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Metric Inequalities for Routings on Direct Connections with

Application in Line Planning∗

Ralf Borndörfer∗∗ Marika Karbstein∗∗

Abstract

We consider multi-commodity flow problems in which capacities are installed on paths.
In this setting, it is often important to distinguish between flows on direct connection
routes, using single paths, and flows that include path switching. We derive a fea-
sibility condition for path capacities supporting such direct connection flows similar
to the feasibility condition for arc capacities in ordinary multi-commodity flows. The
concept allows to solve large-scale real-world line planning problems in public trans-
port including a novel passenger routing model that favors direct connections over
connections with transfers.

1 Introduction

Network design problems deal with installing capacities on edges to support a multi-
commodity flow routing of a given demand. A key component of respective models are
the metric inequalities by Iri [1] and Kakusho & Onaga [2] that characterize the feasible
edge capacities, see Raack [3] and Dell’Amico, Maffioli, and Martello [4] for surveys. We
consider network design problems in which capacities are installed on paths. This has
applications, e. g., in public transport, where the paths correspond to lines, see Borndörfer
and Karbstein [5] and Karbstein [6]. In such a setting it is important whether a commodity
is routed on direct connections, i. e., on single paths, or whether the commodity has to
switch paths, in which case a switching penalty arises. In line planning such a switching
corresponds to a transfer and the switching penalty, hence, is a transfer penalty. Because
of such penalties, direct connection routes are preferred, unless routes with path-switching
are forced by a lack of capacity. The task is therefore to design a system of paths with
associated capacities such that a weighted sum of path installation and demand routing
costs, including switching penalties, is minimized.

This paper presents a tractable model to handle such problems. It is based on a novel
concept of metric inequalities for direct connections (dcmetric inequalities). Similar to
the metric inequalities for the classical multi-commodity flow problem, the dcmetric in-
equalities completely characterize the feasible path capacities that support a given direct
connection routing. They can be used to reduce such a direct connection routing to a clas-
sical multi-commodity flow routing. In this way, an additional important requirement can
be handled using a model of roughly the same computational complexity. Applied to line
planning, this approach allows an integrated optimization of line installations and passen-
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ger routings, including accurate estimates of the number of direct travelers, for large-scale
real-world instances.

The paper is structured as follows. In a first theoretical part we discuss a family of
network design models that deal with direct connection routings. After an overview of the
basic notation in Section 2, we start in Section 3 with an (explicit) direct path connection
model, that associates direct connection routes with the corresponding paths. Section 4
derives the metric inequalities for a direct connection routing, that characterize the feasible
path capacities. In Section 5, we use these constraints to construct an efficiently solvable
complete direct connection model. We present an approximative basic direct connection
model of polynomial size in Section 6 that involves a combinatorial subset of the metric
inequalities for direct connection routings. The pricing of the non-direct connection route
variables is discussed in Section 7. Section 8 concludes the theoretical part by giving a
short comparison of all considered models. In a second part we apply these models to the
line planning problem in public transport. Section 9 discusses the relevant literature and
Section 10 shows that direct connection models work very well in practice.

2 Basic Notation

We use the following notation. Let G = (V,E) be an undirected graph and P a set of
(explicitly given) elementary paths in G. On each path p ∈ P we can install one out of
several capacities κp,k at a cost cp,k, k ∈ K ⊆ N. Let d ∈ QV×V

≥0 be a demand for each
pair of origin-destination nodes (OD-nodes) s, t ∈ V . We denote by D = {(s, t) ∈ V × V :
dst > 0} the set of all OD-pairs with positive demand. The demand is routed along a
directed routing graph (V,A) that arises from the graph G = (V,E) by replacing each
edge e ∈ E by two antiparallel arcs a(e) and ā(e); let conversely e(a) be the undirected
edge corresponding to such an arc a ∈ A. Each arc in the routing graph is associated
with a cost τa. We also denote the routing graph by G. We say that a path p ∈ P that
covers an edge e in the undirected graph covers the two antiparallel arcs a(e) and ā(e) in
the directed routing graph. Let P(a) = {p ∈ P : e(a) ∈ p} be the set of all paths that
covers arc a. We denote by Rst the set of all elementary directed st-routes from s to t in
G (i. e., elementary st-paths in G), and by R =

⋃
(s,t)∈D Rst the set of all routes; they will

be generated.

A direct connection st-route (st-dcroute) is an st-route (s = v0, a0, v1, . . . , vj , aj , vj+1 = t),
where ai = (vi, vi+1) and there exists some p ∈ P such that e(ai) ∈ p for i = 0, . . . , j, i. e.,
the demand can be routed along a single path from origin s directly to destination t without
path-switching. Let R0

st be the set of all st-dcroutes, R0
st(a) = {r ∈ R0

st : a ∈ r} the set
of st-dcroutes that pass over arc a, and R0 =

⋃
(s,t)∈D R0

st, R
0(a) =

⋃
(s,t)∈D R0

st(a) their
unions. We denote by Pr = {p ∈ P : r ⊂ p} the set of all paths that support the dcroute r.
We set the cost of a dcroute r ∈ R0 to the sum of the arc costs τr,0 =

∑
a∈r τa. For all

routes r ∈ R that involve a switching between paths we add a switching penalty σ ∈ Q+

and arrive at a cost of τr,1 = σ +
∑

a∈r τa. The direct connection network design problem
that we consider is to find a set of paths and associated capacities that (i) supports a
routing of the demand by a set of routes and dcroutes and (ii) minimizes a weighted sum
of path installation plus routing costs, including switching penalties.
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3 Direct Path Connection Model

We first introduce a model for the direct connection network design problem that accounts
for the demand on direct connections in an explicit way. To this purpose, we introduce
flow variables zpr,0 and yr,1 for the demand routed on dcroute r on path p and on route r
with at least one path-switch, respectively. Introducing further variables xp,k ∈ {0, 1} for
installing capacity κp,k on path p, we can state a direct path connection model

(DPC) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
( ∑
r∈R0

∑
p∈Pr

τr,0 z
p
r,0 +

∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

∑
p∈Pr

zpr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (1)

∑
r∈R0(a)

∑
p∈Pr

zpr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

κp,kxp,k ∀ a ∈ A (2)

∑
r∈R0(a):p∈Pr

zpr,0 ≤
∑
k∈K

κp,kxp,k ∀ a ∈ A, ∀ p ∈ P(a) (3)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (4)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (5)

zpr,0 ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr (6)

yr,1 ≥ 0 ∀ r ∈ R. (7)

Model (DPC) minimizes a weighted sum of path and routing costs; the weighing param-
eter is λ ∈ [0, 1]. Equations (1) enforce the demand flow. Inequalities (2) guarantee
sufficient total path capacity on each arc. Constraints (3), the direct path connection con-
straints, ensure sufficient capacity for direct connection routes on each arc of each path.
Inequalities (4) ensure that at most one capacity is installed on each path.

Model (DPC) includes a variable zpr,0 for the assignment of each direct connection route r
to a direct connection path p. This makes the model fairly large. Indeed, a path of length l
is usually a direct connection path for O(l2) OD-pairs, such that the number of variables is
much larger than the number of paths. Moreover, choices between several possible direct
connection paths for every dcroute produce lots of degeneracy. We will show next how
to overcome these problems and reduce the number of variables by relaxing the explicit
assignment of dcroutes to direct connection paths. We will end up with a direct connection
route variable yr,0 for each route r ∈ R0.

4 Metric Inequalities for Direct Connections

We eliminate the assignment of direct routes to particular paths in model (DPC) by
aggregating the dcroute variables as

yr,0 =
∑
p∈Pr

zpr,0, (8)

i. e., we introduce path-independent dcroute variables yr,0 for the demand routed directly
on r. Such a substitution can be easily done in the objective of model (DPC) and in
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the constraints (1) and (2). Skipping the direct path connection constraints (3) for the
moment, we arrive at what we will call “skeleton” direct connection model

(DC-skeleton) min λ
∑
p∈P

∑
k∈K

cp,k xp,k+(1− λ)
( ∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (9)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

κp,kxp,k ∀ a ∈ A (10)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (11)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (12)

yr,0 ≥ 0 ∀ r ∈ R0 (13)

yr,1 ≥ 0 ∀ r ∈ R. (14)

To replace the direct path connection constraints (3) in a way that is compatible with
the aggregated dcroute variables, assume we are given a solution (x∗, y∗) of model (DC-
skeleton). Such a direct connection routing is possible if and only if the following set of
inequalities (C) is satisfied

(C)
∑

r∈R0(a):p∈Pr

zpr,0 ≤ c
p(:=

∑
k∈K

κp,kx
∗
p,k) ∀p ∈ P, ∀a ∈ p (µpa)∑

p∈Pr

zpr,0 = y∗r,0 ∀ r ∈ R0 (ωr)

zpr,0 ≥ 0 ∀r ∈ R0, ∀p ∈ Pr,

i. e., we can assign the path-independent dcroute variables yr,0 to direct connection paths
supporting the dcroutes r.

Using the Farkas Lemma either inequality set (C) has a solution or inequality set (C)

(C)
∑
p∈P

cp
∑
a∈p

µpa +
∑
r∈R0

ωry
∗
r,0 < 0

∑
a∈r

µpa + ωr ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀p ∈ P, ∀a ∈ p.

Consider some ωr with r ∈ R0. Then

− ωr ≤
∑
a∈r

µpa ∀p ∈ Pr

⇔− ωr = min
p∈Pr

{
∑
a∈r

µpa} (=: distPµ(r)).

We then get that (C) has a solution if and only if there exists µ ∈ QQ+, Q := {(a, p) : p ∈
P, a ∈ p}, with ∑

p∈P
cp
∑
a∈p

µpa < −
∑
r∈R0

ωr y
∗
r,0 =

∑
r∈R0

distPµ(r) y∗r,0.

This gives a necessary and sufficient feasibility condition for aggregated multi-commodity
direct connection flows:
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Theorem 4.1. A capacity vector c ∈ RP
+ supports a direct connection routing y∗r,0 if and

only if ∑
p∈P

cp
∑
a∈p

µpa ≥
∑
r∈R0

distPµ(r) y∗r,0 ∀µ ∈ QQ+. (15)

This result is similar to the Theorem of Iri [1], Kakusho and Onaga [2] for the feasibility of
edge capacities to support a multi-commodity flow for a given demand to path capacities
and direct connection routings. On the one hand, our setting is more general because it
considers path capacities instead of arc capacities. On the other hand, direct connection
routing is restrictive because it must follow paths. Hence, our result and the Theorem of
Iri [1], Kakusho and Onaga [2] are related, but do not imply each other.

Note that we can restrict the weights µpa in a dcmetric inequality to the set

M := {µ ∈ QQ+ : ∀(a, p) ∈ Q : ∃r ∈ R(a) : µp(r) :=
∑
b∈r

µpb = distPµ(r)}. (16)

This means that arc a on path p is on a shortest direct connection for some dcroute r
and hence cannot always be bypassed. In this sense, the weights µ ∈ M define a kind of
metric, a dcmetric, and the inequalities (15) can be interpreted as dcmetric inequalities.
Note thatM is a cone such that we can, w.l.o.g., further restrict 0 ≤ µpa ≤ 1 for all p ∈ P,
a ∈ A.

5 Complete Direct Connection Model

Inserting the dcmetric inequalities into model (DC-skeleton) produces the following com-
plete direct connection model

(DC-complete) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
( ∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (17)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

κp,kxp,k ∀ a ∈ A (18)

∑
p∈P

∑
a∈p

µpa
∑
k∈K

κp,kxp,k ≥
∑
r∈R0

distPµ(r) yr,0 ∀µ ∈ [0, 1]Q (19)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (20)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (21)

yr,0 ≥ 0 ∀ r ∈ R0 (22)

yr,1 ≥ 0 ∀ r ∈ R. (23)

Proposition 5.1. Models (DPC) and (DC-complete) are equivalent. More precisely, each
solution of model (DPC) can be transformed into a solution of model (DC-complete) with
identical objective value and vice versa.

We argue now that model (DC-complete) is algorithmically tractable, even though it
contains a large number of dcmetric inequalities.
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Consider the skeleton model (DC-skeleton) plus a (possibly empty) polynomially sized
subset of the dcmetric inequalities (19). We denote this starting model by (DC-complete?).
Let (x∗, y∗) be an (optimal) LP solution for (DC-complete?). If the objective value of the
linear program (S)

(S) min
∑
p∈P

∑
a∈p

µpa
∑
k∈K

κp,kx
∗
p,k −

∑
r∈R0

ωry
∗
r,0

s.t.
∑
a∈r

µpa − ωr ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀p ∈ P, ∀a ∈ p
1 ≥ ωr ≥ 0 ∀r ∈ R0

is negative, then the objective function of (S) gives rise to a violated dcmetric inequality.
The LP (S) arises from the system (C) by inversing the sign of ω and by bounding ω by
1 to make the optimal objective value finite.

The feasible region of the separation program is a polyhedron that does not depend on
the current solution (x∗, y∗) of (DC-complete?). It therefore suffices to consider a finite
number of dcmetric inequalities that correspond to the vertices and extremal rays of the
feasible region. These arguments prove the following propositions.

Proposition 5.2. The dcmetric inequalities can be separated in polynomial time.

Proposition 5.3. The LP-relaxation of the complete direct connection model (DC-complete)
can be solved in polynomial time.

We remark that one can also compute valid primal LP and IP solutions for model (DC-
complete) from a given solution (x∗, y∗) of (DC-complete?) throughout the cutting plane
algorithm by some path-switching on connections that are currently mistaken as being
direct, i. e., one can always easily produce a feasible solution; this is very convenient in
practice. More precisely, the linear program

(H) max
∑
r∈R0

∑
p∈Pr

zpr,0

s.t.
∑

r∈R0(a):p∈Pr

zpr,0 ≤
∑
k∈K

κp,kx
∗
p,k ∀ p ∈ P, ∀a ∈ p

∑
p∈Pr

zpr,0 ≤ y
∗
r,0 ∀ r ∈ R0

zpr,0 ≥ 0 ∀ r ∈ R0, ∀p ∈ Pr.

gives rise to the maximal demand that can be routed directly according to the path
capacities defined by x∗ and the estimated amount of direct demand y∗r,0, r ∈ R0. In fact,
yr,0 :=

∑
p∈Pr

zpr,0,

yr,1 :=

{
y∗r,1 + (y∗r,0 −

∑
p∈Pr

zpr,0) for r ∈ R0

y∗r,1 for r /∈ R0

and x := x∗ is a valid LP/IP solution for (DC-complete). Of course, this routing is best
possible for the capacities defined by x∗ if y∗r,0, r ∈ R0, is estimated correctly, i. e., the
better (DC-complete?) approximates (DC-complete) the better are the associated primal
solutions.
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The duality of the programs (S) and (H) can be seen as follows. We add the constant
term −

∑
r∈R0 y∗r,0 to the objective of (H) and associate dual variables µpa and νr with the

set of inequalities. The dual of (H) is then

min
∑
p∈P

∑
a∈p

∑
k∈K

µpaκp,kx
∗
p,k +

∑
r∈R0

y∗r,0(νr − 1)

s.t.
∑
a∈r

µpa + νr ≥ 1 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀ p ∈ P, ∀a ∈ p
νr ≥ 0 ∀r ∈ R0.

It is easy to see that the above linear program has always an optimal solution with νr ∈
[0, 1], r ∈ R0. If we substitute ωr := (1 − νr), we have 1 ≥ ωr ≥ 0, r ∈ R0, and get the
linear program (S).

This relation also gives an interpretation of the objective value of (S). Namely, the optimal
objective value of (S) amounts to the demand that cannot be routed directly with the
current path capacities.

6 Basic Direct Connection Model

We finally show that a combinatorially motivated compact approximation of the complete
direct connection model (DC-complete) provides a provable quality. More precisely, we will
show that the ratio between the directly routed demand estimated by this approximation
and the directly routed demand computed by model (DC-complete) can be bounded by
half of the maximal length of a path.

We define a polynomial subset of dcmetric inequalities (15) as follows. For each route
r ∈ R0 and each arc a ∈ r we set

µpb :=

{
1 if b = a and p ∈ Pr

0 otherwise.

Then cp =
∑

k∈K κp,kxp,k and inequality (15) reads∑
p∈Pr

∑
k∈K

κp,kxp,k ≥
∑

r̃∈R0(a)
Pr̃⊆Pr

yr̃,0. (24)

We call these inequalities basic direct connection constraints.

Substituting inequalities (24) for the dcmetric inequalities, we obtain the following basic
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direct connection model :

(DC-basic) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
( ∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (25)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

κp,kxp,k ∀ a ∈ A (26)

∑
r̃∈R0(a)
Pr̃⊆Pr

yr̃,0 ≤
∑
p∈Pr

∑
k∈K

κp,kxp,k ∀ r ∈ R0, ∀ a ∈ r (27)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (28)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (29)

yr,0 ≥ 0 ∀ r ∈ R0 (30)

yr,1 ≥ 0 ∀ r ∈ R. (31)

Model (DC-basic) minimizes, as model (DPC) or (DC-complete), a weighted sum of path
and routing costs. Equations (25) enforce the demand flow. Inequalities (26) guarantee
sufficient capacity on each arc. The direct connection constraints (27) approximate the
sufficiency of capacities for direct connection routes on each arc.

Let r1, r2 ∈ R0. We say that routes r1 and r2 are comparable if Pr1 ⊆ Pr2 or Pr2 ⊆ Pr1 , i. e.,
the set of direct connection paths supporting r1 is contained in the set of direct connection
paths supporting r2 or vice versa. A set of routes R′ ⊆ R0 is a comparable set of routes if
every two elements r1, r2 ∈ R′ are comparable.

Proposition 6.1. Model (DC-basic) overestimates the directly routable demand (with re-
spect to model (DC-complete)) by a factor of at most

max
p∈P

⌊
|V ∩ p|

2

⌋
.

Proof. Consider a solution (x∗, y∗) of model (DC-basic). For every r ∈ R0 and p ∈ Pr
define

zpr,0 := y∗r,0 ·
∑

k∈K κp,kx
∗
p,k∑

p∈Pr

∑
k∈K κp,kx

∗
p,k

.

Then it holds

(i)
∑
p∈Pr

zpr,0 = y∗r,0 ∀r ∈ R0

(ii)
∑

r̃∈R0(a)
Pr̃⊆Pr

∑
p∈Pr

zpr̃,0 ≤
∑
p∈Pr

∑
k∈K

κp,kx
∗
p,k ∀ r ∈ R0, ∀ a ∈ r

(iii) zpr,0 ≤
∑
k∈K

kx∗p,k ∀ p ∈ Pr.
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This can be seen as follows:

(i)
∑
p∈Pr

zpr,0 =
∑
p∈Pr

y∗r,0 ·
∑

k∈K κp,kx
∗
p,k∑

p∈Pr

∑
k∈K κp,kx

∗
p,k

= y∗r,0 ∀r ∈ R0

(ii)
∑

r̃∈R0(a)
Pr̃⊆Pr

∑
p∈Pr

zpr̃,0
(i)
=

∑
r̃∈R0(a)
Pr̃⊆Pr

y∗r̃,0
(27)

≤
∑
p∈Pr

∑
k∈K

κp,kx
∗
p,k ∀ r ∈ R0, ∀ a ∈ r

(iii) inequality (27) yields y∗r,0 ≤
∑

r̃∈R0(a)
Pr̃⊆Pr

y∗r̃,0 ≤
∑
p∈Pr

∑
k∈K

κp,kx
∗
p,k ∀ p ∈ Pr

⇒ zpr,0 = y∗r,0 ·
∑

k∈K κp,kx
∗
p,k∑

p∈Pr

∑
k∈K κp,kx

∗
p,k

≤
∑
k∈K

kx∗p,k ∀ p ∈ Pr.

Let z̃ be defined as
z̃pr,0 := 1⌊

|V ∩p|
2

⌋zpr,0.
We show that z̃ is a solution of (H). Consider a path p ∈ P and a ∈ p. Let p = (v1, . . . , vm)
be the nodes the path traverses in this order and let a = (vl, vl+1), l ∈ {1, . . . ,m − 1}.
Further denote by R0(a, p) = {r ∈ R0(a) : p ∈ Pr} the set of routes that contain arc a and
that are supported by p. Define the following sets of routes

Ri =

{
{r ∈ R0(a, p) : r starts in vi} i ∈ {1, . . . , l}
{r ∈ R0(a, p) : r ends in vi} i ∈ {l + 1, . . . ,m}

Since all routes and the path p are elementary, the sets Ri, i = 1, . . .m, are comparable sets
of routes, and R1∪̇ . . . ∪̇Rl and Rl+1∪̇ . . . ∪̇Rm are partitions of the set R0(a, p), respectively.

Either l ≤
⌊
|V ∩p|

2

⌋
or m− l ≤

⌊
|V ∩p|

2

⌋
. Assume w.l.o.g. l ≤

⌊
|V ∩p|

2

⌋
. We then get

∑
r∈R0(a,p)

z̃pr,0 =

l∑
i=1

∑
r∈Ri

z̃pr,0 =

l∑
i=1

∑
r∈Ri

1⌊
|V ∩p|

2

⌋zpr,0
(ii),(iii)

≤
l∑

i=1

1⌊
|V ∩p|

2

⌋ ∑
k∈K

κp,kx
∗
p,k ≤

∑
k∈K

κp,kx
∗
p,k,

i. e., inequality ∑
r∈R0(a):p∈Pr

z̃pr,0 ≤
∑
k∈K

κp,kx
∗
p,k ∀ p ∈ P, ∀a ∈ p

is satisfied. The inequality ∑
p∈Pr

z̃pr,0 ≤ y
∗
r,0 ∀ r ∈ R0

follows immediately with (i).

Hence,

yr,0 :=
∑
p∈Pr

z̃pr,0,

yr,1 :=

{
y∗r,1 + (y∗r,0 −

∑
p∈Pr

z̃pr,0) for r ∈ R0

y∗r,1 for r /∈ R0

x := x∗

9
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Figure 1: Left: Worst case example for Proposition 6.1 and approximation factor 2. Right: General worst
case example for Proposition 6.1.

is a solution for (DC-complete). Overall, we get∑
r∈R0

yr,0 =
∑
r∈R0

∑
p∈Pr

z̃pr,0 =
∑
r∈R0

∑
p∈Pr

1⌊
|V ∩p|

2

⌋zpr,0
≥ 1

maxp∈P

⌊
|V ∩p|

2

⌋ ∑
r∈R0

y∗r,0,

i. e., the number of direct travelers is overestimated by at most

max
p∈P

⌊
|V ∩ p|

2

⌋
.

The bound is tight for the example illustrated in the left of Figure 1. We have four paths
and two routes r1 = (1, 2, 3) and r2 = (2, 3, 4) for two OD pairs (1, 3) and (2, 4) with
demand 100 each. The routes are incomparable on arc (2, 3), i. e., operating path p1 and
p4 with capacity 100, respectively, yields a solution for the basic direct connection model
(DC-basic) where all demand is assumed to be routed directly. But in fact either the
demand from 1 to 3 or the one from 2 to 4 cannot be routed directly. This example
can be extended to longer paths as illustrated on the right of Figure 1. Here, we have a
(gray) path with k nodes and bk2c routes. Each route is covered by an individual path.
Furthermore, there are paths for each edge {j, j + 1}, j = 2, . . . , k − 2. Choosing the
gray path and the edge-paths with enough capacity yields a solution for the basic direct
connection model (DC-basic) where all demand can be routed directly. But the capacity
of the gray path is not necessarily sufficient to yield a direct connection for more than one
route.

Corollary 6.2. If each path contains at most 3 nodes then the dcmetric inequalities (15)
are implied by inequalities (24), i. e., in this case models (DC-basic) and (DC-complete)
are equivalent.

7 Pricing Non-Direct Connection Routes

Models (DPC), (DC-complete), and (DC-basic) require an enumeration of the direct con-
nection routes. For models (DC-complete) and (DC-basic), however, this number is much
smaller than for model (DPC) and can usually be handled without problems. We remark
that we have also considered a column generation algorithm for direct connection routes
for a relaxation of model (DC-basic) in [5].

The non-direct connection routes can be handled by column generation involving a shortest
path computation for all three models. The reduced cost τ̄r,1 for the non-direct connection
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route variable yr,1 is

τ̄r,1 = −πst +
∑
a∈r

(µa + (1− λ)τa) + (1− λ)σ, r ∈ Rst. (32)

The corresponding pricing problem is to find a route r such that τ̄r,1 < 0 or to conclude
that no such route exists. This can be done by a shortest path algorithm. The arc weights
are set to ωa = µa + (1− λ)τa ≥ 0 for a ∈ A. We then have to add (1− λ)σ to the weight
of the path. If we have found a path with weight smaller then πst, the associated variable
has to be added to the problem.

Proposition 7.1. The pricing problem for the non-direct connection route variables in
models (DPC), (DC-complete), and (DC-basic) can be solved in polynomial time. In par-
ticular, finding, for given origin s an st-route with negative reduced cost and at least one
path-switch or concluding that no such route exists, needs O(|V | log |V |+ |A|) time.

8 Model Comparison

Let us denote by vR(M) the optimal objective value of relaxation R of an integer pro-
gramming model M . Considering the IP values and the LP relaxation values of all models
of this paper, we, finally, get the following picture.

Proposition 8.1.

vIP(DPC)

=

vIP(DC-complete)

}
≥ vIP(DC-basic) ≥ vIP(DC-skeleton),

vLP(DPC)

=

vLP(DC-complete)

}
(∗)
≥ vLP(DC-basic) ≥ vLP(DC-skeleton).

Inequality (∗) is an equality for maxp∈P |V ∩ p| ≤ 3. All LPs can be solved in polynomial
time.

9 Application to Line Planning

The direct connection network design problem aims at applications in areas such as traffic
and transport. We are particularly interested in line planning, where the treatment of
transfers is a major challenge. Another great challenge is the integration of line planning
and passenger routing; it discloses essential degrees of freedom. Existing models either
relax one of these two important aspects or they are of extremely large scale, and seem to
be computationally intractable. A comprehensive survey article on methods and models
to deal with the line planning problem is given by Schöbel [7].

A first approach to maximize the number of direct travelers, i. e., travelers that do zero
transfers, was taken by Bussieck, Kreuzer, and Zimmermann [8] (see also the thesis of
Bussieck [9]). They proposed an integer programming model on the basis of a “system
split” of the demand, i. e., an a priori distribution of the passenger flow on the arcs of the
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transportation network. The direct travelers approach is therefore a sequential passengers-
first lines-second routing method. However, the passenger flow strongly depends on the
line plan which is to be computed. Hence, a number of approaches that integrate line
planning and passenger routing have been developed. Schöbel and Scholl [10, 11] model
travel and transfer times explicitly in terms of a ”change-and-go graph” that is constructed
on the basis of all potential lines. This model allows a complete and accurate formulation
of travel and transfer time objectives; its only drawback is its enormous size, which seems
to make this model computationally intractable. Borndörfer, Grötschel, and Pfetsch [12,
13] propose an integrated line planning and passenger routing model with a polynomial
number of constraints. This model ignores transfers between lines of the same mode
(transfers between, e. g., bus and tram lines are considered).

We now propose an application of the considered direct connection models for the inte-
grated line planning and passenger routing problem in public transport with a focus on
direct connection routes for passengers. The considered graph G = (V,E) represents the
infrastructure of a public transportation network. The nodes define stations or stops and
the edges define streets and tracks, e. g., for busses and trams. Every edge e ∈ E is asso-
ciated with a certain transportation mode i ∈M , i. e., M is the set of modes, e. g., bus or
tram. An edge further has a travel time τe ∈ Q≥0 and a cost ce ∈ Q≥0. All possible lines
are defined by the set P. A line can be operated at a frequency k out of a finite set K ⊆ N.
Line p at frequency k has transportation capacity κp,k = κi · k, where κi is a standard ca-
pacity of a line of mode i ∈M , e. g., the size of a bus. The line further has operation cost
cp,k = ci + k ·

∑
e∈p ce, where ci is a standard fixed cost of a line of mode i ∈M . The path

costs, hence, corresponds to the operating costs of the lines. D gives the transportation
demand between two different origin and destination nodes (OD-nodes). OD nodes can be
seen as virtual nodes representing a certain area (a traffic cell) and all stations (network
nodes) within the cell are connected to this OD node by so-called OD edges. The direct
routing graph or passenger routing graph for generating the passenger routes arises from
the graph G by replacing each undirected edge by two antiparallel arcs. This graph can
further involve additional transfer arcs, e. g., between lines or stations of different modes.
These transfer arcs are associated with the transfer penalty σ. From r ∈ R0 then follows
that r does not contain a transfer arc. The cost of a route in the line planning setting
corresponds to the sum of the travel times on the arcs plus a possible transfer penalty.

All of the models (DPC), (DC-complete), and (DC-basic) choose a set of lines and a set
of passenger routes such that the capacities of the lines support these passenger routes
and a weighted sum of line operating cost and passenger travel times is minimized. The
models subdivides routes for passengers that do not contain a transfer arc into those who
are supported by direct connection lines with sufficient capacity and those who are only
supported by several lines including at least one transfer. The latter routes are penalized
by the transfer penalty σ regardless how many transfers on this route are necessary. A
method to account for each transfer exactly is to extend the passenger routing graph to
a change-and-go network as proposed by Schöbel and Scholl. In this approach, each node
and each arc has to be copied for every line that contains this node and arc; further
transfer arcs have to be added. Models (DPC), (DC-complete), and (DC-basic) can be
seen as a ”first order approximation” to this change-and-go approach: Models (DPC),
(DC-complete), and (DC-basic) do not consider transfer penalties for the second, third,
etc., transfer in a passenger route. All models except (DPC) further relax the assignment
of direct connection routes to particular lines.

Models (DPC) and (DC-complete) can be interpreted as a passenger routing extension of
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the direct traveler model of Bussieck, Kreuzer, and Zimmermann [8].

Model (DC-skeleton) is quite similar to the column generation model of Borndörfer,
Grötschel, and Pfetsch [12]. The set of routes R0 includes all routes that contain no
transfer arc. If there are no additional constraints for direct connection passenger routes,
an optimal solution will use a path-switching route yr,1 > 0 only if r contains a transfer arc.
Such routes do not allow for a direct connection, i. e., there exist no variables yr,0. We can
therefore combine both types of variables yr,0 and yr,1 into variables yr; a transfer penalty
is added if and only if r contains a transfer arc. In this case, model (DC-skeleton) is equal
to the basic dynamic model introduced by Karbstein [6]; she shows the equivalence to the
column generation model of Borndörfer, Grötschel, and Pfetsch [12]. In this way, models
(DPC), (DC-complete), and (DC-basic) can also be seen as a ”transfer improvement” of
the model of Borndörfer, Grötschel, and Pfetsch.

10 Computational Results

In this section, we present computational results for models (DC-complete) and (DC-
basic). Model (DC-complete) is equivalent to model (DPC), but has the advantage that
we can handle direct connection routings more implicitly by using a cutting plane method
for dcmetric inequalities. In this way, we do not have to add all dcmetric inequalities in
every node, i. e., we can keep the size of the LP relatively small.

We consider four transportation networks that we denote as China, Dutch, SiouxFalls,
and Potsdam. The instance SiouxFalls uses the graph of the street network with the
same name from the Transportation Network Test Problems Library of Bar-Gera [14].
Instances China, Dutch, and Potsdam correspond to public transportation networks. The
Dutch network was introduced by Bussieck in the context of line planning [15]. The China
instance is artificial; we constructed it as a showcase example, connecting the twenty
biggest cities in China by the 2009 high speed train network. The Potsdam instances are
real multi-modal public transportation networks for 1998 and 2009.

For China, Dutch, and SiouxFalls all nodes are considered as terminals, i. e., nodes where
lines can start or end. We constructed a line pool by generating for each pair of terminals
all lines that satisfy a certain length restriction. To be more precise, the number of edges
of a line between two terminals s and t must be less than or equal to f times the number of
edges of the shortest path between s and t. For each network, we increased f in three steps
to produce three instances with different line pool sizes. For Dutch and China instance
number 3 contains all lines, i. e., all paths that are possible in the network. The line pools
for the Potsdam network of 1998 are generated for different restrictions on the length
of the lines considering the given turning restrictions on crossings. We defined all nodes
as terminals that are terminals of operating lines in the year 1998. The Potsdam 2009
instance arose within a project with the Verkehr in Potsdam GmbH (ViP) [16] to optimize
the 2010 line plan [17, 18]. The line pool contains all possible lines that fulfill the ViP
requirements. The Potsdam instances are the only instances that are based on a real multi-
modal network of bus, tram, regional, and commuter traffic, i. e., the passenger routing
graphs for the Potsdam instances contain transfer arcs between lines of different modes.
The lines for regional and commuter trains are not operated by ViP and we therefore fix
them to given frequencies in our computations.

The other lines can be operated at frequencies 3, 6, 9, and 18; this corresponds to a cycle
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Table 1: Statistics on the line planning instances and models. The first six columns list the instances,
the number of non-zero OD pairs, number of OD nodes, number of nodes and edges of the preprocessed
passenger routing graph. The remaining columns list the number of line variables which is equal in all
considered models, the number of dcroutes in model (DC-complete) and (DC-basic) (in brackets number
of dcroute variables in models (DPC)), the number of constraints of the skeleton model (DC-skeleton), and
the number of constraints of model (DC-basic).

problem |D| |VO| |V | |A| |L| x-vars dc-vars (lines)
(DC-s)
cons

(DC-b)
cons

Dutch1 420 23 23 106 402 1 608 1 280 (6 856) 1 076 2 931
Dutch2 420 23 23 106 2 679 10 716 6 450 (11 0648) 3 339 15 844
Dutch3 420 23 23 106 7 302 29 208 12 426 (457 182) 7 943 30 136
China1 379 20 20 98 474 1 896 1 656 (14 386) 1 179 3 583
China2 379 20 20 98 4 871 19 484 12 824 (387 226) 5 458 31 809
China3 379 20 20 98 19 355 77 420 38 965(2 657 962) 19 932 92 653
SiouxF1 528 24 24 124 866 3 464 2 652 (23 924) 1 769 5 545
SiouxF2 528 24 24 124 9 397 37 588 20 208 (566 610) 10 196 48 427
SiouxF3 528 24 24 124 15 365 61 460 44 950(1 283 254) 16 145 129 736
Potsd98a 7 734 107 344 2 746 207 775 19 106 (63 133) 9 964 18 185
Potsd98b 7 734 107 344 2 746 1 907 7 561 58 357(1 853 030) 11 975 70 920
Potsd98c 7 734 107 344 2 746 4 342 17 301 106 228(7 441 199) 14 353 132 948
Potsd2010 4 443 236 851 5 542 3 433 13 745 34 039 (904 965) 11 601 63 134

time of 60, 30, 20, and 10 minutes in a time horizon of 3 hours. Line costs are proportional
to line lengths and the frequency plus a fixed cost term that is used to reduce the number
of lines. The costs and the capacities of the lines depend on the mode of transportation
(e. g., bus, tram). In the instances each edge is associated with exactly one mode, i. e., all
lines on an edge have the same capacity, see Karbstein [6] for more details. The objective
weighing parameter was set to λ = 0.8 and the transfer penalty was set to σ = 15 minutes.

Table 1 gives some statistics about the test instances and the models. The columns labeled
|D|, |VO|, |V |, |A|, and |L| list the number of OD pairs with non-zero demand, OD nodes,
nodes, arcs, and lines after some preprocessing. The column labeled x-vars gives the
number of line variables which is equal for all considered models. Column dc-vars gives
the number of all direct connection routes for models (DC-complete) and (DC-basic); in
brackets we list the number of all direct connection line routes, i. e., the variables based
on the routes and the lines, for model (DPC). The second last column lists the number of
starting constraints for model (DC-complete) after preprocessing of SCIP. This number
involves no dcmetric inequalities (since they are separated afterwards) but all preprocessing
inequalities described below. The last column lists the number of constraints for model
(DC-basic) after preprocessing of the IP solver SCIP. In all instances, the number of basic
direct connection constraints is higher than the number of other constraints. The ratio
of modeling constraints for (DC-skeleton) and basic direct connection constraints varies
from around 1:2 for Dutch1 to 1:8 for Potsdam98c.

The instances were solved with a column generation algorithm implemented on the basis of
the CIP framework SCIP [19], version 2.1.0, see Achterberg [20], using CPLEX 12.4 as LP-
solver (in single core mode). Line/frequency variables and the direct connection passenger
route variables were enumerated, non-direct connection passenger route variables were
priced with Dijkstra’s shortest path algorithm and a labeling algorithm for the constrained
shortest path case which results if routes can contain transfer arcs. We mainly used the
default settings of SCIP with few exceptions: We turned off all SCIP heuristics (they
usually yield non-valid solutions for model (DC-complete) due to the implicit handling
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of direct connection constraints), we reduced the value for a cut in the root node to be
efficacious to 0.004, we changed the LP pricing parameter to “quickstart steepest edge”,
and we increased the number of rounds within separation of cuts where the objective value
may stall to 20. We further implemented a special rounding heuristic and preprocessing
cuts that account for the demand on single arcs that disconnect at least two OD-nodes
as well as the out-going and in-coming demand of an OD-node. Namely, we scale the
capacity constraints associated with these demand sets by κik, for each frequency k ∈ K,
and apply mixed integer rounding. We also added violated cuts of the form∑

p∈Pr:r∈R0
st(a)

∑
k∈K

min{κp,k, dst}xp,k ≥
∑

r∈R0
st(a)

yr,0 ∀(s, t) ∈ D, ∀a ∈ Ast (33)

in each branching node in model (DC-complete); here Ast := {a ∈ A : r ∈ R0
st(a)}. These

cuts can be related to the basic direct connection constraints (27) as follows. Instead of
setting µpa = 1 for all paths that cover some dcroute r via arc a, we set

µpb :=

{
1 if b = a and p ∈ {Pr : r ∈ R0

st(a)}
0 otherwise,

i.e., we set µpa = 1 for all paths that cover some st-dcroute containing arc a. This yields
the following dcmetric inequality∑

p∈Pr:r∈R0
st(a)

∑
k∈K

κp,kxp,k ≥
∑

r̃∈R0(a):Pr̃⊆{Pr:r∈R0
st(a)}

yr,0 ∀(s, t) ∈ D, ∀a ∈ Ast. (34)

It takes some effort to identify the set of routes on the right-hand side of this inequality.
A weaker but simpler version considers only the st-dcroutes covering arc a∑

p∈Pr:r∈R0
st(a)

∑
k∈K

κp,kxp,k ≥
∑

r∈R0
st(a)

yr,0 ∀(s, t) ∈ D, ∀a ∈ Ast. (35)

Note that the right-hand side
∑

r∈R0
st(a)

yr,0 is smaller than dst, such that we can reduce

the coefficients on the left-hand side; this yields (33).

For model (DC-complete) we implemented a constraint handler that ensures that each
solution satisfies all dcmetric inequalities. We implemented an exact separation of these
inequalities in the root node and one round of separation at every 100 nodes. In the
root node we first search for violated basic direct connection constraints (27). We then
search for violated dcmetric inequalities as follows: We optimize the program (H) that
maximizes the number of direct travelers for a solution (x∗, y∗) of model (DC-complete?).
If
∑

p∈Pr
zpr,0 = y∗r,0 for all r ∈ R0, we are done. Otherwise, we try to identify several

violated cuts by solving a linear program for each route r with
∑

p∈Pr
zpr,0 + w = y∗r,0,

w > 0, i. e., each route whose complete demand was not routed directly in the optimal
solution of program (H). We further restrict this LP to the set of arcs Ar = {a ∈ A : a ∈ r}
covered by r and the set of routes Rr = {r̃ ∈ R0 : ∃a ∈ Ar s.t. a ∈ r̃} that share at least
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Table 2: Statistics on the computations for models (DC-basic) and (DC-complete).

(DC-basic) (DC-complete)
instance nodes LP-val. best sol gap nodes LP-val. best sol gap

Dutch1 687 2 613 065 2 613 065 opt 929 2 613 065 2 613 065 opt
Dutch2 8 666 2 609 666 2 609 666 opt 28 872 2 609 666 2 609 666 opt
Dutch3 6 520 2 609 097 2 609 097 opt 33 055 2 609 097 2 609 097 opt
China1 843 859 2 611 982 2 616 970 0.19% 501 433 2 616 795 2 626 661 0.38%
China2 33 701 2 517 394 2 530 929 0.54% 44 500 2 517 831 2 543 261 1.05%
China3 5 826 2 516 702 2 530 929 0.57% 1 817 2 516 767 2 543 261 1.09%
SiouxFalls1 539 278 646 140 646 592 0.07% 289 142 646 257 649 201 0.68%
SiouxFalls2 10 969 639 366 640 146 0.12% 21 687 639 382 643 129 0.58%
SiouxFalls3 4 042 638 825 639 401 0.09% 9 691 638 837 643 129 0.67%
Potsdam98a 34 558 1 017 129 1 018 656 0.15% 14 703 1 017 326 1 018 617 0.13%
Potsdam98b 207 979 975 984 095 0.42% 2 568 980 498 984 683 0.43%
Potsdam98c 51 978 815 984 169 0.55% 864 979 067 984 683 0.57%
Potsdam2010 1 474 208 577 209 783 0.58% 1 752 208 831 209 198 0.18%

one arc with route r. If the program

(Sr) min
∑
p∈P

∑
a∈Ar∩p

µpa

s.t.
∑
p∈P

∑
a∈Ar∩p

µpa
∑
k∈K

κp,k x
∗
p,k −

∑
r̃∈Rr

ωr̃y
∗
r̃,0 ≤ −w∑

a∈r̃
µpa − ωr̃ ≥ 0 ∀ r̃ ∈ Rr, ∀p ∈ Pr̃

µpa ≥ 0 ∀p ∈ P, ∀a ∈ Ar ∩ p
1 ≥ ωr̃ ≥ 0 ∀r̃ ∈ Rr.

has a solution, then the first inequality gives rise to a violated cut. LP (Sr) is a heuristic
restriction of the separation LP (S), that turned out to be much more efficient than the
entire model (S) or model (Sr) for Ar = A. Note that there are rare cases possible where
(Sr) is infeasible; we then consider Ar = A.

Finally, we included additional auxiliary branching variables ha,i ∈ Z≥0, a ∈ A, i ∈ K,
that account for the number of lines on arc a with frequency greater than or equal to i, and
the corresponding branching constraints

∑
p∈P:e(a)∈p

∑
k∈K:k≥i xp,k = ha,i ∀ a ∈ A, k ∈ K.

Including these branching variables and constraints combines the possibility to branch
on those constraints with the sophisticated branching rules implemented in the SCIP
framework. This works well especially for the Dutch instances, e. g., it needs nearly a
thousandfold of branching nodes to solve instance Dutch1 with model (DC-basic) without
branching variables compared to the solution with the branching variables.

We set a time limit of 5 hours for all instances. All computations were done on computers
with an Intel(R) Xeon(R) CPU X5672 with 3.20 GHz, 12 MB cache, and 48 GB of RAM.

Table 2 shows statistics on the number of branching nodes, LP-value, best solution, and
the integrality gap for model (DC-basic) and (DC-complete). Our implemented heuristic
computes a direct connection routing with model (H) for (DC-complete), compare with
Section 5. Hence, this solution may be improvable by computing the exact direct connec-
tion routing for the given line capacities. This can be done by fixing the line capacities
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Table 3: Evaluation of the best solutions of models (DC) and (DC-complete). The columns 2 to 5 list
travel times (in minutes), costs, objective value, and number of direct travelers1 by computing a system
optimum passenger routing in the change-and-go graph. The second last column shows the number of direct
traveler predicted2 by the considered model while the last column gives the over- or under-estimation of
direct travelers.

problem travel times costs obj. dir. trav.1 dir. trav.2 diff. (%)

Dutch1 (DCc) 1.279·107 69500 2613305 179 536 179 536 -
Dutch1 (DCb) 1.279·107 68900 2613305 179 376 179 376 -
Dutch2 (DCc) 1.279·107 64400 2609841 179 796 179 796 -
Dutch2 (DCb) 1.279·107 64400 2609841 179 796 179 796 -
Dutch3 (DCc) 1.278·107 65600 2609271 180 234 180 234 -
Dutch3 (DCb) 1.278·107 65600 2609271 180 234 180 234 -
China1 (DCc) 1.200·107 284 172 2626661 749 571 749 571 -
China1 (DCb) 1.226·107 275 624 2672905 731 333 749 924 2.54%
China2 (DCc) 1.166·107 262 387 2542900 759 680 759 452 −0.03%
China2 (DCb) 1.196·107 250 824 2592971 743 271 759 933 2.24%
China3 (DCc) 1.166·107 262 387 2542900 759 680 759 452 −0.03%
China3 (DCb) 1.196·107 250 824 2592971 743 271 759 933 2.24%
SiouxFalls1 (DCc) 3.198·107 12 007 649162 360 600 360 585 −0.00%
SiouxFalls1 (DCb) 3.226·107 8 801 652238 360 408 360 600 0.05%
SiouxFalls2 (DCc) 3.181·107 10 312 644432 360 600 360 578 −0.01%
SiouxFalls2 (DCb) 3.197·107 6 094 644365 360 600 360 600 -
SiouxFalls3 (DCc) 3.181·107 10 312 644432 360 600 360 578 −0.01%
SiouxFalls3 (DCb) 3.211·107 5 200 646392 360 566 360 600 0.01%
Potsdam98a (DCc) 5.077·106 28 063 1037770 70 676 71 324 0.92%
Potsdam98a (DCb) 5.055·106 22 113 1033137 71 275 71 166 −0.15%
Potsdam98b (DCc) 4.848·106 34 604 997429 78 814 78 955 0.18%
Potsdam98b (DCb) 4.815·106 28 794 991858 79 357 79 246 −0.14%
Potsdam98c (DCc) 4.848·106 34 604 997429 78 814 78 955 0.18%
Potsdam98c (DCb) 4.815·106 28 794 991858 79 357 79 212 −0.18%
Potsdam2010 (DCc) 1.021·106 9 464 211816 38 284 38 118 −0.43%
Potsdam2010 (DCb) 1.024·106 9 663 212631 38 036 37 984 0.14%

and generating all violated dcmetric inequalities. This procedure sometimes needs sev-
eral rounds to terminate. We did this for each final solution of model (DC-complete)
and limited the number of separation rounds to 300. The integrality gap for model (DC-
basic) after 5 hours is smaller than the one for model (DC-complete) for all instances but
Potsdam98a and Potsdam2010. All Dutch instances can be solved to optimality by both
models, while the computation with (DC-basic) needs less branching nodes and, hence,
less time than the computation with model (DC-basic). However, the numbers show that
both models can be solved efficiently.

We evaluate the quality of the solutions of model (DC-complete) and (DC-basic) by com-
puting an optimal passenger routing, including penalties for all transfers, in a change-
and-go graph similar to that of Schöbel and Scholl [10]. Recall that this graph contains a
copy of each node and arc for every line that contains this node and arc. Further transfer
arcs are added between two nodes of different lines whenever a transfer between these
two lines is possible on this node. The travel time of all arcs is set to the travel time
of the associated arc in G, transfer arcs are additionally penalized by σ. We then fix
the frequencies of the lines according to the computed line plan and route the passengers
to minimize the total travel and transfer times, i. e., we compute the correct number of
transfers for all passengers in a system optimum routing. Table 3 shows the result of this
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evaluation. More precisely, columns 2, 3, and 4 give the travel times, costs, and objective
values of this system optimum for the best solutions computed with model (DC-complete)
and model (DC-basic), respectively. Column 5 lists the number of direct travelers in the
change-and-go-system-optimum while column 6 lists the number of direct travelers pre-
dicted with the considered model. The last column gives the relative difference between
these two numbers.

It can be seen that the exact number of direct travelers is very close to the number of
direct travelers predicted by models (DC-complete) and (DC-basic), respectively. The
number of direct travelers for the instances Dutch, China, and SiouxFalls predicted by
model (DC-complete) is equal to or underestimates the exact number of direct travelers.
Each passenger path in the solution of these instances is either a direct connection path
or involves exactly one transfer. The underestimation is because of a primal solution com-
putation based on a separation of direct connection constraints which may cause some
numerical problems. Here, we stopped the separation after 300 rounds. The solutions of
the Potsdam instances contain passenger paths with 2 or more transfers. Hence, an over-
estimation of direct connection passenger paths by model (DC-complete) is possible since
it may be better to route passengers on paths with transfers instead of direct connection
paths to obtain shorter connections for passengers with 2 or more transfers. For the Dutch
instances the basic direct connection constraints (27) suffice to define a correct direct con-
nection routing. Considering the objective values of all instances for both models, there
is no clear winner. While model (DC-complete) computes better solutions for the China
instances, model (DC-basic) yields better solutions for the Potsdam98 instances.

In a final test, we tried to solve the change-and-go model of Schöbel and Scholl using
the best solution of model (DC-complete) as a starting solution. Within five hours of
computation time the root node could not be solved for Dutch3, China3, SiouxFalls2,
SiouxFalls3, and all Potsdam instances. After five hours of branch-and-bound only the
solution for SiouxFalls1 could be improved by 0.18% from 649 162 to 647 985.

Our results show that the direct connection approach is an efficient method to solve large-
scale real-world line planning problems in public transport. Moreover, the basic direct
connection model with its combinatorially motivated basic direct connection constraints
is a computationally strong and computationally (relatively) simple approximation for the
complete model (DC-complete).
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