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Abstract. One quarter of Europe’s energy demand is provided by natural gas distributed through
a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer
the extension of the European pipeline network is already a multi billion Euro business. Therefore,
automatic planning tools that support the decision process are desired. We model the topology
extension problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise
to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem
which emerges from the MINLP model by fixing all integral variables. In this article we offer
novel sufficient conditions for proving the infeasibility of this active transmission problem. These
conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of
a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding
procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial
speed-up for the necessary computations.

Keywords: Network Design; Mixed-Integer Nonlinear Programming; Infeasibility Detection.

1 Introduction

Natural gas usage represents one quarter of the world’s energy demand [5]. The gas is distributed in huge
pipeline systems. The gas transport network of Germany alone has a size of over 30,000 km. Given a cost
of about one million Euro per km the network constitutes a substantial investment. Naturally, there is a
high demand to minimize the building costs in case the network has to be extended [27].

A gas network mainly consists of pipelines, compressors, valves, and control valves. It can be extended
by adding one of these elements in order to increase the transportation capacity [7]. Several approaches
to improve the topology of a gas network are reported in the literature. Boyd et al. [4] apply a genetic
algorithm to solve a pipe-sizing problem for a network with 25 nodes and 25 pipes, each of which could
have one out of six possible diameters. Castillo and Gonzáleza [6] also apply a genetic algorithm for finding
a tree topology solution for a network problem with up to 21 nodes and 20 arcs. Mariani et al. [16] describe
the design problem of a natural gas pipeline. They present a set of parameters to evaluate the quality of
the transportation system. Based on these ones they evaluate a number of potential network topologies
to identify the best among them. Osiadacz and Górecki [20] formulate a network design problem for a
given topology as a nonlinear optimization problem, for which they iteratively compute a local optimum.
For a given topology the diameter of the pipes is a free design variable. Their method is applied to a
network with up to 108 pipes and 83 nodes. De Wolf and Smeers [9] also use a nonlinear formulation and
apply a local solver. They distinguish the operational problem (running the network) from the strategical
investment problem (extending the network). For a given topology with up to 30 arcs and nodes they
can determine (locally) optimized pipe diameters. Bonnans and André [2, 3] consider the optimal design
problem of a straight pipeline system and derive some theoretical properties of an optimal design. In [14]
we describe a primal heuristic based on dual information from KKT solutions of the gas network model
formulation.

In the following we will model the extension problem in gas networks by a mixed-integer nonlinear
program (MINLP) called topology optimization problem. Computationally it is solved by applying a
branch-and-cut approach. For more details on cutting planes and branch-and-bound for MILP we refer
to Nemhauser and Wolsey [18], and for an application of this framework to global mixed-integer nonlinear
programming to Smith and Pantelides [24], and Tawarmalani and Sahinidis [25, 26]. Information on the
MINLP framework SCIP which we apply is given by Achterberg [1], and in particular on nonlinear
aspects of SCIP such as spatial branching on continuous variables is given by Vigerske [28].



This article is organized as follows: The topology optimization problem modeling the task of extending
a gas network by selecting from a finite set of additional network elements is presented in Section 2. In
Section 3 we focus on the active transmission problem which is a non-convex nonlinear feasibility
problem. It emerges from the topology optimization problem by fixing all integral variables. We present
sufficient conditions for proving the infeasibility of the active transmission problem. They are expressed in
the form of an MILP. This allows to certify the infeasibility of the non-convex active transmission problem
by solving this MILP. An illustrative explanation for the definition of this MILP follows in Section 4. Our
solution approach for solving the topology optimization problem and computational results are presented
in Section 5. Finally, we conclude in Section 6 and give some ideas for future research directions.

2 Topology Optimization of Gas Networks

A gas transport network is modeled by a directed graph G = (V,A) where V denotes the set of nodes
and A ⊆ V × V the set of arcs. For an introduction to the notions of graph theory we refer to [15]. Each
arc represents either an active or a passive network element as described below. More details can be
found in [11].

The majority of the arcs in a gas transport network are passive pipelines. The flow qa through a
pipeline a = (v, w) ∈ A is induced by a difference of pressures pv and pw at the end nodes v and w of
the pipe. Note that a positive value of qa means a flow from v to w, and a negative value is a flow in
the opposite direction from w to v. The Weymouth equation [30] is an old but still used equation to
approximate the flow of gas in long pipelines:

qa|qa| = Ca (p
2
v − p2w).

Here Ca is computed by the following formula:

Ca := 96074.830
d5a

λa z T La δ
,

where
1

λa
=

(
2 log

(
3.7 da
ε

))2

,

with La being the length of the pipe (m), da the inner diameter of the pipe (m), T the gas temperature
(K), ε the absolute roughness of the pipe (m), δ the density of the gas relative to air, and z the gas
compressibility factor [10, 19, 22]. After substituting πv = p2v and πw = p2w Weymouth’s equation takes
the general form

αa qa|qa|ka = πv − γa πw, (2.1)

with γa = 1, αa = C−1a and ka = 1. The variables (πv)v∈V are called the node potential values. The
slightly more general version of Weymouth’s equation with γa 6= 1 (for different heights of the pipe’s end
nodes) is given in [21]. In this general case it holds γa = exp(Sa) where Sa ∼ saLa and sa denotes the
slope of pipe a. This means that Sa represents the height difference of the end nodes of pipe a. Hence,
if some pipelines a1, . . . , an form a directed cycle, it is assumed that γa1 · . . . · γan = 1. This reflects that
there is no height difference when traversing a circuit completely. If a = (v, w) is an arc and a′ = (w, v)
is its anti-parallel counterpart, then we assume that the constants γa are such that γa = γ−1a′ . (Note that
the constant on the left-hand side of (2.1) changes from αa to αaγ−1a when considering a′ instead of a.)

Apart from the pipelines that constitute the network there are active elements that allow to control
the flow of gas. In particular these are valves to adapt the topology, compressors to increase pressure,
and control valves to reduce pressure.

A valve is installed in the network to separate or join two different pipes. For a discrete decision
they only allow either being open or closed. The spatial dimension of a valve is assumed to be small
in comparison to the pipes. Hence in our model the pressures are identified when the valve is open. If
the valve is closed then they are decoupled. Mathematically a valve is an arc a = (v, w) ∈ A with the
following description:

xa = 1 =⇒ πv − πw = 0,
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xa = 0 =⇒ qa = 0,

where xa ∈ {0, 1} is a binary decision variable. Recall the relation of the pressure and node potential
p2v = πv for every node v ∈ V .

A compressor is used to increase the pressure. We follow the approach of De Wolf and Smeers [10],
and make use of the following formulation for a compressor a = (v, w) ∈ A:

αa qa|qa|ka ≥ πv − πw, (2.2)

which allows a flow larger than the one corresponding to the pressure decrease in a pipe. We rewrite this
inequality as equality by introducing a weighted slack variable ya as

αa qa|qa|ka − βaya = πv − πw, (2.3)

with constant βa ∈ R and y
a
≤ ya ≤ ya.

In practice we need further restrictions such as a minimal and a maximal pressure difference or a
restriction of the pressure difference that depends on the flow. Therefor we allow a linear inequality
system coupling the flow qa and the pressures pv, pw such that

Aa (qa, pv, pw)
T ≤ ba. (2.4)

Here it holds Aa ∈ Rνa×3 and ba ∈ Rνa for some value νa ∈ N. When the slack variable ya is unbounded,
then the only restrictions for the compressor are given by constraint (2.4). Hence (2.4) specifies the
operating range of the compressor. The flow can only go in positive direction through a compressor,
hence a corresponding lower bound needs to be set by this linear inequality system, i.e., qa ≥ 0.

A control valve allows to reduce the pressure along an arc a = (v, w) ∈ A in the network, for
example, to protect parts of the network from too high pressures. A control valve a = (v, w) is inverse
to a compressor. Hence we adapt inequality (2.2) as follows:

αa qa|qa|ka ≤ πv − πw, (2.5)

in order to decrease the pressure in w more than the flow and the input pressure will actually require.
After introducing weighting slack variables ya equation (2.5) appears similar to equation (2.3). (The only
difference between a compressor and a control valve is either the sign of βa or the bounds on ya.) Similar
to a compressor, the feasible region of a control valve is restricted by additional constraints like (2.4). For
instance we set a minimal and maximal pressure difference between the end nodes v and w. Note that
the flow direction through a control valve is also fixed by setting the lower bound to zero, i.e., qa ≥ 0.

2.1 An MINLP Model

A directed graph is used for the MINLP model of the extension problem in gas networks: We define an
extended set of arcs AX ⊆ V × V . This set AX contains all “original” arcs from A, that is, A ⊆ AX .
Furthermore the extended arc set AX contains possible new network elements (pipes, valves, compressors,
or control valves), where in principle a new element can be built between any pair of existing nodes
v, w ∈ V, v 6= w. By (V,AX) we denote the gas transport network together with its possible extensions.

We assume the following data to be given as parameters. For each node v ∈ V we have lower and
upper bounds on the node potential, πv, πv ∈ R with πv ≤ πv. For each arc a ∈ AX we have lower and
upper bounds on the flow, q

a
, qa ∈ R with q

a
≤ qa. For each node v ∈ V the value sv ∈ R denotes the

amount of flow that is either led into the network (for sv > 0), or taken out of the network (for sv < 0).
A node with sv > 0 is also called source or entry node, and nodes with sv < 0 are sinks or exit nodes. All
the other nodes with sv = 0 are inner or transmission nodes. Vector s is called nomination. For each arc
a ∈ AX we have a transmission coefficient αa ∈ R+, bounds on the weighted slack variable y

a
, ya ∈ R

with y
a
≤ ya, a scaling factor βa ∈ R for the range coefficient, a coefficient γa ∈ R+\{0}, and a cost

coefficient ca ∈ R+. Note that ca = 0 for all existing arcs a ∈ A.
Let us introduce the following variables. The flow on arc a ∈ AX is denoted by qa ∈ R. The potential

value of a vertex v ∈ V is given by πv ∈ R representing the squared pressure at v. The pressure itself is
modeled by pv ∈ R. The variable ya ∈ R specifies the additive component of the pressure loss term in

3



(2.3). For pipelines and valves this variable is fixed to zero, whereas it is bounded for compressors and
control valves.

We introduce a binary decision variable xa ∈ {0, 1} for each arc a ∈ AX , where xa = 1 represents
the decision that arc a is used (i.e., a necessary condition for a non-zero flow). The other case xa = 0
represents the decision that arc a is not contained in the network (V,AX). Pre-existing arcs a ∈ A usually
cannot be deactivated which implies that xa is fixed to 1. This means that only a subset of all possible
discrete settings is allowed. This subset is given by X ⊆ {0, 1}AX . The set X is described by linear
inequalities in general, i.e.,

X =
{
x ∈ {0, 1}AX | Lx ≤ t

}
,

where L is a matrix of integers with |AX | columns and t is a vector of integers such that the length of t
is equal to the number of rows of L.

The following mixed-integer nonlinear program with indicator constraints is called topology opti-
mization problem:

min
∑
a∈AX

ca xa (2.6a)

s. t. xa = 1 =⇒ αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a ∈ AX , (2.6b)

xa = 1 =⇒ Aa (qa, pv, pw)
T ≤ ba ∀ a ∈ AX , (2.6c)

xa = 0 =⇒ qa = 0 ∀ a ∈ AX , (2.6d)∑
w:(v,w)∈AX

qv,w −
∑

w:(w,v)∈AX

qw,v = sv ∀ v ∈ V, (2.6e)

pv|pv| − πv = 0 ∀ v ∈ V, (2.6f)

πv ≤ πv ≤ πv ∀ v ∈ V, (2.6g)

q
a
≤ qa ≤ qa ∀ a ∈ AX , (2.6h)

y
a
≤ ya ≤ ya ∀ a ∈ AX , (2.6i)

pv, πv ∈ R ∀ v ∈ V, (2.6j)

qa, ya ∈ R ∀ a ∈ AX , (2.6k)

xa ∈ {0, 1} ∀ a ∈ AX , (2.6l)

x ∈ X . (2.6m)

The objective function (2.6a) calculates the extension costs for those new pipes that are actually built.
The indicator constraints (2.6b) are switching on only those pressure-flow coupling constraints for arcs
that are actually used. Constraints (2.6c) represent the operating range of compressors and control
valves. The indicator constraints (2.6d) forbid flow on those arcs that are not used. These indicator
constraints are handled by our numerical solver SCIP by a special purpose constraint handler. Hence it
is not necessary to reformulate by, for example, big-M -constraints and further binary variables. The node
flow conservation constraints (also called Kirchhoff’s constraints) are defined in (2.6e). The pressure and
squared pressure coupling are modeled by constraints (2.6f). Constraints (2.6g) – (2.6i) define the trivial
bounds on the variables, and constraints (2.6j) – (2.6l) specify the continuous or discrete range of the
variables. Constraint (2.6m) ensures that only a subset of all discrete decisions is feasible.

For a given nomination s, the topology optimization problem (2.6) is to find a cost optimal selection of
new network elements such that the transmission of the specific flow s in the transport network (V,AX)
is feasible. Recall that we only consider a finite number of extensions throughout this paper. Otherwise,
if this transport is not possible, the nomination s is infeasible.
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3 Sufficient Pruning Conditions for the Topology Optimization Problem

The topology optimization problem (2.6) can be solved with a branch-and-cut framework as implemented
in MINLP solvers such as Antigone [17], Baron [26] or SCIP [23]. The solver will iteratively branch on
binary and integral decision variables, while also spatial branching on continuous variables is performed
[28]. After several subsequent branches, all integer and binary variables are fixed. The remaining problem
is of special interest in this section. Let A′ contain all arcs where the flow is not fixed to zero, i.e.,
A′ = {a ∈ AX | xa = 1}. We set δ+A′(v) := {(v, w) ∈ A′ | w ∈ V } and δ

−
A′(v) := {(w, v) ∈ A′ | w ∈ V } for

v ∈ V . The remaining problem, which might still be infeasible with respect to the nonlinear constraints,
then is as follows:

∃ q, π, p, y (3.1a)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (3.1b)∑
a∈δ+

A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, (3.1c)

Aa (qa, pv, pw)
T ≤ ba ∀ a = (v, w) ∈ A′, (3.1d)

pv|pv| − πv = 0 ∀ v ∈ V, (3.1e)

πv ≤ πv ∀ v ∈ V, (3.1f)

πv ≥ πv ∀ v ∈ V, (3.1g)

qa ≤ qa ∀ a ∈ A′, (3.1h)

qa ≥ qa ∀ a ∈ A′, (3.1i)

ya ≤ ya ∀ a ∈ A′, (3.1j)

ya ≥ ya ∀ a ∈ A′, (3.1k)

pv, πv ∈ R ∀ v ∈ V, (3.1l)

qa, ya ∈ R ∀ a ∈ A′. (3.1m)

This problem (3.1) will be referred to as active transmission problem in the following. It is a non-
convex feasibility problem due to constraints (3.1b). For simplicity we assume w.l.o.g. that (V,A′) is a
connected graph. If this is not the case, we split the active transmission problem such that we obtain
one problem for each connected component.

The main Theorem 1 (see Section 3.2) of this paper states: The active transmission problem (3.1)
is infeasible if the infeasibility detection MILP (3.8) (as defined in Section 3.1) is infeasible or has
optimal objective value zero. Hence the infeasibility of the non-convex active transmission problem can be
certified by solving an MILP. This result provides an efficient bounding procedure for the aforementioned
branch-and-cut framework for solving (2.6): Whenever a node of the branch-and-bound tree is considered
with all integral variables being fixed we consider the corresponding active transmission problem. We
solve the infeasibility detection MILP (3.8) and prune the current node in case that infeasibility of the
active transmission problem is certified.

3.1 Definition of the Infeasibility Detection MILP

We give the following definition in order to obtain the relation (3.3) before focussing on the infeasibility
detection MILP (3.8):

Definition 1. Let (V,E) be the undirected version of (V,A′) obtained by removing the orientation of the
arcs a ∈ A′. This way each arc a ∈ A′ uniquely corresponds to an edge in e ∈ E and vice versa. Let r be
any node in V . For a node v ∈ V denote by Pr(v) an undirected path from r to v. Let v1, . . . , vn be the
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nodes of this path, e1, . . . , en−1 the edges and a1, . . . , an−1 the corresponding arcs. Recall our assumption
that (V,A′) is connected which means that (V,E) is connected, too. We define

γr,v :=

 ∏
i:ai=(vi,vi+1)

γai

 ∏
i:ai=(vi+1,vi)

γ−1ai

 .

We have γr,v > 0 as γa > 0 for every arc a ∈ A′. The definition is actually independent of the path
Pr(v). To see this, let P ′ be a different r-v-path in (V,E). Consider the cycle C from r to v on path
P , and back from v to r on path P ′ in reverse order. Denote the reverse path of P ′ by Q′. Denote the
nodes of this path Q′ by ṽ1, . . . , ṽm with ṽ1 = v and ṽm = r, the edges by ẽ1, . . . , ẽm−1 and the arcs by
ã1, . . . , ãm−1. According to our assumption on γa, a ∈ A, in Section 2 we have

1 =

 ∏
i:ai=(vi,vi+1)

γai

 ∏
i:ai=(vi+1,vi)

γ−1ai

 ∏
i:ãi=(ṽi+1,ṽi)

γãi

 ∏
i:ãi=(ṽi,ṽi+1)

γ−1ãi

 .

Hence γr,v is uniquely defined.
Using this value γr,v we define the function π′v by

π′v(π) := γr,v πv (3.2)

for every node v ∈ V . As a consequence of (3.2) we obtain lower and upper bounds of π′v(π) from
π′v := π′v(π) and π

′
v := π′v(π), respectively, for each node v ∈ V .

From elementary calculations it follows that

π′v(π)− π′w(π) = γr,vπv − γr,w︸︷︷︸
=γr,vγa

πw = γr,v (πv − γaπw) (3.3)

holds for each arc a = (v, w) ∈ A′. Throughout this section we use γr,v from Definition 1 and the function
π′v(π).

Now we turn to the definition of the infeasibility detection MILP. The flow conservation constraint (3.1c),
constraint (3.7) and (in)equality (3.5) will form the main part of this MILP. For a motivation we consider
a feasible solution (q∗, π∗, p∗, y∗) for the active transmission problem (3.1) and another (possibly infeasi-
ble) solution (q̃, π̃, p̃, ỹ) fulfilling at least constraint (3.1b), (3.1c) and (3.1e). From constraint (3.1b) we
obtain

αaq
∗
a|q∗a|ka − βay∗a − (π∗v − γaπ∗w) = 0,

αaq̃a|q̃a|ka − βaỹa − (π̃v − γaπ̃w) = 0,
(3.4)

for every arc a = (v, w) ∈ A′. Using π′ we derive from (3.4):

(π′v(π
∗)− π′v(π̃))− (π′w(π

∗)− π′w(π̃)) + γr,vβa(y
∗
a − ỹa)

= γr,v(π
∗
v − γaπ∗w + βay

∗
a − (π̃v − γaπ̃w + βaỹa))

= γr,v αa(q
∗
a|q∗a|ka − q̃a|q̃a|ka)

> 0 if αa(q∗a − q̃a) > 0,

= 0 if αa(q∗a − q̃a) = 0,

< 0 if αa(q∗a − q̃a) < 0,

for every arc a = (v, w) ∈ A′. We write this inequality for short as

sv − sw + sa


> 0 if αa(q∗a − q̃a) > 0,

= 0 if αa(q∗a − q̃a) = 0,

< 0 if αa(q∗a − q̃a) < 0.

(3.5)

Here sa corresponds to γr,vβa(y∗a − ỹa) and sv to π′v(π∗)− π′v(π̃).
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For the node potential π′ we observe after identifying xv with π′v(π∗)− π′v(π̃) the conditions

xv ∈ R if πv < π̃v < πv,

xv ≤ 0 if π̃v = πv,

xv < 0 if π̃v > πv, (3.6)
xv ≥ 0 if πv = π̃v,

xv > 0 if πv > π̃v.

We write these conditions (3.6) as a single constraint

x+v − x−v − xv − κv z = 0 with 0 ≤ x+v ≤ x+v , 0 ≤ x−v ≤ x−v , z > 0 (3.7)

where the variable bounds and κv are defined as

x+v :=

{
0− if π̃v ≥ πv,
∞ else,

x−v :=

{
0 if π̃v ≤ πv,
∞ else,

κv :=


1 if π̃v > πv,

−1 if π̃v < πv,

0 else,

for each node v ∈ V .
As stated earlier, the flow conservation constraint (3.1c), constraint (3.7) and (in)equality (3.5) form

the main part of the infeasibility detection MILP. Keeping this idea in mind, the MILP, which contains
indicator constraints, is defined as follows:

Definition 2. Let (q̃, π̃, p̃, ỹ) be a solution of the active transmission problem (3.1) fulfilling at least
constraint (3.1b), (3.1c) and (3.1e). The infeasibility detection MILP is defined as follows:

max z (3.8a)

s. t.
∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, (3.8b)

x+v − x−v − xv − κv z = 0 ∀ v ∈ V, (3.8c)
κ̃a (qa − q̃a) > 0 =⇒ xv − xw + xa ≥ 0 ∀ a = (v, w) ∈ A′, (3.8d)
κ̃a (qa − q̃a) = 0 =⇒ xv − xw + xa = 0 ∀ a = (v, w) ∈ A′, (3.8e)
κ̃a (qa − q̃a) < 0 =⇒ xv − xw + xa ≤ 0 ∀ a = (v, w) ∈ A′, (3.8f)
αa (qa − q̃a) > 0 =⇒ sv − sw + sa ≥ κaz ∀ a = (v, w) ∈ A′, (3.8g)
αa (qa − q̃a) = 0 =⇒ sv − sw + sa = 0 ∀ a = (v, w) ∈ A′, (3.8h)
αa (qa − q̃a) < 0 =⇒ sv − sw + sa ≤ κaz ∀ a = (v, w) ∈ A′, (3.8i)

q
a
≤ qa ≤ qa ∀ a ∈ A′, (3.8j)

sa ≤ sa ≤ sa ∀ a ∈ A′, (3.8k)
xa ≤ xa ≤ xa ∀ a ∈ A′, (3.8l)

x+v ≤ x+v ∀ v ∈ V, (3.8m)

x−v ≤ x−v ∀ v ∈ V, (3.8n)
xv, sv ∈ R ∀ v ∈ V, (3.8o)

x+v , x
−
v ∈ R≥0 ∀ v ∈ V, (3.8p)

xa, sa, qa ∈ R ∀ a ∈ A′, (3.8q)
z ∈ R≥0. (3.8r)

Note that this problem is not a mixed-integer nonlinear optimization problem due to strict inequality in
the constraints (3.8d), (3.8f), (3.8g) and (3.8i). Nevertheless, for simplicity, we state the infeasibility
detection MILP in the form of (3.8) and give an equivalent reformulation in Remark 1.

Constraint (3.8c) originates from (3.7) by expressing z > 0 as objective. Similarly (3.8g)–(3.8i)
originate from (3.5). Constraints (3.8d)–(3.8f) form a weaker version of (3.5).
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For the definition of this MILP we make use of different constants which are defined below. Especially
the bounds on sa for an arc a = (v, w) ∈ A′ originate from the previously described relation that sa
corresponds to γr,vβa(y∗a − ỹa):

sa :=

{
0− if βaỹa = max{βaya, βaya},
∞ else

∀ a ∈ A′,
a = (v, w),

(3.9a)

sa :=

{
0 if βaỹa = min{βaya, βaya},
−∞ else

∀ a ∈ A′,
a = (v, w),

(3.9b)

xa :=


0− if βaỹa = max{βaya, βaya},
0− if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,

∞− else

∀ a ∈ A′,
a = (v, w),

(3.9c)

xa :=


0 if βaỹa = min{βaya, βaya},
0 if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0,

−∞ else

∀ a ∈ A′,
a = (v, w),

(3.9d)

x+v :=

{
0− if π̃v ≥ πv,
∞− else

∀ v ∈ V, (3.9e)

x−v :=

{
0 if π̃v ≤ πv,
∞− else

∀ v ∈ V, (3.9f)

κv :=


1 if π̃v > πv,

−1 if π̃v < πv,

00− else
∀ v ∈ V, (3.9g)

κa :=


−1 if αa > 0, q̃a > qa,

1 if αa > 0, q̃a < q
a
,

00− else
∀ a ∈ A′, (3.9h)

κ̃a :=


1− if αa > 0,

1 if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) 6= 0,

00− else

∀ a ∈ A′. (3.9i)

Remark 1. We roughly describe how the MILP formulation of (3.8) is obtained. At first we replace
(qa − q̃a) by ∆a for every arc a ∈ A′. As q̃ fulfills the flow conservation (3.1c) we obtain that ∆ is a
circulation, i.e., we replace the flow conservation (3.8b) by∑

a∈δ+
A′ (v)

∆a −
∑

a∈δ−
A′ (v)

∆a = 0 ∀ v ∈ V.

We define bounds for ∆ by

∆a :=

{
∞ if q̃a < qa,

0 if q̃a = qa,
∆a :=

{
0 if q̃a = q

a
,

−∞ if q̃a > q
a
,

and replace (3.8j) by ∆ ≤ ∆ ≤ ∆. Then it is easy to see, as ∆ is a circulation, that ∆ can be chosen
such that either ∆a = 0 or |∆a| ≥ 1 holds. We introduce binary variables xFWa , xBWa , sFWa , sBWa ∈ {0, 1}
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in combination with indicator constraints as follows:

xFWa = 1 =⇒ κ̃a∆a ≥ 1 ∀ a ∈ A′,
xFWa = 0 =⇒ κ̃a∆a ≤ 0 ∀ a ∈ A′,

xBWa = 1 =⇒ κ̃a∆a ≤ −1 ∀ a ∈ A′,
xBWa = 0 =⇒ κ̃a∆a ≥ 0 ∀ a ∈ A′,

sFWa = 1 =⇒ αa∆a ≥ 1 ∀ a ∈ A′,
sFWa = 0 =⇒ αa∆a ≤ 0 ∀ a ∈ A′,

sBWa = 1 =⇒ αa∆a ≤ −1 ∀ a ∈ A′,
sBWa = 0 =⇒ αa∆a ≥ 0 ∀ a ∈ A′.

Then (3.8d)–(3.8i) are replaced by

xFWa = 1 =⇒ xv − xw + xa ≥ 0 ∀ a = (v, w) ∈ A′,
xFWa = 0, xBWa = 0 =⇒ xv − xw + xa = 0 ∀ a = (v, w) ∈ A′,

xBWa = 1 =⇒ xv − xw + xa ≤ 0 ∀ a = (v, w) ∈ A′,
sFWa = 1 =⇒ sv − sw + sa ≥ κaz ∀ a = (v, w) ∈ A′,

sFWa = 0, sBWa = 0 =⇒ sv − sw + sa = 0 ∀ a = (v, w) ∈ A′,
sBWa = 1 =⇒ sv − sw + sa ≤ κaz ∀ a = (v, w) ∈ A′.

All these reformulations yield an MILP with indicator constraints which is equivalent to (3.8).

3.2 Certifying Infeasibility of the Active Transmission Problem by Solving an MILP

This section addresses exclusively the proof of the following theorem:

Theorem 1. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least
constraint (3.1b), (3.1c) and (3.1e). If the infeasibility detection MILP (3.8) is infeasible or has optimal
objective value zero, then the active transmission problem (3.1) is infeasible.

Proof: Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least con-
straint (3.1b), (3.1c) and (3.1e). If the infeasibility detection MILP (3.8), which depends on (q̃, π̃, p̃, ỹ),
is infeasible, then there does not exist a flow vector q′ ∈ RA′ which fulfills∑

a∈δ+
A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, q
a
≤ qa ≤ qa ∀ a ∈ A′. (3.10)

This can be seen as follows: Otherwise, if there exists a vector q′ fulfilling (3.10), then (q′, 0) is a feasible
solution for (3.8). We conclude that the active transmission problem (3.1) is infeasible if MILP (3.8) is
infeasible.

Now assume that the MILP (3.8) has an optimal solution with objective value zero. We prove that
this implies that the active transmission problem (3.1) is infeasible. Therefor we assume that the active
transmission problem has a feasible solution (q∗, π∗, p∗, y∗) and show that there exists a feasible solution
(q∗, x∗, s∗, z∗) to MILP (3.8) with positive objective, i.e., z∗ > 0. In the following we describe how this
solution (q∗, x∗, s∗, z∗) is defined. First we give the definition of s∗ and z∗ and show that (3.8g)–(3.8i)
and (3.8k) are fulfilled. Then we turn to the definition of x∗ and prove that (3.8c)–(3.8f) and (3.8l)–(3.8n)
and (3.8p) are fulfilled. As the flow vector q∗ is feasible for the flow conservation (3.8b) and the bound
constraints (3.8j) we conclude that (q∗, x∗, s∗, z∗) is feasible for MILP (3.8).

Recall that r was used for the definition of γr,v for every node v ∈ V . The vector (s∗, z∗) is defined
as follows:

s∗v := π′v(π
∗)− π′v(π̃) ∀ v ∈ V,
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s∗a := γr,vβa(y
∗
a − ỹa) ∀ a = (v, w) ∈ A′,

z∗ := min
{
1,min

{
|γr,vαa(q∗a|q∗a|ka − q̃a|q̃a|ka)| |a = (v, w) ∈ A′ : αaq∗a 6= αaq̃a

}}
.

Let us now prove that (s∗, z∗) is feasible for (3.8g)–(3.8i) and (3.8k). First we prove that s∗a ≤ sa holds
for every arc a ∈ A′. Therefor let a ∈ A′. By definition (3.9a) we have to show s∗a ≤ 0 if βaỹa =
max{βaya, βaya}. This means that one of the following three cases applies:

1. ỹa = ya, βa > 0⇒ y∗a ≤ ỹa ⇒ s∗a ≤ 0,
2. ỹa = y

a
, βa < 0⇒ y∗a ≥ ỹa ⇒ s∗a ≤ 0,

3. βa = 0⇒ s∗a = 0.

Hence s∗a ≤ 0 if βaỹa = max{βaya, βaya}. Similarly we prove that s∗a ≥ sa holds for every arc a ∈ A′.
We conclude that s∗ is feasible for (3.8k). Now we turn to the constraints (3.8g)–(3.8i). We consider an
arc a = (v, w) ∈ A′ and obtain:

s∗v − s∗w + s∗a = π′v(π
∗)− π′w(π∗) + γr,vβay

∗
a − (π′v(π̃)− π′w(π̃) + γr,vβaỹa)

= γr,vαa(q
∗
a|q∗a|ka − q̃a|q̃a|ka)

> 0 if αa(q∗a − q̃a) > 0,

= 0 if αa(q∗a − q̃a) = 0,

< 0 if αa(q∗a − q̃a) < 0.

We conclude that (s∗, z∗) is feasible for (3.8g)–(3.8i) and (3.8k).
By Lemma 2 (stated in the remaining part of this section) there exists a vector x∗ for z∗ such

that (x∗, z∗) is feasible for (3.8c)–(3.8f) and (3.8l)–(3.8n) and (3.8p). Furthermore the flow conservation
constraint (3.8b) and the bound constraints (3.8j) are fulfilled by q∗ as (q∗, π∗, p∗, y∗) is a feasible solution
for the active transmission problem (3.1). Hence (q∗, x∗, s∗, z∗) is a feasible solution for MILP (3.8).

We finally show that z∗ > 0. Because of γr,v > 0 for all nodes v ∈ V we have that αaq∗a 6= αaq̃a for
an arc a = (v, w) ∈ A′ implies γr,vαa(q∗a|q∗a|ka − q̃a|q̃a|ka) 6= 0. This proves z∗ > 0. 2

In the remaining part of this section we prove Lemma 2 which was used in the previous proof of
Theorem 1. Therefor start with proving an auxiliary lemma.

Lemma 1. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least con-
straints (3.1e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible solution for (3.1). There exists a partition of
the node set V =M1 ∪̇M2 ∪̇M3 fulfilling the following conditions:

– ∀ a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M3):

(π′v(π
∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)),

@k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, (Aa)(k,1)(q
∗
a − q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,

– ∀ a = (v, w) ∈ δ−A′(M1) ∪ δ+A′(M3):

(π′v(π
∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)),

@k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, (Aa)(k,1)(q
∗
a − q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

Furthermore it holds

{v ∈ V | π̃v > πv} ⊆M1, {v ∈ V | π̃v ≤ πv} ∩M1 = ∅,
{v ∈ V | π̃v < πv} ⊆M3, {v ∈ V | π̃v ≥ πv} ∩M3 = ∅.

Proof: Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least con-
straint (3.1b), (3.1c) and (3.1e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible solution for (3.1). We
iteratively construct the sets M1,M2,M3 with V =M1 ∪̇M2 ∪̇M3 as follows:
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1. Initially we set M1 := {v ∈ V | π̃v > πv}. Then we iteratively extend this set by considering every
arc a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M1). If this arc does not fulfill one of the following cases, then we
either add v to M1 if v /∈ M1 and set the predecessor p(v) := w or we add w to M1 if w /∈ M1 and
set p(w) := v.
Case a = (v, w) ∈ δ+A′(M1) :

(π′v(π
∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)), (3.11a)

@k ∈ {1, . . . νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1)(q

∗
a−q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0.

(3.11b)

Case a = (v, w) ∈ δ−A′(M1) :

(π′v(π
∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)), (3.12a)

@k ∈ {1, . . . νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1)(q

∗
a−q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

(3.12b)

This way we obtain the node set M1 such that every arc a = (v, w) ∈ δ+A′(M1) fulfills (3.11) and
every arc a = (v, w) ∈ δ−A′(M1) fulfills (3.12). Furthermore it holds

M1 ∩ {v ∈ V | π̃v ≤ πv} = ∅.

This can be seen as follows: If π̃v ≤ πv holds for every node v ∈ V , then M1 = ∅ by construction.
Otherwise assume thatM1 contains a node t with π̃t ≤ πt. Then we consider the nodes t, p(t), p(p(t)),
. . ., s where s ∈M1 has no predecessor. These nodes define the nodes of an edge-disjoint s-t-path P in
the undirected graph (M1, E

′[M1]) which originates from (M1, A
′[M1]) by removing the orientation

of each arc a ∈ A′[M1]. Note that (M1, E
′[M1]) might contain multiple parallel edges. This way

each arc a ∈ A′[M1] corresponds uniquely to an edge e ∈ E′[M1] and vice versa. Let v1, . . . , vn+1

be the nodes and e1, . . . , en with ei = {vi, vi+1} be the ordered edges of P and a1, . . . , an be the
corresponding arcs in (V,A′[M1]). We have that for every arc ai, i = 1, . . . , n neither (3.11) nor (3.12)
applies because otherwise t would not be contained in M1 by construction of M1. This means that
one of the following cases holds for every arc ai, i = 1, . . . , n:
Case (3.11a) and (3.12a) do not apply: Node potential loss estimation derived as (3.11a) and

(3.12a) do not apply, hence:

π′vi(π
∗)− π′vi+1

(π∗) ≥ π′vi(π̃)− π
′
vi+1

(π̃).

Case (3.11b) and (3.12b) do not apply: In this case we differentiate between the orientation of
arc ai.
– If arc ai = (vi, vi+1) then, as (3.11b) does not apply, there exists an index k ∈ {1, . . . , νai}

such that [Aai(q̃ai , p̃vi , p̃vi+1
)]k ≥ [bai ]k holds with (Aai)(k,1)(q

∗
ai − q̃ai) ≥ 0, (Aai)(k,2) < 0,

(Aai)(k,3) > 0. We rewrite this inequality as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a2 ∈ R≥0 and
a1, a3 ∈ R. Then we derive the estimation

p̃vi − a2p̃vi+1
≤ a1q̃ai − a3 ≤ a1q∗ai − a3 ≤ p

∗
vi − a2p

∗
vi+1

.

– If arc ai = (vi+1, vi) then, as (3.12b) does not apply, there exists an index k ∈ {1, . . . , νai}
such that [Aai(q̃ai , p̃vi+1 , p̃vi)]k ≥ [bai ]k holds with (Aai)(k,1)(q

∗
ai − q̃ai) ≥ 0, (Aai)(k,2) > 0,

(Aai)(k,3) < 0. We rewrite this inequality as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a2 ∈ R≥0 and
a1, a3 ∈ R. Again we derive the estimation

p̃vi − a2p̃vi+1
≤ a1q̃ai − a3 ≤ a1q∗ai − a3 ≤ p

∗
vi − a2p

∗
vi+1

.

Because of the coupling constraint p̃v|p̃v| = π̃v relating the pressure and node potential variables for
each node v ∈ V , by using the previous estimations, we obtain:

π̃v1 > π∗v1 ⇒ π̃v2 > π∗v2 , . . . , π̃vn+1
> π∗vn+1

,

π̃vn+1
< π∗vn+1

⇒ π̃vn < π∗vn , . . . , π̃v1 < π∗v1 .
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The path P is chosen such that the start node v1 violates its upper node potential bound, i.e.,
π̃v1 > πv1 and for the end node vn+1 it holds π̃vn+1

≤ πvn+1
. Hence the first of the above cases

applies. We conclude that π∗ violates a node potential bound in vn+1 which is a contradiction to the
assumption that (q∗, π∗, p∗, y∗) is feasible for the active transmission problem.

2. In a second step we initially set M3 := {v ∈ V | πv < πv}. We now concentrate on the graph
(V \M1, A

′[V \M1]). Again we iteratively consider each arc a = (v, w) ∈ δ+A′(M3) ∪ δ−A′(M3). If
neither (3.11) applies for an ingoing arc nor (3.12) applies for an outgoing arc, then we add v to M3

if v /∈ M3 and w if w /∈ M3. By definition it follows M1 ∩M3 = ∅. By a similar reasoning as in the
previous item we conclude

M3 ∩ {v ∈ V | π̃v ≥ πv} = ∅.
3. In a third step we define M2 := {v ∈ V | v /∈ M1 ∪M3}. The previously defined sets then have the

property V =M1 ∪̇M2 ∪̇M3.

2

Lemma 2. Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least con-
straint (3.1b) and (3.1e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible solution for (3.1) and 0 ≤ z∗ ≤ 1.
There exists a vector x∗ = (x+v , x

−
v , xv, xa)

∗
v∈V,a∈A′ with x∗v

+, x∗v
− ∈ R≥0, x∗v, x∗a ∈ R for v ∈ V and

a ∈ A′ with x∗ 6= 0 which is feasible for (3.8c)–(3.8f) and (3.8l)–(3.8n).

Proof: Let (q̃, π̃, p̃, ỹ) be a solution for the active transmission problem (3.1) fulfilling at least con-
straint (3.1b) and (3.1e). Furthermore let (q∗, π∗, p∗, y∗) be a feasible solution for the active transmission
problem (3.1). For 0 ≤ z∗ ≤ 1 we describe how to define x∗ = (xv, xa)

∗
v∈V,a∈A′ which is feasible for

(3.8d)–(3.8f) and (3.8l).
By Lemma 1 there exists a partition V =M1 ∪̇M2 ∪̇M3 such that the following holds:

– ∀ a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M3):

(π′v(π
∗)− π′w(π∗)) < (π′v(π̃)− π′w(π̃)),

@k ∈ {1, . . . , νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1)(q

∗
a−q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0.

(3.13)

– ∀ a = (v, w) ∈ δ−A′(M1) ∪ δ+A′(M3):

(π′v(π
∗)− π′w(π∗)) > (π′v(π̃)− π′w(π̃)),

@k ∈ {1, . . . , νa} : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1)(q

∗
a−q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

(3.14)

From this we obtain an estimation which is needed in the following:

a = (v, w) ∈ δ+(M1) ∪ δ−A′(M3)

⇒ αaq
∗
a|q∗a|ka − βay∗a = γ−1r,v (π

′
v(π
∗)− π′w(π∗))

< γ−1r,v (π
′
v(π̃)− π′w(π̃)) = αaq̃a|q̃a|ka − βaỹa

(3.15a)

a = (v, w) ∈ δ−(M1) ∪ δ+A′(M3)

⇒ αaq
∗
a|q∗a|ka − βay∗a = γ−1r,v (π

′
v(π
∗)− π′w(π∗))

> γ−1r,v (π
′
v(π̃)− π′w(π̃)) = αaq̃a|q̃a|ka − βaỹa

(3.15b)

We use the sets M1,M2,M3 to define the values x∗v, v ∈ V and x∗a, a = (v, w) ∈ A′ as follows:

x∗v :=


−1 if v ∈M1,

0 if v ∈M2,

1 if v ∈M3,

(3.16a)

x∗a :=


0 if a ∈ δ+A′(M1) ∪ δ−A′(M3) : κ̃a(q

∗
a − q̃a) < 0,

0 if a ∈ δ−A′(M1) ∪ δ+A′(M3) : κ̃a(q
∗
a − q̃a) > 0,

x∗w − x∗v else.
(3.16b)
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We proceed by showing that this definition is feasible for constraints (3.8d)–(3.8f) and (3.8l). We have
x∗v = x∗w and x∗a = 0 for all arcs a = (v, w) ∈ A′(M1 : M1) ∪ A′(M2 : M2) ∪ A′(M3 : M3). Thus
(3.8d)–(3.8f) and (3.8l) are fulfilled for these arcs. Let us now turn to the remaining arcs. At first we
observe:

– For every arc a ∈ A′(M1 :M2) ∪A′(M2 :M3) ∪A′(M1 :M3) it holds a ∈ δ+A′(M1) ∪ δ−A′(M3).
– For every arc a ∈ A′(M2 :M1) ∪A′(M3 :M1) ∪A′(M3 :M2) it holds a ∈ δ−A′(M1) ∪ δ+A′(M3).

These are the two cases that we distinguish in the following:

Case q∗a < q̃a : We distinguish two cases.
Case a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1.

– By (3.8f) κ̃a 6= 0 means xv − xw + xa ≤ 0 must be fulfilled by x∗. We have κ̃a 6= 0 ⇒ κ̃a >
0⇒ κ̃a(q

∗
a− q̃a) < 0⇒ x∗a = 0 by (3.16b). Hence it holds x∗v−x∗w+x∗a ≤ 0 and xa ≤ x∗a ≤ xa.

– By (3.8e) κ̃a = 0means xv−xw+xa = 0must be fulfilled by x∗. We have x∗a = −(x∗v−x∗w) > 0
by (3.16b). Hence it holds x∗v − x∗w + x∗a = 0. κ̃a = 0 means αa = 0 by (3.9i). This in
combination with (3.15a) implies βay∗a > βaỹa. By (3.13) there exists no index k so that
[Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q

∗
a − q̃a) ≥ 0,(Aa)(k,2) < 0, (Aa)(k,3) > 0. This

and the conclusions that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) 6= 0 (because of κ̃a = 0) especially implies that there exists no index k such that
[Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≥ 0,(Aa)(k,2) < 0 and (Aa)(k,3) > 0. From this we
conclude xa =∞ by (3.9c). This yields xa ≤ 0 < x∗a < xa =∞.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+A′(M3) : In this case we have x∗v − x∗w ≥ 1.
– From κ̃a ≥ 0 it follows κ̃a(q∗a− q̃a) ≤ 0. Hence we obtain from (3.16b) that x∗a = −(x∗v−x∗w) ≤
−1 < 0 holds. By (3.8e) and (3.8f) xv −xw +xa ≤ 0 or xv −xw +xa = 0 must be fulfilled by
x∗, which is obviously true. By (3.15b) we have βay∗a < βaỹa. By (3.14) there exists no index
k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q

∗
a− q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

This especially means that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. Hence we have xa = −∞ by (3.9d). This yields
xa < x∗a ≤ 0 ≤ xa.

Case q∗a = q̃a : We distinguish two cases.
Case a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1. By (3.15a) we have

βay
∗
a > βaỹa.

– By (3.8e) xv − xw + xa = 0 must be fulfilled by x∗. Because of κ̃a(q∗a − q̃a) = 0 we have
x∗a = −(x∗v−x∗w) ≥ 1 > 0 by (3.16b). Hence x∗v−x∗w+x∗a = 0. By (3.13) there exists no index
k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q

∗
a− q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0.

This especially implies that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0. Hence xa = ∞ by (3.9c). So we obtain xa ≤ 0 <
x∗a < xa.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+A′(M3) : In this case we have x∗v−x∗w ≥ 1. By (3.15b) we have βay∗a <
βaỹa.
– By (3.8e) xv − xw + xa = 0 must be fulfilled by x∗. Because of κ̃a(q∗a − q̃a) = 0 we have
x∗a = −(x∗v−x∗w) ≤ −1 < 0 by (3.16b). Hence x∗v−x∗w+x∗a = 0. By (3.14) there exists no index
k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q

∗
a− q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

This especially implies that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. Hence xa = −∞ by (3.9d). This yields xa < x∗a <
0 ≤ xa.

Case q∗a > q̃a : We distinguish two cases:
Case a = (v, w) ∈ δ+A′(M1) ∪ δ−A′(M3) : In this case we have x∗v − x∗w ≤ −1. By (3.15a) we have

βay
∗
a > βaỹa.

– From κ̃a ≥ 0 it follows κ̃a(q∗a− q̃a) ≥ 0. Hence we obtain from (3.16b) that x∗a = −(x∗v−x∗w) ≥
1 > 0 holds. By (3.8d) and (3.8e) xv−xw+xa ≥ 0 or xv−xw+xa = 0 must be fulfilled by x∗,
which is obviously true. By (3.13) there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k,
with (Aa)(k,1)(q

∗
a − q̃a) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0. This especially implies that there

exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1) ≥ 0, (Aa)(k,2) < 0,
(Aa)(k,3) > 0. Hence xa =∞ by (3.9c). This yields xa ≤ 0 < x∗a <∞ = xa.

Case a = (v, w) ∈ δ−A′(M1) ∪ δ+A′(M3) : In this case we have x∗v − x∗w ≥ 1.
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– By (3.8d) κ̃a 6= 0 means xv − xw + xa ≥ 0 must be fulfilled by x∗. We have κ̃a 6= 0 ⇒ κ̃a >
0 ⇒ κ̃a(q

∗
a − q̃a) > 0 ⇒ x∗a = 0 by (3.16b). Hence it holds x∗v − x∗w + x∗a = x∗v − x∗w ≥ 1 ≥ 0

and xa ≤ x∗a ≤ xa.
– By (3.8e) κ̃a = 0 means xv − xw + xa = 0 must be fulfilled by x∗. By (3.16b) we have
x∗a = −(x∗v − x∗w) < 0 which implies x∗v − x∗w + x∗a = 0. κ̃a = 0 means αa = 0. This implies
in combination with (3.15b) that βay∗a < βaỹa holds. By (3.14) there exists no index k such
that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with (Aa)(k,1)(q

∗
a − q̃a) ≥ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0.

Additionally κ̃a = 0 yields that @k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k with (Aa)(k,1) 6= 0 by (3.9i).
This especially implies that there exists no index k such that [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with
(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0. Hence xa = −∞ by (3.9d). This yields xa < x∗a <
0 ≤ xa.

This case discussion proves that (x∗v, x∗a)v∈V,a∈A′ is feasible for (3.8d)–(3.8f) and (3.8l). We set

x∗v
+ := max{0, x∗v + κvz

∗} ∀ v ∈ V,
x∗v
− := max{0,−x∗v − κvz∗} ∀ v ∈ V.

(3.17)

From this definition it follows that (3.8c) is fulfilled. We prove that this definition is feasible for (3.8m)
and (3.8n). Therefor we make use of

{v ∈ V | π̃v > πv} ⊆M1 {v ∈ V | π̃v ≤ πv} ∩M1 = ∅, (3.18a)
{v ∈ V | π̃v < πv} ⊆M3 {v ∈ V | π̃v ≥ πv} ∩M3 = ∅, (3.18b)

which holds by Lemma 1. We consider the bound constraints (3.8m) and (3.8n) separately:

– We show that it holds x∗v
+ ≤ x+v for every node v ∈ V : Let v ∈ V . According to (3.9e) we have to

show x∗v
+ = 0 if π̃v ≥ πv. In this case it holds v ∈M1 ∪M2 by (3.18b). We distinguish two cases:

π̃v = πv
(3.9g)⇒ κv = 0

⇒ x∗v + κvz
∗ = x∗v

(3.16a),(3.18b)
≤ 0⇒ x∗v

+ = max{0, x∗v + κvz
∗
v} = 0.

π̃v > πv
(3.9g),(3.18a),(3.16a)⇒ κv = 1, x∗v = −1

⇒ x∗v + κvz
∗ = −1 + z∗

z∗∈[0,1]
≤ 0⇒ x∗v

+ = max{0, x∗v + κvz
∗} = 0.

– We show that it holds x∗v
− ≤ x−v for every node v ∈ V : Let v ∈ V . According to (3.9f) we have to

show x∗v
− = 0 if π̃v ≤ πv. In this case it holds v ∈M3 ∪M2 by (3.18a). We distinguish two cases:

π̃v = πv
(3.9g)⇒ κv = 0

⇒ x∗v + κvz
∗ = x∗v

(3.16a),(3.18a)
≥ 0⇒ x∗v

− = min{0, x∗v + κvz
∗} = 0.

π̃v < πv
(3.9g),(3.18b),(3.16a)⇒ κv = −1, x∗v = 1

⇒ x∗v + κvz
∗ = 1− z∗

z∗∈[0,1]
≥ 0⇒ x∗v

− = min{0, x∗v + κvz
∗} = 0.

We conclude that the definition (3.16a), (3.16b), and (3.17) yield a vector x∗ which is feasible for (3.8c)–
(3.8f) and (3.8l)–(3.8n). 2

4 Interpretation of the Infeasibility Detection MILP

In this section we give an illustrative explanation of the formulation of the infeasibility detection MILP (3.8).
Therefor we look at the dual problem of (3.8) for a fixed flow vector q′ ∈ RA′ which fulfills the flow
conservation and bound constraints (3.10), i.e.,∑

a∈δ+
A′ (v)

q′a −
∑

a∈δ−
A′ (v)

q′a = dv ∀ v ∈ V, q
a
≤ q′a ≤ qa ∀ a ∈ A′.
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Let (q̃, π̃, p̃, ỹ) be a solution of the active transmission problem (3.1) fulfilling at least constraint (3.1b),
(3.1c) and (3.1e). Assume that the MILP (3.8) has optimal objective value zero. By Theorem 1 we
conclude that there do not exist vectors π′ ∈ RV , p′ ∈ RV , y′ ∈ RA′ such that (q′, π′, p′, y′) is feasible for
the active transmission problem (3.1). In the following we show an example demonstrating that especially
π′ ∈ RV with π ≤ π′ ≤ π cannot exist. Therefor we assume that (q′, π′, p′, y′) is a feasible solution for
(3.1) and derive a contradiction by comparing (q′, π′, p′, y′) and (q̃, π̃, p̃, ỹ).

As mentioned before we assume that MILP (3.8) has optimal objective value zero. This implies that
the following linear optimization problem is bounded because the feasible solution space forms a cone
(recall that q′ and q̃ are fixed):

max z (4.1)[
λv
]

s. t. x+v − x−v − xv − κv z = 0 ∀ v ∈ V,[
µa
]

xv − xw + xa − x+a κ̃a (q′a − q̃a) = 0 ∀ a = (v, w) ∈ A′,[
νa
]

sv − sw + sa − s+a αa (q′a − q̃a)− κaz = 0 ∀ a = (v, w) ∈ A′,
sa ≤ sa ≤ sa ∀ a ∈ A′,
xa ≤ xa ≤ xa ∀ a ∈ A′,

x+v ≤ x+v ∀ v ∈ V,
x−v ≤ x−v ∀ v ∈ V,

xv, sv ∈ R ∀ v ∈ V,
x+v , x

−
v ∈ R≥0 ∀ v ∈ V,

xa, sa ∈ R ∀ a ∈ A′,
x+a , s

+
a ∈ R≥0 ∀ a ∈ A′,
z ∈ R≥0.

In this notation we associated dual variables λv for each node v ∈ V and µa, νa for each arc a ∈ A′. As
(4.1) is bounded it follows that its dual is feasible. This dual is as follows:

∃λ, µ, ν (4.2a)

s. t.
∑

a∈δ+
A′ (v)

νa −
∑

a∈δ−
A′ (v)

νa = 0 ∀ v ∈ V, (4.2b)

∑
a∈δ+

A′ (v)

µa −
∑

a∈δ−
A′ (v)

µa − λv = 0 ∀ v ∈ V, (4.2c)

∑
v∈V :π̃v>πv

λv −
∑

v∈Vπ :π̃v<πv

λv +
∑
a∈A′

κa νa ≥ 1, (4.2d)

κ̃a(q
′
a − q̃a)µa ≥ 0 ∀ a ∈ A′, (4.2e)

αa(q
′
a − q̃a) νa ≥ 0 ∀ a ∈ A′, (4.2f)

λv ≤ λv ≤ λv ∀ v ∈ V, (4.2g)
µ
a
≤ µa ≤ µa ∀ a ∈ A′, (4.2h)

νa ≤ νa ≤ νa ∀ a ∈ A′, (4.2i)
µa, νa ∈ R ∀ a ∈ A′, (4.2j)

λv ∈ R ∀ v ∈ V. (4.2k)

Here the variable bounds are defined as

λv :=

{
∞− if π̃v ≥ πv,
0 else

∀ v ∈ V, (4.3a)

λv :=

{
−∞ if π̃v ≤ πv,
0 else

∀ v ∈ V, (4.3b)
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µa :=


∞− if βaỹa = max{βaya, βaya}
∞− if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≥ 0, (Aa)(k,2) < 0, (Aa)(k,3) > 0,

0 else

∀ a ∈ A′,
a = (v, w),

(4.3c)

µ
a
:=


−∞ if βaỹa = min{βaya, βaya}
−∞ if ∃k : [Aa (q̃a, p̃v, p̃w)]k ≥ [ba]k, with

(Aa)(k,1) ≤ 0, (Aa)(k,2) > 0, (Aa)(k,3) < 0,

0 else

∀ a ∈ A′,
a = (v, w),

(4.3d)

νa :=

{
∞− if βaỹa = max{βaya, βaya}
0 else

∀ a ∈ A′,
a = (v, w),

(4.3e)

νa :=

{
−∞ if βaỹa = min{βaya, βaya}
0 else

∀ a ∈ A′,
a = (v, w).

(4.3f)

Now let (λ∗, µ∗, ν∗) be a feasible solution for (4.2). The vectors ν∗ and µ∗ form a network flow by
constraints (4.2b) and (4.2c). For the following discussion we focus on the case that either µ∗ ≥ 0 if
λ∗ 6= 0 or ν∗ ≥ 0 holds. The case where these assumptions are not fulfilled can be led back to the
case fulfilling the assumptions by changing the orientation of some arcs. Our initial motivation for the
definition of MILP (3.8) was to look either for a path or a circuit as discussed in the following two cases:

Case λ∗ 6= 0: We split the network flow µ∗ into sets of flow along paths P1, . . . , Pm and flow along circuits
C1, . . . , Cn. This way we obtain from µ∗ ≥ 0 that there exist flow values µPi > 0, i = 1, . . . ,m and
µCi > 0, i = 1, . . . , n such that

µ∗a =
∑

i=1,...,m:
a∈A′(Pi)

µPi +
∑

i=1,...,n:
a∈A′(Ci)

µCi ∀ a ∈ A′.

Consider a path P` that starts in node v and ends in node w. Because of constraint (4.2d) the index
` can be chosen such that either π̃v > πv and π̃w ≤ πw or π̃v ≥ πv and π̃w < πw holds. Let the nodes
of P` be given by v1, . . . , vn+1 where v1 = v and vn+1 = w and connecting arcs by a1, . . . , an.
In order to show that (q′, π′, p′, y′) is not feasible for the active transmission problem (3.1) we dis-
tinguish two cases for each arc ai of the path P`:
1. In the case that βai ỹai = max{βaiyai , βaiyai} we obtain the following estimation from q̃ai ≤ q′ai

if αai 6= 0 (by (4.2e)) and βaiy′ai ≤ βai ỹai :

π̃vi − γai π̃vi+1
= αai q̃ai |q̃ai |kai − βai ỹai
≤ αai q′ai |q

′
ai |

kai − βaiy′ai = π′vi − γaiπ
′
vi+1

.

2. In the case that [Aai(q̃ai , p̃vi , p̃vi+1)]k ≥ [bai ]k holds for an index k with (Aai)(k,1) ≥ 0, (Aai)(k,2) <
0, (Aai)(k,3) > 0 we rewrite this inequality as a1q̃ai − a3 ≥ p̃vi − a2p̃vi+1 with a1 ∈ R≥0, a2 ∈ R>0

and a3 ∈ R. Then we derive the estimation (using (4.2e) and (3.9i), which yields a1 > 0⇒ q̃ai ≤
q′ai):

p̃vi − a2p̃vi+1
≤ a1q̃ai − a3 ≤ a1q′ai − a3 ≤ p

′
vi − a2p

′
vi+1

.

We note that at least one of the previous cases applies because of 0 < µ∗ai ≤ µai and (4.3c). Because
of the coupling constraints p̃v|p̃v| = π̃v and p′v|p′v| = π′v relating the pressure and node potential
variables for each node v ∈ V , we obtain:

π̃v1 > π′v1 ⇒ π̃v2 > π′v2 , . . . , π̃vn+1
> π′vn+1

, (4.4a)

π̃vn+1 < π′vn+1
⇒ π̃vn < π′vn , . . . , π̃v1 < π′v1 . (4.4b)

The path P` is chosen such that either the start node v1 or the end node vn+1 of path P` violates its
node potential bound, i.e., one of the following cases applies:

π̃v1 > πv1 and π̃vn+1
≤ πvn+1

and πv1 ≥ π′v1
(4.4a)⇒ π′vn+1

< πvn+1
,
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π̃v1 ≥ πv1 and π̃vn+1 < πvn+1
and πvn+1

≤ π′vn+1

(4.4b)⇒ π′v1 > πv1 .

Hence π′ violates the node potential bounds which implies that (q′, π′, p′, y′) is not feasible for the
active transmission problem (3.1).

Case ν∗ 6= 0, λ∗ = 0: Similar as in the previous case we split the network flow ν∗ into sets of flow along
circuits C1, . . . , Cn. By constraint (4.2d) there exists an arc a ∈ A′ with ν∗a 6= 0 and αa > 0 by (3.9h).
From our assumption we obtain ν∗a > 0 for this arc. Let ` be chosen such that C` contains this arc.
Let the nodes of C` be given by v1, . . . , vn+1 where v1 = vn+1 and connecting arcs by a1, . . . , an.
We note that βai ỹai = max{βaiyai , βaiyai} holds because of 0 < ν∗ai ≤ νai and (4.3e). From this
observation we derive the following contradiction from q̃ai ≤ q′ai if αai 6= 0 (by (4.2f)):

0 =

n∑
i=1

i−1∏
j=1

γaj

 (π̃vi − γai π̃vi+1
)

=

n∑
i=1

i−1∏
j=1

γaj

 (αai q̃ai |q̃ai |kai − βai ỹai)

<

n∑
i=1

i−1∏
j=1

γaj

 (αai q
′
ai |q
′
ai |

kai − βaiy′ai)

=

n∑
i=1

i−1∏
j=1

γaj

 (π′vi − γaiπ
′
vi+1

) = 0.

The inequality is strict because κaνa > 0 by (4.2d) and q̃a < q
a
≤ q′a by (3.9h) and the feasibility of

q′. This contradiction implies that our assumption was wrong and hence the solution (q′, π′, p′, y′) is
not feasible for the active transmission problem (3.1).

We note that at least one of the above cases applies because of constraint (4.2d). This contradicts our
assumption that (q′, π′, p′, y′) is feasible for the active transmission problem (3.1) and shows that this
assumption was wrong.

5 Integration and Computational Results

Below we present our strategy for solving the topology optimization problem (2.6) as outlined in Section 3.
Furthermore we present computational results that demonstrate the benefits of this solution approach.

5.1 Integration

Our solution approach is to solve the model (2.6) by SCIP [23] in combination with a specially tailored
adaptation: Whenever the active transmission problem (3.1) arises from branching on integral variables
we compute a local optimal solution for a relaxation of the active transmission problem. This relaxation
is denoted as domain relaxation. It is defined as follows:

min
∑
v∈V

∆v +
∑
a∈A′

(∆a + ‖∆′a‖) (5.1a)

s. t. αa qa|qa|ka − βaya − (πv − γaπw) = 0 ∀ a = (v, w) ∈ A′, (5.1b)∑
a∈δ+

A′ (v)

qa −
∑

a∈δ−
A′ (v)

qa = dv ∀ v ∈ V, (5.1c)

Aa (qa, pv, pw)
T −∆′a ≤ ba ∀ a = (v, w) ∈ A′, (5.1d)

pv|pv| − πv = 0 ∀ v ∈ V, (5.1e)

17



πv −∆v ≤ πv ∀ v ∈ V, (5.1f)

πv +∆v ≥ πv ∀ v ∈ V, (5.1g)

qa −∆a ≤ qa ∀ a ∈ A′, (5.1h)

qa +∆a ≥ qa ∀ a ∈ A′, (5.1i)

ya ≤ ya ∀ a ∈ A′, (5.1j)

ya ≥ ya ∀ a ∈ A′, (5.1k)

pv, πv ∈ R ∀ v ∈ V, (5.1l)

qa, ya ∈ R ∀ a ∈ A′, (5.1m)

∆v ∈ R≥0 ∀ v ∈ V, (5.1n)

∆a ∈ R≥0 ∀ a ∈ A′, (5.1o)

∆′a ∈ Rνa≥0 ∀ a ∈ A′. (5.1p)

This relaxation is a non-convex optimization problem due to the constraints (5.1b). We not that, if
y
a
= ya, Aa = 0 and ba = 0 holds for every arc a ∈ A′, then the domain relaxation turns into a convex

optimization problem, see [13]. Nevertheless, we do not restrict to this special case.
For a feasible solution (q̃, π̃, p̃, ∆̃, ỹ) to the domain relaxation we differentiate between three cases:

Case 1: If (q̃, π̃, p̃, ỹ) is feasible for the active transmission problem (3.1) then this solution is globally
optimal. We add this feasible solution to the solution pool of SCIP. In this sense, solving the domain
relaxation (5.1) is a primal heuristic for the active transmission problem.

Case 2: Otherwise, if (q̃, π̃, p̃, ỹ) is not feasible for the active transmission problem, then the solution
violates at most the constraints (3.1d) and (3.1f)-(3.1i). The next step is to solve the infeasibility
detection MILP (3.8). If this problem turns out to be infeasible or has optimal objective value zero,
then the infeasibility of the active transmission problem (3.1) is certified, see Theorem 1. In this case
we manually prune the corresponding node of the branch-and-bound tree.

Case 3: Otherwise, if we cannot decide that the current active transmission problem is infeasible, we
cannot interfere with the branching process. Neither a primal feasible solution can be provided nor
a node of the branch-and-bound tree can be manually pruned.

We note that exactly one of the above cases applies. After having completed the above steps the solver
continues with the branching process.

5.2 Computational Results

We compare four strategies for solving the topology optimization problem (2.6):

1. The first strategy is to use SCIP without any adaptations on the solver settings.
2. The second strategy is to enforce a certain branching priority rule, so that SCIP first branches

on binary and discrete decision variables. Only after all discrete variables are fixed it is allowed to
perform spatial branching on continuous variables.

3. The third strategy implements the domain relaxation (5.1) for computing a primal feasible solution
for the active transmission problem (3.1). We apply SCIP as described for the second strategy.
Whenever the active transmission problem arises from branching on integral variables we use the
domain relaxation (5.1) as a heuristic for computing a feasible solution. For this computation we
apply the nonlinear solver IPOpt [29]. If we obtain a primal feasible solution then we add it to
the solution pool of the solver. Otherwise we cannot detect infeasibility of the active transmission
problem and thus do not manually prune any node of the branch-and-bound tree.

4. The fourth strategy implements the solution process as described in Section 5.1. We use the nonlinear
solver IPOpt [29] for solving the domain relaxation (5.1) and SCIP for solving the infeasibility
detection MILP (3.8) in advance. For solving this MILP we impose a time limit of 15 s. Additionally
we set branching priorities according to the second strategy.
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(a) Original test network. (b) Extended test network.

Fig. 5.1: The test network net1. It is an approximation of parts of the German gas network in the Rhine-
Main-Ruhr area. More precisely the length and the diameters of the pipelines are real-world data while
other parameters like roughness or compressor data are set to realistic mean values. Altered data of
network net1 with similar characteristic is publicly available at URL http://gaslib.zib.de under the
name gaslib-40. The additional arcs were obtained manually. They represent each a pipeline in series
with a valve. The length of these additional pipelines is set to the geographical distance between the end
nodes. Costs associated with these pipelines reflect the building costs.

(a) Original test network. (b) Extended test network.

Fig. 5.2: The test network net2. This network is an approximation of the German gas network for the
high calorific gas. More precisely the length and the diameters of the pipelines are real-world data while
other parameters like roughness or compressor data are set to realistic mean values. Altered data of the
underlying network, which contains no extensions, is publicly available at URL http://gaslib.zib.de
under the name gaslib-135. The additional arcs were obtained manually. They represent each a pipeline
in series with a valve. The length of these additional pipelines is set to the geographical distance between
the end nodes. Costs associated with these pipelines reflect the building costs.
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We implemented the algorithm above in C, i.e., solving the domain relaxation (5.1) and the infea-
sibility detection MILP (3.8). We used a cluster of 64bit Intel Xeon X5672 CPUs at 3.20 GHz with
12 MByte cache and 48 GB main memory, running OpenSuse 12.1 Linux with a gcc 4.6.2 compiler. Fur-
thermore, we used the following software packages: SCIP 3.0.1 [23] as mixed-integer nonlinear branch-
and-cut framework, CPLEX 12.1 [8] as linear programming solver, IPOpt 3.10 [29] as nonlinear solver,
and Lamatto++ [12] as framework for handling the input data. Hyperthreading and Turboboost were
disabled. In all experiments, we only ran one job per node.

We consider the networks net1 and net2 shown in Figure 5.1 and 5.2. For obtaining the extended
networks we manually added pipelines in series with a valve. Network net1 consists of 40 nodes, 6 com-
pressors, 39 pipes and 103 extension pipes in series with a valve. Network net2 consists of 135 nodes,
29 compressors, 141 pipes and 261 extension pipes in series with a valve. A summary of the computa-
tional results is shown in Tables 1-2 while the original results are available in Tables 3-4. The summary
shows the number of globally solved instances and the shifted geometric mean of runtime and number
of branch-and-bound nodes.

strategy 1 2 3 4 all

solved instances 25 26 26 39 52

Table 1: Summary of the Tables 3 and 4 showing the globally solved instances out of 52 nominations in
total. The fourth strategy globally solves all instances which are solved to global optimality by the other
strategies.

(A,B) = (2,3) (A,B) = (2,4)

solved(24) solved(26)
time [s] nodes time [s] nodes

strategy A 9.3 191 17.1 343
strategy B 17.2 212 16.3 192

shifted geom. mean +86% +11% −5% −44%

Table 2: Runtime and number of branch-and-bound nodes for the strategies 2 and 3 and additionally 2
and 4 (aggregated results). The columns contain mean values for those instances globally solved by both
strategies A and B. The underlying data are available in Tables 3 and 4.

Table 1 shows that the fourth strategy clearly outperforms the other strategies in terms of number of
solved instances. All instances that are globally solved by strategies 1 or 2 or 3 are also globally solved
by the fourth strategy. Approximately 25% more instances of the test set (13 out of 52) are solved by
the fourth strategy compared to the second one. The second strategy performs better than the first one
because it solves one more instance within the time limit. Furthermore it shows better gap values, see
Table 3. We conclude that branching priorities as imposed by the second strategy are a first step to
improve the solving performance of SCIP.

The summary in Table 2 shows that approximately 50% of the instances of the test set (26 out of 52)
are globally solved by the second strategy. Here the runtime decreases by approximately 5% on average
following strategy 4 while the number of branch-and-bound nodes is decreased by approximately 44%.
Clearly the reduction of nodes does not pay off compared to the comparatively slight decrease in runtime.

Comparing strategy 3 and 4 we observe that the third strategy allows to solve 50% of the instances of
the test set (26 out of 52). Hence it performs nearly similar as the second strategy in terms of the number
of globally solved instances. But the runtime increases by approximately 86% and the number of nodes by
approximately 11%. We conclude that the primal heuristic (solving the domain relaxation (5.1)) as well
as the verification of the infeasibility conditions (represented by the infeasibility detection MILP (3.8))
are both important for the performance of the fourth strategy.
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We observe from Table 4 that very few primal feasible solutions are computed for instances on
network net2. For 6 out of 11 instances none of the strategies 1-4 terminated with a feasible solution
available after 11 hours. Here primal heuristics are first choice for further investigations. Therefor we
applied other state-of-the-art MINLP solvers than SCIP. More precisely, we used Antigone [17] and
Baron [26] for solving the topology optimization problem (2.6). Results for these solvers without any
adaptations on the implementation are available in Tables 5-6. For net2 we observe that Antigone
detects infeasibility for all instances while Baron does not compute any primal feasible solution. We
conclude that Antigone and Baron show even worse solving performances compared to SCIP (without
any adaptations, strategy 1).

nom Antigone Baron nom Antigone Baron

1 limit 39 21 limit 1,143
2 limit 115 22 limit 35,611
3 limit 76 23 limit 7,655
4 limit 46 24 limit limit
5 limit 71 25 limit limit
6 limit 78 26 limit limit
7 37,098 21 27 limit limit
8 limit 118 28 limit limit
9 limit 22 29 limit limit

10 limit 35 30 limit limit
11 limit limit 31 limit limit
12 limit *limit 32 limit limit
13 limit 1,713 33 limit limit
14 limit 4,433 34 limit limit
15 limit 6,340 35 limit limit
16 limit 85 36 limit limit
17 limit limit 37 limit limit
18 limit limit 38 limit limit
19 limit *limit 39 limit limit
20 limit 32,072 40 limit limit

41 limit limit

Table 5: Runtime results in seconds using Antigone and Baron to solve the topology optimization
problem (2.6) on 41 nominations on the network net1. The time limit was set to 11 hours. Those instances
with a finite runtime were solved to global optimality. No primal solution was available for the other
instances except those ones that are marked by *. Here a primal feasible solution was available.

6 Conclusions and Outlook

Regarding the literature known to the author, mainly various heuristic and local optimization methods
are in use to solve network design problems in gas transport. This paper presents a mixed-integer non-
linear programming formulation, which allows, at least in principle, to compute global optimal solutions.
Using state-of-the-art solvers such as Antigone, Baron or SCIP in their default modes, i.e., without
any adaptions on the solver setting or implementation, about half of the instances of our test instances
can be solved to global optimality. Using the proposed solution method we were able to solve about
25% more instances of our test set to global optimality. Furthermore the runtime is decreased by 5% on
average.

So far, our method was applied to the case of a single nomination. In practice, however, one has to
deal with a whole set of different infeasible nominations and needs to determine a topology extension
that can cope with all of them simultaneously.
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nom Antigone Baron

1 3 limit
2 3 limit
3 3 limit
4 3 limit
5 3 limit
6 4 limit
7 3 limit
8 3 limit
9 4 limit
10 3 limit
11 3 limit

Table 6: Runtime results in seconds using Antigone and Baron to solve the topology optimization
problem (2.6) on 11 nominations on the network net2. The time limit was set to 11 hours. Those
instances with a finite runtime were detected to be infeasible. No primal solution was available for the
other instances.
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