8 10334015.8
ΓP2

(T) 1066.3 1287.3 1373.8 1312.3 1153.7 1091.5 1067.3

Table H.7: Instancewise results of the experiment in Section 5.1.3. Each column
shows the results of a different Scip-setting during the Proof phase. For each
instance, we show the solving time t (sec), the solving time during the Proof phase
tP3 , and the number of branch-and-bound nodes during the Proof phase denoted
by nP3 .

weights combined default dfsHeuroff error based sepa

10teams t (sec) 25.5 25.0 25.5 26.7 25.8 26.1
tP3

0.5 0.0 0.4 0.5 0.9 0.0
nP3

75.0 19.0 75.0 115.0 126.0 7.0
30n20b8 t (sec) 182.4 135.4 185.6 238.1 156.2 137.9

tP3
99.3 52.6 100.8 154.2 73.3 54.2

nP3
13.0 3.0 13.0 58.0 10.0 3.0

aflow30a t (sec) 13.7 13.4 14.1 13.9 16.2 13.9
tP3

3.4 3.1 3.3 3.4 5.5 3.3
nP3

1997.0 1673.0 1993.0 1979.0 1465.0 1717.0
aflow40b t (sec) 891.0 520.0 928.6 860.3 963.5 574.2

tP3
764.0 395.0 800.6 733.3 836.5 449.2

nP3
142369.0 78894.0 145556.0 153515.0 153666.0 76843.0

air04 t (sec) 71.4 71.3 70.6 70.7 71.4 70.5
tP3

3.2 3.2 2.2 2.6 2.4 2.2
nP3

36.0 36.0 34.0 34.0 36.0 34.0
air05 t (sec) 38.2 37.9 37.5 38.2 37.9 37.2

tP3
2.1 2.1 2.2 2.1 2.3 2.1

nP3
50.0 48.0 52.0 50.0 48.0 52.0

app1-2 t (sec) 1128.4 1063.2 1121.8 1024.3 1040.3 1198.1
tP3

503.4 426.2 499.8 407.3 423.3 578.1
nP3

423.0 426.0 423.0 436.0 368.0 415.0
arki001 t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

tP3
6789.0 6790.0 6796.0 6786.0 6790.0 6789.0

nP3
1016463.0 882508.0 1108529.0 906787.0 882182.0 987325.0

bell3a t (sec) 6.1 4.3 6.7 4.0 5.6 6.0
tP3

6.0 4.2 6.6 4.0 5.5 5.9
nP3

22486.0 22578.0 22486.0 22586.0 22936.0 23067.0
bell5 t (sec) 0.8 0.6 0.4 0.4 0.6 0.8

tP3
0.7 0.5 0.3 0.3 0.5 0.7

nP3
1121.0 1121.0 1121.0 1158.0 1167.0 1097.0

continued on next page

138 CHAPTER H. APPENDIX

Table H.7: Instancewise results for the Proof phase experiment, see Section 5.1.3.

weights combined default dfsHeuroff error based sepa

biella1 t (sec) 797.0 767.2 784.3 756.5 741.1 791.7
tP3

214.0 185.2 200.3 173.5 158.1 207.7
nP3

873.0 777.0 761.0 804.0 709.0 774.0
bienst2 t (sec) 300.1 301.3 298.1 283.8 307.1 335.2

tP3
210.3 214.4 210.7 195.7 219.5 248.0

nP3
81091.0 79287.0 80632.0 81336.0 80728.0 76638.0

binkar10_1 t (sec) 187.9 136.5 179.0 134.3 170.8 176.0
tP3

182.5 131.0 173.6 128.1 165.4 170.3
nP3

139140.0 116431.0 138055.0 118764.0 112987.0 122102.0
blend2 t (sec) 0.6 1.1 0.6 0.8 1.1 1.1

tP3
0.2 0.3 0.2 0.4 0.3 0.3

nP3
343.0 339.0 344.0 401.0 198.0 322.0

cap6000 t (sec) 2.7 2.8 2.7 2.4 2.9 3.0
tP3

0.5 0.4 0.5 0.3 0.5 0.8
nP3

2189.0 2154.0 2176.0 2150.0 1133.0 2174.0
cov1075 t (sec) 7200.0 6968.9 7200.0 6778.5 7200.0 7200.0

tP3
7185.0 6953.3 7184.7 6763.4 7185.1 7184.8

nP3
1559708.0 1635054.0 1564904.0 1590516.0 1551384.0 1556693.0

csched010 t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0
tP3

6491.0 6490.0 6506.0 6487.0 6491.0 6490.0
nP3

840645.0 883405.0 851244.0 882829.0 783082.0 806194.0
danoint t (sec) 5190.9 4281.1 5090.7 4230.0 5100.3 5145.0

tP3
5157.0 4247.5 5057.6 4196.6 5066.8 5111.7

nP3
1054624.0 990088.0 1048903.0 968642.0 1027955.0 1021086.0

dcmulti t (sec) 1.6 1.5 1.4 1.6 1.7 1.4
tP3

0.0 0.0 0.0 0.0 0.0 0.0
nP3

15.0 11.0 15.0 15.0 5.0 11.0
dfn-gwin-UUM t (sec) 139.3 118.7 140.6 122.9 142.2 119.1

tP3
113.0 92.5 114.4 96.7 115.9 93.1

nP3
63050.0 59988.0 64526.0 64852.0 69707.0 44884.0

eil33-2 t (sec) 53.4 79.8 52.6 52.5 59.3 78.8
tP3

12.7 39.1 12.0 11.5 19.0 38.2
nP3

446.0 974.0 372.0 372.0 2056.0 914.0
eilB101 t (sec) 443.5 445.4 436.4 441.6 444.6 444.8

tP3
14.5 14.4 14.4 14.6 13.6 14.8

nP3
223.0 205.0 223.0 205.0 433.0 223.0

enlight13 t (sec) 8.9 119.9 8.6 660.7 343.7 4.2
tP3

8.9 119.9 8.6 660.7 343.7 4.2
nP3

13478.0 270889.0 13478.0 1938511.0 797246.0 3593.0
fast0507 t (sec) 574.8 574.3 578.5 574.8 568.2 574.1

tP3
81.8 80.3 81.5 81.8 74.2 80.1

nP3
577.0 549.0 577.0 543.0 511.0 565.0

fiber t (sec) 2.2 3.3 1.4 1.4 1.6 2.9
tP3

0.9 2.1 0.5 0.4 0.7 1.8
nP3

7.0 4.0 7.0 10.0 7.0 3.0
fixnet6 t (sec) 3.5 7.2 3.2 2.9 3.1 6.2

tP3
1.9 5.5 1.3 1.3 1.6 4.3

nP3
8.0 7.0 8.0 8.0 8.0 6.0

flugpl t (sec) 0.1 0.0 0.0 0.0 0.1 0.0
tP3

0.0 0.0 0.0 0.0 0.0 0.0
nP3

235.0 259.0 235.0 259.0 47.0 235.0
gesa2-o t (sec) 1.4 1.4 1.4 1.4 1.2 1.2

tP3
0.0 0.0 0.0 0.0 0.0 0.0

nP3
3.0 3.0 3.0 3.0 3.0 3.0

gesa3 t (sec) 1.8 2.8 1.7 1.8 1.5 2.9
tP3

0.3 1.1 0.3 0.2 0.2 1.5
nP3

6.0 5.0 6.0 6.0 12.0 6.0
gesa3_o t (sec) 1.8 1.6 1.6 1.7 1.8 1.9

tP3
0.0 0.0 0.0 0.0 0.0 0.0

nP3
5.0 5.0 5.0 5.0 5.0 5.0

harp2 t (sec) 3684.3 3595.1 3687.0 3618.7 3734.0 3725.6
tP3

3633.8 3545.2 3636.1 3568.7 3683.6 3674.8
nP3

12504398.0 12259818.0 12568370.0 12342086.0 12080257.0 12564197.0
iis-100-0-cov t (sec) 1669.1 1244.7 1665.4 1264.5 1663.5 1652.8

tP3
1619.7 1195.8 1616.2 1215.1 1614.7 1603.8

nP3
101696.0 83584.0 102216.0 83150.0 105996.0 101316.0

iis-bupa-cov t (sec) 6302.1 5190.8 6160.1 5434.7 5935.7 6129.0
tP3

6151.1 5042.8 6012.1 5283.7 5788.7 5981.0
nP3

180628.0 167214.0 181708.0 169198.0 183144.0 181708.0

continued on next page

H.2. EXPERIMENTAL RESULTS 139

Table H.7: Instancewise results for the Proof phase experiment, see Section 5.1.3.

weights combined default dfsHeuroff error based sepa

iis-pima-cov t (sec) 1387.4 1378.4 1384.7 1383.8 1463.2 1387.3
tP3

154.4 152.4 154.7 152.8 229.2 155.3
nP3

3203.0 3179.0 3203.0 3179.0 3167.0 3203.0
l152lav t (sec) 2.5 2.3 2.7 2.9 2.6 2.8

tP3
0.1 0.1 0.1 0.0 0.1 0.1

nP3
5.0 5.0 5.0 5.0 5.0 5.0

lseu t (sec) 0.4 0.8 0.6 0.7 0.6 0.8
tP3

0.0 0.0 0.0 0.0 0.0 0.0
nP3

53.0 51.0 53.0 54.0 17.0 51.0
map18 t (sec) 421.5 426.5 431.0 434.1 469.3 428.6

tP3
147.5 153.5 150.0 154.1 191.3 152.6

nP3
309.0 287.0 309.0 289.0 239.0 279.0

map20 t (sec) 333.7 335.2 333.0 288.2 389.9 440.1
tP3

277.7 278.3 277.5 232.8 334.3 382.8
nP3

298.0 318.0 298.0 330.0 270.0 364.0
mas74 t (sec) 593.8 481.3 566.7 481.2 591.3 587.4

tP3
572.4 459.8 547.9 459.2 569.0 566.0

nP3
2791971.0 2764370.0 2797757.0 2758737.0 2785374.0 2794939.0

mas76 t (sec) 68.3 50.4 67.5 45.1 66.5 79.4
tP3

67.6 49.8 66.9 44.4 65.9 78.7
nP3

404938.0 350248.0 404938.0 362355.0 392712.0 398256.0
mcsched t (sec) 212.3 211.7 212.7 211.3 225.1 215.7

tP3
37.3 37.7 37.7 37.3 50.1 37.7

nP3
3366.0 3378.0 3366.0 3378.0 2838.0 3366.0

mik-250-1-100-1 t (sec) 371.0 238.6 364.5 228.5 284.2 184.2
tP3

370.3 238.0 364.2 227.9 283.6 183.6
nP3

943439.0 595706.0 943439.0 613729.0 770065.0 381395.0
mine-166-5 t (sec) 30.5 30.7 30.6 31.1 30.8 30.8

tP3
0.6 0.5 0.5 0.5 0.9 0.5

nP3
352.0 280.0 328.0 296.0 198.0 318.0

mine-90-10 t (sec) 258.1 242.7 256.0 268.4 307.8 250.4
tP3

82.1 63.7 83.0 88.4 130.8 72.4
nP3

32627.0 26514.0 33091.0 37170.0 18490.0 27506.0
misc03 t (sec) 1.6 1.4 1.2 1.7 1.5 1.3

tP3
1.1 0.9 0.9 1.2 1.0 0.8

nP3
137.0 218.0 137.0 182.0 53.0 120.0

misc07 t (sec) 15.5 14.5 14.5 11.5 13.0 16.3
tP3

14.2 13.4 13.1 10.1 11.4 15.1
nP3

24294.0 20859.0 21666.0 18052.0 9572.0 20989.0
mod008 t (sec) 0.7 1.3 1.1 1.1 1.2 0.7

tP3
0.0 0.2 0.0 0.0 0.1 0.1

nP3
6.0 3.0 6.0 6.0 6.0 3.0

mod010 t (sec) 0.6 2.7 0.8 0.6 0.8 2.4
tP3

0.0 2.0 0.1 0.0 0.1 2.0
nP3

1.0 1.0 1.0 1.0 1.0 1.0
mod011 t (sec) 177.2 151.2 177.0 150.4 174.7 169.3

tP3
73.2 47.2 73.0 46.4 70.7 65.3

nP3
905.0 697.0 905.0 811.0 481.0 787.0

modglob t (sec) 1.3 1.3 1.6 1.5 1.6 1.6
tP3

0.4 0.2 0.3 0.2 0.5 0.3
nP3

643.0 477.0 643.0 641.0 165.0 485.0
mspp16 t (sec) 2591.8 5701.5 2576.9 2675.3 2838.8 6959.4

tP3
2097.5 5205.7 2086.8 2184.1 2348.9 6468.2

nP3
50.0 68.0 50.0 48.0 138.0 291.0

mzzv11 t (sec) 269.1 259.2 267.0 267.7 253.7 257.1
tP3

72.1 60.2 69.0 67.7 54.7 59.1
nP3

958.0 870.0 961.0 691.0 869.0 786.0
mzzv42z t (sec) 338.9 337.4 338.4 339.0 338.3 338.6

tP3
8.9 8.4 9.4 9.0 9.3 8.6

nP3
21.0 23.0 21.0 21.0 29.0 23.0

n4-3 t (sec) 541.4 463.7 543.1 480.1 559.7 524.8
tP3

479.5 399.1 481.1 417.6 497.6 462.9
nP3

31303.0 26825.0 31297.0 30079.0 30651.0 27721.0
neos-1109824 t (sec) 158.0 151.0 156.0 272.0 171.4 139.3

tP3
148.2 141.2 146.2 262.1 161.6 129.4

nP3
21655.0 17160.0 21910.0 43026.0 22075.0 14694.0

neos-1337307 t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0
tP3

6881.0 6879.0 6882.0 6882.0 6883.0 6880.0
nP3

365844.0 533044.0 368446.0 518018.0 240327.0 351008.0

continued on next page

140 CHAPTER H. APPENDIX

Table H.7: Instancewise results for the Proof phase experiment, see Section 5.1.3.

weights combined default dfsHeuroff error based sepa

neos-1396125 t (sec) 774.3 710.1 768.0 755.9 917.5 721.8
tP3

500.3 436.1 496.0 482.9 643.5 448.8
nP3

56975.0 48551.0 56834.0 56232.0 40550.0 48157.0
neos-476283 t (sec) 276.0 271.3 276.9 271.7 268.2 276.6

tP3
24.0 19.3 23.9 18.7 16.2 24.6

nP3
397.0 371.0 389.0 349.0 99.0 389.0

neos-686190 t (sec) 96.0 97.2 96.4 94.7 101.9 96.5
tP3

13.4 13.7 14.0 12.9 18.7 13.9
nP3

1892.0 1883.0 1875.0 1853.0 1384.0 1903.0
neos-916792 t (sec) 411.0 354.8 406.2 361.0 408.7 482.1

tP3
202.0 150.8 200.2 153.0 199.7 273.1

nP3
80891.0 81953.0 80533.0 82969.0 77223.0 82943.0

neos13 t (sec) 1543.3 1547.0 1541.7 1583.8 1558.8 1547.6
tP3

64.3 100.0 64.7 100.8 65.8 64.6
nP3

458.0 458.0 458.0 458.0 316.0 458.0
neos18 t (sec) 28.5 30.4 32.0 29.8 35.1 57.7

tP3
15.0 17.0 18.5 16.2 21.6 44.2

nP3
4956.0 4339.0 6437.0 5926.0 4952.0 7408.0

net12 t (sec) 2301.6 2675.7 2531.6 2653.1 2978.9 2702.9
tP3

1254.6 1627.7 1491.6 1610.1 1924.9 1658.9
nP3

1629.0 1758.0 2599.0 2372.0 2440.0 2321.0
newdano t (sec) 3596.3 3698.6 3579.3 3438.4 3556.4 5561.1

tP3
2430.3 2543.6 2418.3 2273.4 2395.4 4399.1

nP3
1549407.0 1455498.0 1545121.0 1543344.0 1547506.0 1017309.0

noswot t (sec) 197.1 174.4 177.0 173.3 163.7 204.9
tP3

196.2 173.5 176.0 172.4 162.8 203.8
nP3

928902.0 436695.0 829282.0 895797.0 553378.0 489560.0
ns1208400 t (sec) 1879.9 1880.3 1870.7 1881.3 1879.0 1892.4

tP3
61.9 63.3 61.7 62.4 61.3 61.6

nP3
91.0 91.0 91.0 91.0 91.0 91.0

ns1688347 t (sec) 731.5 718.3 739.7 718.4 737.5 740.7
tP3

57.5 44.3 69.7 37.4 61.5 64.7
nP3

1862.0 1735.0 2901.0 2306.0 974.0 1795.0
ns1830653 t (sec) 446.9 438.9 442.9 433.6 587.4 461.6

tP3
230.9 223.9 227.9 218.6 371.4 243.6

nP3
27998.0 23985.0 28115.0 26684.0 27965.0 25714.0

nw04 t (sec) 24.8 24.9 24.3 23.7 24.2 25.7
tP3

2.1 2.6 2.0 1.3 1.9 3.2
nP3

10.0 5.0 10.0 11.0 10.0 5.0
opm2-z7-s2 t (sec) 788.7 788.8 790.4 804.6 789.8 801.8

tP3
2.7 2.8 2.4 2.6 1.8 7.8

nP3
38.0 38.0 36.0 36.0 26.0 36.0

p0201 t (sec) 1.6 1.6 1.6 1.8 1.6 1.8
tP3

0.3 0.3 0.3 0.4 0.3 0.3
nP3

26.0 24.0 32.0 38.0 10.0 30.0
p0282 t (sec) 0.3 0.4 0.3 0.4 0.5 0.3

tP3
0.0 0.1 0.0 0.0 0.0 0.0

nP3
2.0 0.0 2.0 1.0 2.0 0.0

pg5_34 t (sec) 1285.2 1273.9 1292.9 1279.9 1282.2 1279.2
tP3

112.2 104.9 111.9 107.9 111.2 108.2
nP3

49529.0 46145.0 49529.0 48719.0 43701.0 46335.0
pigeon-10 t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

tP3
7195.0 7194.9 7194.8 7195.0 7194.9 7195.3

nP3
17293610.0 10244034.0 17257299.0 17972276.0 17348948.0 9903541.0

pk1 t (sec) 64.8 53.6 63.7 54.5 63.7 65.7
tP3

55.0 44.2 54.7 44.6 54.2 55.9
nP3

268983.0 265669.0 268661.0 265801.0 271945.0 268935.0
pp08a t (sec) 1.1 1.4 1.2 1.3 1.2 1.4

tP3
0.0 0.0 0.0 0.0 0.1 0.1

nP3
88.0 86.0 88.0 88.0 42.0 86.0

pp08aCUTS t (sec) 1.2 1.3 1.1 1.3 1.2 1.3
tP3

0.1 0.1 0.0 0.1 0.1 0.1
nP3

110.0 104.0 110.0 112.0 30.0 104.0
pw-myciel4 t (sec) 3674.6 2192.0 3531.1 2418.4 7200.0 5624.6

tP3
3622.9 2140.3 3479.1 2365.9 7146.5 5573.0

nP3
637792.0 367822.0 712180.0 481359.0 910448.0 455520.0

qiu t (sec) 79.8 80.0 80.1 77.3 80.6 82.3
tP3

57.5 56.4 57.7 54.8 58.1 59.4
nP3

11807.0 11841.0 11827.0 11853.0 11759.0 11957.0

continued on next page

H.2. EXPERIMENTAL RESULTS 141

Table H.7: Instancewise results for the Proof phase experiment, see Section 5.1.3.

weights combined default dfsHeuroff error based sepa

qnet1 t (sec) 8.4 8.4 8.4 8.4 8.3 8.7
tP3

0.0 0.0 0.0 0.0 0.0 0.0
nP3

5.0 5.0 5.0 5.0 5.0 5.0
qnet1_o t (sec) 7.3 7.0 7.0 7.1 7.0 6.8

tP3
0.0 0.0 0.0 0.0 0.0 0.0

nP3
2.0 2.0 2.0 2.0 2.0 2.0

rail507 t (sec) 238.9 236.9 244.1 234.5 238.6 242.0
tP3

85.9 82.9 90.1 81.5 86.6 89.0
nP3

505.0 561.0 505.0 507.0 523.0 525.0
ran16x16 t (sec) 292.1 238.2 293.6 275.9 286.5 284.9

tP3
260.6 206.5 261.7 244.2 254.2 253.1

nP3
347677.0 289001.0 350547.0 351487.0 359019.0 339289.0

reblock67 t (sec) 274.8 174.0 250.0 232.9 301.3 187.7
tP3

217.1 115.2 191.1 175.7 243.8 129.8
nP3

116413.0 48914.0 101506.0 109362.0 84466.0 52170.0
rentacar t (sec) 2.6 3.7 2.8 2.9 2.5 3.8

tP3
1.4 2.2 1.6 1.5 1.4 2.4

nP3
3.0 3.0 3.0 1.0 3.0 3.0

rmatr100-p10 t (sec) 135.7 130.6 134.9 131.1 147.8 135.1
tP3

68.6 64.2 68.5 64.8 81.4 68.6
nP3

689.0 747.0 689.0 747.0 645.0 689.0
rmatr100-p5 t (sec) 302.8 284.7 310.7 281.3 330.6 303.3

tP3
119.8 100.7 122.7 98.3 146.6 120.3

nP3
321.0 325.0 321.0 325.0 213.0 321.0

rmine6 t (sec) 6118.2 6043.8 6078.4 6055.2 6056.7 6085.1
tP3

1756.2 1687.8 1750.4 1689.2 1723.7 1752.1
nP3

662569.0 648455.0 664491.0 665141.0 681635.0 648509.0
rocII-4-11 t (sec) 465.3 461.2 466.2 464.3 464.4 467.1

tP3
0.3 0.2 0.2 0.3 1.4 0.1

nP3
39.0 36.0 32.0 33.0 11.0 32.0

rococoC10-001000 t (sec) 1217.4 1114.7 1224.9 1166.6 1451.2 1156.7
tP3

566.4 463.7 578.9 521.6 805.2 510.7
nP3

100925.0 64750.0 104626.0 100571.0 91682.0 64687.0
rout t (sec) 39.0 38.1 38.8 38.5 51.9 39.0

tP3
11.3 10.3 11.6 10.9 24.2 11.1

nP3
13945.0 12868.0 14144.0 14764.0 9735.0 12629.0

satellites1-25 t (sec) 551.2 522.0 660.5 568.1 562.9 534.0
tP3

64.2 34.0 172.5 81.1 75.9 46.0
nP3

619.0 139.0 1766.0 1108.0 1160.0 331.0
set1ch t (sec) 0.9 0.9 0.7 0.9 0.9 1.1

tP3
0.0 0.0 0.0 0.0 0.0 0.0

nP3
4.0 4.0 4.0 4.0 4.0 4.0

sp98ir t (sec) 106.5 104.1 107.6 107.1 110.3 107.6
tP3

9.6 7.8 9.8 8.3 13.3 9.8
nP3

1322.0 1344.0 1332.0 1356.0 642.0 1324.0
stein27 t (sec) 0.9 1.1 1.1 1.1 0.9 1.2

tP3
0.9 1.1 1.1 1.1 0.9 1.2

nP3
3904.0 3972.0 3904.0 4064.0 4074.0 3958.0

stein45 t (sec) 12.6 11.7 12.7 11.1 12.9 12.7
tP3

11.2 10.5 11.1 9.7 11.4 11.5
nP3

45885.0 48937.0 45953.0 47399.0 48689.0 46985.0
tanglegram1 t (sec) 1142.9 1143.1 1136.0 1167.4 1135.5 1167.1

tP3
68.9 68.1 69.0 72.4 68.5 70.1

nP3
8.0 8.0 8.0 8.0 8.0 8.0

tanglegram2 t (sec) 15.2 14.6 14.6 14.6 15.3 14.5
tP3

4.4 4.4 4.4 4.3 4.5 4.4
nP3

2.0 2.0 2.0 2.0 2.0 2.0
timtab1 t (sec) 394.8 388.8 391.9 383.7 412.9 391.1

tP3
355.8 350.0 353.6 344.8 374.5 352.4

nP3
804931.0 872201.0 802127.0 889956.0 827675.0 723702.0

tr12-30 t (sec) 1855.7 1720.2 1823.2 1679.3 1843.3 1853.5
tP3

1575.7 1441.2 1543.2 1398.3 1563.3 1572.5
nP3

1319065.0 1281105.0 1285089.0 1288959.0 1400769.0 1240823.0
unitcal_7 t (sec) 1266.3 996.9 1302.9 1209.8 1410.7 1095.4

tP3
826.3 556.9 860.9 768.8 969.7 653.4

nP3
20261.0 12394.0 21311.0 21804.0 16844.0 12982.0

vpm2 t (sec) 1.0 1.4 1.1 1.1 0.9 1.6
tP3

0.4 0.7 0.4 0.4 0.4 0.7
nP3

293.0 201.0 293.0 249.0 151.0 213.0

continued on next page

142 CHAPTER H. APPENDIX

Table H.7: Instancewise results for the Proof phase experiment, see Section 5.1.3.

weights combined default dfsHeuroff error based sepa

zib54-UUE t (sec) 3867.3 2675.1 3842.7 3695.0 3881.4 2752.3
tP3

3790.2 2598.3 3765.8 3618.0 3803.5 2675.1
nP3

545767.0 317386.0 537200.0 564634.0 539539.0 256146.0

H
.2.

E
X
P
E
R
IM

E
N
T
A
L
R
E
SU

LT
S

143
Table H.8: Instancewise results for the phase transition experiment in Section 5.2. Shown are the time until an optimal solution
is found, t∗2, as well as the primal-optimal and primal-dual gaps at termination, γ(T) and γ̄(T), for each instance. It follows for
each of the four criteria the time until the criterion was reached for the first time during the solving process, as well as the primal
γ(tcrit2) and dual gap γ̄(tcrit2) at that time. Entries are left blank if the corresponding data were not observed for the corresponding
instances.

General estim rank-1 log-n log-it
t∗2 γ(T) γ̄(T) testim2 γ(testim2) γ̄(testim2) trank-1

2 γ(trank-1
2) γ̄(trank-1

2) t
log-n
2 γ(t

log-n
2) γ̄(t

log-n
2) t

log-it
2 γ(t

log-it
2) γ̄(t

log-it
2)

10teams 24.5 0 0 24.9 0 0.3247 23.2 1.282 1.603
30n20b8 83.5 0 0
a1c1s1 1.191 15.74 265.2 2.75 24.7 199.6 4.565 26.27 34.3 28.9 48.07 94.5 8.207 31.2
acc-tight5 1423.0 0 0 1423.0 0 0 1423.0 0 0
aflow30a 10.6 0 0 10.3 0.1724 5.095 10.4 0.1724 5.095 12.9 0 3.974 11.8 0 3.974
aflow40b 125.6 0 0 238.6 0 3.209 62.6 1.849 6.514 62.0 1.849 6.514
air04 68.2 0 0 53.4 4.057 4.738 61.4 0.4027 1.109
air05 35.3 0 0 31.4 0.2798 1.402 31.4 0.2798 1.402 31.3 0.2798 1.402
app1-2 619.1 0 0 1110.4 0 25.45 919.0 0 25.45
arki001 2841.6 4.498e-10 0.004319 2230.7 6.055e-07 0.00525 25.9 0.04388 0.05566 26.1 0.04388 0.05566 192.7 0.003323 0.01103
atlanta-ip 1.099 5.658 640.4 9.999 18.13 1110.0 7.216 14.81 1678.0 6.249 13.73 4929.7 1.099 8.685
bab5 0.1937 0.9073 1182.1 0.2778 1.021 3290.7 0.1996 0.9246
beasleyC3 0.9198 13.12 85.9 2.96 17.35 1064.4 1.438 14.35 29.9 7.257 21.3
bell3a 0.1 0 0 5.7 1.821e-06 0.2715 0.2 1.821e-06 0.528
bell5 0.1 0 0 0.4 5.482e-06 0.01922 0.1 1.308 1.426 0.1 1.308 1.426 0.1 8.374e-05 0.0255
biella1 586.6 0 0 518.5 0.1011 0.2367 601.2 7.178e-06 0.123 224.2 3.086 3.233 224.1 3.086 3.233
bienst2 86.4 0 0 68.6 1.176 30.43 10.2 3.97 35.97 115.8 0 25.82 129.9 0 25.82
binkar10_1 5.4 0 0 6.5 3.56e-07 0.4553 7.3 3.56e-07 0.4553 6.8 3.56e-07 0.4553 4.1 2.922 3.401
blend2 0.7 0 0 0.9 0 6.092 0.7 1.798 10.04
bley_xl1 429.5 0 0
bnatt350 1471.6 0 0 1471.6 0 0 1471.6 0 0
cap6000 2.4 0 0 2.8 0 0.001673 1.6 0.003019 0.006078 1.8 0.002815 0.004936 1.7 0.003019 0.006078
core2536-691 322.9 0 0 241.2 0.1449 0.1955 241.2 0.1449 0.1955 270.8 0.1449 0.1955 112.7 1.712 1.783
cov1075 411.6 0 6.864 6932.8 0 7.046 297.5 0 10.64 27.9 0 13.38 13.3 4.762 18.21
csched010 689.9 7.384e-13 4.538 119.0 2.625 13.37 103.3 2.625 13.5 205.5 2.625 12.87 243.3 2.625 12.4
danoint 246.4 0 0 41.1 4.569e-06 4.382 32.4 1.99 6.319 50.0 4.569e-06 4.382 56.1 4.569e-06 4.382
dcmulti 1.7 0 0 1.5 1.117 1.482 1.7 0.09545 0.2871
dfn-gwin-UUM 25.8 0 0 62.2 0 4.954 20.7 2.594 8.91 7.2 3.342 11.67 11.2 2.741 10.44
ds 74.09 83.55 492.3 91.98 95.06
dsbmip 1.4 0 0
eil33-2 40.3 0 0 15.5 8.645 20.07 15.5 8.645 20.07
eilB101 428.4 0 0 404.3 0.1687 4.325 66.5 3.058 10.22
enigma 0.4 0 0 0.4 0 0 0.4 0 0

continued on next page

144
C
H
A
P
T
E
R

H
.
A
P
P
E
N
D
IX

General estim rank-1 log-n log-it
t∗2 γ(T) γ̄(T) testim2 γ(testim2) γ̄(testim2) trank-1

2 γ(trank-1
2) γ̄(trank-1

2) t
log-n
2 γ(t

log-n
2) γ̄(t

log-n
2) t

log-it
2 γ(t

log-it
2) γ̄(t

log-it
2)

enlight13 0.0 0 0 8.4 0 71.48 3.8 0 93.13
fast0507 493.5 0 0 100.0 1.136 2.085 451.9 0.5714 1.475 411.5 0.5714 1.475
fiber 1.1 0 0
fixnet6 1.5 0 0 3.1 0 0.7478
flugpl 0.0 0 0 0.1 0 2.215 0.0 0 2.215
gesa2 1.0 0 0
gesa2-o 1.3 0 0 1.4 1.407e-05 0.008417
gesa3 1.6 0 0 1.8 9.46e-06 0.05691 1.3 0.001384 0.06141
gesa3_o 1.8 0 0 1.5 0.001384 0.05745
glass4 22.58 35.48 34.7 33.33 55.56 18.9 33.33 55.56
gmu-35-40 0.008501 0.01611 67.5 0.05661 0.06423 16.8 0.1242 0.1318 1.6 0.2064 0.2142
harp2 3172.0 0 0 2984.5 2.706e-06 0.005155 6.1 0.2369 0.5045 114.8 2.706e-06 0.08706 9.4 0.2369 0.5045
iis-100-0-cov 49.0 0 0 29.9 17.14 51.43 39.6 3.333 36.05 110.1 0 30.78 127.0 0 30.78
iis-bupa-cov 148.1 0 0 73.9 5.263 29.93 112.0 2.703 22.93 507.3 0 19.25 225.7 0 19.25
iis-pima-cov 1233.5 0 0 77.8 2.941 21.35 96.7 2.941 21.35 341.3 2.941 21.35
khb05250 0.6 0 0
l152lav 2.4 0 0
lectsched-4-obj 396.3 0 0 387.0 20 20 73.7 63.64 63.64 163.4 60 60
lseu 0.5 0 0 0.5 0 2.288 0.3 0.7092 6.135 0.4 0.7092 6.135
m100n500k4r1 4 4 31.6 4 4 51.6 4 4 7.2 8 8
macrophage 0.2667 18.45 17.7 19.91 46.85 54.0 2.857 32.71 67.2 2.857 32.71
map18 274.8 0 0 275.1 0 4.173 271.2 0.2361 4.399 365.9 0 4.173
map20 55.4 0 0 193.2 0 6.24 237.1 0 6.24
markshare1 80 100 1163.5 87.5 100 6.0 96.97 100 2.6 97.78 100 0.3 98.89 100
markshare2 92.31 100 3.8 97.37 100 22.2 97.37 100 0.5 99.01 100
mas74 18.7 0 0 270.7 3.644e-05 3.697 18.7 3.644e-05 6.938 1.1 8.195 18.19
mas76 0.5 0 0 37.1 1.025e-05 1.099 1.2 1.025e-05 2.624 0.7 1.025e-05 2.624
mcsched 175.6 0 0 16.2 1.776 10.17 20.9 0.9058 9.372 16.0 1.836 10.23 22.5 0.9058 9.372
mik-250-1-100-1 0.5 0 0 16.9 0 2.988 2.3 0 4.372 0.9 0 4.372
mine-166-5 30.1 0 0 27.0 0.2634 1.427 30.6 1.39e-06 0.2482 29.8 0.05754 0.4998
mine-90-10 176.8 0 0 37.9 0.8418 3.149 81.9 0.2212 0.7084 32.7 6.408 9.762
misc03 0.5 0 0 1.9 0 34.42 1.7 0 34.42
misc06 0.6 0 0
misc07 1.2 0 0 12.7 0 21.8 3.5 0 49.04 2.1 0 49.04 2.1 0 49.04
mkc 0.03441 0.1944 5603.9 0.2118 0.3715 1261.4 0.3891 0.5486 40.3 3.319 4.386
mod008 1.1 0 0
mod010 0.4 0 0
mod011 145.2 0 0 150.6 9.139e-06 1.218 96.0 0.2498 3.159 125.4 9.139e-06 1.817
modglob 1.1 0 0 1.4 9.643e-06 0.1244 0.9 0.05976 0.2241 0.8 0.2227 0.455
momentum1 5.594 11.12 2322.9 5.613 16.62 610.6 37.06 44.4 631.4 37.06 44.4
momentum2 0.001531 0.0336 4217.4 0.8312 13.48 4219.0 0.8312 13.48 1180.6 10.86 22.48 1449.6 10.86 22.48
msc98-ip 8.384 9.015
mspp16 496.3 0 0 2607.0 0 6.061 2607.0 0 6.061

continued on next page

H
.2.

E
X
P
E
R
IM

E
N
T
A
L
R
E
SU

LT
S

145
General estim rank-1 log-n log-it

t∗2 γ(T) γ̄(T) testim2 γ(testim2) γ̄(testim2) trank-1
2 γ(trank-1

2) γ̄(trank-1
2) t

log-n
2 γ(t

log-n
2) γ̄(t

log-n
2) t

log-it
2 γ(t

log-it
2) γ̄(t

log-it
2)

mzzv11 198.4 0 0 134.9 3.591 4.537 228.4 0 0.8883 136.4 3.591 4.537
mzzv42z 330.0 0 0 137.5 2.824 3.874 219.1 1.947 2.967 142.8 2.775 3.826
n3div36 0.1527 5.589 391.8 3.965 10.99 335.6 3.965 10.99
n3seq24 15.26 15.58
n4-3 62.1 0 0 51.4 1.759 10.65 52.3 1.759 10.65 32.8 25.28 32.96 156.2 0 8.227
neos-1109824 9.8 0 0 125.4 0 4.568 30.3 0 10.63 17.5 0 10.63 25.2 0 10.63
neos-1337307 316.3 0 0.03699 103.3 0.0687 0.4566 1675.5 0 0.1765 143.1 0.02076 0.4047 515.2 0 0.3274
neos-1396125 437.5 0 0 231.2 0.0002554 35.35 71.4 21.05 50.04 145.4 0.0002554 35.35 128.6 0.0002554 35.35
neos-1601936 25 25 1800.9 50 50 1406.7 50 50 1674.2 50 50 4155.4 25 25
neos-476283 252.7 0 0 250.2 0.000392 0.01225 242.3 0.03584 0.04866
neos-686190 81.9 0 0 65.1 3.026 13.84 61.5 3.026 13.84
neos-849702 176.2 0 0 176.2 0 0 176.2 0 0
neos-916792 217.6 0 0 139.3 0.522 10.63 47.8 4.162 19.1 411.1 6.275e-06 2.286 24.6 6.353 21.19
neos-934278 5.455 5.636 238.6 99.55 99.56
neos13 1452.4 0 0 1471.3 3.142e-06 3.298 1333.5 19.25 38.9 605.3 20.11 39.55 1095.5 19.25 38.9
neos18 13.4 0 0 26.3 0 12.5 19.7 0 12.5 28.9 0 12.5 19.1 0 12.5
net12 1045.0 0 0 1045.0 16.08 56.71 1557.0 0 48.41 2372.5 0 48.41
netdiversion 3.586 6.729 3561.3 3.586 7.171
newdano 1164.7 0 0 38.8 5.028 50.71 45.4 4.831 50.61 9.3 14.72 56.06 173.8 1.99 44.78
noswot 79.8 0 0 21.5 0 4.651 1.5 0 4.651 1.6 0 4.651 0.6 12.2 16.28
ns1208400 1806.5 0 0 1806.5 0 100 1806.5 0 100
ns1688347 674.4 0 0 648.8 10 23.2 646.8 10 23.2
ns1758913 83.72 83.72
ns1830653 214.8 0 0 92.7 55.77 76.68 44.7 55.77 76.68
nsrand-ipx 1.235 1.89 85.1 4.762 6.086 88.3 4.762 6.086
nw04 23.1 0 0
opm2-z7-s2 786.8 0 0 157.6 1.673 19.74 270.0 1.469 15.04 151.0 23.27 38.47
p0201 1.4 0 0 1.8 0 2.342 1.8 0 2.342
p0282 0.3 0 0 0.3 4.088 4.437
p2756 1.9 0 0 1.9 0 0.002465 1.9 0 0.002465
pg5_34 1173.7 0 0 1191.7 2.404e-05 0.06885 60.1 0.1014 0.2787 55.5 0.1014 0.2787 25.3 0.1014 0.2787
pigeon-10 4736.4 0 10 2329.4 0 10 2332.0 0 10
pk1 8.9 0 0 21.2 0 61.96 9.7 0 77.72 0.8 42.11 100
pp08a 1.1 0 0 1.1 0.1359 2.079 1.1 0.1359 2.079
pp08aCUTS 1.1 0 0 1.1 0.1359 1.62 1.0 0.1359 1.62
protfold 25.81 37.67
pw-myciel4 52.2 0 0 52.2 0 60 57.4 0 60 37.7 9.091 63.64 605.9 0 50
qiu 43.5 0 0 19.2 100.5 100.5 20.6 89.14 97.9 39.5 2.785e-05 79.36 14.7 113.2 113.2
qnet1 8.1 0 0
qnet1_o 6.8 0 0
rail507 153.2 0 0 98.6 0.5714 1.525 156.1 0 0.9056 217.2 0 0.9056 126.2 0.5714 1.525
ran16x16 32.0 0 0 126.0 0 2.77 10.2 2.325 9.317 4.8 2.325 9.317
rd-rplusc-21 0.3258 99.94 660.2 7.799 99.94 677.7 7.799 99.94 1251.1 0.6282 99.94

continued on next page

146
C
H
A
P
T
E
R

H
.
A
P
P
E
N
D
IX

General estim rank-1 log-n log-it
t∗2 γ(T) γ̄(T) testim2 γ(testim2) γ̄(testim2) trank-1

2 γ(trank-1
2) γ̄(trank-1

2) t
log-n
2 γ(t

log-n
2) γ̄(t

log-n
2) t

log-it
2 γ(t

log-it
2) γ̄(t

log-it
2)

reblock67 57.4 0 0 45.5 1.728 3.698 210.2 4.509e-06 0.6325 50.0 0.9079 2.593 72.4 4.509e-06 1.449
rentacar 2.7 0 0
rmatr100-p10 66.6 0 0 66.7 0 9.346 66.7 0 9.346
rmatr100-p5 183.3 0 0 231.1 0 11.97 186.0 0 11.97 296.8 0 11.97
rmine6 4322.3 0 0 32.3 0.5909 1.603 2864.8 0.001868 0.07484 293.5 0.001868 0.1526 62.5 0.09798 0.5149
rocII-4-11 465.0 0 0 438.7 14.94 26.68 53.4 45.4 63.01
rococoC10-001000 649.2 0 0 34.0 4.084 15.03 106.2 0.4776 7.145 176.0 0.4776 5.927 21.2 13.08 23.75
roll3000 0.06977 0.5773 76.9 0.5017 4.504 71.8 0.5017 4.504 112.8 0.3479 3.225 141.8 0.3479 3.225
rout 29.5 0 0 29.5 0.151 3.751 14.6 0.7507 6.5 4.3 10.25 17.88 6.7 7.452 15.19
satellites1-25 487.9 0 0 268.8 60 89.74 292.7 60 89.74
set1ch 1.1 0 0
seymour 6801.6 0 1.888 46.2 3.204 6.629 50.0 2.759 6.2 96.1 2.083 5.423
sp97ar 6.951 8.072 1513.2 7.837 8.947 124.8 18.22 19.21
sp98ic 0.7265 1.081 473.4 4.095 4.657 97.3 4.214 4.951
sp98ir 96.4 0 0 52.9 0.2137 0.9942 40.4 0.4436 1.339 13.7 6.181 7.302 94.8 0.1288 0.736
stein27 0.0 0 0 0.4 0 27.78 0.4 0 27.78
stein45 1.2 0 0 0.8 3.226 29.03 0.8 3.226 29.03 2.9 0 23.33
swath 1.108 13.94 138.1 6.643 23.84 50.4 6.643 23.84 110.4 6.643 23.84
tanglegram1 1064.0 0 0
tanglegram2 10.1 0 0
timtab1 38.9 0 0 8.3 13.23 36.53 4.6 22.98 46.32 70.7 0 19.36 81.7 0 18.88
timtab2 3.533 32 33.6 13 52.63 14.0 35.75 65.49 56.3 12.84 52.02 229.7 12.09 48.7
tr12-30 278.1 0 0 76.2 0.003063 0.1566 10.5 0.003063 0.2218 272.9 0.003063 0.1162 8.2 0.5506 0.8418
triptim1 2801.0 0 0
unitcal_7 807.7 0 0 192.5 0.9471 1.387 1300.3 8.943e-06 0.04696 1064.6 8.943e-06 0.0743
vpm2 0.8 0 0 1.2 0 5.361 1.1 0 5.361 1.1 0 5.361
vpphard 44.44 100 5513.9 44.44 100
zib54-UUE 77.6 0 0 49.7 0.1425 24.08 47.8 3.31 27.57 23.5 23.14 44.33 74.7 0.1425 24.08

H.2. EXPERIMENTAL RESULTS 147

Table H.9: Instancewise results of the experiment in Section 5.3. Each column
except for default denotes a run with a particular phase transition criterion. For
each instance, we present the values of the dual integral Γ∗(T), the number of
branch-and-bound nodes n, the achieved primal bound ctŷ at termination, the
value Γ(T) of the primal integral, and the overall solving time t (sec).

Settings default estim log-n log-it oracle rank-1
Problem

10teams Γ∗(T) 58.4 61.6 60.7 60.8 60.9 60.8
n 1272.0 1612.0 1612.0 1612.0 1552.0 1612.0
ctŷ 924.0 924.0 924.0 924.0 924.0 924.0
Γ(T) 1459.7 648.5 549.0 559.1 599.0 584.4
t (sec) 25.6 35.4 33.0 33.1 33.3 33.3

30n20b8 Γ∗(T) 9555.0 8011.9 8052.4 7998.3 6959.1 8029.3
n 14.0 6.0 6.0 6.0 4.0 6.0
ctŷ 302.0 302.0 302.0 302.0 302.0 302.0
Γ(T) 8418.0 8330.0 8380.0 8346.0 8317.0 8410.0
t (sec) 183.5 151.7 152.5 151.5 135.6 152.0

a1c1s1 Γ∗(T) 124305.2 118916.9 156221.5 166693.8 118644.8 162765.1
n 718786.0 626920.0 2154765.0 1954964.0 640772.0 1815029.0
ctŷ 11642.1 11701.0 11832.0 12289.0 11701.0 11754.2
Γ(T) 14318.3 14326.3 21710.2 47142.5 14270.7 25160.9
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

acc-tight5 Γ∗(T) 210.0 210.0 200.0 200.0 200.0 220.0
n 16931.0 608.0 608.0 608.0 608.0 608.0
ctŷ 0.0 0.0 0.0 0.0 0.0 0.0
Γ(T) 143661.0 6170.0 6259.0 6160.0 6160.0 6220.0
t (sec) 1436.6 61.7 62.5 61.6 61.6 62.2

aflow30a Γ∗(T) 89.8 93.1 78.0 87.1 87.7 89.1
n 2118.0 2506.0 2506.0 1836.0 1852.0 1976.0
ctŷ 1158.0 1158.0 1158.0 1158.0 1158.0 1158.0
Γ(T) 385.8 398.1 363.6 388.3 388.3 390.8
t (sec) 13.9 14.5 13.6 13.1 13.3 13.5

aflow40b Γ∗(T) 2589.6 3114.8 3091.2 15773.6 2798.2 6318.6
n 151103.0 112411.0 112411.0 846199.0 69617.0 323752.0
ctŷ 1168.0 1168.0 1168.0 1168.0 1168.0 1168.0
Γ(T) 1850.7 2421.6 2426.1 8517.7 2420.7 4094.9
t (sec) 912.9 941.0 936.2 3198.2 681.0 1328.9

air03 Γ∗(T) 70.2 80.2 80.1 90.2 70.2 80.1
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 340160.0 340160.0 340160.0 340160.0 340160.0 340160.0
Γ(T) 81.5 88.4 84.7 98.4 82.8 84.4
t (sec) 1.0 1.1 1.1 1.2 1.0 1.1

air04 Γ∗(T) 453.3 441.4 451.3 461.1 442.4 452.2
n 213.0 146.0 146.0 146.0 156.0 156.0
ctŷ 56137.0 56137.0 56137.0 56137.0 56137.0 56137.0
Γ(T) 756.8 740.2 747.9 751.7 742.1 747.4
t (sec) 70.4 64.1 64.2 64.0 65.6 65.5

air05 Γ∗(T) 166.5 189.7 214.5 200.2 209.6 189.9
n 181.0 309.0 547.0 309.0 299.0 365.0
ctŷ 26374.0 26374.0 26374.0 26374.0 26374.0 26374.0
Γ(T) 415.9 529.4 560.6 547.8 552.5 530.7
t (sec) 37.5 39.3 44.1 39.8 39.3 39.4

app1-2 Γ∗(T) 52653.8 63944.0 63882.4 63880.1 52923.0 52774.2
n 427.0 429.0 429.0 429.0 306.0 246.0
ctŷ -41.0 -41.0 -41.0 -41.0 -41.0 -41.0
Γ(T) 28924.9 28904.7 28886.6 28867.0 28710.0 29076.8
t (sec) 1118.2 1270.6 1270.7 1270.3 976.2 964.7

arki001 Γ∗(T) 56.9 93.7 147.5 137.2 99.8 103.4
n 1166439.0 915413.0 880296.0 1246593.0 960617.0 997478.0
ctŷ 7580813.0 7580813.0 7581551.4 7581558.2 7580813.0 7580813.0
Γ(T) 474.5 595.1 684.1 676.5 606.4 606.2
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

ash608gpia-3col Γ∗(T) 2330.0 3140.0 3240.0 3160.0 3150.0 3160.0
n 10.0 27.0 27.0 27.0 27.0 27.0
Γ(T) 2330.0 3140.0 3240.0 3160.0 3150.0 3160.0
t (sec) 23.3 31.4 32.4 31.6 31.5 31.6

atlanta-ip Γ∗(T) 55112.1 66498.4 69548.6 69446.6 66528.0 70865.4
n 14375.0 9861.0 171533.0 142444.0 9852.0 260171.0

continued on next page

148 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

ctŷ 91.0 95.0 94.0 95.0 95.0 97.0
Γ(T) 77572.2 60360.0 58264.2 60317.7 60360.0 72558.8
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

bab5 Γ∗(T) 7585.0 13818.2 12153.5 13752.8 13765.1 13844.4
n 25819.0 17781.0 68392.0 52073.0 17837.0 17728.0
ctŷ -106205.7 -106207.2 -106207.2 -106207.2 -106207.2 -106207.2
Γ(T) 23143.2 20850.2 20714.3 20649.5 20707.9 20733.8
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

beasleyC3 Γ∗(T) 91701.2 95215.9 98095.7 107836.7 95218.1 107829.5
n 796130.0 1106432.0 986437.0 2078457.0 1106852.0 2065757.0
ctŷ 761.0 759.0 764.0 832.0 759.0 832.0
Γ(T) 9542.5 6425.8 10178.1 67599.1 6431.9 67604.0
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

bell3a Γ∗(T) 2.3 2.1 2.0 2.2 2.2 2.3
n 22487.0 23064.0 22573.0 23064.0 22579.0 23083.0
ctŷ 878430.3 878430.3 878430.3 878430.3 878430.3 878430.3
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 6.1 5.7 4.3 6.0 4.2 4.5

bell5 Γ∗(T) 10.0 0.0 10.0 0.0 10.0 10.0
n 1140.0 1226.0 1214.0 1154.0 1218.0 1224.0
ctŷ 8966406.5 8966406.5 8966406.5 8966406.5 8966406.5 8966406.5
Γ(T) 6.2 0.2 7.1 0.1 6.2 6.2
t (sec) 0.8 0.4 0.6 0.4 0.6 0.6

biella1 Γ∗(T) 649.4 625.1 933.7 745.0 614.8 727.5
n 2133.0 2538.0 29451.0 17214.0 2436.0 14468.0
ctŷ 3065005.8 3065005.8 3065005.8 3065005.8 3065005.8 3065005.8
Γ(T) 6224.9 3602.3 4882.7 4028.8 3609.6 3983.0
t (sec) 781.4 578.7 2588.9 1593.8 575.2 1395.4

bienst2 Γ∗(T) 6024.9 6081.0 7982.4 7255.8 8201.8 9499.7
n 93988.0 93988.0 92022.0 92786.0 92643.0 106272.0
ctŷ 54.6 54.6 54.6 54.6 54.6 54.6
Γ(T) 250.7 256.4 249.6 241.4 246.0 203.6
t (sec) 297.4 297.8 301.4 301.7 301.6 291.8

binkar10_1 Γ∗(T) 52.8 59.4 82.2 80.5 73.4 82.9
n 138787.0 120843.0 117093.0 114515.0 119374.0 120533.0
ctŷ 6742.2 6742.2 6742.2 6742.2 6742.2 6742.2
Γ(T) 66.1 61.3 57.1 61.4 64.6 69.1
t (sec) 177.2 158.3 135.0 131.9 147.8 137.2

blend2 Γ∗(T) 16.5 20.9 7.6 9.3 20.9 19.0
n 412.0 932.0 932.0 932.0 933.0 634.0
ctŷ 7.6 7.6 7.6 7.6 7.6 7.6
Γ(T) 40.7 41.8 21.3 21.6 41.8 41.4
t (sec) 0.9 1.4 0.9 1.1 1.4 1.2

bley_xl1 Γ∗(T) 33176.4 33376.4 33268.2 33076.4 33076.4 33268.6
n 20.0 20.0 20.0 20.0 20.0 20.0
ctŷ 190.0 190.0 190.0 190.0 190.0 190.0
Γ(T) 37128.9 37425.6 37174.8 37026.5 36974.8 37198.1
t (sec) 430.6 434.6 430.9 429.6 429.0 431.4

bnatt350 Γ∗(T) 80.0 70.0 80.0 80.0 70.0 80.0
n 21343.0 14092.0 14092.0 14092.0 14092.0 14092.0
ctŷ 0.0 0.0 0.0 0.0 0.0 0.0
Γ(T) 147700.0 81900.0 82100.0 81976.0 81894.0 82867.0
t (sec) 1477.1 819.2 821.1 819.7 818.9 828.6

cap6000 Γ∗(T) 40.0 50.0 50.0 40.0 40.0 50.0
n 3788.0 4064.0 5135.0 4999.0 4080.0 4561.0
ctŷ -2451377.0 -2451377.0 -2451377.0 -2451377.0 -2451377.0 -2451377.0
Γ(T) 36.6 46.2 46.2 36.4 36.4 46.2
t (sec) 2.7 3.1 2.7 2.7 2.7 2.8

core2536-691 Γ∗(T) 980.3 990.5 980.2 963.5 1030.7 980.5
n 218.0 218.0 475.0 191.0 218.0 481.0
ctŷ 689.0 689.0 689.0 689.0 689.0 689.0
Γ(T) 1278.3 1309.6 1297.6 1251.9 1355.2 1299.6
t (sec) 318.1 321.2 316.4 194.5 324.1 319.6

cov1075 Γ∗(T) 62170.0 62169.9 86773.6 89515.5 90051.2 76188.9

continued on next page

H.2. EXPERIMENTAL RESULTS 149

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

n 1557428.0 1559145.0 1690517.0 1506333.0 1635309.0 1854530.0
ctŷ 20.0 20.0 20.0 20.0 20.0 20.0
Γ(T) 250.8 243.1 255.9 244.1 242.6 239.0
t (sec) 7200.0 7200.0 6869.1 6588.8 6923.5 7200.0

csched010 Γ∗(T) 47458.5 76490.1 78698.4 83291.1 63870.3 82644.7
n 931270.0 1049236.0 1102338.0 1196386.0 997781.0 1128300.0
ctŷ 408.0 409.0 410.0 410.0 408.0 410.0
Γ(T) 8987.5 10338.6 14514.0 21720.7 9311.0 16636.5
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

danoint Γ∗(T) 16556.3 15726.8 16828.8 17242.8 16750.4 19819.0
n 1050040.0 966643.0 891818.0 927764.0 881640.0 1089980.0
ctŷ 65.7 65.7 65.7 65.7 65.7 65.7
Γ(T) 1010.9 291.5 313.1 292.0 294.9 2374.2
t (sec) 5078.2 4785.0 3879.3 4020.2 3836.3 4451.6

dcmulti Γ∗(T) 1.0 0.9 0.9 10.7 0.9 0.9
n 322.0 316.0 316.0 316.0 306.0 261.0
ctŷ 188182.0 188182.0 188182.0 188182.0 188182.0 188182.0
Γ(T) 119.5 61.0 61.0 67.8 61.0 61.0
t (sec) 1.6 1.2 1.2 1.2 1.2 1.2

dfn-gwin-UUM Γ∗(T) 658.8 669.3 1122.9 3651.8 780.1 733.7
n 66936.0 61708.0 87137.0 396801.0 63462.0 60074.0
ctŷ 38752.0 38752.0 38752.0 38752.0 38752.0 38752.0
Γ(T) 436.6 437.8 439.9 1095.5 430.8 434.5
t (sec) 139.6 133.4 133.9 471.3 113.9 115.1

disctom Γ∗(T) 190.0 200.0 190.0 190.0 200.0 200.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ -5000.0 -5000.0 -5000.0 -5000.0 -5000.0 -5000.0
Γ(T) 366.0 390.0 370.0 370.0 398.0 386.0
t (sec) 3.6 3.9 3.7 3.7 3.9 3.8

ds Γ∗(T) 273079.9 274607.1 274635.9 274617.6 274604.6 274595.1
n 523.0 542.0 547.0 547.0 546.0 546.0
ctŷ 361.0 316.6 316.6 316.6 316.6 316.6
Γ(T) 571215.7 544517.3 544317.2 544306.8 544297.5 544375.4
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

dsbmip Γ∗(T) 30.0 40.0 40.0 60.0 50.0 60.0
n 15.0 11.0 11.0 11.0 11.0 11.0
ctŷ -305.2 -305.2 -305.2 -305.2 -305.2 -305.2
Γ(T) 75.0 75.9 74.5 89.4 91.0 89.0
t (sec) 1.2 1.1 1.2 1.3 1.4 1.3

egout Γ∗(T) 0.0 0.0 0.0 0.0 0.0 0.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 568.1 568.1 568.1 568.1 568.1 568.1
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 0.0 0.0 0.0 0.0 0.0 0.0

eil33-2 Γ∗(T) 700.9 728.0 716.8 733.0 969.4 1149.3
n 735.0 851.0 851.0 851.0 1235.0 1339.0
ctŷ 934.0 934.0 934.0 934.0 934.0 934.0
Γ(T) 518.0 501.3 495.6 511.5 519.8 595.2
t (sec) 52.8 57.3 57.1 57.0 78.9 96.7

eilB101 Γ∗(T) 2920.5 2997.4 2957.5 2942.4 2971.5 2276.5
n 8028.0 8283.0 8283.0 8283.0 8357.0 6776.0
ctŷ 1216.9 1216.9 1216.9 1216.9 1216.9 1216.9
Γ(T) 1262.9 1781.2 1750.3 1743.5 1757.0 822.5
t (sec) 436.2 477.7 471.6 469.5 474.1 323.3

enigma Γ∗(T) 0.0 0.0 0.0 0.0 0.0 0.0
n 954.0 2759.0 2759.0 2759.0 2759.0 2759.0
ctŷ 0.0 0.0 0.0 0.0 0.0 0.0
Γ(T) 50.0 68.0 60.0 75.0 60.0 78.0
t (sec) 0.5 0.6 0.6 0.7 0.6 0.7

enlight13 Γ∗(T) 769.1 1386.2 1345.1 1340.9 10777.8 970.0
n 13479.0 30211.0 30211.0 30211.0 270890.0 23151.0
ctŷ 71.0 71.0 71.0 71.0 71.0 71.0
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 8.6 16.8 16.3 16.3 119.5 10.7

continued on next page

150 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

enlight14 Γ∗(T) 0.0 0.0 0.0 0.0 0.0 0.0
n 1.0 1.0 1.0 1.0 1.0 1.0
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 0.0 0.0 0.0 0.0 0.0 0.0

ex9 Γ∗(T) 3820.0 3730.0 3750.0 3750.0 3950.0 3750.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 81.0 81.0 81.0 81.0 81.0 81.0
Γ(T) 3820.0 3728.0 3745.0 3748.0 3950.0 3746.0
t (sec) 38.2 37.2 37.4 37.4 39.5 37.4

fast0507 Γ∗(T) 1250.4 1258.6 1299.6 1265.7 1278.5 1287.0
n 1376.0 1376.0 1376.0 1779.0 1348.0 1862.0
ctŷ 174.0 174.0 174.0 174.0 174.0 174.0
Γ(T) 907.7 932.2 948.0 915.3 947.8 937.1
t (sec) 576.8 574.8 576.3 581.4 574.8 615.3

fiber Γ∗(T) 10.6 7.5 6.9 8.3 22.1 18.5
n 8.0 8.0 8.0 8.0 5.0 8.0
ctŷ 405935.2 405935.2 405935.2 405935.2 405935.2 405935.2
Γ(T) 40.8 28.6 25.4 38.9 50.6 50.1
t (sec) 1.6 1.5 1.4 1.6 3.4 1.7

fixnet6 Γ∗(T) 15.8 26.3 16.1 15.4 29.6 25.9
n 9.0 9.0 9.0 9.0 8.0 9.0
ctŷ 3983.0 3983.0 3983.0 3983.0 3983.0 3983.0
Γ(T) 13.8 23.8 15.0 12.6 23.8 22.6
t (sec) 3.0 3.3 3.1 3.2 7.5 3.3

flugpl Γ∗(T) 0.0 0.2 0.2 0.0 0.0 0.2
n 251.0 115.0 115.0 115.0 115.0 174.0
ctŷ 1201500.0 1201500.0 1201500.0 1201500.0 1201500.0 1201500.0
Γ(T) 0.0 0.3 0.3 0.0 0.0 0.3
t (sec) 0.0 0.0 0.0 0.0 0.0 0.0

gen Γ∗(T) 10.0 10.0 10.0 10.0 10.0 10.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 112313.4 112313.4 112313.4 112313.4 112313.4 112313.4
Γ(T) 6.0 6.0 5.0 6.0 7.0 6.0
t (sec) 0.1 0.1 0.1 0.1 0.1 0.1

gesa2 Γ∗(T) 10.1 10.2 10.0 10.1 10.2 10.2
n 2.0 2.0 2.0 2.0 2.0 2.0
ctŷ 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4
Γ(T) 69.8 96.2 61.1 78.3 89.4 80.8
t (sec) 0.9 1.2 0.8 1.0 1.1 1.0

gesa2-o Γ∗(T) 10.3 10.4 10.3 20.3 10.4 10.4
n 5.0 5.0 5.0 3.0 5.0 5.0
ctŷ 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4 25779856.4
Γ(T) 23.2 23.8 14.4 24.4 23.8 25.7
t (sec) 1.2 1.3 1.2 1.4 1.2 1.6

gesa3 Γ∗(T) 10.1 10.2 10.2 10.2 10.2 10.2
n 7.0 7.0 7.0 6.0 6.0 7.0
ctŷ 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6
Γ(T) 13.8 15.2 16.1 15.7 15.7 26.0
t (sec) 1.6 1.6 1.7 2.4 2.4 2.0

gesa3_o Γ∗(T) 10.1 10.2 10.1 10.2 10.3 10.2
n 8.0 8.0 8.0 6.0 8.0 8.0
ctŷ 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6 27991042.6
Γ(T) 15.5 16.5 14.6 17.4 27.4 24.7
t (sec) 1.6 1.8 1.6 2.0 1.9 1.7

glass4 Γ∗(T) 158051.6 210964.4 240008.1 240008.9 211095.6 240008.6
n 16199130.0 14938613.0 20602927.0 19467769.0 14873922.0 19924545.0
ctŷ 1550013650.0 1575014925.0 1500012950.0 1600015100.0 1575014925.0 1566682704.5
Γ(T) 165720.8 178427.0 149244.3 194442.3 178445.2 175851.2
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

gmu-35-40 Γ∗(T) 64.9 71.0 64.9 74.9 71.0 74.9
n 13065327.0 14149261.0 20030837.0 19648359.0 14168881.0 22385757.0
ctŷ -2406528.8 -2406328.9 -2405322.2 -2402821.1 -2406328.9 -2404683.6
Γ(T) 118.5 159.7 438.2 1242.4 159.5 635.5
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

gt2 Γ∗(T) 0.0 0.2 0.2 0.2 0.2 0.2

continued on next page

H.2. EXPERIMENTAL RESULTS 151

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 21166.0 21166.0 21166.0 21166.0 21166.0 21166.0
Γ(T) 1.0 5.9 5.9 5.9 5.9 5.9
t (sec) 0.0 0.1 0.1 0.1 0.1 0.1

harp2 Γ∗(T) 56.7 48.7 132.8 721.6 48.7 1592.9
n 12630591.0 11703033.0 4171617.0 12761954.0 11722399.0 22409557.0
ctŷ -73899798.0 -73899798.0 -73899798.0 -73899798.0 -73899798.0 -73899797.0
Γ(T) 25.4 26.3 25.1 240.8 26.5 615.4
t (sec) 3700.6 4479.6 1357.6 3765.6 4430.6 7200.0

iis-100-0-cov Γ∗(T) 29247.4 30216.5 35017.4 36085.1 39767.6 45359.1
n 102734.0 105711.0 91875.0 95989.0 85533.0 89706.0
ctŷ 29.0 29.0 29.0 29.0 29.0 29.0
Γ(T) 623.8 651.6 644.5 649.4 658.5 782.8
t (sec) 1663.9 1722.3 1367.7 1420.9 1305.2 1358.8

iis-bupa-cov Γ∗(T) 65009.9 67794.8 86873.1 93269.3 104947.8 114341.6
n 182534.0 179812.0 170742.0 168904.0 172416.0 182329.0
ctŷ 36.0 36.0 36.0 36.0 36.0 36.0
Γ(T) 1397.0 1155.4 1110.9 1115.1 1115.4 2337.0
t (sec) 6142.9 6512.3 5453.0 5314.9 5434.2 5552.2

iis-pima-cov Γ∗(T) 19588.8 19722.4 19784.8 13113.0 19735.1 10262.7
n 20364.0 20278.0 20278.0 12761.0 20296.0 7935.0
ctŷ 33.0 33.0 33.0 33.0 33.0 33.0
Γ(T) 4259.5 4391.8 4395.6 2157.3 4382.1 1156.2
t (sec) 1383.2 1388.3 1392.8 870.4 1388.6 610.8

khb05250 Γ∗(T) 0.1 1.1 0.1 0.1 1.1 1.1
n 3.0 3.0 3.0 3.0 2.0 3.0
ctŷ 106940226.0 106940226.0 106940226.0 106940226.0 106940226.0 106940226.0
Γ(T) 2.5 3.2 1.9 2.8 3.2 3.2
t (sec) 0.5 0.6 0.3 0.6 1.0 0.6

l152lav Γ∗(T) 12.9 13.5 13.2 23.9 13.8 23.7
n 49.0 92.0 90.0 92.0 92.0 92.0
ctŷ 4722.0 4722.0 4722.0 4722.0 4722.0 4722.0
Γ(T) 91.0 57.6 31.9 62.0 62.0 68.6
t (sec) 2.5 3.0 2.8 3.4 3.2 3.3

lectsched-4-obj Γ∗(T) 237.1 249.8 229.6 227.5 237.5 237.5
n 24222.0 8296.0 10926.0 11513.0 9683.0 9683.0
ctŷ 4.0 4.0 4.0 4.0 4.0 4.0
Γ(T) 21706.8 8547.6 11878.6 11413.7 15065.8 15061.2
t (sec) 399.0 109.6 161.5 153.9 200.4 200.1

lseu Γ∗(T) 3.5 5.4 3.4 3.6 5.5 5.0
n 336.0 606.0 606.0 338.0 602.0 379.0
ctŷ 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0
Γ(T) 2.3 8.5 2.7 3.0 8.5 8.2
t (sec) 0.6 0.8 0.6 0.6 0.9 0.8

m100n500k4r1 Γ∗(T) 0.0 0.0 0.0 0.0 0.0 0.0
n 7184542.0 6987522.0 2006636.0 2056079.0 6993419.0 2046170.0
ctŷ -24.0 -24.0 -24.0 -24.0 -24.0 -24.0
Γ(T) 28957.2 28896.8 28888.8 28890.0 28900.4 29028.8
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

macrophage Γ∗(T) 146518.1 146136.8 215064.5 202953.9 146093.5 146068.1
n 1251604.0 1233931.0 3329468.0 3632070.0 1236445.0 1239753.0
ctŷ 375.0 376.0 389.0 381.0 376.0 376.0
Γ(T) 10371.0 5015.6 28461.9 14051.9 5011.6 5012.4
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

manna81 Γ∗(T) 30.4 10.2 20.3 30.4 30.4 10.3
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ -13164.0 -13164.0 -13164.0 -13164.0 -13164.0 -13164.0
Γ(T) 14.7 10.0 12.4 14.7 14.7 10.0
t (sec) 0.8 0.4 0.6 0.8 0.8 0.6

map18 Γ∗(T) 3287.1 3879.2 3865.0 3855.5 3494.7 3934.9
n 393.0 315.0 315.0 315.0 333.0 305.0
ctŷ -847.0 -847.0 -847.0 -847.0 -847.0 -847.0
Γ(T) 3828.6 4000.9 3990.4 3976.2 4020.4 4000.4
t (sec) 424.3 433.5 432.8 431.5 382.6 438.6

continued on next page

152 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

map20 Γ∗(T) 2763.1 2743.1 2782.0 2768.7 2746.8 2707.6
n 299.0 299.0 299.0 299.0 319.0 315.0
ctŷ -922.0 -922.0 -922.0 -922.0 -922.0 -922.0
Γ(T) 2792.9 2785.2 2836.7 2798.1 2770.5 2780.5
t (sec) 335.0 333.3 338.0 334.4 333.9 327.6

markshare1 Γ∗(T) 720000.0 720000.0 720000.0 720000.0 720000.0 720000.0
n 73327325.0 76824489.0 48123708.0 41054569.0 75830406.0 43086938.0
ctŷ 5.0 4.0 7.0 7.0 4.0 3.0
Γ(T) 602368.8 559538.0 622207.6 621340.7 559815.9 503482.0
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

markshare2 Γ∗(T) 720000.0 720000.0 720000.0 720000.0 720000.0 720000.0
n 60920471.0 60781960.0 24897879.0 29294857.0 60892446.0 28720432.0
ctŷ 13.0 12.0 10.0 13.0 12.0 13.0
Γ(T) 675988.0 661153.5 654382.4 666935.4 661142.1 668024.1
t (sec) 7200.1 7200.1 7200.0 7200.0 7200.0 7200.0

mas74 Γ∗(T) 2161.4 2268.0 6227.7 5913.8 2805.4 3517.6
n 2834519.0 2767121.0 3954369.0 3630223.0 2760117.0 2594501.0
ctŷ 11801.2 11801.2 11801.2 11801.2 11801.2 11801.2
Γ(T) 79.7 332.6 779.0 584.0 331.8 32.5
t (sec) 565.4 583.8 650.1 595.9 516.2 440.1

mas76 Γ∗(T) 82.0 96.0 93.3 207.7 278.7 133.5
n 404939.0 471714.0 471714.0 695047.0 848147.0 436756.0
ctŷ 40005.1 40005.1 40005.1 40005.1 40005.1 40005.1
Γ(T) 8.5 9.1 8.6 9.1 9.1 7.6
t (sec) 66.7 79.2 77.5 86.2 118.7 56.2

mcsched Γ∗(T) 1240.3 1116.8 1272.4 1240.1 1103.0 1259.6
n 19507.0 15565.0 13982.0 14980.0 15471.0 14275.0
ctŷ 211913.0 211913.0 211913.0 211913.0 211913.0 211913.0
Γ(T) 230.5 246.4 236.6 255.3 237.8 234.9
t (sec) 211.9 172.9 155.6 164.7 173.4 159.9

mik-250-1-100-1 Γ∗(T) 744.6 738.2 742.5 999.9 944.9 1006.2
n 943440.0 943440.0 943440.0 617742.0 595707.0 683166.0
ctŷ -66729.0 -66729.0 -66729.0 -66729.0 -66729.0 -66729.0
Γ(T) 10.2 0.2 0.3 10.2 10.2 10.2
t (sec) 365.1 362.7 364.3 245.6 236.8 278.7

mine-166-5 Γ∗(T) 431.7 453.0 436.1 446.0 427.0 425.8
n 2045.0 2045.0 1996.0 2045.0 1997.0 2045.0
ctŷ -566395707.9 -566395707.9 -566395707.9 -566395707.9 -566395707.9 -566395707.9
Γ(T) 1654.3 1626.2 1625.3 1627.4 1618.3 1608.6
t (sec) 31.0 30.7 30.6 30.9 30.7 31.0

mine-90-10 Γ∗(T) 409.8 360.6 543.4 361.0 382.0 354.7
n 77784.0 68094.0 92258.0 68094.0 67313.0 57851.0
ctŷ -784302337.6 -784302337.6 -784302337.6 -784302337.6 -784302337.6 -784302337.6
Γ(T) 1944.8 1813.7 1834.8 1813.7 1815.5 1789.9
t (sec) 256.3 228.4 270.8 229.0 232.2 199.4

misc03 Γ∗(T) 42.4 38.5 38.4 55.0 35.0 41.9
n 139.0 123.0 123.0 123.0 137.0 170.0
ctŷ 3360.0 3360.0 3360.0 3360.0 3360.0 3360.0
Γ(T) 49.0 31.5 20.8 40.8 19.1 30.8
t (sec) 1.2 1.1 1.1 1.4 1.0 1.2

misc06 Γ∗(T) 10.0 10.0 10.0 10.0 10.0 10.0
n 4.0 4.0 4.0 4.0 6.0 4.0
ctŷ 12850.9 12850.9 12850.9 12850.9 12850.9 12850.9
Γ(T) 6.4 5.5 5.5 5.5 5.5 5.5
t (sec) 0.7 0.5 0.7 0.7 0.8 0.5

misc07 Γ∗(T) 562.5 510.5 509.1 618.7 557.1 596.4
n 21721.0 20003.0 14450.0 17854.0 15439.0 17292.0
ctŷ 2810.0 2810.0 2810.0 2810.0 2810.0 2810.0
Γ(T) 63.6 34.6 61.6 27.3 52.9 34.6
t (sec) 14.4 13.1 10.4 12.8 11.2 12.3

mitre Γ∗(T) 590.0 580.0 580.0 600.0 660.0 590.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 115155.0 115155.0 115155.0 115155.0 115155.0 115155.0
Γ(T) 582.4 580.2 580.2 600.2 652.4 582.4

continued on next page

H.2. EXPERIMENTAL RESULTS 153

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

t (sec) 6.0 5.9 5.9 6.1 6.7 6.0
mkc Γ∗(T) 1306.8 1296.7 3772.1 1327.7 1307.1 1340.1

n 2524672.0 2989875.0 4028953.0 3786593.0 2985313.0 3871184.0
ctŷ -563.7 -563.6 -555.1 -557.4 -563.6 -559.6
Γ(T) 2537.0 2067.8 11417.7 8522.4 2080.1 5789.1
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

mod008 Γ∗(T) 3.2 2.3 3.6 3.0 3.6 3.6
n 7.0 7.0 7.0 7.0 4.0 7.0
ctŷ 307.0 307.0 307.0 307.0 307.0 307.0
Γ(T) 11.6 8.7 14.5 11.6 13.1 13.1
t (sec) 0.9 0.7 1.1 0.9 1.2 1.1

mod010 Γ∗(T) 20.1 20.1 10.1 10.1 20.1 20.1
n 2.0 7.0 7.0 7.0 7.0 7.0
ctŷ 6548.0 6548.0 6548.0 6548.0 6548.0 6548.0
Γ(T) 68.0 60.2 40.2 45.1 60.0 60.0
t (sec) 0.8 0.7 0.6 0.6 0.7 0.7

mod011 Γ∗(T) 491.4 517.1 522.4 472.8 476.4 464.9
n 1229.0 1229.0 1229.0 1045.0 1021.0 1068.0
ctŷ -54558535.0 -54558535.0 -54558535.0 -54558535.0 -54558535.0 -54558535.0
Γ(T) 1540.6 1570.5 1562.3 1531.3 1559.4 1571.1
t (sec) 176.8 180.3 178.1 156.9 152.0 145.8

modglob Γ∗(T) 0.3 0.4 0.5 0.4 0.5 0.4
n 905.0 905.0 905.0 820.0 739.0 820.0
ctŷ 20740508.1 20740508.1 20740508.1 20740508.1 20740508.1 20740508.1
Γ(T) 0.2 0.2 0.3 0.2 0.3 0.2
t (sec) 1.4 1.5 1.7 1.7 1.5 1.3

momentum1 Γ∗(T) 66647.1 60364.6 53666.4 60183.5 60205.1 60150.5
n 44070.0 15148.0 178458.0 19203.0 15305.0 15331.0
ctŷ 115610.8 160511.2 154120.5 160511.2 160511.2 160511.2
Γ(T) 113930.9 260453.6 255624.2 260091.0 260146.2 260052.7
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

momentum2 Γ∗(T) 69616.4 94193.3 95091.2 95147.0 80807.5 94353.1
n 90508.0 99580.0 74591.0 85292.0 86526.0 74211.0
ctŷ 12314.4 12315.1 13813.4 13813.5 12314.6 13813.8
Γ(T) 85974.5 83308.9 112742.8 112815.2 82711.0 112704.8
t (sec) 7200.0 7200.0 7200.1 7200.0 7200.0 7200.0

msc98-ip Γ∗(T) 5430.7 5420.6 5410.7 5410.6 5410.6 5410.8
n 3391.0 18438.0 10163.0 12229.0 10164.0 10162.0
ctŷ 21655010.0 22273180.0 22273180.0 22273180.0 22273180.0 22273180.0
Γ(T) 353627.0 147592.2 147430.4 147485.6 147355.8 147440.3
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

mspp16 Γ∗(T) 61662.4 63439.4 63198.2 63230.9 78986.1 63230.3
n 51.0 57.0 57.0 57.0 47.0 57.0
ctŷ 363.0 363.0 363.0 363.0 363.0 363.0
Γ(T) 49036.0 49190.0 49042.0 49084.0 49030.0 49060.0
t (sec) 2579.3 2841.5 2832.7 2838.1 5437.7 2838.0

mzzv11 Γ∗(T) 4336.8 4216.2 4373.7 4247.8 4278.5 4223.1
n 1999.0 1999.0 4989.0 1999.0 1908.0 1975.0
ctŷ -21718.0 -21718.0 -21718.0 -21718.0 -21718.0 -21718.0
Γ(T) 12450.4 12445.9 12652.1 12449.1 12449.1 12349.4
t (sec) 267.9 266.0 357.4 268.0 258.1 262.7

mzzv42z Γ∗(T) 3052.0 3019.6 3092.6 3051.0 3050.0 3037.6
n 534.0 534.0 3281.0 534.0 536.0 1012.0
ctŷ -20540.0 -20540.0 -20540.0 -20540.0 -20540.0 -20540.0
Γ(T) 12112.4 12014.9 12055.7 12110.9 12018.5 11988.8
t (sec) 340.3 337.7 391.1 339.5 338.4 316.6

n3div36 Γ∗(T) 43102.2 43060.7 43099.5 50187.3 45913.6 43935.3
n 250934.0 260655.0 260209.0 457915.0 372168.0 345004.0
ctŷ 131000.0 130800.0 130800.0 135000.0 130800.0 130800.0
Γ(T) 5793.9 5732.8 5759.8 25013.9 5758.1 5974.6
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

n3seq24 Γ∗(T) 7360.9 7520.3 7360.9 7410.7 7430.7 7420.7
n 393.0 392.0 393.0 393.0 393.0 393.0
ctŷ 61600.0 61600.0 61600.0 61600.0 61600.0 61600.0

continued on next page

154 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

Γ(T) 172367.6 174014.4 173777.5 173782.8 173563.3 173691.5
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

n4-3 Γ∗(T) 3286.1 3343.7 61688.7 3477.8 3975.2 5487.5
n 32231.0 33154.0 806766.0 29912.0 29104.0 44646.0
ctŷ 8993.0 8993.0 8993.0 8993.0 8993.0 8993.0
Γ(T) 1409.3 1439.8 55145.9 1425.9 1443.4 1754.8
t (sec) 542.3 564.0 6003.9 504.3 472.5 633.3

neos-1109824 Γ∗(T) 1397.6 1409.5 1399.3 1524.4 1231.8 1462.6
n 21927.0 22678.0 14347.0 16305.0 10652.0 14781.0
ctŷ 378.0 378.0 378.0 378.0 378.0 378.0
Γ(T) 773.5 994.5 978.4 1004.9 981.8 984.9
t (sec) 156.1 154.0 117.6 134.3 103.4 123.3

neos-1337307 Γ∗(T) 1127.4 2995.5 2685.5 2512.8 2506.2 1025.0
n 370421.0 553458.0 514252.0 491428.0 519383.0 391710.0
ctŷ -202319.0 -202319.0 -202319.0 -202319.0 -202319.0 -202319.0
Γ(T) 8200.6 5426.7 5289.8 5291.7 5280.8 5281.7
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

neos-1396125 Γ∗(T) 11732.0 15076.5 23658.8 29774.6 15160.0 27068.1
n 61200.0 69115.0 68530.0 66297.0 59721.0 70372.0
ctŷ 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0
Γ(T) 4047.4 5430.3 5405.8 5431.0 5570.4 5463.6
t (sec) 766.1 925.5 911.6 899.7 856.8 778.5

neos-1601936 Γ∗(T) 1433.3 1433.3 1456.7 1446.7 1530.0 1423.3
n 6755.0 1615.0 1609.0 1615.0 1606.0 1615.0
ctŷ 4.0 6.0 6.0 6.0 6.0 6.0
Γ(T) 251274.8 686858.2 688358.0 686858.2 688908.0 686958.2
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

neos-476283 Γ∗(T) 7894.7 8034.8 8004.8 7984.8 8124.8 7884.8
n 685.0 685.0 685.0 685.0 667.0 855.0
ctŷ 406.4 406.4 406.4 406.4 406.4 406.4
Γ(T) 9009.9 9194.0 9167.6 9148.2 9298.1 9030.1
t (sec) 275.9 282.0 281.1 281.3 279.6 279.8

neos-686190 Γ∗(T) 1453.1 1825.5 1819.9 1848.6 1770.5 1757.6
n 7264.0 10378.0 9805.0 10400.0 9405.0 9445.0
ctŷ 6730.0 6730.0 6730.0 6730.0 6730.0 6730.0
Γ(T) 3954.3 1825.0 1828.5 1829.9 1866.9 1848.6
t (sec) 93.8 118.6 114.9 119.6 110.5 109.8

neos-849702 Γ∗(T) 180.0 160.0 160.0 170.0 170.0 160.0
n 6115.0 48917.0 48917.0 48917.0 48917.0 48917.0
ctŷ 0.0 0.0 0.0 0.0 0.0 0.0
Γ(T) 17471.0 55887.0 56100.0 55900.0 55967.0 55999.0
t (sec) 174.7 558.8 561.2 559.2 559.6 559.9

neos-916792 Γ∗(T) 3591.9 3537.8 3572.6 114174.4 3480.3 9305.6
n 106472.0 123066.0 123066.0 1726425.0 124088.0 210792.0
ctŷ 31.9 31.9 31.9 32.3 31.9 31.9
Γ(T) 938.9 923.6 920.9 15027.4 904.0 1075.7
t (sec) 406.2 454.3 460.3 7200.0 399.2 593.9

neos-934278 Γ∗(T) 3221.1 3221.1 3221.1 3221.1 3251.0 3251.0
n 889.0 1133.0 1145.0 81077.0 992.0 1095.0
ctŷ 275.0 271.0 271.0 1283.0 271.0 271.0
Γ(T) 133833.6 333188.8 332304.4 579814.8 341132.6 335158.6
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

neos13 Γ∗(T) 33785.0 41656.5 35058.8 41716.4 41652.2 42219.1
n 4422.0 3230.0 4701.0 3230.0 3230.0 3209.0
ctŷ -95.5 -95.5 -95.5 -95.5 -95.5 -95.5
Γ(T) 40072.4 44630.5 30221.1 44684.1 44623.2 45119.0
t (sec) 1514.8 1727.5 1433.3 1730.0 1725.1 1738.6

neos18 Γ∗(T) 509.0 538.1 515.0 512.6 567.4 545.6
n 6778.0 5601.0 5174.0 4841.0 5179.0 6249.0
ctŷ 16.0 16.0 16.0 16.0 16.0 16.0
Γ(T) 390.2 373.1 351.8 374.8 363.1 338.7
t (sec) 32.1 29.8 29.2 28.5 31.9 31.6

net12 Γ∗(T) 135566.4 143794.4 144311.6 143694.8 155271.1 198889.8
n 3864.0 4985.0 4985.0 4985.0 5016.0 4605.0

continued on next page

H.2. EXPERIMENTAL RESULTS 155

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

ctŷ 214.0 214.0 214.0 214.0 214.0 214.0
Γ(T) 91859.7 31752.4 31904.3 31717.4 31764.8 16073.1
t (sec) 2532.6 2746.2 2756.3 2744.4 3018.6 3473.0

netdiversion Γ∗(T) 88934.9 86721.9 87024.5 86789.2 86057.6 86149.9
n 72.0 119.0 119.0 119.0 113.0 113.0
ctŷ 251.0 242.0 242.0 242.0 242.0 242.0
Γ(T) 358622.1 554572.7 554672.7 553972.7 554572.7 554572.7
t (sec) 7200.0 6630.7 6634.4 6622.8 6581.5 6580.6

newdano Γ∗(T) 83214.8 83697.5 132577.2 154842.9 112165.5 153952.0
n 2083404.0 2083404.0 1804254.0 2176878.0 1993781.0 2002198.0
ctŷ 65.7 65.7 65.7 65.7 65.7 65.7
Γ(T) 1835.3 1846.3 2438.3 2581.7 1842.6 1647.9
t (sec) 3557.7 3573.5 2763.5 3548.9 3704.2 3242.0

noswot Γ∗(T) 825.1 837.9 814.9 1779.5 814.4 805.1
n 829543.0 829543.0 467476.0 1250880.0 436956.0 455271.0
ctŷ -41.0 -41.0 -41.0 -41.0 -41.0 -41.0
Γ(T) 10.0 12.7 10.2 566.3 14.1 12.9
t (sec) 177.5 180.3 175.2 382.6 175.1 173.1

ns1208400 Γ∗(T) 187020.0 127900.0 128940.0 129650.0 151980.0 106290.0
n 3118.0 2777.0 2770.0 2770.0 2785.0 2772.0
ctŷ 2.0 2.0 2.0 2.0 2.0 2.0
Γ(T) 180863.0 26900.0 27000.0 26900.0 26900.0 27000.0
t (sec) 1870.2 1279.0 1289.4 1296.5 1519.8 1062.9

ns1688347 Γ∗(T) 12504.0 6524.3 9963.7 7777.3 7857.2 7727.9
n 6667.0 2609.0 9975.0 4351.0 3905.0 4330.0
ctŷ 27.0 27.0 27.0 27.0 27.0 27.0
Γ(T) 33631.8 10151.3 12012.2 10365.2 10354.4 10263.8
t (sec) 738.9 275.2 487.9 384.9 388.7 380.6

ns1758913 Γ∗(T) 78175.5 78124.6 78642.7 78351.2 78053.3 79121.5
n 2.0 2.0 2.0 2.0 2.0 2.0
ctŷ -236.8 -236.8 -236.8 -236.8 -236.8 -236.8
Γ(T) 613682.7 613682.2 613764.1 613715.3 613665.3 613842.1
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

ns1766074 Γ∗(T) 82440.0 84260.0 84730.0 84210.0 84420.0 84170.0
n 942544.0 893992.0 893992.0 893992.0 893992.0 893992.0
Γ(T) 82440.0 84260.0 84730.0 84210.0 84420.0 84170.0
t (sec) 824.4 842.6 847.3 842.1 844.2 841.7

ns1830653 Γ∗(T) 17278.1 17348.0 15214.1 15278.2 15647.9 18374.2
n 41218.0 46638.0 36733.0 38717.0 36114.0 46887.0
ctŷ 20622.0 20622.0 20622.0 20622.0 20622.0 20622.0
Γ(T) 8839.0 7288.8 6136.6 6143.6 6224.8 7889.9
t (sec) 440.3 371.5 333.7 387.5 382.9 394.2

nsrand-ipx Γ∗(T) 5735.0 5194.8 5199.9 8511.7 5216.1 5206.5
n 1599798.0 1763180.0 1746790.0 2890013.0 1758600.0 1730377.0
ctŷ 51840.0 51360.0 51360.0 51200.0 51360.0 51360.0
Γ(T) 11873.2 5928.3 5954.1 5634.1 5970.0 5998.2
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

nw04 Γ∗(T) 967.3 986.4 976.8 967.2 980.6 997.7
n 11.0 11.0 11.0 11.0 6.0 11.0
ctŷ 16862.0 16862.0 16862.0 16862.0 16862.0 16862.0
Γ(T) 1144.7 1159.7 1151.6 1146.5 1151.2 1174.7
t (sec) 24.5 24.4 24.4 24.5 25.3 24.9

opm2-z7-s2 Γ∗(T) 11760.0 11726.0 37761.8 11828.8 11834.2 18626.1
n 2092.0 2092.0 30810.0 2092.0 2094.0 15231.0
ctŷ -10280.0 -10280.0 -10280.0 -10280.0 -10280.0 -10280.0
Γ(T) 8068.2 8138.1 9132.7 8118.2 8277.5 8477.0
t (sec) 794.6 789.9 2017.4 796.7 794.6 1220.6

opt1217 Γ∗(T) 2.8 5.4 5.4 5.4 7.7 5.4
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ -16.0 -16.0 -16.0 -16.0 -16.0 -16.0
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 0.3 0.4 0.4 0.4 0.4 0.4

p0033 Γ∗(T) 0.3 0.4 0.4 0.4 0.3 0.3
n 1.0 1.0 1.0 1.0 1.0 1.0

continued on next page

156 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

ctŷ 3089.0 3089.0 3089.0 3089.0 3089.0 3089.0
Γ(T) 0.8 0.8 0.8 0.8 0.8 0.8
t (sec) 0.1 0.1 0.1 0.1 0.1 0.1

p0201 Γ∗(T) 14.6 14.3 5.0 14.6 14.7 4.7
n 67.0 67.0 67.0 67.0 59.0 65.0
ctŷ 7615.0 7615.0 7615.0 7615.0 7615.0 7615.0
Γ(T) 23.9 21.1 18.5 23.4 24.0 14.9
t (sec) 1.8 1.7 1.8 1.8 1.8 1.7

p0282 Γ∗(T) 0.3 0.8 0.5 0.5 0.8 0.8
n 3.0 3.0 3.0 2.0 1.0 3.0
ctŷ 258411.0 258411.0 258411.0 258411.0 258411.0 258411.0
Γ(T) 1.0 2.3 1.2 2.3 2.4 2.3
t (sec) 0.3 0.6 0.3 0.8 0.8 0.6

p0548 Γ∗(T) 0.8 10.2 10.2 0.8 10.2 10.2
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 8691.0 8691.0 8691.0 8691.0 8691.0 8691.0
Γ(T) 10.1 20.1 20.1 10.1 20.1 20.1
t (sec) 0.1 0.3 0.3 0.2 0.3 0.3

p2756 Γ∗(T) 21.5 11.4 31.9 31.9 31.9 11.4
n 137.0 9.0 9.0 9.0 9.0 9.0
ctŷ 3124.0 3124.0 3124.0 3124.0 3124.0 3124.0
Γ(T) 26.1 16.2 32.2 32.1 31.9 16.2
t (sec) 1.6 1.2 1.6 1.5 1.4 1.2

pg5_34 Γ∗(T) 156.6 175.1 254.3 316.9 175.4 252.0
n 291242.0 291323.0 301183.0 362704.0 273355.0 305210.0
ctŷ -14339.4 -14339.4 -14339.4 -14339.4 -14339.4 -14339.4
Γ(T) 163.2 183.8 175.1 202.2 183.8 190.0
t (sec) 1287.1 1338.1 1412.7 1689.3 1297.1 1400.7

pigeon-10 Γ∗(T) 72009.0 72009.0 72000.0 72000.0 72009.0 72009.0
n 17116573.0 17457654.0 11244389.0 11397342.0 10565366.0 17502182.0
ctŷ -9000.0 -9000.0 -9000.0 -9000.0 -9000.0 -9000.0
Γ(T) 520.0 500.0 520.0 490.0 500.0 520.0
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

pk1 Γ∗(T) 3399.4 3453.3 3371.8 7991.4 4329.0 4349.3
n 284323.0 284323.0 284323.0 481791.0 281331.0 281341.0
ctŷ 11.0 11.0 11.0 11.0 11.0 11.0
Γ(T) 311.4 328.9 309.8 1191.2 343.5 347.9
t (sec) 64.2 65.2 63.9 80.2 53.8 55.0

pp08a Γ∗(T) 5.5 3.0 6.0 5.5 5.7 3.7
n 221.0 225.0 225.0 225.0 231.0 253.0
ctŷ 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0
Γ(T) 27.2 15.8 29.7 27.2 29.7 22.8
t (sec) 1.3 1.1 1.6 1.3 1.4 1.3

pp08aCUTS Γ∗(T) 2.8 3.4 4.8 3.8 5.5 3.2
n 194.0 165.0 165.0 165.0 149.0 153.0
ctŷ 7350.0 7350.0 7350.0 7350.0 7350.0 7350.0
Γ(T) 19.8 30.1 36.1 32.4 32.8 22.9
t (sec) 1.1 1.4 1.5 1.4 1.4 1.3

protfold Γ∗(T) 146786.0 151335.2 151309.8 151426.1 151308.6 151293.3
n 10226.0 11588.0 11587.0 11577.0 11587.0 11595.0
ctŷ -23.0 -20.0 -20.0 -20.0 -20.0 -20.0
Γ(T) 251536.1 300859.4 300774.8 301088.4 300804.5 300826.7
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

pw-myciel4 Γ∗(T) 110490.5 111043.5 113480.4 130187.2 132077.2 157876.3
n 712713.0 712713.0 291077.0 375464.0 368355.0 433819.0
ctŷ 10.0 10.0 10.0 10.0 10.0 10.0
Γ(T) 1816.4 1887.4 1789.5 1811.3 1878.4 1856.1
t (sec) 3542.8 3550.0 1889.3 3041.3 2199.1 2629.2

qiu Γ∗(T) 5951.6 6199.1 6113.8 6128.7 6272.9 6260.0
n 12604.0 12618.0 12624.0 12559.0 12616.0 12629.0
ctŷ -132.9 -132.9 -132.9 -132.9 -132.9 -132.9
Γ(T) 2123.9 2134.9 2123.9 1602.1 2153.9 2083.5
t (sec) 79.9 81.6 79.0 74.1 77.8 77.2

qnet1 Γ∗(T) 40.1 22.5 35.4 34.2 35.2 22.7

continued on next page

H.2. EXPERIMENTAL RESULTS 157

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

n 36.0 7.0 7.0 7.0 7.0 7.0
ctŷ 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7
Γ(T) 97.6 54.6 72.8 66.7 70.7 54.6
t (sec) 8.3 4.5 5.5 4.9 5.3 4.5

qnet1_o Γ∗(T) 11.0 9.8 18.5 19.2 18.9 19.1
n 16.0 6.0 6.0 6.0 6.0 6.0
ctŷ 16029.7 16029.7 16029.7 16029.7 16029.7 16029.7
Γ(T) 62.0 51.8 59.8 63.8 61.8 62.8
t (sec) 6.6 5.1 5.1 5.5 5.3 5.4

rail507 Γ∗(T) 1246.6 1244.4 1242.7 1394.6 1230.5 1234.1
n 799.0 799.0 799.0 1584.0 855.0 865.0
ctŷ 174.0 174.0 174.0 174.0 174.0 174.0
Γ(T) 1380.5 1379.9 1386.6 1506.5 1372.0 1372.0
t (sec) 242.4 239.9 238.3 324.5 235.7 239.6

ran16x16 Γ∗(T) 838.1 813.8 816.2 3854.3 857.8 1343.3
n 368022.0 346094.0 346094.0 855239.0 265832.0 373581.0
ctŷ 3823.0 3823.0 3823.0 3823.0 3823.0 3823.0
Γ(T) 69.6 105.8 105.4 871.9 106.6 162.5
t (sec) 291.3 283.9 285.0 593.0 231.0 276.4

rd-rplusc-21 Γ∗(T) 719567.3 719567.3 719567.3 719567.3 719567.3 719567.3
n 77078.0 61764.0 61811.0 61764.0 60360.0 70998.0
ctŷ 165935.9 166009.7 166009.7 166009.7 166009.7 177205.0
Γ(T) 60818.1 118211.1 117774.9 117817.0 120667.1 131330.8
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

reblock67 Γ∗(T) 558.5 549.1 701.9 559.5 554.0 538.3
n 109664.0 109664.0 118698.0 67830.0 57072.0 105846.0
ctŷ -34630648.4 -34630648.4 -34630648.4 -34630648.4 -34630648.4 -34630648.4
Γ(T) 1629.4 1701.9 1733.6 1619.2 1627.8 1617.9
t (sec) 253.3 251.3 263.1 189.4 172.6 246.5

rentacar Γ∗(T) 114.2 104.2 104.2 113.9 118.4 124.0
n 4.0 4.0 4.0 4.0 4.0 4.0
ctŷ 30356761.0 30356761.0 30356761.0 30356761.0 30356761.0 30356761.0
Γ(T) 130.0 120.0 120.0 120.0 126.0 136.0
t (sec) 2.7 2.6 2.6 2.6 3.5 2.8

rgn Γ∗(T) 1.5 4.2 4.2 3.8 4.2 4.2
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 82.2 82.2 82.2 82.2 82.2 82.2
Γ(T) 8.2 24.5 24.5 24.5 24.5 24.5
t (sec) 0.1 0.3 0.3 0.2 0.3 0.3

rmatr100-p10 Γ∗(T) 1808.9 1806.0 1791.4 1814.5 1778.7 1757.8
n 851.0 851.0 851.0 851.0 909.0 909.0
ctŷ 423.0 423.0 423.0 423.0 423.0 423.0
Γ(T) 952.9 942.9 937.4 957.7 957.4 941.8
t (sec) 135.1 135.8 134.5 134.9 131.0 130.7

rmatr100-p5 Γ∗(T) 5293.7 6929.7 6915.4 6315.1 6131.5 6391.4
n 420.0 451.0 451.0 447.0 483.0 439.0
ctŷ 976.0 976.0 976.0 976.0 976.0 976.0
Γ(T) 1492.9 1399.0 1392.4 1386.1 1392.0 1376.4
t (sec) 302.9 304.2 303.9 276.1 267.6 280.0

rmine6 Γ∗(T) 665.5 387.9 419.9 1269.0 395.2 385.2
n 2004491.0 742664.0 742446.0 1434625.0 736822.0 738018.0
ctŷ -457.2 -457.2 -457.2 -457.2 -457.2 -457.2
Γ(T) 367.9 343.8 342.0 416.6 331.7 331.4
t (sec) 6096.9 2287.9 2265.3 3930.6 2246.4 2263.0

rocII-4-11 Γ∗(T) 12279.0 7037.1 8611.2 9936.4 10788.3 10042.0
n 40477.0 11718.0 17604.0 21292.0 30330.0 17308.0
ctŷ -6.7 -6.7 -6.7 -6.7 -6.7 -6.7
Γ(T) 11909.9 3637.1 5323.9 8665.8 10136.1 7544.9
t (sec) 463.1 204.7 252.4 329.1 433.9 299.9

rococoC10-001000 Γ∗(T) 5034.0 4558.5 4549.5 23711.3 4816.8 11986.9
n 203201.0 174936.0 161306.0 393185.0 135810.0 224776.0
ctŷ 11460.0 11460.0 11460.0 11460.0 11460.0 11460.0
Γ(T) 752.7 920.8 921.8 5329.4 941.2 2245.8
t (sec) 1217.3 1011.1 966.6 2015.8 876.6 1274.5

continued on next page

158 CHAPTER H. APPENDIX

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

roll3000 Γ∗(T) 6626.7 3522.8 8267.9 23828.8 2892.8 19509.0
n 2781398.0 1063691.0 1089420.0 2488274.0 423972.0 2331855.0
ctŷ 12899.0 12890.0 12890.0 12890.0 12890.0 12890.0
Γ(T) 1534.3 1083.3 2656.1 7615.9 1054.9 4709.2
t (sec) 7200.0 3082.7 2879.0 6007.8 1387.3 5522.8

rout Γ∗(T) 224.3 215.0 360.8 781.9 204.9 207.2
n 26664.0 20646.0 51961.0 101606.0 18547.0 18646.0
ctŷ 1077.6 1077.6 1077.6 1077.6 1077.6 1077.6
Γ(T) 162.8 190.5 225.9 466.6 184.3 190.1
t (sec) 40.1 32.2 48.2 91.4 27.9 28.2

satellites1-25 Γ∗(T) 48757.5 74492.3 74623.6 74244.3 57389.7 68402.2
n 3064.0 2648.0 2648.0 2138.0 1588.0 2212.0
ctŷ -5.0 -5.0 -5.0 -5.0 -5.0 -5.0
Γ(T) 31264.0 32148.0 32104.0 32176.0 32108.0 45240.0
t (sec) 660.2 995.5 997.1 992.0 765.3 913.5

set1ch Γ∗(T) 2.5 4.6 4.5 4.3 5.3 4.0
n 9.0 9.0 9.0 9.0 9.0 9.0
ctŷ 54537.8 54537.8 54537.8 54537.8 54537.8 54537.8
Γ(T) 13.9 16.7 15.7 18.2 21.1 13.5
t (sec) 0.7 0.8 0.8 0.9 0.9 0.7

seymour Γ∗(T) 15701.9 15933.6 25570.9 22115.1 15928.6 15953.0
n 150798.0 146737.0 429173.0 430158.0 146590.0 146047.0
ctŷ 423.0 424.0 431.0 431.0 424.0 424.0
Γ(T) 4737.7 2925.2 13909.1 13946.0 2927.8 2946.7
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

sp97ar Γ∗(T) 15504.2 47703.3 47997.5 47703.2 48193.8 47725.6
n 6289.0 8065.0 8126.0 8147.0 8101.0 7619.0
ctŷ 710063477.9 696853271.7 696853271.7 696853271.7 696853271.7 710898758.9
Γ(T) 60048.1 72299.2 72315.0 72166.5 72495.0 72262.6
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

sp98ic Γ∗(T) 3463.5 3263.9 3899.3 5771.1 3265.7 3399.2
n 131473.0 137628.0 295850.0 300865.0 137322.0 185344.0
ctŷ 452431468.0 450852689.3 452206394.1 450038459.8 450852689.3 450852689.3
Γ(T) 18843.6 5858.7 7390.8 5964.0 5856.4 5888.1
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

sp98ir Γ∗(T) 236.9 224.6 220.9 234.1 220.6 204.4
n 8210.0 5379.0 5195.0 5379.0 5375.0 4630.0
ctŷ 219676790.4 219676790.4 219676790.4 219676790.4 219676790.4 219676790.4
Γ(T) 378.2 458.9 445.7 458.5 462.1 442.6
t (sec) 106.6 86.3 82.2 85.9 81.3 69.2

stein27 Γ∗(T) 27.8 30.6 27.8 27.8 33.3 19.4
n 3905.0 3905.0 3905.0 3905.0 3973.0 3607.0
ctŷ 18.0 18.0 18.0 18.0 18.0 18.0
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 1.0 1.1 1.0 1.0 1.2 0.7

stein45 Γ∗(T) 207.5 225.0 214.2 232.2 268.3 283.9
n 47352.0 47352.0 47352.0 48444.0 50336.0 46693.0
ctŷ 30.0 30.0 30.0 30.0 30.0 30.0
Γ(T) 4.5 6.6 5.1 5.1 5.1 5.4
t (sec) 12.2 13.1 12.5 11.4 11.3 10.7

stp3d Γ∗(T) 248584.7 249365.6 248584.7 249658.4 248779.9 248389.5
n 1.0 1.0 1.0 1.0 1.0 1.0
Γ(T) 720000.0 720000.0 720000.0 720000.0 720000.0 720000.0
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

swath Γ∗(T) 105447.4 96980.1 132728.6 126898.1 96898.0 110113.1
n 1231280.0 1214072.0 1614555.0 1597955.0 1220123.0 1672194.0
ctŷ 472.6 476.1 473.1 484.4 476.1 490.6
Γ(T) 14764.9 19927.5 9564.9 26605.2 19873.7 34175.3
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

tanglegram1 Γ∗(T) 89159.2 87762.2 88550.5 88460.0 87629.7 88029.6
n 37.0 37.0 37.0 37.0 37.0 37.0
ctŷ 5182.0 5182.0 5182.0 5182.0 5182.0 5182.0
Γ(T) 15880.2 15738.7 15847.9 15803.7 15706.3 15784.6
t (sec) 1161.2 1138.7 1150.6 1149.9 1138.6 1142.8

tanglegram2 Γ∗(T) 1397.2 1415.6 1377.7 1397.3 1377.7 1377.7

continued on next page

H.2. EXPERIMENTAL RESULTS 159

Table H.9: Instancewise results of the experiment in Section 5.3. Γ∗(T): dual
integral, n: number of branch-and-bound nodes, ctŷ: primal bound at termination,
Γ(T): primal integral, t (sec): overall solving time.

Settings default estim log-n log-it oracle rank-1
Problem

n 5.0 5.0 5.0 5.0 5.0 5.0
ctŷ 443.0 443.0 443.0 443.0 443.0 443.0
Γ(T) 711.1 720.2 699.1 711.2 699.1 697.8
t (sec) 14.9 15.1 14.7 14.9 14.7 14.7

timtab1 Γ∗(T) 5932.4 5559.8 10933.6 7761.4 7258.5 11280.7
n 870361.0 868207.0 985756.0 963713.0 896679.0 965573.0
ctŷ 764772.0 764772.0 764772.0 764772.0 764772.0 764772.0
Γ(T) 385.4 412.6 601.8 492.1 380.8 356.2
t (sec) 390.1 388.1 381.4 399.4 376.2 377.6

timtab2 Γ∗(T) 237001.7 326894.8 332626.7 331415.7 245532.2 326896.4
n 9144342.0 14814841.0 14897005.0 15049120.0 9027482.0 14855771.0
ctŷ 1136721.0 1208245.0 1255290.0 1188906.0 1138052.0 1208245.0
Γ(T) 38386.2 67445.2 107488.7 66581.0 43432.2 67212.9
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

tr12-30 Γ∗(T) 191.9 173.2 398.4 531.3 196.8 294.2
n 1471731.0 1186814.0 1788765.0 1832526.0 1162158.0 1306275.0
ctŷ 130596.0 130596.0 130596.0 130596.0 130596.0 130596.0
Γ(T) 84.8 93.4 101.9 130.2 101.3 102.3
t (sec) 1814.6 1521.3 1927.2 2056.2 1505.3 1454.0

triptim1 Γ∗(T) 13000.0 12800.0 12900.0 12800.0 12700.0 12700.0
n 47.0 4.0 4.0 4.0 4.0 4.0
ctŷ 22.9 22.9 22.9 22.9 22.9 22.9
Γ(T) 195940.0 98168.0 98677.0 98300.0 99763.0 98172.0
t (sec) 2791.3 981.7 986.8 983.0 997.6 981.7

unitcal_7 Γ∗(T) 3015.6 2979.1 3020.8 2990.2 3036.7 3050.8
n 23265.0 27125.0 27125.0 27125.0 19216.0 19861.0
ctŷ 19635558.2 19635558.2 19635558.2 19635558.2 19635558.2 19635558.2
Γ(T) 8237.2 8204.4 8320.9 8234.8 8238.8 8257.5
t (sec) 1304.6 1469.5 1476.6 1477.2 1230.3 1271.4

vpm1 Γ∗(T) 0.0 0.0 0.0 0.0 0.0 0.0
n 1.0 1.0 1.0 1.0 1.0 1.0
ctŷ 20.0 20.0 20.0 20.0 20.0 20.0
Γ(T) 0.0 0.0 0.0 0.0 0.0 0.0
t (sec) 0.0 0.0 0.0 0.0 0.0 0.0

vpm2 Γ∗(T) 8.4 6.6 7.2 16.6 10.5 9.0
n 294.0 218.0 218.0 230.0 224.0 206.0
ctŷ 13.8 13.8 13.8 13.8 13.8 13.8
Γ(T) 20.5 17.5 17.5 24.9 26.2 20.5
t (sec) 1.3 1.2 1.3 1.3 1.7 1.4

vpphard Γ∗(T) 720000.0 720000.0 720000.0 720000.0 720000.0 720000.0
n 7476.0 6321.0 233249.0 98462.0 6292.0 6321.0
ctŷ 9.0 30.0 25.0 19.0 30.0 30.0
Γ(T) 402227.3 605195.8 589146.0 586065.7 605180.1 605182.1
t (sec) 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

zib54-UUE Γ∗(T) 37084.8 49612.0 62041.5 61204.5 58244.4 58701.5
n 539744.0 706521.0 314461.0 316760.0 296047.0 294878.0
ctŷ 10334015.8 10334015.8 10334015.8 10334015.8 10334015.8 10334015.8
Γ(T) 1071.3 1115.0 2127.0 2164.6 1110.9 2147.6
t (sec) 3829.7 5375.5 2630.8 2735.5 2703.8 2625.2

	Introduction
	Branch-and-bound solver components
	Mixed integer programming and branch-and-bound
	Scip– Solving Constraint Integer Programs
	Components of Scip
	Branching rules
	Node selection strategies
	Primal heuristics
	Cutting plane separation
	Node presolving

	Component impact on Scip performance

	Empirical mathematical programming
	Comments on testing algorithms and test set selection
	Metrics for MIP algorithm evaluation
	Statistical analysis of algorithmic tests
	Some stochastic preliminaries
	Important distributions
	Tests for categorical data
	Tests for continuous data

	A 3-phase-approach for solving MIP
	The parameter space of SCIP
	MIP solving phases
	Computational aspects of the three solving phases
	The Feasibility phase
	The Improvement phase
	The Proof phase

	Heuristic phase transition criteria
	The best-estimate criterion
	The rank-1 criterion
	A logarithmic model of the solving progress

	Estimates of search tree properties

	Computational results
	Individual phase experiments
	Feasibility phase
	Improvement phase
	Proof phase

	Phase transition
	Combining the results

	Ipet–an interactive evaluation tool
	Overview of the library
	Installation and prerequisites
	Starting the Ipet user interface
	Reading log files
	Widgets of the Ipet
	Table widget
	Output widget
	Scatter widget
	Further plot widgets
	Message widget

	Filters and aggregations
	Outlook

	Summary
	Bibliography
	Appendix
	Special settings files
	The setting agg
	The setting sepa

	Experimental results

