
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANDREAS DRAEGERT1

ANDREAS EISENBLÄTTER1
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Optimal Battery Controlling
for Smart Grid Nodes∗

Andreas Draegert† Andreas Eisenblätter† Inken Gamrath‡

Axel Werner‡

February 2, 2015

Energy storages can be of great value when added to power grids. They introduce
the possibility to store and release energy whenever this is favorable. This is particu-
larly relevant, for example, if power supply is volatile (as is the case with renewable
energy) and the network is small (so that there are few other nodes that might bal-
ance fluctuations in consumption or production). We present models and methods
from mathematical optimization for computing an optimized storage schedule for
this purpose. We look at alternative optimization objectives, such as smallest pos-
sible peak load, low energy costs, or the close approximation of a prescribed load
curve. The optimization needs to respect general operational and economic con-
straints as well as limitations in the use of storage, which are imposed by the chosen
storage technology. We therefore introduce alternative approaches for modeling the
non-linear properties of energy storages and study their impact on the efficiency of
the optimization process. Finally, we present a computational study with batteries as
storage devices. We use this to highlight the trade-off between solution quality and
computational tractability. A version of the model for the purpose of leveling peaks
and instabilities has been implemented into a control system for an office-building
smart grid scenario.

1 Introduction

The necessity of storing energy increases with the growing influence of renewable
energies. This is particularly the case for consumers in a power grid who change
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their role at times and produce energy. For them, the significance of storing energy
lies in saving money by partly decoupling from the spot market and the possibility of
decreasing the system usage fee (transmission fee, or wheeling charge), or—more
generally—by implementing a beneficial target profile for their power in-/output
from and to the grid. Besides pumped hydroelectricity systems and compressed
air storage, the storage of energy in batteries is an important technology used in
practice; see, for instance, [5, 9].

In this paper, we present a general model that uses an abstract representation of
the physical properties of the chosen storage technology and provides an optimized
storage schedule, based on given energy prices, transmission fees depending on a
peak transmission, or a given target purchase profile. We also describe—as a special
case—how to use the capacity of batteries to flexibly buffer energy. Here, nonlinear-
ities have to be mastered that originate from the physics of battery storage devices.
For this, there are various approaches and the more precise the physical properties
are modeled, the more computationally challenging are the resulting problems. To
demonstrate this, we compare different approximations of the nonlinear discharge
factor under various objectives, in terms of solution quality and run-time of the solv-
ing process. An implementation of the described approach has been integrated in
an operational environment to control the batteries at an ICT central office location;
see http://www.desi-it2green.de for details.

Similar modeling approaches for optimal energy trading have been discussed in
the literature, see [6, 11, 12]. These models, however, do not take detailed technical
prerequisites into account. Similarly, various approaches modeling the management
of residential electricity demands (see [3, 7, 14]) leave out the technical details.
Besides this, literature provides—to the best of our knowledge—no comparable
work that considers the computation of optimized storage schedules with a detailed
view on the nonlinear technical constraints.

2 Modeling

We consider a node in a smart grid (usually a consumer, possibly a small energy
producer) and assume an energy storage device, together with a controller, is avail-
able at the connection of the node to the power grid; see Figure 1 for a schematic.
Using this storage device, energy for consumption or from production at the node
can be buffered. This can be done for a number of reasons, such as economical
ones like market prices, or environmental ones like weather conditions that influ-
ence power generation. Buffering energy, however, involves losses (which depend
on the storage technology used) and in deciding when the conditions for either stor-
ing or retrieving energy are best lies the main optimization potential.

We give a mathematical model for the problem of how to find an optimal con-
troller schedule for the storage device, and we consider various objective functions
that seem reasonable in this setting. Given energy prices, the cost factor for the
transmission fee, or a target purchase profile for a certain future time period, as
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Controller

Figure 1: General setting: Energy consumed or produced at a smart grid node can be buffered using a
storage device (such as a battery) with a controller

well as further input describing technological and planning properties, the model
provides a schedule for storing and retrieving energy at the considered node for the
said time period. To apply the model in a realistic scenario, it has to be adapted to a
specific storage technology. We give an example for this in Section 3.

The model makes use of a discretization of the time scale. The optimization
period T = {1, . . . , tmax} comprises a finite number of time intervals of equal length.
In our computations we use time steps of 15 minutes length—corresponding to the
duration of an accounting interval—and a 24 hours time horizon, so that we get
T = {1, . . . ,96}. Both assumptions are obviously not limitations of the approach
and finer or rougher discretization may also be used. An important consequence of
the fixed time discretization is that from the model’s point of view power and energy
are in fixed relation: The energy E stored or retrieved within a time step is directly
proportional to the power P constantly applied over this time. The conversion factor
is determined by the fixed length of time steps. We therefore widely speak of energy
when—in a technical sense—energy and power would have to be distinguished.

An overview of the parameters, variables and further notation used in the model-
ing is given in Table 1.

2.1 Storage and Purchase Schedules

Table 2 presents the part of the model that defines feasibility: Constraints (1)–(3)
address energy conservation and Constraints (4)–(5) define the correct storage level.
In Section 2.2, we present a choice of objective functions, some of which can be
used in combination.

Similar formulations have been described in the literature [6, 11, 12], where,
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Notation Description

T := {1, . . . , tmax} set of time intervals

Parameters
pt , dt expected energy produced/demanded in time step t
Sinit, Smin, Smax initial and permissible minimal and maximal storage levels
f sto, f ret, f self functions modeling various energy losses
usto

t , uret
t , ubuy

t , usell
t upper bounds on storing, retrieving, buying, and selling energy, re-

spectively, in time step t

Variables
ebuy

t , esell
t energy purchased/sold in time step t

esto
t , eret

t energy stored in/retrieved from storage in time step t
st storage level in time step t
xt determines that energy is either stored or retrieved in time step t

Table 1: Model parameters and variables

however, none of the technical side constraints were taken into account.

Energy Conservation. The continuous variables ebuy
t and esell

t announce the
amount of energy purchased and sold, respectively, at the spot market at time inter-
val t. The storage schedule is given by the continuous variables esto

t and eret
t , which

denote the amount of stored and retrieved energy, respectively, in each time step.
Upper bounds u∗t on the purchased, sold, stored, or retrieved energy per time step
may apply, for instance, to ensure that a given peak value of purchased energy is
not exceeded or the energy to be stored or retrieved is within technically prescribed
limits (cf.Section 3).

The first set of energy constraints (1) guarantees that all available energy—produced,
purchased, and retrieved energy—is consumed, stored, or sold. By the second and
third set (2) and (3) simultaneous storing and retrieving of energy in the same time
interval is forbidden (which can be seen as a restriction imposed by the modeling).

Storage. To control the total amount of stored energy, we have continuous vari-
ables st for the storage level in each time step, which is allowed to vary in a given
range from Smin to Smax. It is set to an initial value for the beginning of the opti-
mization period by constraint (4).

The last constraint set (5) describes the change in the storage level from one time
step to the next. The functions f self, f sto, and f ret determine the impact of losses
that arise from self-discharging, storing, and retrieving energy over a time interval
in dependence of the storage level s at the beginning of this time interval:

• f self(s) ∈ [0,1] defines the fraction of energy remaining after losses due to
self-discharging
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Energy conservation

ebuy
t + pt + eret

t = esell
t +dt + esto

t ∀t ∈ T (1)

esto
t − xtusto

t ≤ 0 ∀t ∈ T (2)

eret
t − (1− xt)uret

t ≤ 0 ∀t ∈ T (3)
Storage

s0 = Sinit (4)

st = st−1 f self(st−1)+ esto
t f sto(esto

t ,st−1)− eret
t f ret(eret

t ,st−1) ∀t ∈ T (5)
Variables

ebuy
t ∈ [0,ubuy

t ] ∀t ∈ T

esell
t ∈ [0,usell

t ] ∀t ∈ T

esto
t ∈ [0,usto

t ] ∀t ∈ T

eret
t ∈ [0,uret

t ] ∀t ∈ T

st ∈ [Smin,Smax] ∀t ∈ T ∪{0}
xt ∈ {0,1} ∀t ∈ T

Table 2: General Model for computing a storage schedule

• f sto(s,esto) ∈ [0,1] describes the fraction of energy remaining after losses in
the charging process (assuming a fixed charging scheme over the time interval)

• f ret(s,eret) ≥ 1 specifies the discharge factor; more precisely, the quotient of
discharged energy, the amount by which the storage level is reduced, and re-
trieved energy, usable after discharging (assuming a constant discharging cur-
rent over the time interval).

The nature of these functions depends on the used storage technology and has a
decisive influence on the mathematical type of the model, as well as its solvability;
see Section 3 for a more detailed discussion.

Miscellaneous. Further restrictions can be added to the model that allow the
application of the optimization model in various scenarios.

When applying the optimization in a repetitive pattern, controlling the final stor-
age level

stmax ≥ Sfin

at the end of the present time horizon may be desired. This allows to avoid schedules
in which the stored energy is completely used up towards time tmax. Similarly, the
battery level at the end of the optimization period might be required to reach a
specific value for reasons such as planned maintenence.

Solutions that buy and sell energy at the same time may be undesired and forbid-
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den:
ebuy

t − ytu
buy
t ≤ 0, esell

t − (1− yt)usell
t ≤ 0 ∀t ∈ T

where yt ∈ {0,1} determines that we either buy or sell energy at the spot market.
Note that, in case energy costs are minimized (see Section 2.2) and buying energy is
more expensive than selling energy, these constraints are redundant for optimality.

Additional parameters for these restrictions as well as for the different objective
functions are given in Table 3.

Notation Description

tmax last time interval of the optimization horizon

Parameters
Sfin final storage level
Objective coefficients
cbuy

t , csell
t cost/revenue of trading energy in time step t

Epeak current peak transmission before actual optimization horizon
cpeak cost factor for transmission fee
abuy

t , asell
t value for time step t in a desired purchase/selling profile

Variables
yt determines that energy is either purchased or sold at the spot market in time

step t

Table 3: Additional model parameters and variables for further restrictions and objective functions

2.2 Objectives

The constraints given in Section 2.1 define a feasible schedule for the considered
time horizon. Optimization itself consists now of finding a feasible schedule that is
optimal with respect to a certain objective function. In the following, we list some
objectives z that we considered. Each optimization problem can be formulated as
a minimization problem, hence we are always looking for a feasible schedule that
minimizes z.

Minimization of Energy Costs. Given spot market prices cbuy
t ∈ R and csell

t ∈
R for buying and selling energy at time t, respectively, the objective is to minimize
the total energy cost

z(ebuy
t ,esell

t ) = ∑
t∈T

(
cbuy

t ebuy
t − csell

t esell
t

)
.

Minimization of Peak Power. In some applications, the transmission fee (or
wheeling charge) depends on the peak power, which is the highest annual mean
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(4maxebuy
t ). Then, minimizing the maximal load can be of interest:

z(ebuy
t ) = max

t∈T
ebuy

t .

When the time horizon of an individual optimization run is shorter than one year,
the objective for such runs can account for the increment of the peak value during
the time horizon. The peak attained at earlier runs is propagated using a parameter
Epeak. The objective then reads as

z(ebuy
t ) = max

(
0,max

t∈T

(
ebuy

t −Epeak
))

.

Minimization of Combined Costs for Energy Purchase and Peak Con-
sumption. The above objectives can be combined. Given the cost factor for the
transmission fee cpeak ∈ R, the objective to minimize the total cost1 is

z(ebuy
t ,esell

t ) = cpeak ·max
t∈T

ebuy
t + ∑

t∈T

(
cbuy

t ebuy
t − csell

t esell
t

)
.

As above, minimizing energy above a given “allowed” peak value might provide a
better objective for consecutive optimization runs over a long time period.

Approximation of a Favored Purchase Profile. To minimize the deviation
from a target profile for traded energy, given by values abuy

t ,asell
t ≥ 0 for the consid-

ered time steps t ∈ T , we can formulate the objective

z(ebuy
t ,esell

t ) = ∑
t∈T

(
|ebuy

t −abuy
t |+ |esell

t −asell
t |

)
.

3 Optimizing Battery Charging and Discharging
Schedules

In Section 2, we presented a mathematical model for admissible charging/dischar-
ging and purchase schedules, as well as some examples for objective functions that
have been used in practice. All details concerning physics and technology of the
used storage device are hidden in the functions f self, f sto, and f ret. Depending on
those functions the nature of the model, as well as the available algorithmic tools
for solving it, may vary largely.

This section gives an example how to make the general model precise for a spe-
cific situation. We consider one in which the storage device is a battery of total

1Scaling factors for the different terms may apply to account for the highly differing time scales involved:
whereas the optimization period is usually only one day, the transmission fees are computed based on the con-
sumption in a full year, which makes it difficult to arrive at comparable cost values.
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capacity Q. We emphasize that the specialization discussed in this section consti-
tutes a rather rough version of a battery model and more realistic models can be
implemented. Indeed, the level of detail of the technological model can be traded
off against its solvability; we demonstrate this in the following by comparing the
solutions and run-times using different possibilities for modeling the discharging
factor f ret.

3.1 Modeling the Discharging Loss

For the sake of a pointed explanation, we focus on the discharging loss function
f ret and assume constant functions f self and f sto for self-discharging and charging,
respectively. For the discharging loss we consider a strictly monotonically increas-
ing functions f ret : R≥0→ R≥1 only depending on the amount of retrieved energy
eret

t . Under these conditions, the discharging factor can be expressed analytically as
follows (see, for instance, [8, 10]):

f ret(eret
t ) = 1+

c
(

1− e−kg(eret
t )
)

kg(eret
t )

,

eret
t =

Qk
4c

(
1− e−kg(eret

t )
)
+4kg(eret

t )
,

where Q is the maximum capacity (at infinitesimal current), k is a constant rate, and
c is the gap between available charge capacity and total capacity. Moreover, g is
an implicitly given auxiliary function, which cannot be described elementarily. The
resulting curve of the function f ret is illustrated in Figure 2 (solid black line).

Exact Loss Function. Including the exact nonlinear function directly yields a
model which is algorithmically hard to solve. Heuristics can be used to improve
solvability. To find start solutions, the variables eret

t can be fixed to either 0 or val-
ues depending on the energy costs or the former peak transmission, and the resulting
easier (linear) problem can be solved. For improving solutions, a local neighbor-
hood search can be applied to the values of eret

t of the current best solution.

Constant Loss Factor. The roughest way to avoid the nonlinearity is to ap-
proximate the function with a constant. Then, we have the same loss factor for each
time step, independent of the amount of discharged energy. A special case of this
approximation is to use f ret ≡ 0, this is, we assume no losses when discharging the
battery.

This constant approximation is the most commonly used discharging loss in the
literature, see [6, 11, 12].

Iterative Solution with Constant Loss. It is possible to avoid the nonlinear-
ity in the first place by using a constant loss f ret

t for each time step t. In this case
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Figure 2: Discharge factor f ret with respect to the discharging rate at constant potential (black) and lin-
earizations by an affine (light blue dashed), a concave, piecewise linear function (dark blue
dashed), and a nonconvex, nonconcave, piecewise linear function (dark blue dotted)

the values f ret
t used for the optimization potentially deviate strongly from the real

loss. The optimization model is solved repeatedly until a given maximal number of
iterations is reached. After each iteration the new solution is used to update the con-
stants f ret

t according to the correct loss. Additionally, the variables eret
t are bounded

depending on their value in the new solution and the former bounds.

Affine and Piecewise Linear Approximation. A finer way of approximat-
ing f ret is to use an affine, continuous, concave, piecewise linear, or a continuous,
nonconvex, nonconcave, piecewise linear function. All of these variants result in a
quadratic or polynomial model, in which the difference between the computed and
the real loss corresponds to the gap between the nonlinear discharging factor and
the approximation.

These approximations of the nonlinear functions are illustrated in Figure 2. The
light blue dashed line is the affine linear approximation, the dark blue dashed is the
affine, continuous, concave, piecewise linear one, and the dark blue dotted line is
the continuous, nonconvex, nonconcave, piecewise linear approximation.

Since the approximated versions of the discharge functions do not model the dis-
charge exactly, it is possible that the obtained schedules slightly violate the exact
side constraints. Therefore, in a postprocessing step violations, such as a load level
of more than 100 % or less than the allowed minimal level, are repaired and correct-
ness with respect to the exact constraints is ensured.
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Parameter Value

tmax 96

Smax 360 kWh
Smin 180 kWh
Sinit 252 kWh

ubuy ∞

usell ∞

uret 45 kWh
usto 9 kWh

f sto 0.9
f self 0.9995

Q 436.51
k 0.6750
c 1.4363

8 16 24 32 40 48 56 64 72 80 88 96

0

5
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15

dt

pt

Time interval

E
n
er
g
y
(k
W

h
)

Table 4: Parameter values used for the computations (left), produced energy from solar panels (green)
and demanded energy (red) in each time step for an exemplary sunny day (right).

The usage of the exact discharge loss function results in a mixed integer nonlin-
ear program (MINLP) that has to be solved, whereas the various approximations
lead to mixed integer quadratic programs (MIQP)—or can at least be reformu-
lated as such—or even to mixed integer linear programs (MILP). These models
can be solved with a suitable optimization software, such as SCIP [1, 13]2. Usu-
ally, the solution process involves solving a linear relaxation and then continuing in
a branch-and-bound phase, where a branch-and-bound tree is implicitly generated
whose nodes correspond to suitable subproblems. For more details on branch-and-
bound see, for instance, [2, 4].

To speed up the computation, an early termination strategy can be used, where
the solving process is stopped after 1000 branch-and-bound nodes of stalling, i. e.,
nodes without an improvement upon the best obtained solution so far. This solution
is possibly not optimal, but in general it can be expected that continuing the solving
process does not lead to better solutions in a reasonably short time.

In the following, we compare these different approaches with respect to solv-
ability (run-time) and quality of the solution. The parameter values used for the
computations are given in Table 4 and are suited to model the scenario of a small
ICT central office location.

2see http://scip.zib.de
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3.2 Case Study: Optimizing Energy and Transmission Costs

We consider an example where we minimize both energy costs and peak increase.
The target peak transmission was set to 80 kW. Energy prices are taken from the
European electricity spot market EEX in Leipzig.3 Net demand—consumed energy
at the node minus the produced amount of energy—decreases during the day, due to
electricity produced by solar panels during daylight. Figure 3 illustrates a schedule
for charging/discharging and trading energy on an exemplary day.

3.3 Computational Study

In this section we report on computational studies. On the one hand, we pick each
of the four objectives presented in Section 2.2, on the other hand, we try out each
of the solution approaches discussed in Section 3.1. Each of these combinations is
applied to 60 instances. Our findings are reported below.

Every instance represents a whole day (from 0:00 to 24:00). The consumer’s
energy demand is assumed to be composed of the consumption of two types of
electrical devices:

• permanently powered devices—constantly running hardware such as ICT equip-
ment at a central office or fridges at a household

• daylight devices—such as lights, personal computers or general household
appliances that are usually switched off during the night

The set of the 60 test instances is partitioned into three equal-sized sets, each con-
taining instances of one of the following category:

• producers with hardware of both of the above types and a varying energy-
production over day (standard smart grid nodes)

• non-producers with both types of devices, but without energy-production (stan-
dard power-consuming locations)

• non-producers with flexible power consumption for the permanently powered
devices (the role model for such locations being future central office sites with
load-adaptive ICT equipment)

The various power consumptions of the devices might depend on the type of day
(working or weekend day), the outside temperature, and the production depends
on the sunshine duration of the day. Twenty randomly chosen days throughout the
course of the year 2011 have been considered, each with historic data on tempera-
tures and energy prices from the European electricity spot market EEX.

Table 5 lists numerical results. Over the 60 computations for each combination
of objective (described in the table header) and solution method (described in bold-

3see http://www.eex.com/en#/en
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Figure 3: Optimal schedule for the example day: Energy prices (top), amount of energy stored in/retrieved
from the battery (middle), and net energy demand and resulting energy purchase profile (bot-
tom).
Energy is stored in the battery (red curve) during the night and over two hours in the afternoon,
when prices are low, and retrieved to power the site (blue curve), when prices are higher. At
the same time, the increase over the preset peak value of 80 kW (corresponding to 20 kWh of
energy in every quarter hour) is aimed to be kept small—indeed, the resulting purchase profile
shows that the peak is not increased at all, i. e., too high peaks in the purchase profile are shaved
off.
The impact of the physical properties of the battery and their modeling can also be read off from
the figure. Due to the energy losses involved, the integral of the red curve (the total stored en-
ergy) is greater than the integral of the blue curve (total retrieved energy). The more precise the
used technical constraints model the losses, the more reliable is the resulting schedule. Further-
more, a higher discharge curve yields an even greater difference of these integrals, due to the
increasing discharge loss function; hence high discharge peaks are avoided: in this example the
discharged energy in every quarter hour is always significantly below the maximally allowed
value of 45 kWh (cf. Table 4).

12



face), shifted geometric means4 of the running times and the objective values of the
repaired solutions were taken. Each individual computation was carried out with a
time limit of 300 seconds, using the solver SCIP [1] on a Linux system (in 64 bit
mode) running on an 8-core Intel Xeon E5420 2.5 GHz CPU with 6 MiB cache and
16 GiB RAM (each run made use of only one core). For comparison, the topmost
section shows the mean value of the respective objectives for the 0-schedules for
each case, i. e., no battery activity is taking place.

The first observation is that the early termination strategy has no influence on the
iterative approach, since during the solution of the resulting, relatively easy MIP
the branch-and-bound tree does not get large enough to even produce 1000 nodes
in total. The same happens for the constant approximations, except when aiming at
a given target profile. In the latter case, we have to deal with a nonlinear objective
that contains absolute values, which blows up the model to some extent when re-
formulated as a MILP. In all other cases, early termination significantly reduces the
run-times without causing much deterioration in solution quality.

A comparison of the approaches leaves the linear approximations with few (in
this case, 2) affine functions, the completely linear approximation, and—at least for
the first three objectives—the iterative approach as the generally favourable meth-
ods. In conjunction with early termination, all of these yield the best solutions
in acceptable run-times of at most a few seconds. This is fast enough so that the
model can be used in a rolling-horizon implementation, where it has to be resolved
periodically after suitable time intervals, such as 15 minutes.

Using the exact loss function or approximations with many affine functions leads
to worse solutions for a short time limit or after early termination. For obtaining
better or even optimal solutions for these more precise, but also harder to solve
model variants, longer run-times would be necessary. On the other hand, the con-
stant approximation variants can be solved very fast, but largely result in solutions
of comparable (mediocre) quality as the exact and very precisely approximated ver-
sions.

We remark that due to the postprocessing necessary for the approximation vari-
ants, the final (repaired) solutions for early termination might have a slighty better
objective value than the best solutions found in the optimization run itself; in Ta-
ble 5 this even shows in the mean value for the constant approximation approach
minimizing the deviation from a target profile.

4The shifted geometric mean of n values a1, . . . ,an ≥ 0 is defined as( n

∏
i=1

(ai + s)
) 1

n

− s,

where s > 0 is a sufficiently small shift parameter.
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Objective: Energy costs Peak power Total costs Target profile
(e) increase (kW) (e) (total deviation)

Without optimization

Solution 76.831 8.342 100.157 317.037

Exact function for discharge factor

Best Solution 75.800 2.934 85.579 192.158
Time (out) 300.000 (60) 2.781 (4) 283.374 (59) 300.000 (60)

Early termination 75.800 2.934 85.579 192.538
Time (out) 11.631 (0) 0.552 (0) 12.988 (0) 14.632 (0)

Piecewise linear approximation of discharge factor by 5 affine functions

Best Solution 76.054 2.765 84.390 177.786
Time (out) 300.000 (60) 2.725 (2) 300.000 (60) 300.000 (60)

Early termination 76.056 2.934 85.784 182.362
Time (out) 38.123 (0) 1.456 (0) 34.798 (0) 47.362 (0)

Piecewise linear approximation of discharge factor by 2 affine functions

Best Solution 75.008 2.608 83.076 167.396
Time (out) 20.722 (7) 0.741 (1) 16.420 (5) 108.351 (38)

Early termination 75.008 2.608 83.076 172.083
Time (out) 4.274 (0) 0.187 (0) 5.577 (0) 5.542 (0)

Linear approximation of discharge factor

Best Solution 75.005 2.605 83.059 168.080
Time (out) 25.128 (10) 0.743 (1) 19.860 (7) 120.954 (42)

Early termination 75.005 2.605 83.060 173.489
Time (out) 4.200 (0) 0.201 (0) 5.839 (0) 5.724 (0)

Iterative solution with constant discharge factor

Best Solution 75.092 2.631 83.136 190.337
Time (out) 0.715 (0) 0.419 (0) 0.761 (0) 58.242 (0)

Early termination 75.092 2.631 83.136 190.337
Time (out) 0.748 (0) 0.437 (0) 0.799 (0) 58.239 (0)

Constant approximation of discharge factor

Best Solution 76.374 2.631 84.346 175.798
Time (out) 0.126 (0) 0.109 (0) 0.234 (0) 41.054 (20)

Early termination 76.374 2.631 84.346 175.763
Time (out) 0.128 (0) 0.101 (0) 0.249 (0) 3.700 (0)

Zero discharge factor

Best Solution 77.008 3.175 85.321 176.826
Time (out) 0.138 (0) 0.105 (0) 0.291 (0) 32.961 (12)

Early termination 77.008 3.175 85.321 176.823
Time (out) 0.138 (0) 0.098 (0) 0.304 (0) 4.895 (0)

Table 5: Computational results for the different solution methods with four different objectives: shifted
geometric means over 60 instances of objective values of best obtained solutions and best so-
lutions obtained after stalling, as well as run-times for the respective solution processes (and
number of runs in each section that hit the time limit of 300 seconds)
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4 Conclusion and Outlook

We have presented a flexible approach based on mathematical optimization for com-
puting optimal schedules for trading and buffering energy in a smart grid. We have
applied the approach to a smart grid scenario, using batteries as storage devices.
The techniques have been successfully implemented into a control system for a
smart grid node, optimizing storage schedules every 15 minutes.

We studied alternative objective functions, such as minimization of costs or devi-
ation from a target load profile. By varying the level of detail in modeling technical
constraints, we observe a trade-off between solvability of the model and the quality
of solutions.

The presented model can be extended in various ways. Additional constraints
can be incorporated, accounting for maintenance of the storage device and special
contracts with power suppliers. Future extensions may address the involvement in
the trade of operating reserve electricity and other storage technologies, such as
pumped-storage hydroelectricity.
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