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Abstract

The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an opportunity
for high-achieving graduate-level students to work in teams on a real-world research project proposed
by a sponsor from industry or the public sector. Each G-RIPS team consists of four international stu-
dents (two from the US and two from European universities), an academic mentor, and an industrial
sponsor.

This is the report of the Rail-Lab project on the definition and integration of robustness aspects
into optimizing rolling stock schedules. In general, there is a trade-off for complex systems between
robustness and efficiency. The ambitious goal was to explore this trade-off by implementing numerical
simulations and developing analytic models.

In rolling stock planning a very large set of industrial railway requirements, such as vehicle
composition, maintenance constraints, infrastructure capacity, and regularity aspects, have to be
considered in an integrated model. General hypergraphs provide the modeling power to tackle
those requirements. Furthermore, integer programming approaches are able to produce high quality
solutions for the deterministic problem.

When stochastic time delays are considered, the mathematical programming problem is much
more complex and presents additional challenges. Thus, we started with a basic variant of the
deterministic case, i.e., we are only considering hypergraphs representing vehicle composition and
regularity. We transfered solution approaches for robust optimization from the airline industry to
the setting of railways and attained a reasonable measure of robustness. Finally, we present and
discuss different methods to optimize this robustness measure.
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1 Introduction

In rotation planning, a railway company is given a train timetable which consists of fixed planned
passenger trips. The problem in rotation planning is to find feasible vehicle rotations that cover all
trips with respect to the minimization of the total operation costs. The complexity arises from the
fact that trips must be covered by one or more train vehicles of different types. Combinations of these
types are represented by vehicle configurations. There are highly complex requirements on which vehicle
configuration is allowed to cover a trip. In particular, vehicle configurations can be split or coupled at
designated locations. Such operations generate vastly different cost, consequently the main objective of
minimizing the total cost is fairly difficult to compute.

A further ambition in rotation planning is to keep the rotation plan easy to operate. Regular trips, e.g.,
daily trips, are highly preferred to be executed in the same configuration at each recurrence. Potential
complexities emerge when dealing with regularity and efficiency in an integrated model. Although, a
cost optimal rotation plan might be found, in practice it may not be reliable in terms of delays. Without
the consideration of reliability a set up may fail. Thus, it is of interest to create a plan that addresses
reliability and cost.

Mathematical optimization is an opportunity for railway companies to manage the mentioned diffi-
culties of rotation planning. In this context, we will present a mathematical optimization approach that
computes efficient and robust train schedules with respect to operational cost and stochastic delays.

First, we will model the underlying problem via hypergraphs. Then a proposed mathematical model
will be used to decide which vehicle configuration is chosen for each trip. Certain techniques will be
discussed to solve the mathematical model as well as to speed up the computation time. After that,
reliability (robustness respectively) is taken into account. We propose sensible probability models to
account for random delays. Using this information robustness can be characterized by a statistic. Two
methods of optimizing this statistic are presented.

2 The Deterministic Vehicle Rotation Problem

In the deterministic case of the Vehicle Rotation Problem (VRP), fixed passenger trips of one standard
week, i.e. from Monday to Sunday, must be covered by vehicle rotations. At first, we give an introduction
to the basic concepts of VRP.

2.1 Passenger trips and vehicle configurations

We are given a set of passenger trips t ∈ T where each trip represents a collection of subsequent train
stops on a line. Every trip is performed in a certain vehicle configuration that may consist of one or
more vehicles. A vehicle represents the most basic form of a physical railway unit.

Each trip t ∈ T is defined due to an origin-destination pair of locations (Ot, Dt) ∈ L × L, a fixed
planned starting time st ≥ 0 in the standard week and a travel time dt ≥ 0 needed to pass the distance
from Ot to Dt. At locations, vehicle configurations can be split, coupled or maintained to connect arriving
with departing trips. Additionally, there is given a set of vehicle types f ∈ F . A feasible configuration
c ∈ Ct is a multiset over F and consist of a selection of vehicle types. For example, let c = {1, 3, 3} with
F = {1, 2, 3} describe a configuration of three vehicles of types 1 and 3 respectively. Each trip t ∈ T
must be executed by exactly one feasible configuration c ∈ Ct.

2.2 Hypergraph model

In our modeling approach, vehicle configurations and connections between trips are given by a hyper-
graph. For that purpose, let G = (V,A) be a hypergraph with node set V and directed hyperarcs given
by the set A ⊆ 2V ×2V , where 2V denotes the power set of V . Each node v ∈ V models either the arrival
or the departure of a vehicle type f in a configuration c for some trip t ∈ T , i.e., f ∈ c ∈ Ct. Let t ∈ T
be some trip in the following. For all c ∈ Ct let V +

c ⊆ V denote the set of arrival nodes to all f ∈ c and
equally V −c ⊆ V be its set of departure nodes. In the hypergraph, each configuration c ∈ Ct is modeled
as directed hyperarc (V +

c , V
−
c ) ∈ A that connects the arrival and the departure nodes of c. Hence, a trip

t ∈ T is represented by all its configuration hyperarcs (V +
c , V

−
c ) belonging to c ∈ Ct. Feasible connections
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Figure 1: Hypergraph representation of trips, configurations and connections

between two configurations c1 ∈ Ct1 and c2 ∈ Ct2 corresponding to trips t1, t2 ∈ T, t1 6= t2 are modeled
as hyperarcs (V −c1 , V

+
c2 ) ∈ A that connect the departure and arrival nodes of c1 and c2 respectively, see

Figure 1.
There are three trips t1, t2, and t3 given. The corresponding configuration sets Ct1 , Ct2 , and Ct3 are

modeled by hyperarcs {h1, ..., h4}, {h5, ..., h8}, and {h9, ..., h11} respectively. Each configuration includes
the nodes of arrivals and departures of included vehicle types f ∈ F := {blue, red}. The remaining
hyperarcs {h12, ..., h17} are the connecting hyperarcs between configurations of distinct trips.

The goal will be to compute a feasible rotation plan such that each trip is covered by a feasible
configuration and each induced vehicle traverses a cycle through the underlying hypergraph, which
defines a vehicle rotation.

2.3 Rotation plan

In a solution to the VRP, all vehicle types of a chosen feasible configuration to some trip must follow
a cycle through the hypergraph network. Therefore, a feasible rotation plan is defined as the selection
of exactly one configuration for each trip and the selection of connections between these configurations
such that each vehicle induced by a selected configuration follows a cycle along selected connections.
Formally, a feasible rotation plan corresponds to a hyperflow circulation (i.e. flow conservation for all
v ∈ V ) in the hypergraph. Such a hyperflow circulation is called feasible, if it also defines a feasible
rotation plan.

In practice it is intended to make rotation plans highly operable and invulnerable against unexpected
events. In common real-world instances there will be numerous trips that recur to several days of the
standard week. A regular rotation plan aims to use only recurring connections between all trips. But in
general there will be trips that occur only once or partially regular throughout the week. Hence, it will
not be possible to implement full regularity in the rotation plan due to small irregularities in the given
trips.

In the hypergraph, regularity is modeled by a further type of a hyperarc, a so called regularity arc.
Together with the connecting hyperarcs and configuration hyperarcs, three types of hyperarcs are being
considered. For any such hyperarc a ∈ A, we are given a cost coefficient ca ≥ 0. Basically, each of
the mentioned objectives can be addressed by applying a certain cost coefficient to the corresponding
hyperarc. A feasible rotation plan is called optimal if its associated hyperflow has minimum cost among
all feasible hyperflows that represent a feasible rotation plan and vice versa. The objective of the
deterministic VRP is to find an optimal rotation plan.
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3 Hypergraph based optimization model for the VRP

As mentioned in the previous section, in the VRP a fixed set of trips must be covered by vehicle rotations.
Since the problem can be modeled precisely with hypergraphs, it gives occasion to use a hyperflow model.
Such a model has already been defined in [BRSW11], and is the one we are going to describe and adapt
for our problem.

In order to define the mathematical model we simplify the hypergraph construction by extracting the
set of configuration hyperarcs and denote it separately by H. Thus, the set of connecting arcs is now
given by the set A. The hypergraph is defined as the tuple G = (V,H,A).

The formulation of VRP is modeled by an integer program whose binary variables are yh ∈ {0, 1}
and xa ∈ {0, 1} for each hypernode h ∈ H and each hyperarc a ∈ A. These variables take on the value
1, if the corresponding hypernode or hyperarc is being used and 0 otherwise. The set of all hypernodes
h ∈ H covering the configurations of trip t ∈ T is denoted by H(t). Alternatively, H(v) is the set of all
hypernodes h ∈ H containing v ∈ V . The set of all ingoing hyperarcs of v ∈ V is defined as δin(v) =
{(V,W ) ∈ A | v ∈ W} ⊆ A and the set of all outgoing hyperarcs δout(v) = {(V,W ) ∈ A | v ∈ V } ⊆ A.
The cost coefficients are denoted as ca for each hyperarc and ch for each hypernode.

This Hyperflow Integer Program (HFIP) states:

min
∑
a∈A

caxa +
∑
h∈H

chxh (HFIP)

∑
h∈H(t)

yh = 1 ∀t ∈ T (covering)

∑
a∈δin(v)

xa −
∑

h∈H(v)

yh = 0 ∀v ∈ V (in-flow)

∑
a∈δout(v)

xa −
∑

h∈H(v)

yh = 0 ∀v ∈ V (out-flow)

xa ∈ {0, 1} ∀a ∈ A
yh ∈ {0, 1} ∀h ∈ H

The objective function minimizes the total cost, composed by the sum of the costs for connecting trips
and the costs for vehicle configurations for each trip. The covering constraints assign one hypernode (i.e.
one configuration) to each trip and the in- and out-flow constraints are the flow conservation constraints
for each node v ∈ V .

3.1 Implementation and computational results

The first approach to solve the HFIP model consists of a direct implementation of the model using the
CPLEX framework for C++. Basically, in the file train.cc the model is built up using the CPLEX
interface. There we add the binary variables, the constraints and the objective function. As soon as
CPLEX proves the optimality of an incumbent solution an output file in .xml format is generated.

The code allows the user to run either the Integer Program (IP) or its Linear Program (LP), i.e. its
relaxation. One can also choose between two available output formats: the first to check the feasibility of
the computed rotation plan composed by the list of hypernodes and hyperarcs in the optimal solution, and
the other for graphical purposes showing the list of trips to be covered and the hypergraphs connecting
those trips.

We tested this first approach on several instances. Table 1 gives some statistics on the number of
trips |T | to be covered and the hypergraph size given by the number of nodes |V |, hypernodes |H| and
hyperarcs |A|. In order to characterize the complexity of the instances some subsets of hypernodes and
hyperarcs are considered. For the hypernodes, |H1| denotes the set of hypernodes consisting of a single
arc and |H2| the ones with two arcs. In the case of hyperarcs we distinguish between simple arcs (|A1|),
small hyperarcs (between 2 and 5 links, |A≥2,≤5|), medium hyperarcs (between 6 and 10 links, |A≥6,≤10|)
and large hyperarcs (more than 10 links, |A>10|).
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Instance |T | |V | |H1| |H2| |H| |A1| |A≥2,≤5| |A≥6,≤10| |A>10| |A|
HG2 2300 64 160 160 0 160 11622 908 1056 0 13586
HG2 2301 86 446 226 220 446 44530 7176 2064 0 53770
HG2 2201 177 1427 147 640 787 657393 59002 73312 1440 791447
HG2 2302 199 2402 450 1952 2402 1637548 340936 133064 10808 2122356
HG2 2303 164 2690 230 2460 2690 2353600 199498 289990 11380 2854468
HG3 2201 181 2316 536 1780 2316 1458406 258902 109362 6720 1833390
HG3 2202 209 2764 584 2180 2764 2107972 358938 164490 7780 2639180
HG3 2203 173 2590 350 2240 2590 2002218 293604 197844 12840 2506506
HG3 2204 162 2468 308 2160 2468 1816194 22144 193796 12840 2244974
HG3 2205 159 2296 356 1940 2296 1610254 255546 143140 6020 2014960
HG3 2206 157 2186 386 1800 2186 1380226 221660 117614 6780 1726280
HG3 2207 154 2364 284 2080 2364 1715130 163676 209576 11880 2100262
HG3 2208 143 2270 230 2040 2270 1652824 159106 195194 8040 2015164
HG3 2209 177 2544 404 2140 2544 1854576 218202 194752 7020 2274550

Table 1: Characteristics of the tested instances

Instances HG2 2300 and HG2 2301 can be solved very fast, since the number of trips is small and we
have many simple arcs. Although the number of trips is not large at all, the number of hyperarcs can
be larger than two million, making the problem much more difficult.

All our computations were performed using CPLEX 12.5.0 with up to 4 threads. Table 2 shows the
obtained results, that is, the objective value and the total running time for both the linear relaxation
and the integer program, as well as the gap between the objective values. The running times marked in
red correspond to instances that are computationally expensive. HG3 2202 and HG3 2205 were running
for more than 16 and 22 hours respectively. As the running time seems too consuming for practical
purposes we will develop an approach to speed up the computation in the next section.

LP IP

Instance |A| Obj. val. CPU (s) Obj. val. CPU (s) Gap (%) 1

HG2 2300 1358 617392.00 0.99 617536.12 1.61 0.02
HG2 2301 53770 1279766.52 3.12 1279869.19 7.55 0.01
HG2 2201 791147 1194348.37 110.52 1208161.44 540.94 1.16
HG2 2302 2122356 2008527.50 175.11 2010281.75 2691.53 0.09
HG2 2303 2854468 1171960.28 294.59 1173850.10 29911.33 0.16
HG3 2201 1833390 1477097.32 233.49 1482425.00 3446.62 0.36
HG3 2202 2639180 1469527.28 350.41 1483895.97 2 > 79000.00 1.00
HG3 2203 2506506 1656310.76 273.07 1656429.00 1367.69 0.01
HG3 2204 2244974 1654993.59 247.46 1655062.96 1376.05 0.00
HG3 2205 2014960 1415821.05 190.12 1419742.37 3 > 60000.00 0.28
HG3 2206 1726280 1235791.48 1381.84 1235008.71 133.01 0.06
HG3 2207 2100262 1471733.57 1091.26 1471591.29 264.05 0.01
HG3 2208 2015164 1095815.92 159.08 1102262.62 47096.34 0.60
HG3 2209 2274550 1363237.09 219.95 1363451.00 1433.30 0.02

Table 2: Results for the tested instances

1 Calculated as 1 − obj(IP )
obj(LP )

2Value obtained in the specified running time
3Value obtained in the specified running time
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4 Speeding up optimization

Since a railway company would need to optimize vehicle rotation frequently and with standard computers,
we needed to speed up this optimization. Solving the linear program is significantly less expensive than
the integer program, so we looked for a way to use the LP solution in a clever way to find an integer
solution more quickly.

To visualize the LP solutions, we created a graphical representation where each trip is represented
by a node, colored according to its start day, and every link in every hyperarc is represented as an
edge between the two trips that it connects. Figure 2 shows our visualizations of the LP solution of file
HG2 2201.

With this visualization, we noticed that the LP solutions tend to have clearly defined connections
between trips. In fact, Figure 3 shows that the trip connections appearing in the LP and IP solutions
are extremely similar.

Mon: 
Tues:
Wed:
Thurs:
Fri:
Sat:
Sun:

Figure 2: A graph of the LP solution for HG2 2201. The nodes represent trips and edges between them
represent links in hyperarcs that connect the corresponding trips. The edges are colored by value in the
LP solution, with red as one, and more blue as we approach zero.
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Figure 3: A graph of the symmetric difference of the LP and IP solutions for HG2 2201.xml. Blue edges
are any connections between trips that are in the LP solution but not IP. Red edges are trip connections
that appear in the IP solution but not LP.

This observation led us to our first strategy - to remove all hyperarc variables whose trip connections
do not appear in the LP solution, and then solve the reduced IP. We can see from Table 3 that this
approach led to a significant speed-up of computations The results also tend to be extremely close to
optimal. However, there are still cases when we remove too many variables - that is, there are actually
no feasible integer solutions with the available hyperarcs.

The more conservative strategy comes from an additional observation of Figure 3. We noticed that
most of the trip connections that appear in the IP but not LP solution are connecting trips with dif-
ferent starting days. To account for this, we only removed arcs with the same starting day whose trip
connections do not appear in the LP solution. As seen in Table 4 this approach was more consistent
(none were infeasible) and gave close results. Moreover, for the two cases where the aggressive approach
failed, the conservative approach sped up the direct approach. However, the speed-up was not nearly as
significant, and the computation of some other instances actually slowed down, so this approach is still
too computationally expensive. Since our data was for intercity trains, a large percentage of trip con-
nections crossed the day, so the problem wasn’t nearly as reduced as the first approach. Two questions
therefore arise, which we do not answer in this report. First, what attributes of the data made them
fail in the first approach? Second, what subset of trip connections can we remove so that the problem
remains feasible, but which is still substantial enough to speed up the problem in a significant way?

8



Original IP Aggressively Reduced IP

Instance |A| Obj. val. CPU (s) Obj. val. CPU (s) Gap (%) 4 Improv (%) 5

HG2 2300 1358 617536.12 1.61 617709.20 1.18 0.03 26.71
HG2 2301 53770 1279869.19 7.55 1279869.19 4.20 0.00 44.37
HG2 2201 791147 1208161.44 540.94 1275531.22 53.38 5.58 90.13
HG2 2302 2122356 2010281.75 2691.53 2014133.33 231.55 0.19 91.40
HG2 2303 2854468 1173850.10 29911.33 1174088.80 430.84 0.02 98.56
HG3 2201 1833390 1482425.00 3446.62 1492781.25 215.16 0.70 93.76
HG3 2202 2639180 1483895.97 > 79000.00 Infeasible NA NA NA
HG3 2203 2506506 1656429.00 1367.69 1660023.97 1473.36 0.22 -7.73
HG3 2204 2244974 1655062.96 1376.05 1658546.36 370.50 0.21 73.08
HG3 2205 2014960 1419742.37 > 60000.00 Infeasible NA NA NA
HG3 2206 1726280 1235791.48 1381.84 1239271.05 184.39 0.28 86.66
HG3 2207 2100262 1471733.57 1091.26 1472019.45 250.70 0.02 77.03
HG3 2208 2015164 1102262.62 47096.34 1102780.15 262.09 0.05 99.44
HG3 2209 2274550 1363451.00 1433.30 1363612.60 225.15 0.01 84.29

Table 3: Results for Aggressive Approach

Original IP Conservatively Reduced IP

Instance |A| Obj. val. CPU (s) Obj. val. CPU (s) Gap (%) 6 Improv (%) 7

HG2 2300 1358 617536.12 1.61 617536.12 2.62 0.00 -62.32
HG2 2301 53770 1279869.19 7.55 1279866.66 7.87 0.00 -4.30
HG2 2201 791147 1208161.44 540.94 1208162.34 124.96 0.00 76.90
HG2 2302 2122356 2010281.75 2691.53 2010578.65 3301.68 0.02 -22.67
HG2 2303 2854468 1173850.10 29911.33 1173890.20 11422.83 0.00 61.81
HG3 2201 1833390 1482425.00 3446.62 1482427.70 2064.13 0.00 40.12
HG3 2202 2639180 1483895.97 > 79000.00 1489951.32 48870.30 0.41 NA
HG3 2203 2506506 1656429.00 1367.69 1656433.00 2340.18 0.00 -71.10
HG3 2204 2244974 1655062.96 1376.05 1655144.46 1587.40 0.00 -15.36
HG3 2205 2014960 1419742.37 > 60000.00 1421541.27 9109.58 0.13 NA
HG3 2206 1726280 1235791.48 1381.84 1235916.48 2946.04 0.01 -113.20
HG3 2207 2100262 1471733.57 1091.26 1471733.73 610.25 0.00 44.10
HG3 2208 2015164 1102262.62 47096.34 1102700.35 12026.70 0.04 74.46
HG3 2209 2274550 1363451.00 1433.30 1363451.21 1014.03 0.00 29.25

Table 4: Results for Conservative Approach

5 Delays and disruptions

In the previous sections we have minimized the cost of operating a VRP (i.e. maximized efficiency),
assuming that all trains run on time. In practice this is rarely the case. Trips are regularly delayed
for a variety of reasons, and delays have a cost associated with them. This cost is harder to quantify
than the operating cost. For example, if trains are regularly delayed this will reduce demand for railway
transportation and complicate the logistics of operating the network. Significantly delayed trains will
also directly reduce profits as passengers on such trains are eligible for refunds. Therefore it is important
to minimize delays as well as the operating cost.

4Calculated as the objective function value of the Aggressively Reduced IP devided by the Original IP objective function
value.

5Calculated as 1 − (Aggresively Reduced IP CPU time
Original IP CPU time

)
6Calculated as the objective function value of the Conservatively Reduced IP devided by the non Original IP objective

function value.
7Calculated as 1 − (Conservatively Reduced IP CPU time

Original IP CPU time
)
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To begin we will introduce an important classification of delay types. Primary delays are delays that
are not caused by other trains on the network. Types of primary delay include:

• Breakdown delays (e.g. due to an engine failure)

• Track delays (e.g. due to a tree falling on the track)

We cannot do anything about this kind of delay in our optimization. Secondary delays are caused by
other trains on the network due to the knock on effects of primary delays. Types of secondary delay
include:

• Departure delays (there may not be sufficient buffer time between two trips to soak up a primary
delay in the first trip)

• Safety delays (if a train is delayed then trains behind it on the same track will have to wait)

• Station delays (stations have maximum capacities so trains may have to wait to use them)

We can reduce secondary delays, for example by finding VRPs which do not propagate delays as much.
We will describe such VRPs as robust and say that our goal is to improve robustness of VRPs. This is
not standard terminology. In the context of reducing delays, one could investigate:

• Worst case delays - This is often called robust optimization

• Average case delays - This is often called stochastic optimization

We will investigate average case delays i.e. do stochastic optimization. As a result we will consider
probability distributions of delays. Note that more robust VRPs will likely have higher operating costs,
so it will be important to find a balance between robustness and efficiency.

A review on different approaches to computing delays in railway networks can be found in [MM07].
We will use ideas from [BDNS10], many of which are expanded upon in [Dov14]. This work is for the tail
assignment problem of airplanes. See also the literature [CCG+08] and [CCG+12], which is on robust
railway rotation planning.

The structure of the rest of this section will be as follows. We will first introduce a model for delay
propagation. Next we will discuss how to use this model to compute delay probabilities. We will then
devise a statistic that characterizes the robustness of a VRP. This and visualizations of delays will enable
us to understand why some VRPs are more robust than others. We can use this knowledge to design
methods for finding VRPs with good trade offs between robustness and efficiency.

5.1 Model of delay propagation

The basic mechanism of delay propagation is: A train experiences a primary delay that is larger than
the minimum turn over time between trips (the time it takes to clean the train, swap crews etc.), so it
departs late on its next trip. We now formulate this more precisely. For a trip t ∈ T :

• ADt denotes the arrival delay

• Ct denotes the set of connecting trips (which are the trips containing vehicles needed for trip t)

• bs,t for s ∈ Ct denotes the stop over time (the timetabled arrival time of s minus the timetabled
departure time of t)

• Dt denotes the delay experienced during the trip (both primary and secondary delays)

• c denotes the minimum turnover time

These are all real numbers. Using this notation, delay propagation can be captured with the following
model. Initially suppose ADt = 0 for all t ∈ T . Then iterating through the trips in order of increasing
start time, set

ADt = max
s∈Ct

(

Connecting delay︷ ︸︸ ︷
max(ADs + c− bs,t, 0))

︸ ︷︷ ︸
Departure delay (DDt)

+Dt.
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This model is well defined since iterating over the trips in this order ensures that ADs for all s ∈ Ct are
set before ADt is computed. So given the delay Dt for each trip t we know the departure and arrival
delay for all trips.

This is a very simple model that omits some important details. In order for the model to be realistic
we also include:

• Different types of primary delay e.g.
Dt := Bt + Tt,

where Bt is the breakdown delay and Tt is the track delay. These should depend on the length of
the trip

• Minimum safety distances

• Times for splitting and joining vehicles

These are outlined in more detail in our problem brief.

5.2 Computing delays probabilities

The model of the previous section explains how delays propagate through the network given the primary
delays for each trip. However the delays are caused by disruptions, which are random events, and
therefore delays are random events. It is important to know the probability distribution of delays for
each trip. In this section we consider two approaches for computing this. They both have different
advantages and disadvantages.

5.2.1 Simulation

By disruptions we refer to the underlying cause of primary delays. Depending on the VRP the disruptions
may affect trains in the network in different ways and result in different trip delays. We suppose track
delays are caused by track disruptions. They happen at specified times and locations, and last for given
durations. Similarly we suppose train delays are caused by train disruptions. For each train these occur
after the train has travelled predefined distances and they last for specified durations.

Given a set of disruptions we can use the model from Section 5.1 to compute the departure and
arrival delays of all trips. So we can randomly generate sets of disruptions (based on assumptions on
their frequency, locations etc.) and compute these delays. By doing this many thousands of times we
can construct an approximate probability distribution for the departure and arrival delay for each trip.

The advantages of the simulation approach are:

• It is easier to make assumptions about disruptions than delays e.g. using intuition, expert opinion,
or historic data on disruptions. The delays themselves are affected by how the network is managed
and so are hard to make assumptions on.

• It allows the use of a more realistic model that includes minimum safety distances, station capacities
etc. The features are hard to implement in the propagation of probabilities approach we consider
in Section 5.2.2.

The main disadvantage is that simulation can be computationally expensive; we may need to run many
thousands of simulations with different randomly generated input disruptions in order to accurately
approximate the true departure and arrival delay probability distributions.

The assumptions we use to randomly generate the disruptions are the following:

• For each train breakdown disruptions occur at exponentially distributed time intervals, which is a
reasonable model for component failure. We want the support of the distribution of the durations
to be R≥0, so we assume an exponential distribution for this too.

• Track disruptions occur at exponentially distributed time intervals and uniformly in space across
the railway network (i.e. are more likely to occur on longer sections of track). For the duration of
the disruption we again take an exponential distribution.
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Figure 4: A pdf fX̃ of a discretized random variable that approximates the pdf fX of an Exponential
random variable.

We do not currently have values for the parameters in these distributions based on real data. We just used
intuition (gained from using railways ourselves) to choose reasonable values. We observe that different
parameter values change various measures of delay (see Section 5.3) in absolute but not relative terms.
So the computational results later in this report should still be valid even if our parameter values turn
out not to be realistic.

5.2.2 Propagation of probabilities

For this approach we suppose that DDt, ADt and Dt are random variables. Initially that the ADt are
the random variable taking the value 0 with probability one. Then given delay random variables Dt,
the model in Section 5.1 iteratively defines new random variables. This is well defined mathematically,
as the operations of summation and taking the maximum are defined for random variables, however it
cannot be done analytically. There is no realistic choice of distribution for Dt such that the ADt remain
in the same finite dimensional class of distributions. Therefore, in order to compute these distributions
an approximation is necessary. Note that with this approach we are not able to include minimum safety
distances in our model. It produces the same output as the simulation approach; delay distributions for
all trips.

A number of approaches to propagating random variables are considered in the literature, such as
using phase-type distributions and theta-exponential polynomials (see the review in [MM07]), but we
chose the approach of discretized random variables (see [BDNS10] and [Dov14]). This approach has been
demonstrated to be accurate and computationally efficient, and it is conceptually simple. It also allows
the choice of arbitrary delay distributions.

We refer the reader to the cited papers for the precise details as our implementation is the same. But
the approach is roughly speaking the following. Random variables are approximated by what we call
discretized random variables. They are random variables which have probability density functions (pdfs)
that are step function with uniform sized steps. This can be seen in Figure 4.

The summation of random variables is computed by taking the convolution of pdfs. Therefore sum-
mation for discretized random variables is simple to compute as it corresponds to the convolution of
step functions i.e. just the summation and multiplication of step values. Similarly the max operation for
discretized random variables leads to a straightforward computation.

An advantage of propagation of probabilities is that it is computationally cheaper than simulation
(using discretized random variables). In [Dov14] this allowed a random variable representing delays to
be optimised directly. The disadvantage of propagation of probabilities is that it requires a simplified
model; features such as minimum safety distances and station capacities are hard to include.

12



Where as with the simulation approach we were able to make intuitively reasonable assumptions on
disruptions, it is harder to make these on delays. The literature [MM07] suggests that the cumulative
density function of delay d given by

P(Dt ≤ d) =

{
0 d < 0

1− θλ exp(λd) d ≥ 0,

has been observed experimentally and justified theoretically. Here θ is the probability of delay and the
delay has expected duration λ when there is one. We suppose

Dt := Bt + Tt + St

where Bt, Tt and St are random variables for breakdown, track and safety delays that have this form.
The parameter values in these distributions are chosen heuristically depending on the length of the track
and how many trips use the track. Alternatively we can use the simulation approach with assumptions
on the disruptions to suggest or even calibrate assumptions on delays.

We have implemented both the simulation and propagation approach for computing delay distribu-
tions. Given equivalent assumptions, both implementations calculate delay distributions to within an
arbitrarily small discrepancy. This gives strong evidence that both approaches have been implemented
correctly.

5.3 Characterizing robustness

We have two methods of computing departure and arrival delay distributions of all trips. We want to
combine all this information into a single random variable or number which allows us to easily decide
whether one VRP is more robust than another. Some possible statistics are the following:

• S1 := 1
|T |

∑
t∈T E[DDt] - Average expected departure delay

• S2 := 1
|T |

∑
t∈T P[DDt > 0] - Average propagated delay (used in Robust Tail Optimization paper)

• S3 := 1
|T |

∑
t∈T P[ADt > 5] - Average probability that arrival delay is greater than 5 minutes

The statistics S1 and S2 ignore the primary delays (that we have no control over) and just measure the
secondary delays. The statistic S3 includes primary delays but tells us something that is more meaningful
to a train company or passenger. In particular we could just look at the expectation of these statistics.

We see in Figure 5 that E[S1], E[S2] and E[S3] all contain the similar information about robustness;
whichever statistic we compute all of them will likely agree which VRP is more robust. Therefore we
favour using the statistic S1 as it only measures secondary delays and it is easy to interpret.

5.4 Visualization

We have characterized robustness, enabling us to decide whether one VRP is more robust than another
by comparing E[S1]. We have created a visualisation that helps us better understand why this is. An
example is shown in Figure 6. This understanding has motivated our approaches to optimising robustness
in the next section.

Our computational results show that delays are predominantly the result of short buffer times, which
lead to departure delays. Safety delays are not a big source of delay. From the visualisations such as
Figure 6 we also notice that multiple consecutive short buffer times are a common in the VRPs that
minimise operating cost. This allows delays to build up to high levels.

6 Optimizing for robustness

The most natural way to improve robustness would be to minimize our measure of robustness E[S1]
directly. This may be possible using the ideas from [Dov14], however this is hard. Similarly, our
observations in the previous section suggest that consecutive short buffer times are the main problem,
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Figure 5: Let Si,n denote the statistic Si for one of ten feasible VRPs which are indexed by n. Set
Vi = {E[Si,n]}9n=0. For each of i = 1, 2, 3 we have plotted (E[Si,n]−mean(Vi))/s.d(Vi) for n = 0, ..., 9. So
we have plotted shifted and scaled versions of E[Si] for different VRPs. We see that the data points for
a given VRP are all very close together, suggesting that all the statistics contain the same information.

Figure 6: Part of a visualization of the delay in a rotation plan. It was created in the graph visualization
program yEd. The nodes are trips, which are colored from yellow to red as the expected departure delay
E[S1] increases (mousing over them in yEd shows the numerical value). The edges show connecting and
splitting of vehicles with darker edges indicating shorter buffer times (mousing over them in yEd shows
the numerical value). The blue edges mark the end point in the week i.e. where we stop propagating
delays.
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but reducing these is still quite technical. Instead, we begin with the simplest possible approaches to
optimizing for robustness, however they turn out to be effective.

In particular we will investigate a local search around the VRP with minimal operating cost and a
heuristic optimization approach which penalises short buffer times.

7 Project Outcomes

We finish with a summary of the outcomes of our project. We have achieved:

• A better understanding of the VRP problem and its complexities

• Code for:

– Optimizing cost - speed up using heuristics

– Computing delay probabilities. Two methods - simulator and propagator

– Optimizing robustness - Local search approach and optimization using a heuristic

• Visualizations to help develop intuition for:

– IP and LP solutions

– Delays
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