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Abstract

Planning and operating railway transportation systems is an extremely
hard task due to the combinatorial complexity of the underlying discrete
optimization problems, the technical intricacies, and the immense size of
the problem instances. Because of that, however, mathematical models
and optimization techniques can result in large gains for both railway cus-
tomers and operators, e.g., in terms of cost reductions or service quality
improvements. In the last years a large and growing group of researchers
in the OR community have devoted their attention to this domain devel-
oping mathematical models and optimization approaches to tackle many
of the relevant problems in the railway planning process. However, there
is still a gap to bridge between theory and practice (e.g. [5] and [3]), with
a few notable exceptions. In this paper we address three success stories,
namely, long-term freight train routing (part I), mid-term rolling stock
rotation planning (part II), and real-time train dispatching (part III). In
each case, we describe real-life, successful implementations. We will dis-
cuss the individual problem setting, survey the optimization literature,
and focus on particular aspects addressed by the mathematical models.
We demonstrate on concrete applications how mathematical optimization
can support railway planning and operations. This gives proof that math-
ematical optimization can support the planning of rolling stock resources.
Thus, mathematical models and optimization can lead to a greater effi-
ciency of railway operations and will serve as a powerful and innovative
tool to meet recent challenges of the railway industry.

1 Introduction

Planning and operating railway transportation systems is extremely hard due
to the combinatorial complexity of the underlying discrete optimization prob-
lems, the technical intricacies, and the immense sizes of the problem instances.
Precisely because of that, however, mathematical models and optimization tech-
niques can result in huge gains for both railway customers and operators, e.g.,
in terms of cost reductions or service quality improvements. This observation
is not new. In fact, railway planning was one of the originating applications for
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operations research and mathematical optimization, see the account of Schrijver
[30] for a historic overview from the early work of Tolstŏı on augmenting cycles
to the Ford and Fulkerson theory of network flows, or the article of Charnes
and Miller [8] for an early set partitioning approach. Indeed, the development
of many mathematical key concepts was motivated by railway applications.

One reason why little of that was put into practice is probably that for a long
time railway companies operated in de facto monopolies such that there was not
enough incentive to standardize and optimize the planning tasks. The airline
and later also the public transportation industry, however, moved ahead in
implementing optimization solutions for related problems. Their successes are
a strong motivation to investigate the potential of railway optimization from
today’s point of view. It is now broadly understood that the development of
industry standards for railway planning and the mathematical solution of the
associated optimization problems are the key to improve the efficiency of railway
systems.

In the last years a large and growing group of researchers in the OR community
have devoted their attention to this domain developing mathematical models
and optimization approaches to tackle many of the relevant problems in the
railway planning process. While there is still a gap to bridge between theory
and practice, see, e.g. [5] and [3] for surveys, substantial progress is undeniable.

This paper addresses three success stories, namely:

1. long-term freight train routing (Section 2),

2. mid-term rolling stock rotation planning (Section 3),

3. and, real-time train dispatching (Section 4).

In each case, we describe real-life, successful implementations. We discuss the
respective problem setting, survey the optimization literature, and focus on
special aspects addressed by the mathematical models. We will demonstrate
on concrete applications how mathematical optimization can support railway
planning and operations.

The three example problems are at different levels of the planning process of
a railway system, which are typically handled by separate companies (in Eu-
rope the railway system is segregated into train operating companies, namely,
passenger and freight train operators, and railway infrastructure providers).

Figure 1 shows an idealized planning process for such a segregated railway sys-
tem. In today’s practice, however, each railway company seems to have his
own internal and proprietary process to organize their planning. Assumptions
on essential problem characteristics as well as on principal purposes can differ
strongly, e.g., between a regional passenger railway operator and an interna-
tional freight train operator. This situation must be taken into account. Our
experience from real world railway optimization projects have led us to identify
a number of common “pitfalls”. Make sure that:

1. your mathematical model is understood (by users and managers), i.e.,
degrees of freedom, fixed input, output, hard rules, and soft rules,
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Figure 1: Idealized planning process for railway transportation in Europe based
on [29].

2. you have (real and frequent) access to all relevant data of your model
(data will always change),

3. the objective function of the optimization model is very flexible (goals will
always change),

4. constraints are as generic as possible (rules will always change),

5. your complete interface is precise and abstract because tools around your
optimization module may change over time,

6. you can measure improvements, e.g., producing better or same quality
solutions as before, planning is faster, the set of considered scenarios is
substantially larger, reflecting more aspects and features.

Of course, marking off the points on this list – as good as possible – is not only
desirable for optimization projects in the railway industry, but can be seen as
good starting point for any applied mathematical optimization project in any
interdisciplinary (ad)venture.
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2 Freight Train Routing

One of the first steps in the planning process of a railway company, is to find
a strategic routing for an estimated demand of a transportation network. We
distinguish two types of traffic. On the one hand, there is the passenger traffic
with a routing that is mostly determined by political and historical presets. In
addition, passenger train routes are limited by several intended intermediate
stops with strict time windows, and some planned connections to other trains.
It is also widely assumed that passengers expect a stable and frequently reoc-
curring service. On the other hand, there is the freight traffic with often less
strict departure and arrival time requirements and less constrained routes. Fur-
thermore, the freight train demand is much more volatile in comparison to the
repetitive amount of passengers.

The goal for both types of traffic is to find routes for a set of origin-destination
pairs that obey the network capacities and minimize the resulting cost. Typical
cost functions for passenger traffic are the operating cost or the experienced
traveling times. In the case of public transport this is a well studied problem,
for a recent survey see [31].

Railway systems in Europe are operated by mixed traffic. Freight trains and
passenger trains share in almost all areas the same infrastructure network and
facilities. Thus, these two types of traffic cannot be treated individually and
have to be considered in an integrated approach to provide reasonable strategic
predictions. A common property of all railway networks is that changes of the
infrastructure are always capital-intensive and long term projects. Hence, it is
necessary to analyze the existing network in order to estimate and make the
best use of the available capacity. Freight traffic has in this respect the basic
advantage that upcoming demand could be much more easily distributed to
available capacity.

In this paper we focus on freight train routing on a strategic planning level in
a simplified (macroscopic) transport network. The major aim is to determine
macroscopic routes for freight trains by taking the available railway infrastruc-
ture and the invariant passenger traffic into account. Literature to related prob-
lems can be found in [2].

We start with the problem description of the freight train routing problem
and introduce the particular non-linear issues of our optimization model. We
report on the integration of our implementation of our algorithm into the IT
landscape of the traffic development and model department (GSV) of Deutsche
Bahn Mobility Logistics AG.

2.1 The Problem

Given is a railway network that is utilized by a set of passenger trains and a
model day that is partitioned into a few intervals. Each time slice represents a
special traffic situation of the day and comprises several hours, for instances the
morning and afternoon peak of a working day or the night with a rather small
amount of passenger traffic. We classify the trains into different standard train
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Figure 2: Left: Waiting time in dependence of the track utilization. Right:
Linearization of the objective function.

types, which describe track dependent characteristics of the trains, e.g., running
times, headway times, or special technical requirements for the track. The
headway times define the minimal time differences between two trains entering
the same track in the network. One common special requirement of a train
type for a track is the electrification of the track. The preset passenger traffic
is simply described by the number of trains of a specific train type for each
time slice. In particular there is no information about the actual schedule of
the trains. We only know that these trains consume track capacity within the
corresponding time slice. On the demand side the freight trains are defined by
an origin destination pair, the departure time, and a train type. The task is
to find a route for each freight train that does not exceed a given distance and
running time limit and minimize the expected delays. With the distance and
running time limit it is possible to control the deviation from the shortest or
fastest route. Since we are only interested in a strategic routing with a rough
approximated timing, the minimal expected delays should ensure the existence
of a feasible timetable or at least increase the possibility for one.

Still missing in this problem definition is the capacity of the tracks and it is
unclear how to measure the expected delay. Modeling railway capacity is tech-
nically very complex and hence the prediction of congestion and waiting times
is a major challenge. Nevertheless, the crucial relation is that there is almost no
waiting time as long as the mixture of allocated trains can be handled by the
infrastructure capacity. Once the capacity limit is reached congestion starts and
smooth operation is not possible anymore. The closer it comes to the capacity
limit, the more delay occurs for trains that are at the end of the schedule. As
soon as the number of trains goes further beyond the capacity limit, the pos-
sible delay grows even faster and becomes at some point certainty. Since we
only know the mixture of trains but not an actual schedule an assignment of
expected delays to specific trains is not possible. The typical situation for a sin-
gle track is depicted in Figure 2. The dotted (green) area is the operating mode
without any disturbance where the train needs the usual running time for this
track. If the number of trains increases within the time slice the risk of causing
delays (waiting time) also increases. The lined (red) area in the figure shows
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the additional potential waiting time. The decreasing number of fitting sched-
ules and the reduction of buffer times leads to a nonlinear growth. Apart from
that, using non-linear functions has the advantage that they achieve a balanced
network utilization. Linear models will tend to route all trains on the shortest
path as long as the capacity is not violated. An optimization model utilizing
a nonlinear objective function results in an adequately balanced solution that
distributes the traffic before the capacity limit is reached or tries to balance the
excess of capacity.

There are many different ways to model and compute capacity values for tracks.
For a survey on this complex issue we refer to [1] and the references therein.
The approach we chose to model the functional relationship between the num-
ber of trains passing a certain infrastructure (an arc in the network model) is to
introduce a capacity restraint (CR) function. These functions are designed to
give a reasonable measure of the expected average delay. One of the earliest ap-
pearance of CR-function in the literature is due to [12]. [33] uses CR-functions
to describe the travel performance or travel time and delay as a function of the
flow using properties of the infrastructure and its capacity during the trip distri-
bution and assignment phases of a travel forecasting process. Most applications
of CR-functions are tailored to road traffic. Only recently, [16] use CR-functions
in railway passenger transport. To the best of our knowledge, our work was the
first application of CR-functions to railway freight transport.

2.2 Modeling and solving the Freight Train Routing prob-
lem

We formulate the freight train routing problem as mixed-integer non-linear
program and adapt the congestion concept from road traffic to rail traffic,
see [13, 12, 33, 16] using the mentioned CR-functions. We will shortly dis-
cuss some essential modeling and solving aspects. A detailed description could
be found in [2].

Let n be the number of trains on a track, then the expected delay for this track
is defined as:

τ

(
1 + α

(
n

κγ

)β)
, α, β ∈ [0,∞[, γ ∈]0,∞[, (1)

where the running time τ and the capacity κ depends on the track. This function
is an undamped variant of the CR-function presented in [16]. In this work a
justification for the exponential growth of the CR-function is also given. α, β, γ
are parameters to control the shape of the CR-function. α could be interpreted
as the multiple of the running time that a train gets if the capacity limit is
reached. γ could be used to scale the capacity, i.e., to keep an amount of
auxiliary capacity. β controls the rapidness of the penalization. A large value
for β results in a larger slope near the capacity. A small one leads to a moderate
slope. In our experiment we choose α = 1, which means we must pay the running
time of a train if we reach the limit; γ = 1 we do not keep any auxiliary capacity;
and β = 4. The choice of β is guided by the computational experiments.
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The nonlinear objective can be linearized by introducing additional variables
and constrains, see [10]. Thus, the resulting model is a mixed integer linear
program which can be described as follows.

The transportation network is given as a time slice expanded directed graph
G = (N,A). A node v ∈ V represents a station, a junction or some other
infrastructure element where train routes can start, branch or end. Additionally,
there are a copies of a node for each time slice. There is a directed arc a ∈ A
between two nodes if the corresponding infrastructure element is connected by
a track or if the two nodes are copies of the same node for consecutive time
slices. The set of trains is denoted by R. The set of the ingoing and outgoing
arcs from node v are denoted by δ−(v) and δ+(v), respectively.

Based on the time slice expanded graph we model the problem as a multi-
commodity arc flow problem. Therefor, we introduce a binary decision variable
xra for each arc a ∈ A and each train r ∈ R. The variable is one if and only
if train r uses arc a, otherwise the variable is zero. Let x ∈ {0, 1}A×R be the
vector of these variables. We define a demand function brv that is, 1 if v is the
origin node of train r, −1 if v is a destination node of train r, and 0 otherwise.
We introduce for each arc a ∈ A an artificial continuous variable ya which
represents the value of the expected delay of arc a.

The objective function (2) contains the expected delay cost for each arc and the
sum of all running times and lengths. λtime, λrunning, λlength are the normalized
cost factors of each part. For each arc a ∈ A we have the running time τr,a for
each train r ∈ R, the length la and the average running time τa considering all
train types.

min λwait
∑
∀a∈A

ya︸ ︷︷ ︸
congestion cost

+λtime
∑
r∈R

∑
a∈A

xraτr,a︸ ︷︷ ︸
running time

+λlength
∑
r∈R

∑
a∈A

xrala︸ ︷︷ ︸
length

(2)

The constraints are∑
a∈δ+(v)

xra −
∑

a∈δ−(v)

xra = brv ∀r ∈ R ∀v ∈ V, (3)

Bx ≤ l, (4)

Γa1(m)
∑
r∈R

xra + Γa2(m) ≤ ya ∀a ∈ A ∀m ∈ {1, . . . , N} (5)

xra ∈ {0, 1} ∀a ∈ A ∀r ∈ R (6)
ya ≥ 0 ∀a ∈ A (7)

We have the common flow constrains (3) for each train: the outflow must be
one at the origin; the inflow must be one at exactly one of the destination node
copies in the time expanded graph; and at the remaining nodes flow conservation
is required. The limits have te be fulfilled (4). Therefore a train must change to
the succeeding time slice if the running time is larger than the time span of the
time slice and the route must be shorter and faster than the length and running
time restrictions, respectively. The corresponding coefficient matrix is denoted
by B. The vector l contains the limit values for each train. Linearization
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constrains of the objective function are described by (5). Let f the CR-function
of arc a. Γa1(m) is the slope and Γa2(m) the y-intersection of the linear function
through the points (m, f(m)) and (m−1, f(m−1)). To get an insight the right
hand side of figure 2 shows the linear description of the CR-function for an arc
that keeps all important integral points of the possible solution space. N is the
maximal number of trains we considered for the cost function and restrict the
maximal slope.

It has to be mentioned that the model does not contain explicit capacity bounds
for the tracks. This constraint is solely expressed by the objective function.
This is reasonable since the capacity of a track could only be estimated and
nevertheless the resulting solution directly indicates detailed information where
bottlenecks will occur. To reduce the formulation to a size tractable by a stan-
dard MIP solver, we restrict the network for each train to its really necessary
components. This preprocessing reduced the problem size to 1-5 percent of the
original size. For the exact numbers and experimental setting we refer to [2].
The reduced MIP is solved with the commercial state of the art MIP solver
CPLEX via a sequential approach. In a first step, we aggregate graph structures
of the macroscopic network even further by neglect arcs between different time
slices or aggregate crossing areas with short tracks to a smaller structure with
fewer nodes and arcs. Thereafter, we provide a heuristic start solution and let
the MIP solver run. In the next step, the result of the simplified model is used
as a starting point of a model for that we increase the level of detail iteratively,
for instance, added arcs between time slices again or restore aggregated crossing
areas. Thus, we were able to produce high-quality solutions, sometimes already
optimal ones before we reached the full detail model formulation. In this cases
the MIP solver needs only to prove the optimality of the solution for the full
detailed model.

Based on the MIP formulation of the problem we developed a best insertion
heuristic. Here, we insert the trains one by one and update the cumulative
cost after each insertion. Each insertion itself finds an optimal routing for the
specified train w.r.t the cost of the current train routings.

2.3 Computation and Integration

The developed MINLP approach and the best insertion heuristic was integrated
into the IT landscape of the traffic development and model department (GSV)
of Deutsche Bahn Mobility Logistics AG. It is used to evaluate different demand
forecast scenarios and detect bottlenecks. It also allows to check how the train
routings react on network expansions or cutbacks. For a given test scenario of
Germany we produce solutions, see Figure 3, for the corresponding model with
1620 nodes, 5162 arcs, and 3350 trains via a best insertion heuristic. It is clear
that the overall quality depends on the ordering in which the trains are inserted.
In most cases the optimal solution was not found even if we consider all potential
orderings. Nevertheless, the computational experiments also demonstrate that
the average difference to the optimal solution is only 2 percent. We provide
optimal solutions for subgraphs up to 812 nodes, 2612 arcs, and 1300 trains by
solving the MINLP to optimality with CPLEX and our sequential approach.
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Figure 3: Utilization of the German railway network in percent of the used
capacity. Left: afternoon peak between 4 p.m and 8 p.m, Right: night traffic
between 8 p.m - 5 a.m.

The combination of best insertion heuristic and an optimal MINLP approach
gives us a powerful tool to analyze the freight train routing in large scale rail-
way networks. On the one hand the heuristic provides solutions for large scale
networks, on the other hand the MINLP provides high quality solutions and can
measure the quality of the best insertion solution.
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3 Rolling Stock Rotation Optimization

The rolling stock, i.e., rail vehicles, are among the most expensive and limited
assets of a railway operator. The rolling stock is needed to operate a timetable.
The implementation of a timetable by a rolling stock fleet must be done in a
most efficient way to be in the black.

In order to have a master plan for a medium term period – say six weeks to one
year – rolling stock rotations are developed in a certain point of preparation. We
consider a timetable in a standard week, i.e., the trips of the timetable repeat
from week to week. Figure 4 shows a cyclic timetable that is valid on seven op-
erating days. For each day of operation all given passenger trips are plotted as
time expanded paths arranged in a torus, in which time proceeds counterclock-
wise. A profile at a specific time of this torus represents the current location of
all vehicles operating the timetable. Furthermore, Figure 4 demonstrates that a
railway timetable is almost periodic, because only a few of the given passenger
trips differ from day to day. Hence, special attention has to be paid to achieve
regularity of the rotations.

Figure 4: An almost periodic timetable for a cyclic standard week.

The rolling stock rotations are cycles that cover timetabled trips for the purpose
of deciding what happens to a dedicated rail vehicle after the operation of a
timetabled trip. Each of these decisions is crucial for the operational efficiency
and must absolutely agree several intricate conditions:

• vehicle composition rules,

• maintenance constraints,

• infrastructure capacities, and

• regularity requirements.

This variety of requirements gives rise to a very challenging competition on
rolling stock rotation planning. Our productive optimization software Rotor
participates in this competition for one of the leading railway operators in Eu-
rope: DB Fernverkehr AG. Rotor is able to compute cost minimal rolling stock
rotations under a large variety of requirements. In this section we survey the

10



Ë Ê

trip 1
Ë Ê

trip 2

Ë Ê Ë Ê

trip 3
Ë Ê Ë Ê

trip 4
Ë Ê

trip 5

Ë Ê

trip 6

Figure 5: Timetable

← 1
← 1

← 1
← 1

1 →
1 →

2 →
2 →

1 →
1 →

2 →
2 →

1 →
1 →

2 →
2 →

1 →
1 →

2 →
2 →

1 →
1 →

← 1
← 1

Figure 6: Hypergraph model

new technologies that have been built into Rotor and show the potential benefit
of Rotor by means of a rich case study, namely “The Price of Regularity”. A
literature review on rolling stock rotation planning can be found in [25].

3.1 Rolling stock rotation optimization in a nutshell

In this section we introduce the Rolling Stock Rotation Problem (RSRP). Par-
ticular attention is devoted to the modeling idea: Using a hypergraph as the
basic structure for the optimization model. This concept “kills two birds with
one stone”: The hypergraph can be easily constructed in a way such that it
completely expresses all requirements for vehicle composition and also for reg-
ularity which is needed in the industrial application at DB Fernverkehr AG.
Therefore, it is our major modeling idea which we explain in the following w.r.t.
vehicle composition. How to apply this idea to regularity is proposed in Sec-
tion 3.3 within the scope of a case study. We refer the reader to our paper
[25] for technical details including the treatment of maintenance and capacity
constraints.

Given a set of timetabled trips denoted by T we introduce the set of nodes V .
The nodes represent timetabled departures and arrivals of single vehicles that
operate trips of T . Further, we consider the set of arcs A ⊆ V × V that models
connections traversed by single vehicles between the nodes, e.g., a connection
between the departure and arrival of a timetabled trip or a connection between
the arrival and departure of two different timetabled trips. Rolling stock vehicles
can be composed to form vehicle compositions that consist of multiple vehicles.
In order to handle this, we define a set H ⊆ 2A of hyperarcs. A hyperarc h ∈ H
is a set of standard arcs that models a connection traversed by multiple vehicles
that form a vehicle composition. The hyperarc h ∈ H covers t ∈ T if each
standard arc a ∈ h represents an arc connecting the departure and arrival of t.

We introduce an objective function c : H 7→ Q+ and define the Rolling Stock
Rotation Problem (RSRP) as:

min


∑
h∈S

c(h)

∣∣∣∣∣∣∣ S ⊆ H︸ ︷︷ ︸
chose hyperarcs

∧
⋃

h∈S h is a set of cycles︸ ︷︷ ︸
that form rotations

∧ t is covered once ∀t ∈ T︸ ︷︷ ︸
and cover the timetable

 .

A solution to an instance of the RSRP is a set of hyperarcs that form a set of
cycles, called (vehicle) rotations, and cover the timetable. The RSRP is NP-
hard, see [11]. The proposed interpretation of hyperarcs is essential. Figures 5
and 6 provide an example for this. In Figure 5 a sketchy illustration of the input
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data for the RSRP, namely the timetable and the feasible vehicle compositions
to operate the trips is given. The timetable is indicated by the six railway
tracks with a tree that defines the driving direction, while the feasible vehicle
compositions are implied by the red and blue rail cars on the tracks. For the
trips 1, 2, 5, and 6 it is only allowed to use a single vehicle of a dedicated
fleet, while for trips 3 and 4 we have to operate two vehicles. In industrial use
cases the individual positions of vehicles in compositions must be decided. In
addition one of the two possibilities how vehicles can be placed on a railway
track, namely the orientation of vehicles must be decided. The orientation of
a vehicle is distinguished by the location of the first class w.r.t. the driving
direction (in case of our cooperation partner DB Fernverkehr AG).

Figure 6 demonstrates how all degrees of freedom w.r.t. to the input data of
Figure 5 are modeled. Each red or blue circle is a node for the departure or
arrival of a red or blue rail vehicle. Each gray box that fits a pair of departure
and arrival nodes indicates the operation of a timetabled trip. The numbers in
these boxes denote the position at departure. The colors – white and gray –
distinguish if the vehicle departs with first or second class in front.

The hyperarcs in Figure 6 define a solution. In this solution we decided to
operate trip 1 with a single vehicle that departs with the second class in front.
Trip 3 will be operated with a vehicle composition of a red and a blue vehicle.
The red vehicle departs at position one with the second class in front and the
blue vehicle departs at position two with the same orientation. By applying this
interpretation to all trips the two formed cycles, namely the vehicle rotations,
for the red and blue vehicles appear.

The hypergraph can easily be used to express several situations that only arise in
railway applications compared to the operation of buses, airplanes, cars, trucks,
and ships. In the following we give a set of examples that occur in industrial
use cases:

• If the passenger platforms along a trip allow different vehicle compositions
we can easily express this by introducing appropriate hyperarcs.

• If the time between the arrival of trip 3 and trip 4 is very short, it is
not possible to perform any shunting or coupling activities such that the
connection can only be made by both vehicles in the composition. We can
easily model this by excluding all arcs that imply a coupling after trip 3
or before trip 4.

• Suppose we have a large distance, e.g., 100 km, and enough time, e.g.,
three hours, between the arrival of trip 3 and the departure of trip 4.
Assume that the cost for allocating a deadhead trip per kilometer is 100
Euros for a vehicle composition of one vehicle and 120 Euros for a vehicle
composition of two vehicles. The ratio 100/120 is approximately the one
in the industry. We can directly express this cost structure by the cost
function of our hypergraph. Two individual deadhead trips would increase
the objective function by 20.000 Euros, while one coupled deadhead trip
is only about 12.000 Euros.

• If trip 2 arrives at a terminus station (see left of Figure 7) and trip 1
departs at the same station, any vehicle composition turns around. This
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Figure 7: Left: Topology of a terminus station; Right: Tracks for an additional
turn around trip

can be easily modeled by only allowing the one hyperarc that correctly
reflects the implications of the topology of the railway infrastructure.

• In some situations it is necessary to perform an additional turn around trip
(see right of Figure 7), e.g., if two trips must be connected and operated
with the same orientation, but the railway infrastructure implies different
orientations as in the previous example. Such additional turn around trips
are only constrained by a minimum amount of time to perform the turn
around, but they are expensive and undesirable and play a central role in
our case study. This too can be easily modeled by expensive hyperarcs
that implement an additional turn around trip.

3.2 An integrated algorithm for the RSRP

We solve the RSRP by an integrated algorithm that is based on integer pro-
gramming (IP). In this section we present our IP model and survey the main
algorithmic components to solve the RSRP. We define sets of hyperarcs coming
into and going out of v ∈ V as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and
H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)}, respectively. Using a binary decision
variable for each hyperarc, the RSRP can be stated as an IP as follows:

min
∑
h∈H

chxh, (MP)∑
h∈H :h covers t

xh = 1 ∀t ∈ T, (8)∑
h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (9)

xh ∈ {0, 1} ∀h ∈ H. (10)

The objective function of model (MP) minimizes the total cost of the chosen
hyperarcs. For each trip t ∈ T the covering constraints (8) assign one hyperarc
to each timetabled trip. The equations (9) are flow conservation constraints for
each node v ∈ V that define a set of cycles – the vehicle rotations – of arcs
of A. Finally, (10) states the integrality constraints for our decision variables.
This model was introduce in [26] for the first time. In the application at DB
Fernverkehr AG it is necessary to also consider maintenance and capacity con-
straints. A direct extension of the introduced model for this requirements is
given in [27]. Another important feature – if not the most important – is to
re-optimize an already implemented but not completely feasible rotation plan,
i.e., the re-optimization case. Rotor is also able to handle those scenarios. The

13



Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê

train 66 on Mon train 66 on Tue train 66 on Wed train 66 on Thu train 66 on Fri train 66 on Sat train 66 on Sun

Figure 8: Most irregular operation of train 66

procedure for that purpose that simply adjusts the objective function of the
proposed model is described in [23].

We solve this model by a novel integer and linear programming approach that
combines several algorithmic “workhorses”. The linear relaxation of the hyper-
graph based model is solved by a Coarse-To-Fine approach [24] that aims to
restrict the search space as much as possible and as large as necessary. This
is done by utilizing problem specific layers that are associated with different
levels of detail of the RSRP. To find integer feasible solutions we use the Rapid-
Branching scheme [4] as well as problem specific local search heuristics [25, 22].
All of the introduced models and algorithms are implemented in our [ROT]ation
[O]ptimizer for [R]ailways Rotor.

3.3 Case study: The price of regularity

As already mentioned we use the hypergraph to model vehicle compositions,
but also for a requirement that is called regularity. In this section we take a
closer look at regularity and provide a case study to underline the benefit of
using Rotor in the railway industry.

In our context a train is a set of at most seven timetabled trips which are
associated with the seven days of operation of the standard week. In instances
of the RSRP provided by DB Fernverkehr AG, in most of all cases the trips
of a single train only differ w.r.t. the day of operation. This means that the
departure and arrival locations and corresponding times are equal. This is
made to provide a timetable that is periodic (or regular) to the passengers. It
also yields a quality measure for a timetable, i.e., to operate trains that do
not differ over the operational days and operate on all seven days is a desired
result in timetabling. This also transfers to rotation planning. In Figure 8 we
consider a train with train number 66. In this example train 66 is operated
by seven different vehicle compositions on each day of operation and shows the
most irregular case. In rolling stock rotation planning it is desired to operate
train 66 with the same vehicle composition at each day of operation. We handle
this by introducing appropriate hyperarcs. Let π be one of the eight possible
vehicle compositions to operate a trip of train 66 with a composition of a red
and a blue vehicle. Thus, π defines the position and orientation of the red as
well as the blue vehicle. Suppose that hπMon, · · · , hπSun are those hyperarcs that
model the operation of the seven timetabled trips w.r.t. π. We penalize the
choice of hπMon, · · · , hπSun by a constant factor R ∈ Q+ in the objective function
and introduce:

hπ66 :=

Sun⋃
day=Mon

hπday with c(hπ66) :=

Sun∑
day=Mon

(c(hπday)−R).
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Figure 9: A sophisticated regularity pattern: rotation day

By this definition it is cheaper to choose the regular hyperarc hπ66 for the op-
eration of train 66 compared to the other seven individual hyperarcs that may
differ in their vehicle composition in a solution. These regular hyperarcs are
introduced for all possible vehicle compositions of a train.

Figure 9 shows an example of a regularity pattern for this purpose, called ro-
tation day. It consists of seven paths that appear in rolling stock rotations.
Each path is associated with one day of operation. The figure illustrates the
two aspects that are desired in a rotation day: Almost all of the seven paths
contain the same train numbers and almost all connections between trains are
equal. This builds an assembly of the rolling stock rotations that can be easier
processed in further planning steps in comparison to seven completely different
paths.

In this case study we investigate the price of regularity by a multi-criteria opti-
mization [9]. This means, that we compute all Pareto-optimal solutions of the
following two objective functions:

1. Minimize the operational cost that includes:

• cost for rolling stock vehicles

• cost for deadhead trips

• cost for additional turn around trips

• cost for violating planned turn times [25]

2. Maximize regularity (i.e., minimize irregularity)

We use the weighted-sum [9] algorithm for this multi-criteria optimization. In
a nutshell, this algorithm starts with two solutions that only minimize one of
the two objective functions and refines the Pareto-front in a recursion tree. In
each step of computation, the value of R is chosen by a gradient argument in
the weighted-sum method. A solution of the RSRP w.r.t. the dedicated choice
of R is then computed by Rotor. Therefore, this multi-criteria approach runs
on top of Rotor.
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Figure 10: The price of regularity

We consider a dedicated instance provided by our industrial cooperation part-
ner DB Fernverkehr AG. The instance consists of 670 timetabled trips that are
widely spread over the German intercity network. At 52 locations passengers can
get on a train or disembark from a train. The instance contains 127 trains over-
all. Possible vehicle compositions are composed of at most two vehicles of the
same fleet. The number of hyperarcs in the resulting hypergraph is 4.946.356.

Figure 10 shows the results of the multi-criteria optimization. We obtained eight
Pareto-optimal solutions which are indicated by the black paths in Figure 10.
Each Pareto-optimal solution has either less operational cost (which are confi-
dential and therefore obfuscated) or less deviating trips compared to all other
solutions, i.e., it is non-dominated. The solutions indicated by the red paths
are dominated in one objective function by another solution. Those solutions
appeared during the computation of the set of Pareto-optimal solutions. We
precisely observe:

• The number of vehicles needed to operate the timetable is almost constant
if we vary the amount of regularity in the rolling stock rotations.

• The number of additional turn around trips varies – from zero to 46. This
is directly related to the deadhead distance. Using 46 turn around trips
for this instance is practically not implementable, it is much too much.

• Also the turn time violation [25] varies – from 10 minutes overall to almost
93 minutes. From an industrial point of view we claim that a turn time
violation of 93 minutes is not much for the considered instance.

What is the price of regularity? The higher the amount of regularity in the
rolling stock rotations, the higher the number of additional turn around trips
to appropriate equal vehicle compositions for trains. Turn around trips are
expensive and very unattractive. Irregularities are also to be avoided as much
as possible in operation. Therefore, finding a good compromise between the two
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objectives is a very challenging task for railway operators. Furthermore, this
offers the important insight, that an optimization software can be very beneficial
to handle the complexity in the railway competition in order to simulate "what
if" real-world scenarios.
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4 Real-Time Train Dispatching

Trains follow predetermined routes in the railway network, temporarily occu-
pying a sequence of railway resources. Train companies and network operators
produce and deploy an official timetable which drivers are obliged to follow.
Designing a timetable is a complex and extensive process and an entire branch
of railway optimization is dedicated to this ([7, 17, 29, 6, 32]). In principle,
such timetable should ensure that no two trains will occupy simultaneously the
same railway resource or different but incompatible resources. However, due to
unpredictable events such as train delays, network failures, cancellations and so
forth, actual train schedules may deviate from the official timetable. When these
deviations occur, conflicts in the use of such resources may arise. To prevent
conflicts from occurring, re-routing and re-scheduling decisions must be taken
in real-time so as to minimize some objective, typically a function of the delays.
We refer to this optimization problem as the Train Dispatching (TD) problem
([28]). In spite of its relevance and computational complexity, until recently
train dispatching has been basically entirely in the hands of human operators
(dispatchers), with some support by software tools and remote equipments, so
called Train Management Systems (TMSs). Dispatchers have to take decisions
in a few seconds which affect the entire network, in some cases for many hours
to come. The main source of complexity are decisions of type "who goes first".
In any approach to TD, these must be tackled to avoid potential conflicts in the
use of unsharable resources. In the corresponding optimization problem, such
decisions give rise to so-called "disjunctive" constraints, well-known to be very
challenging to handle in practice. A further source of complexity stems from the
often very large number of potential routes for each train. Recent papers and
applications show how this problem can be effectively tackled with the use of
suitable optimization techniques, leading, in most cases, to improved solutions
w.r.t. those currently carried out, both in terms of quality and computation
time. Although many TMSs actually include estimates on train movements and
conflict identification, few are able to take re-scheduling and re-routing deci-
sions, let alone incorporate advanced optimization algorithms. An overview of
related literature is out of the scope of this paper, for a recent survey see [5].

4.1 Modeling and solving the Train Dispatching problem

A railway network is generally a complex, interconnected system that can con-
tain large stations and several parallel tracks between stations, plus other instal-
lations such as sidings and cross-overs. A typical way to represent the railway
is by a graph, where nodes correspond to resources where trains can stop and
perform different activities, and arcs correspond to tracks connecting such re-
sources. With this notation, stations correspond to sub-graphs of the overall
network. What is important to note is that the railway infrastructure can be
decomposed in atomic resources, namely resources that are occupiable by at
most one train at the time. A train’s route is representable as a sequence of
atomic resources. Atomic resources can in turn be labeled as station resources,
and line resources (which connect different stations). Stations and lines share
a small, specific subset of atomic resources, namely the entry and exit points
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to/from stations.
We now sketch our approach to tackle TD (for deeper insight, we refer to
[14, 15]). With every train i and every atomic resource r on its route, we
associate a continuous variable tir which represents the time at which i enters
r. The vector t is called schedule. The sub-vector tT of t, corresponding to the
entry and exit points of stations, is the real-time timetable.

Informally, we can state TD as follows:

The Train Dispatching problem. Given a railway network G and its status,
and a set of trains with their current position, find, in real-time, a route and a
conflict-free schedule such that the cost function c(t) is minimized.

Note that in general the objective function c(t) may vary. However, conformity
to the official timetable is generally identified as the main factor in determining
the quality of the real-time schedule t. Next, we define two sets of binary
variables x and y. Vector x is the routing vector, and represents the choice
among alternative atomic resources for train routes. Vector y determines "who
goes first" between pairs of trains accessing the same atomic resource.

TD can be formulated in terms of such variables as the following MIP program:

min c(tT )

s.t.
(i) Altl +Blxl + Clyl+ P ltT ≥ dl,
(ii) QltT +Asts +Bsxs + Csys ≥ ds,
(iii) t real, x, y binary

(11)

where tT , tl, xl, yl are the variables associated with line resources and tT , ts, xs, ys
are the variables associated with the station resources. These two sets of vari-
ables only share the subset of scheduling variables tT , namely the real-time
timetable. This block structure can be exploited in a decomposition approach.
To this end, let the Line Dispatching problem (LD) be obtained from (11) by
dropping constraints (11.ii), and let t̄T , t̄l, x̄l, ȳl be the optimal solution to LD.
If there exists a feasible solution t̃T , t̃s, x̃s, ỹs to constraints (11.ii) such that
t̃T = t̄T , then (t∗, x∗, y∗) = (t̄T , t̄l, t̃s, x̄l, x̃s, ȳl, ỹs) is an optimal solution for
(11).

A general scheme for tackling TD is as follows. Find a feasible, possibly opti-
mal solution to LD. If none is found, declare the problem infeasible. If one is
found, extend it to a feasible solution for system (11.ii). If, in turn, no feasible
solution to (11.ii) is found, then "slightly modify" the previous LD problem and
iterate. Depending on how the steps of this iterative scheme are applied, the
overall approach may be exact or approximate. In either case, it is important
to observe that feasibility problem (11.ii) further decomposes into independent
sub-problems, one for each station. We refer to any such sub-problem as a Sta-
tion Dispatching problem (SD), which amounts to finding routes and schedules
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for trains in a station, given their arrival and departure times. An exact imple-
mentation of the above scheme is presented in [14, 15], where the modification
of LD is carried out by adding suitable (valid) combinatorial cuts. Heuristic
implementations of such scheme have been proposed by various authors (for an
extensive survey see [5]). Remarkably, the dispatching process typically carried
out "manually" by dispatchers can also somehow be seen as an implementation
of such iterative scheme, where conflicts are solved sequentially in a "greedy"
fashion.

4.2 Applications

Although for many years real-time train dispatching has been considered an
impossible task for automated systems to carry out, this trend has recently
changed. A first example notable example is [20], where an automated dis-
patching system with limited routing options was put in operation in . More
recently, TMSs embedding optimization are being (or are soon to be) deployed
on several lines in Europe. More in general, a growing awareness towards the
potential of optimization-based TMSs is tangible. Infrastructure managers and
operators around Europe are starting to explicitly request the use of optimiza-
tion modules within TMSs, as seen in recent tenders (e.g. Denmark). This in
itself can already be seen as an important result and an example of how the use
of OR techniques can have an impact on real-life applications.

We now give an outline of our "success stories", those innovative applications
which deploy optimization to tackle real-time train dispatching. For an in-depth
description of the underlying optimization models and algorithms, we refer to
[14, 15, 18].

Before giving details of the single applications, let us sketch the interaction
between TMS, optimization modules and dispatchers, which is the common
feature among such applications: first of all, the TMS acquires real-time infor-
mation regarding the status of the network (e.g. train positions, speeds, resource
availability etc). This information is fed into the optimization modules, which,
combining it with the required "static" information (e.g. network layout, train
connections), return one or more solutions to the current dispatching problem.
Dispatchers may also "manually" interact with the systems providing further in-
formation (e.g. train delays or cancellations, network disruptions, fixed meeting
points).

Aside from this common trait, each of such optimization-based TMS has a set
of distinct features that characterizes it. A first, natural distinction is between
Mass Transit and Main Line applications. We refer to Mass Transit as a railway
system generally devoted to urban public transport services (such as subways or
rapid transit), as opposed to Main Line, which forms the principal railway ar-
teries connecting different cities and urban areas. A second, important feature,
particularly from an OR perspective, is the optimization technique implemented
in each application. Although the iterative decomposition scheme introduced
in the previous subsection is valid for all applications, its various steps were,
or often had to be, implemented differently case by case. The reasons behind
this vary, although generally boil down to local operative rules which restrict
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the nominal space of solutions to a subset of these that can be carried out in
practice. A third and final feature concerns the level of automation of the whole
dispatching loop (1. conflict identification 2. solution 3. validation), which,
again, is generally dependent on local operative rules. Solutions returned by
the optimization module may either have to be validated by dispatchers (semi-
automation) or forwarded directly to the signalling system (full-automation).
This distinction however is in form rather than substance: statistics from our
applications show that even where semi-automated systems are deployed, dis-
patchers still follow optimized suggestions in almost all cases (94% of times on
average [15]).

Main Line The first Main Line TMS embedded with our optimization al-
gorithms was put in operation in Italy in 2011, on a single-track regional line
(Trento - Bassano del Grappa). The use of the tool was later extended to other
lines in Northern, Southern and Central Italy, such as Milano - Mortara, Pi-
raineto - Trapani - Alcamo, Orte - Terontola - Falconara and others. Table 1
reports some data on these lines.

Line Abbr. Stops Stations Length (m) Tracks
Trento - Bassano T-BG 22 14 95711 Single

Piraineto - Trapani P-T 12 12 93532 Single
Alcamo - Trapani A-T 14 13 116119 Single

Orte - Terontola - Falconara O-T-F 54 34 283839 Mixed

Table 1: Infrastructure details. Single stands for Single-Track, Mixed stands for
Single and Double-Track stands for Double-Track

This Main Line TMS was developed by Bombardier Transportation and de-
ploys a heuristic algorithm as optimization module. The dispatching loop is
semi-automated: the algorithm finds alternative solutions each time it is called
and presents them to the dispatcher(s) ranked by cost. Statistics show that in
most cases the first solution proposed by the algorithm is accepted. Although
validation is left to dispatchers, the tool embeds an exact procedure for detect-
ing potential deadlock situations. The choice of deploying a heuristic algorithm
and semi-automated dispatching loop is a consequence of the infrastructure
manager RFI’s (Rete Ferroviaria Italiana) operative rules. In a recent work [15]
we tried to quantify the possible impact of relaxing such rules by comparing
the performance (in terms of average punctuality) of the heuristic and the exact
algorithm on a set of real-life instances from the O-T-F line in Central Italy.
Results showed a significant average increase of trains on time (+10%), indicat-
ing how, even though the current system represents an important innovation in
railway traffic management, results could be further improved allowing a change
in regulations.

In a project involving the Norwegian infrastructure manager (JBV) and train
operating companies (NSB, FlyToget, CargoNet), we developed a newMain Line
dispatching system which was initially tested (Trondheim-Dombås, Stavanger -
Moi) then put in operation (Stavanger - Moi, Figure 11) in February 2014.

This is the only case of real-life Main Line dispatching being supported by an
exact optimization algorithm ([21]), which allows the possibility of exploring the
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full solution space. Developing an effective exact algorithm able to solve real-
life instances within the stringent time limit imposed by the application was
not a trivial task. In particular, the optimization algorithm is based on integer
programming techniques such as Benders’ decomposition and delayed row/col-
umn generation ([14]). Like in the Italian case, the system is semi-automated,
presenting solutions in real-time to dispatchers which decide whether to accept
the suggestion or discard it. The Stavanger-Moi line is 123 km long, with 16
stations, 7 line stops and 28 block sections. On weekdays, the average number
of trains every 12 hours is around 100. Stavanger is a terminal station (the
west-most station of the region), and final destination of (almost) all passenger
train traffic coming from the east. Moreover, 40% of the total traffic is exclusive
to the Stavanger-Sandnes stretch (entirely double-track), which makes this 15
km area separated by 5 stops fairly dense. The system was well received by
dispatchers and management alike. In a presentation with the Norwegian min-
ister of Transport, Øystein Risan (head of operations at NSB) stated that they
"expect the tool to improve punctuality of trains, with positive consequences on
customer satisfaction and company revenues, and thanks to reduced slack times
foresee a potential to increase the capacity of the network". The use of the
system in Stavanger for real-time dispatching was put on hold for legal reasons
towards the end of 2014, to allow SINTEF (owner of the optimization module)
to take part in the competitive tender issued by JBV for the renewal of the
entire Norwegian signaling (and centralized traffic control) system.

Our most recent Main Line application is the deployment of Bombardier’s TMS
in Latvia. The operated network is composed by a number of lines, mostly in
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Eastern Latvia: Daugavpils-Eglaine, Daugavpils-Krustpils, Rezekne-Krustpils,
Zilupe-Krustpils, Karzava-Rezekne, a total of 52 stations, with 10 communica-
tion points and 8 station gates. These lines are mainly used for freight trans-
portation and run around 100 trains every 20 hours. As in Italy, the optimiza-
tion module is a heuristic based on local operative rules. In this case however,
dispatching decisions regarding freight trains are automatically implemented
by the TMS via the signaling system, without requiring any human validation
(full automation). Validation is on the other hand required for solving conflicts
involving passenger trains (few on these lines).

So far we have discussed dispatching on railways connecting different nodes or
cities. However, optimization algorithms have proven to be very useful also for
TMSs dedicated solely to large stations. The TMS in Roma Tiburtina station
has been equipped with our algorithms which re-schedule and re-route trains
inside the station according to the real-time timetable and current resource
occupation. The optimization module includes both heuristic and exact algo-
rithms, with the former proving to work very well (average relative gap 0.6%).
This system was first released in February 2014 and is scheduled to be fully
operative at the beginning of 2015. With its 12 line points, 30 stopping points
and 62 interlocking routes, Tiburtina station is considered one of the most im-
portant and complex stations in Italy. Aside from its sheer size, this is also due
to geographic reasons and to its role as interface between a number of different
rail services, both passenger (local, regional, high speed) and freight. A similar
TMS is scheduled to be released in Monfalcone, a multi-station1 in Northern
Italy in November 2014.

Mass Transit An optimization-based TMS, developed in cooperation with
Bombardier Transportation, operated in some terminal stations of the Milano
Underground between 2007 and 2009 ([19]). Such TMS embedded an exact op-
timization algorithm based on branch and bound and was fully automated. An
extensive on-field test campaign was carried out before deploying the system,
with the purpose of comparing the system’s performance with that of the dis-
patchers operating in the terminal stations at the time. Although the size of
these stations was relatively small, results showed how the system performed,
on average, 8% better than dispatchers in terms of the two relevant objectives
(deviations from timetable and regularity). These tests present a rare example
in the literature of a direct "man vs machine" performance comparison. Despite
its proven effectiveness, the system was dismantled in 2009 when Bombardier
lost the tender for the renovation of Milano Underground’s signaling system.

1The Monfalcone node consists of Monfalcone station, Ronchi Nord station and Ronchi
Sud station and a communication point, all of which have to controlled simultaneously.
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5 Conclusion

In this paper we addressed three different success stories – one on long-term
freight train routing, another one on mid-term rolling stock rotation planning,
and one on real-time train dispatching, where mathematical optimization is the
key technology of a decision support systems. In each case, we describe real-life
requirements, modeling aspects, and the basic algorithmic solution approaches
of our successful productive implementations. This demonstrates that mathe-
matical optimization can support the planning and operation of railway systems.
Thus, mathematical models and optimization can lead to a greater efficiency of
railway operations and will serve as a powerful and innovative tool to meet
recent challenges of the railway industry.
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