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A Two-Phase Method
for the Biobjective k-Architecture

Connected Facility Location Problem
and Hypervolume Computation

Svenja Uslu Axel Werner

February 25, 2015

We apply customized versions of the ε-constraint Method and the Two-
Phase Method to a problem originating in access network planning. We
introduce various notions of quality measures for approximated/partial sets
of nondominated points, utilizing the concept of hypervolume for biobjective
problems. We report on computations to assess the performance of the two
methods in terms of these measures.

1 Introduction

There are a few general algorithms to solve a Biobjective Optimization Problem, i. e.
to determine a complete set of nondominated points, also called a Pareto set, of a
general optimization problem with two objective functions. Arguably the most popular
one is the ε-constraint Method [6], which works in a very straightforward way and still
seems to be among the best biobjective solving methods available. Another algorithm,
the Two-Phase Method [12], has, to the best of our knowledge, mainly been applied
to problems, for which there are efficient (polynomial) algorithms solving the single-
objective counterparts; see [10] as well as [7] and the references therein.

In this paper, we apply customized versions of these two algorithms to a problem originat-
ing in access network planning, which can be formulated as a biobjective Integer Linear
Program (ILP). We compare the two algorithms with respect to the general performance,
also in terms of the hypervolume, which is a general measure for the approximation of
nondominated sets of points in the objective space, see [13].

For biobjective mixed integer programming problems, there are some more recent general
algorithms [1, 2, 3], which we do not consider here. Throughout the paper, we largely use
the standard terminology from the theory multiobjective optimization; as a reference see,
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for instance, [5]. We assume a biobjective optimization problem given as a minimization
problem

min{f(σ) | σ ∈ P},

where P denotes the set of feasible solutions and f : P → R2 with f(σ) = (f1(σ), f2(σ))T

represents the two objective functions.

2 Methods and Problem

In the following we give a brief description of both algorithms, the ε-constraint Method
as well as the Two-Phase Method, in very general terms. Subsequently we provide a
short introduction to the problem we apply the methods to, and finally a more detailed
view of how both methods work in the setting of our problem.

2.1 Epsilon-Constraint and Two-Phase Method

Both, the ε-constraint Method and the Two-Phase Method, compute the Pareto set of
biobjective problems by solving a number of associated single-objective problems, which
are obtained by weighting the two objectives in certain ways.

Definition 1. Let min{f(σ) | σ ∈ P} be a biobjective optimization problem and λ ∈
R2
≥. Then a problem of the form min{λT f(σ) | σ ∈ P} is called a weighted sum problem.

Recall that an efficient solution for a given biobjective optimization problem is a feasible
solution such that no other feasible solution exists that has a smaller or equal value for
both objective functions; any efficient solution σ gives rise to a nondominated point
f(σ) in the objective space. There are two distinguished nondominated points: The
point ẑr = (f1(σ), f2(σ))T for an efficient solution σ with the smallest possible value of
f1 and, analogously, ẑs = (f1(σ), f2(σ))T for an efficient solution σ with the smallest
possible value of f2. These two points also define the ideal point (ẑr

1, ẑ
s
2) and the nadir

point (ẑs
1, ẑ

r
2).

The ε-constraint Method is probably the most straightforward way to solve biobjective
problems and works quite well for most problems, in particular those that allow the
addition of upper-bound type constraints (cf. [7]). It works by imposing an upper bound
ε on one of the objectives and successively reducing ε to obtain new nondominated
points. Assumed that the objective f2 is the one to be bounded, the value for ε in the
first iteration can be chosen to be ẑr

2, or – in case the computation of ẑr is difficult –
any upper bound on f2 for efficient solutions. In each iteration a weighted sum problem
with weight λ = (1, 0)T has to be solved, and the ε for the next iteration set to the f2

value of the found solution, reduced by a suitably small, positive constant. If we assume
that all coefficients and variables in the selected objective function are integral then the
reduction in each iteration is usually taken to be the greatest common divisor of these
coefficients.
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Figure 1: The objective value of a nonsupported efficient solution σ∗ is in a triangle defined by the
objective values of σr, σs ∈ S.

The Two-Phase Method was first described by Ulungu and Teghem [12] in 1995 as a
solution method for biobjective combinatorial optimization problems. It uses the fact
that the set of efficient solutions can be divided into two disjoint sets, the supported and
the nonsupported efficient solutions.

Definition 2. A feasible solution σ′ ∈ P for a biobjective problem min{f(σ) | σ ∈ P}
is a supported efficient solution if there exists a vector λ ∈ R2

≥ such that σ′ is an optimal

solution for the weighted sum problem min{λT f(σ) | σ ∈ P}. Any efficient solution that
is not a supported efficient solution is called nonsupported efficient solution. If there
exist two linear independent weight vectors such that σ′ is optimal for both associated
weighted sum problems (equivalently, there exists a weight vector such that σ′ is optimal
for the associated weighted sum problem and f(σ) = f(σ′) for all optimal solutions to
this weighted sum problem), σ′ is called an extremal supported efficient solution.

In the first phase, the coordinates of the ideal and the nadir point have to be computed,
or, equivalently, the nondominated points ẑr and ẑs. Then the supported efficient solu-
tions are computed by solving several weighted sum problems with appropriate weights.
In particular, the resulting set S of supported efficient solutions contains a solution for
each extremal nondominated point.

In the second phase, the nonsupported efficient solutions are determined. By their
definition and the properties of the set S, each objective point corresponding to a non-
supported efficient solution must be located in a triangle defined by two consecutive
solutions in S (see Figure 1). More precisely: if σ∗ is a nonsupported efficient solution
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then there exist σr, σs ∈ S and λ ∈ R2
≥ with

f1(σr) < f1(σ∗) < f1(σs),

f2(σs) < f2(σ∗) < f2(σr),

λT f(σ∗) > λT f(σr) = λT f(σs).

The nonsupported efficient solutions are determined in the second phase by exploiting
specific properties of the problem at hand. We explain in Section 2.3 how this is done
for our problem.

2.2 Biobjective k-Architecture Connected Facility Location

The solution methods mentioned above can, in principle, be applied to any biobjective
optimization problem, for which algorithms are available to solve associated weighted
sum problems with upper-bound type constraints on the objective functions added to
the formulation of the feasible set of solutions. The problem we want to consider for
the rest of this paper is taken from telecommunication network optimization and can
be formulated as an ILP, which makes it applicable for both ε-constraint Method and
Two-Phase Method.

The problem, which we call the Biobjective k-Architecture Connected Facility Location
Problem (Bi-k-ArchConFL), abstracts the planning of access networks with multiple
transmission technologies (or “architecures”, such as fiber, copper, and wireless). Given
a deployment area for such a network, we can represent the problem by constructing a
directed graph G = (V,A), where the node set V contains nodes C ⊂ V representing
customers, nodes F = F 1 ∪ · · · ∪ F k ⊂ V representing potential facility locations for
each technology with opening costs cli ≥ 0 for all i ∈ F l, l = 1, . . . , k, nodes Q ⊂ V
representing potential central office locations with opening costs cq ≥ 0 for all q ∈ Q,
and further Steiner nodes. The arc set A consists of core arcs Ac ⊂ A corresponding
to forward and backward arcs for each section of the deployment area where a fiber
connection can be laid out, and assignment arcs Al ⊂ V for each technology l = 1, . . . , k
such that each arc (i, j) ∈ Al represents a possible connection of customer j ∈ C to
facility i ∈ F l using technology l; each core arc or assignment arc a again comes with
a cost value ca ≥ 0 or cla ≥ 0, respectively. Each customer j ∈ C has a demand value
dj ≥ 0, which can be interpreted as the number of connections that is required to serve
the corresponding customer location.

A feasible solution consists of a set of selected assignment arcs representing served cus-
tomers, a set of opened facilities such that each facility with outgoing selected assignment
arcs is opened, a set of selected core arcs, and a set of opened central offices such that
for each opened facility i there is a directed path from an opened central office to i.
The selected assignment arcs and opened facilities each represent the use of a technol-
ogy l ∈ {1, . . . , k}; hereby we assume that technology 1 is the “preferred” technology to
serve the customers. In the context of fiber-optic access networks, this is the connection
using a fiber to the home of the customer: For each customer j a facility i ∈ F 1 is
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placed at the same node such that i has a single outgoing assignment arc (i, j). In order
to serve the customer using this “preferred” technology, this facility has to be opened,
which implies that core arcs have to be selected that connect the facility, which, in turn,
increases the cost considerably. The trade-off between serving many customers with this
“costly” technology and reducing costs in general creates the biobjective nature of the
optimization problem.

The following ILP formulation for Bi-k-ArchConFL is a direct generalization of the
single-objective version of the special case of two technologies (fiber/copper) in [8]:

min
∑

(i,j)∈Arc
cijxij +

k∑
l=1

∑
(i,j)∈Al

clijx
l
ij +

k∑
l=1

∑
i∈F l

cliy
l
i (1)

k∑
l=2

∑
j∈C

djz
l
j (2)

s.t.
k∑
l=1

zlj = 1 ∀j ∈ C (3)∑
i∈F lj

xlij = zlj ∀j ∈ C, l = 1, . . . , k (4)

xlij ≤ yli ∀j ∈ C, i ∈ F lj , l = 1, . . . , k (5)

x(δ−(W )) ≥ yli ∀W ⊆ V \ C, i ∈ F l ∩W, l = 1, . . . , k (6)

xa, y
l
i, z

l
j ∈ {0, 1} ∀a ∈ Ac, i ∈ F l, j ∈ C, l = 1, . . . , k (7)

xlij ∈ {0, 1} ∀i ∈ F lj , j ∈ C, l = 1, . . . , k (8)

For a detailed explanation of the model and possible alternatives to the connectivity
constraints (6) we refer to [8]. Here we just mention a few specialities occuring in the
biobjective setting.

Objective (1) aims to minimize the total cost. Objective (2) minimizes the demand that
is covered by technologies other than the preferred technology 1; due to Constraint (3),
which states that each customer has to be connected by some technology, this maximizes
the demand covered by technology 1. Constraint (3) can be stated as an inequality in
case not every customer has to be connected. Obviously, for the biobjective problem,
setting all variables to 0 would then be a feasible solution that dominates every other
feasible solution, but is surely not desired from the practical point of view. This could be
remedied by either introducing coverage requirements for some (or all) technologies (as
done in [8] for the single-objective case), or, more generally, by aiming to maximize the
total coverage (or the coverage for each technology) and hence transforming the problem
into a 3-objective problem (or (k + 1)-objective problem, respectively). For this paper,
we stick to the biobjective case. Note, however, that then the problem can equivalently
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be modelled by replacing (3) by the corresponding inequality and (2) by∑
j∈C

dj(1− z1
j ) = D −

∑
j∈C

djz
1
j ,

where D is the total demand of all customers.

2.3 Application of the two methods to the problem

Application of the ε-constraint Method for the Bi-k-ArchConFL Problem is straight-
forward. We choose the coverage function (2) as the objective to be bounded by the
decreasing ε, since it expectedly takes much smaller values than the cost function (1)
and more likely exhibits a coefficient structure that allows a non-trivial greatest common
divisor. In each iteration we then solve the ILP

min
∑

(i,j)∈Arc
cijxij+

k∑
l=1

∑
(i,j)∈Al

clijx
l
ij +

k∑
l=1

∑
i∈F l

cliy
l
i

s.t.

k∑
l=1

∑
j∈C

djz
l
j ≤ ε

(3) – (8)

for the currently valid upper bound ε. To avoid generating weakly dominated points,
the obtained optimal solution value f∗1 is then taken as an upper bound on the cost
objective and a second ILP

min
k∑
l=1

∑
j∈C

djz
l
j

s.t.
∑

(i,j)∈Arc
cijxij +

k∑
l=1

∑
(i,j)∈Al

clijx
l
ij +

k∑
l=1

∑
i∈F l

cliy
l
i ≤ f∗1

k∑
l=1

∑
j∈C

djz
l
j ≤ ε

(3) – (8)

is solved. This yields an efficient solution and a nondominated point (f∗1 , f
∗
2 ). The same

could, in principle, also be achieved by solving just one ILP with a suitable weight vector;
this, however, seems to be computationally worse than our two-step process, probably
due to the skew weight vector necessary (in a reasonable instance, (1) will take much
higher values than (2)) and the involved numerical issues.

Note that the computation of the points ẑr and ẑs, and therefore the ideal and nadir
point can be done in the same fashion: We just have to solve the above two ILPs without
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Figure 2: Each branch in the binary search tree represents a possible set of fixations. The leaves represent
a complete enumeration of all combinations of fixations.

the ε bound constraints to obtain the point ẑr. This can be done before the first iteration
of the ε-constraint Method to obtain a starting value for ε. The analogous procedure
with exchanged objectives yields the point ẑs.

As for the Two-Phase Method, there is no general algorithm for the Second Phase, but
Ulungu and Teghem [12] propose to use the structure of the underlying combinatorial
problem to compute the nonsupported efficient solutions. In our case, we perform an
enumeration of solutions by fixing binary decision variables to 0 or 1 and combining these
fixations. We repeatedly reoptimize weighted sum problems with additional constraints
representing the fixations. In our implementation, we fix the z1

j variables that indicate
if customer j is connected by architecture 1 or not.

Let n := |C| be the number of customers. Assume we are searching for new nondomi-
nated solutions in the triangle defined by two consecutive solutions σr, σs ∈ S (cf. Fig-
ure 1), which define a fixed weight vector λ = (f2(σr)− f2(σs), f1(σs)− f1(σr))T ∈ R2

≥.
Instead of enumerating all 2n possible combinations, we fix the n variables iteratively
and exclude unnecessary fixations during the search. We can illustrate this fixation
procedure with a binary search tree (Figure 2).

Remark 3. Let the variables z1
1 , . . . , z

1
i be fixed and σ an optimal solution to the

corresponding weighted sum ILP (IP1). Let σ′ be an optimal solution of a weighted sum
ILP (IP2) that obeys the same fixations of z1

1 , . . . , z
1
i and arbitrary many other fixations

of the variables z1
i+1, . . . , z

1
n. Then we have λT f(σ) ≤ λT f(σ′). If not, σ would not be

an optimal solution of (IP1) since by construction of (IP2), σ′ is also feasible to (IP1)
and would have a smaller objective value.

We developed several criteria to decide if a combination of fixations can lead to an
efficient solution. One of them is the following:
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f1

f2

f(σr)

f(σs)

f(σi)

f(σi+1) uλ

potential efficient solution

local nadir point

Figure 3: The upper bound uλ reduces the search space for potential nonsupported nondominated points
in the triangle depending on the already found nondominated points.

Observation 4. Let the variables z1
1 , . . . , z

1
i already be fixed to 0 or 1. Let D :=

∑n
j=1 dj

be the total demand, Dfixed :=
∑i

j=1 djz
1
j the demand that is already fixed to be served

by architecture 1 and Dposs :=
∑n

j=i+1 dj the sum of demands of customers that are not
yet fixed. If D −Dfixed ≤ f2(σs) or D −Dfixed −Dposs ≥ f2(σr), then a reoptimization
with any fixation that contains the current fixations will not lead to an efficient solution.
We can therefore exclude the current fixation and its lower subtree from the search tree.

If all preliminary criteria of the fixations are met, a reoptimization is done and we proceed
depending on the feasibility and the optimal solution of the weighted sum problem. If
it is infeasible or the weighted objective value is bigger than some upper bound, the
corresponding subtree can be ignored, since adding more fixations can only increase the
weighted objective value. If there exists an optimal solution, it has to be verified if this
might be an efficient solution or not. There are several lower and upper bounds for this
purpose.

We store in the set T the potentially efficient solutions found in the triangle defined by
σr and σs so that σr, σs ∈ T and there exist no σ, σ′ ∈ T such that σ dominates σ′. We
assume that T = {σr = σ1, . . . , σq = σs} is ordered by increasing f1 value.

Definition 5 (Local nadir point). Given T as above, for each i ∈ {1, . . . , q − 1} the
point (f1(σi+1), f2(σi)) is called a local nadir point.

As we are looking for efficient solutions only in the current triangle, we can use the
following upper bound introduced by Tuyttens et al [11]: uλ represents a line parallel to
f(σr)f(σs), going through the “farthest” local nadir point (see Figure 3) and is defined
by

uλ := max
i=1,...,q−1

{λ1f1(σi+1) + λ2f2(σi)}.
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Observation 6. Let σ be a feasible nondominated solution with f(σ) inside the current
triangle. Then λf(σ) < uλ.

We conclude that if for a feasible solution σ we have λf(σ) ≥ uλ, then σ is dominated
by an already found solution in T . Furthermore, suppose that we found the solution σ
by solving a weighted sum problem with fixations of the variables z1

1 , . . . , z
1
i . Since the

weighted function value increases by adding fixations (see Remark 3), any additional
fixation of one of the variables z1

i+1, . . . , z
1
n will not lead to an efficient solution and is

therefore unnecessary. We ignore the lower subtree of this fixation in the search.

There is another way to avoid solving unnecessary ILPs. Let σ ∈ T be an already found
nondominated solution. Then those weighted sum problems with fixations satisfied by σ
will only lead to σ as optimal solution again. Instead of solving such a problem, we add
a fixation that is not satisfied by σ and reoptimize afterwards. This way, we are certain
that the obtained optimal solutions is a new one.

These criteria allow us to reduce the number of reoptimizations considerably from the 2n

in the worst case. In practice, there are often a lot more optimizations excluded before
computing them. At the end of the second phase, we obtain a minimal complete efficient
set, i. e. we find all nondominated points with at least one nondominated solution for
each of them.

In general, this version of the Two-Phase Method performs well for problems for which
reoptimization (possibly with variable fixations) can be done fast. For our problem, this
is not the case, since we have to solve an integer linear program for each reoptimization.
Indeed, it is obvious that in total for the Two-Phase Method more ILPs have to be
solved than using the ε-constraint Method. However, the division in first and second
phase provides another advantage that we examine closer in the next section.

3 Hypervolume and Gaps

The ε-constraint Method computes nondominated points starting in the very upper left
corner of the Pareto set and gradually working its way towards the lower right; this
way, quite some time is spent in the beginning before an interesting region of solutions
is entered. The Two-Phase Method, on the other hand, initially computes the extremal
nondominated points, which are usually evenly distributed between ẑr and ẑs. This
has the advantage that already early in the process a quite close approximation of the
complete Pareto set is available, making it possible to interrupt the computation and
thereby making a well predictable error. In this section we want to make this precise.

The hypervolume indicator was introduced by Zitzler and Thiele, see [13], for instance.
We present this concept in a slightly different way than in the literature (cf. [2]) extending
the notion a bit. The basic definitions apply to a general multiobjective optimization
problem. We denote the ideal point by ẑI and the nadir point by ẑN; B is the box
B := [ẑI, ẑN] = [ẑI

1, ẑ
N
1 ]×· · ·× [ẑI

d, ẑ
N
d ]. For points in the objective space, we occasionally

use the notation z = f(σ) for a feasible solution σ (where the z is not to be confused
with the variables zlj of the ILP model).
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Definition 7. Given a set Z of points in objective space Rd, d ≥ 2, the hypervolume
IH(Z) is the (d-dimensional) volume of B dominated by points in Z,

IH(Z) := vold

( ⋃
z∈Z

(z + Rd≥) ∩B
)

= vold

( ⋃
z∈Z

[z, ẑN]

)
Given a set P̂ = {σ1, . . . , σn} of feasible solutions, we denote by IH(P̂ ) the hypervolume
of the corresponding objective points, IH(P̂ ) := IH({f(σ1), . . . , f(σn)}).

Remark 8. If P is a complete set of efficient solutions (i. e., f(P ) is the Pareto set), then
IH(P ) ≥ IH(P̂ ) for all sets of nondominated points P̂ . In other words: the hypervolume
of each set P̂ of efficient solutions is a lower bound on the hypervolume of P .

Definition 9. Let P̂ be a set of feasible solutions and P a complete set of efficient
solutions. The absolute hypervolume gap (of P̂ ) is defined as

δH(P̂ ) := IH(P )− IH(P̂ ) ≥ 0.

The (relative) hypervolume gap (of P̂ ) is

γH(P̂ ) :=
δH(P̂ )

IH(P )
.

f1

f2

ẑN

ẑI

ẑr

ẑs

Pareto set f(P )

set of feasible points f(P̂ )

IH(P )

IH(P̂ )

Figure 4: The hypervolume of the Pareto set f(P ) and of a set of feasible points f(P̂ ). The difference
between IH(P ) and IH(P̂ ) is the absolute hypervolume gap δH(P̂ )

Remark 10. Let A ⊆ B such that the interior of A contains no feasible solutions and
[ẑI, z] ⊆ A for all z ∈ A. Then

I−H(A) := vold (B \A) =

( d∏
i=1

(ẑN
i − ẑI

i)

)
− vold(A)

is an upper bound on the hypervolume of the Pareto set P : IH(P ) ≤ I−H(A). Hence (by

Remark 8) IH(P̂ ) ≤ I−H(A) for each set P̂ of feasible solutions.
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Definition 11. Let P̂ be a set of feasible solutions and A ⊆ B as above. The absolute
hypervolume bound gap is defined as

δ−H(P̂ , A) := I−H(A)− IH(P̂ ) ≥ 0

and the (relative) hypervolume bound gap is

γ−H(P̂ , A) :=
δ−H(P̂ , A)

IH(P̂ )
.

It follows directly from the definitions that

δ−H(P̂ , A) ≥ δH(P̂ )

and
γ−H(P̂ , A) ≥ γH(P̂ )

for P̂ and A as in Definition 11.

f1

f2

ẑN

ẑI

ẑr

ẑs

A

Pareto set f(P )

set of feasible points f(P̂ )

IH(P̂ )

I−H(A)

Figure 5: The hypervolume of a set of feasible points f(P̂ ) and a set A that contains no feasible points
in its interior and [ẑI, z] ⊆ A for all z ∈ A. The difference between I−H(A) and IH(P̂ ) is the

absolute hypervolume bound gap δ−H(P̂ , A).

During the execution of a specific algorithm there are various possibilities to derive sets
A that yield bound gaps γ−H(P̂ , A) for a current set (of possibly efficient solutions) P̂ .

Example 12 (Adjusted hypervolume, cf. [2]). Let P̂ = {σ1, . . . , σn} be a set of efficient
solutions. Then

Aa := B ∩
n⋃
i=1

(
f(σi)− R≥

)
=

n⋃
i=1

[ẑI, f(σi)]

is a set containing no feasible solutions in its interior with [ẑI, z] ⊆ Aa for all z ∈ Aa and

I−H(Aa) = vold(B \Aa) = vold(B)− vold

( n⋃
i=1

[ẑI, f(σi)]
)
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represents an upper bound on IH(P ) (see Figure 6).

f1

f2

ẑN

ẑI

ẑr

ẑs

Aa

Figure 6: The adjusted hypervolume and the upper bound I−H(Aa).

Example 13 (ε-constraint Method upper bound). The ε-constraint Method for biob-
jective problems determines the efficient solutions with their increasing f1-value. The
upper bound of the adjusted hypervolume can thus be improved:

Let P̂ = {σ1, . . . , σn} be a set of efficient solutions, zi = f(σi), i = 1, . . . , n and Z :=
{z1, . . . , zn} such that there is no nondominated point z′ with z′1 ≤ zn1 and z′ /∈ Z. Then

Aε := B \
( ⋃
z∈Z

[z, ẑN] ∪ [(zn1 + δ, ẑI
2), ẑN]

)
=

n−1⋃
k=1

[ẑI, (zk+1
1 , zk2 )] ∪ [ẑI, (zn1 + δ, zn2 )]

is a set containing no feasible solutions in its interior with [ẑI, z] ⊆ Aε for all z ∈ Aε (see
Figure 7), where δ is a suitable small constant. If all coefficients of the z1 objective are
integral, δ can be chosen to be the greatest common divisor of the coefficients, analogous
to the choice of ε. Note that for this the ε-constraint Method has to be performed in
such a way that the solution computed in each iteration is not a weakly efficient solution,
cf. Section 2.3. Hence

I−H(Aε) = vol2(B \Aε) = vol2

( ⋃
z∈Z

[z, ẑN] ∪ [(zn1 + δ, ẑI
2), ẑN]

)
represents an upper bound on IH(P ).

Example 14 (End-of-first-phase upper bound). After termination of the first phase of
the Two-Phase Method, all extremal supported nondominated points are known. By
using this property, we find an upper bound:

Given a biobjective problem, let P̂ be a set of efficient solutions so that Z = f(P̂ ) =
ZextsN is the set of all extremal supported nondominated points. Then

AP1 := B \ conv(Z ∪ {ẑN})

12



f1

f2

ẑN

ẑI

ẑr = z1

ẑs

zn

Aε

Figure 7: The ε-constraint Method upper bound I−H(Aε).

is a set that contains no feasible solutions in its interior with [ẑI, z] ⊆ AP1 for all z ∈ AP1

and
I−H(AP1) = vol2(B \AP1) = vol2(conv(Z ∪ {ẑN}))

is an upper bound on IH(P ); see Figure 8. Note that this bound is in general not valid

f1

f2

ẑN

ẑI

ẑr

ẑs

AP1

Figure 8: End-of-first-phase upper bound I−H(AP1)

for multiobjective problems with 3 or more objectives, since, in general, for a set Z of
nondominated points in Rd, d ≥ 3, the set A = B \ convZ can intersect the region
dominated by Z and [ẑI, z] for z ∈ A is not necessarily fully contained in A.

Example 15 (Second-phase upper bound). During the second phase, the triangles in the
objective space defined by two consecutive extremal supported nondominated points are
considered iteratively to find the missing efficient solutions. The upper bound I−H(AP1)
can therefore be improved:

13



Let P̂ be a set of efficient solutions so that Z := f(P̂ ) = ZextsN ∪ Zt where ZextsN =
{z1, . . . , zn} is the set of all extremal supported nondominated points, 1 ≤ t ≤ n − 1,

and Zt = {zt = zt,1, zt,2, . . . , zt,l = zt+1} with zt,11 < · · · < zt,l1 and zt,i is situated in the
triangle defined by consecutive solutions zt and zt+1 for 1 ≤ i ≤ l. Let A ⊆ B with
A ⊇ AP1 be a set that contains no feasible solution and [ẑI, z] ⊆ A for all z ∈ A. Then

AP2 := A ∪
l−1⋃
k=1

[ẑI, (zt,k+1
1 , zt,k2 )]

contains no feasible solution in its interior with [ẑI, z] ⊆ AP2 for all z ∈ AP2 and

I−H(AP2) = vol2(B \AP2)

is an upper bound on IH(P ); see Figure 9. Obviously, AP2 ⊇ A ⊇ AP1 and hence

f1

f2

ẑN

ẑI

ẑr

ẑs

zt = zt,1
zt,2

zt,l = zt+1AP2

Figure 9: Second-phase upper bound I−H(AP2)

I−H(AP2) ≤ I−H(A) ≤ I−H(AP1), that is, the second-phase upper bound improves upon the
first-phase upper bound and can iteratively be strengthened when a new triangle t is
considered.

4 Computations

In the following, we report on some results obtained from computations using our im-
plementations of the algorithms described in Section 2. In all computations, the number
of technologies is k = 2. The instances used are derived from four different networks
that represent typical (rather small) deployment areas for fiber-optic access networks.
For each of these four networks, a number of different instances for the Bi-k-ArchConFL
Problem were constructed by varying certain parameters, such as the density of the
facilities and the number of assignment arcs for architecture 2. Table 1 gives an impres-
sion of the sizes of the instances. Note that the number of nodes and arcs contained in

14



Network # instances # nodes # arcs # customers # facilities

rotdorn 18 254 512–907 91 106–157
tuberlin 21 384 644–829 39 54–109
vehlefanz 52 895 1640–4847 238 266–407
atlantis 18 1001 1880–3981 345 361–447

Table 1: Overview of the test instances and their properties

the network is not the only decisive factor concerning the solvability of the instances:
the tuberlin instances tend to be easier solvable than the rotdorn instances and sim-
ilarly for the two bigger networks (cf. Figure 11); the first observation can possibly be
explained by the much smaller number of customers and facilities in tuberlin, but
there is no straightforward explanation (at least not in terms of numbers) for the bigger
networks.

The test computations were performed on an Ubuntu 14.04 system running on an Intel
Xeon X5672 quad core 3.2 GHz CPU with 48 GB memory. In our implementations we
used CPLEX 12.6 as solver for the single-objective ILPs, with parallelization limited to
one thread. We set a total time limit of 21600 s (6 h) for all computations.

The total runtimes in general (see Figure 10) show that for all instances the time limit
is hit for the Two-Phase Method. The ε-constraint Method finishes within 6 h for nearly
all of the smaller instances (37 out of 39, see Figure 11), but for none of the larger ones.
The first phase of the Two-Phase Method, however, is completed much faster on average
than both the second phase and the ε-constraint Method, as Figures 10 and 11 show
(although it is outperformed by the ε-constraint Method on one instance of each of the
two sets).

1st phase 2nd phase Two−Phase total Epsilon
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Figure 10: Runtimes for all 109 instances; a + mark indicates the (arithmetic) mean value
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Figure 11: Runtimes of the ε-constraint Method for instances that have been solved within the time limit
of 6 h (21600 s) on the left and runtimes of the First Phase for instances that have completed
the First Phase within the time limit on the right

Hence one would expect that the hypervolume (and the hypervolume bound gap with
suitable upper bound set A) increases (decreases, respectively) faster over the runtime
for the Two-Phase Method than it does for the ε-constraint Method. A typical scenario
for the development of the hypervolume (bound gap) during the first and second phase
(using the sets Aa and AP2, respectively), compared to the ε-constraint Method (using
Aε) is shown in Figure 12(a).

The precise behaviour obviously very much depends on the instance at hand; Fig-
ure 12(b) shows the trend for several comparable instances. The ε-constraint Method
overtakes the Two-Phase Method eventually, both with respect to the hypervolume and
the gap; at relatively early stages of the computations, however, i. e., after runtimes of
below 1 to 4 hours for most of the shown instances, both the hypervolume and the gap
are much better for the Two-Phase Method, due to the fast execution of the first phase
and the more precise upper bound.

Accordingly, for those instances that have not been completely solved, the hypervolume
bound gap at the end of the computation time (see Figure 13) is much lower for the
Two-Phase Method than for the ε-constraint Method. Figure 14 shows that, somewhat
surprisingly, the remaining hypervolume bound gap for the Two-Phase Method does not
seem to vary greatly with the size of the instance. This cannot be said for the size of
the solutions, as Figure 15 shows. The number of nondominated points seems to depend
on the instance size and also – maybe even more significantly – on the type of the core
network and the number of customers and assignment arcs in relation to the core network
size. For the larger instances, no complete nondominated set could be obtained by the
ε-constraint Method; however, the number of extremal solutions computed during the
first phase (see Figure 16), seems to be a good indicator of the total solution size, as it
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(a) ...for a typical run of an atlantis instance (N.B. The computation was performed on a faster
computer, hence the ε-constraint Method managed to compute the full nondominated set within
the time limit, in contrast to the other results described in this section.)
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Figure 12: Hypervolume over the runtime...
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Figure 13: Relative hypervolume bound gap after 6 h for all instances that hit the time limit; a +× mark
indicates the geometric mean value

shows a comparable trend for the smaller networks.

To compute a complete nondominated set of points, the ε-constraint Method is much
better suited then the Two-Phase Method. The main reason is that in every iteration
of the ε-constraint Method, in which two weighted sum problems are solved, a new
nondominated point is obtained; that is, the number of ILPs solved during the execution
is linear in the size of the Pareto set. For the Two-Phase Method, on the other hand,
many ILPs have to be solved for the variable fixings in the second phase, of which only

rotdorn tuberlin vehlefanz atlantis
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Figure 14: Relative hypervolume bound gap of the Two-Phase Method after 6 h for all instances that hit
the time limit
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Figure 15: Size of the solutions (complete set of nondominated points) for all instances solved by the
ε-constraint Method within the time limit

a small fraction yield nondominated points in the end. Accordingly, the number of calls
to CPLEX’s solve routine (see Figure 17) is much higher for the Two-Phase Method
than for the ε-constraint Method.

To get an impression of how far the second phase progressed at the end of the time limit,
we can have a look at the number of triangles that have been processed in the second
phase. Figure 18 shows, for each of the four networks, the average over the numbers of
processed triangles as well as the total numbers of triangles. The processed triangles are
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Figure 16: Number of extremal solutions for all instances for which the First Phase terminated within
the time limit
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Figure 17: Number of CPLEX calls for all instances

those that are completely scanned, plus, possibly, the last triangle, whose examination
might have been interrupted by the time limit. Figure 19 shows the relative number of
triangles that were processed during the second phase. While for the bigger networks
the second phase rarely managed to process more than the first triangle, for most of
the smaller instances at least a few triangles were completed; in our implementation
the second phase starts processing triangles located in the middle of the box B, i. e.
those that are defined by supported efficient solutions with f2 value around (ẑN

2 − ẑI
2)/2,

and works its way from there to the next triangle on the left and right alternatingly.
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Figure 18: Total number of triangles and number of processed triangles in the second phase for the
different networks for all instances for which the second phase was started
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Figure 19: Fraction of the number of processed triangles for the same instances as in Figure 18

Obviously, various other strategies for selecting triangles in interesting regions to be
processed first can be devised.

Note that Figures 18 and 19 also suggest that the tuberlin instances tend to be easier
solvable, also for the Two-Phase Method, than the rotdorn instances, despite the slightly
larger core network, cf. Figure 11.

5 Conclusions and Outlook

We have described an ε-constraint Method and a Two-Phase Method specifically tai-
lored for solving the Bi-k-ArchConFL Problem. While the Two-Phase Method cannot
compete with the ε-constraint Method in terms of efficiency, when it comes to comput-
ing a complete set of nondominated points, it can quite well be used to obtain a good
approximation – in terms of the hypervolume – in a comparably short time. This is
mainly due to the fact that the first phase runs quite fast and already provides a close
upper bound for the hypervolume of the nondominated set; from there, selected parts
of the approximated nondominated set can be explored in the second phase, such that
a more precise approximation in the most interesting regions can be obtained.

The performance of other solution methods have also been assessed in terms of hyper-
volume measures, see [2, 3]. Obviously, the concept of hypervolume is also applicable
for problems with 3 and more objectives, cf. [4].

Finally, for another strategy to obtain approximated nondominated sets with gap in-
formation, one could interrupt the solution process of the weighted sum models after a
certain time instead of solving them to optimality in each iteration and use the obtained
primal solutions with their respective gaps to deduce upper bounds for the hypervolume.
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