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Abstract

In this thesis we describe a practical problem that we encountered in the on–line optimization
of a complex Flexible Manufacturing System. In the considered system a stacker crane has
to fulfill all transportation tasks (jobs) in a single aisled automatic storage system. The jobs
have to be sequenced in such a way, that the time needed for the unloaded moves is minimized.
The modelling of this question leads to a mathematical problem, that has not been studied
in that form in the literature so far, namely the so–called on–line Hamiltonian path problem.

We computationally compare several on–line heuristics and describe an optimization pack-
age, that we developed and implemented. This software package is now in use in everyday
production on six automatic storage systems, resulting in an average reduction of 30% of
the time needed for the unloaded moves. We derive lower bounds on the value obtained by
an optimal on–line strategy by analyzing two off–line Combinatorial Optimization problems:
the asymmetric Hamiltonian path problem with precedence constraints, also called sequential
ordering problem (SOP), and the asymmetric Hamiltonian path problem with time windows
(AHPPTW).

In contrast to many other publications for the AHPPTW we are not interested in mini-
mizing the overall completion time, but in minimizing the total sum of intermediate set–up
costs between the jobs. Thus, we are not restricted to use the well known model based on
a generalization of the Miller–Tucker–Zemlin subtour elimination constraints but can define
a TSP–like model. Here the time window restrictions are modeled by infeasible path con-
straints, forbidding path that violate the given time windows. The two models are compared
from a computational point of view on real–life problem instances of up to 50 nodes. This
comparison shows that the TSP–like model seems to be superior. For the SOP we work on a
model that has been proposed earlier in the literature.

We study the SOP and AHPPTW from a polyhedral point of view and derive several new
classes of valid inequalities. Based on the polyhedral investigations we develop branch&cut
algorithms for both problems and can achieve encouraging results on solving problem in-
stances from real–world examples of the practical application. For the SOP instances of up
to 100 nodes and a varying precedence structure can be solved to optimality. For the AH-
PPTW instances up to 30–50 nodes and a varying time window width can be attacked by the
branch&cut code.

As a by–product we obtained a branch&cut code for the asymmetric travelling sales-
man problem, whose computational performance on hard problem instances from TSPLIB is
comparable to the codes published in the literature.
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Reinelt (Universität Heidelberg) and was partially supported by the Science Program SC1–
CT91–620 of the EEC. Thanks to Mike, Stefan, and Gerd for implementing a general purpose

i



ii

branch&cut framework, primal heuristics, and for supplying separation routines that were
originally designed to be used for the TSP. Beside this technical support, their friendship and
encouragement always was a motivation to continue the debugging of the branch&cut code.

The research on the asymmetric Hamiltonian path problem with time windows was done
jointly with Matteo Fischetti (University of Padova). I feel indebted to him for giving me the
opportunity to benefit from his knowledge about Polyhedral Combinatorics. He never gave
up explaining things to me and I learned a lot in the discussions with him. I appreciate the
comments and suggestions Andreas Schulz made on the content of this chapter. Furthermore,
I would like to thank Matteo and Paolo Toth for providing their branch&bound code for the
ATSP.

Last but not least, I express my gratitude to Karola and Katja who gave me the necessary
moral support to finish this thesis and had to tolerate all my moods during the last months.
The time I spent with them was the right way to forget all the setbacks and disappointments
that are typically involved in research.

Berlin, December 1994 Norbert Ascheuer



Contents

Acknowledgements i

Contents iii

Introduction 1

1 Preliminaries 5

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Polyhedral Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Complexity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Branch&Cut Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The asymmetric travelling salesman problem . . . . . . . . . . . . . . . . . . 13

1.4 Flexible Manufacturing and Discrete Mathematics . . . . . . . . . . . . . . . 20

1.4.1 Flexible Manufacturing Systems (FMSs) . . . . . . . . . . . . . . . . . 20

1.4.2 The role of Discrete Mathematics in Flexible Manufacturing . . . . . . 22

1.5 On–line optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 On–line problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 On–line algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Description of the considered FMS 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Layout of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Work–off strategies and optimization approaches . . . . . . . . . . . . . . . . 41

2.3.1 Inner architecture of the storage systems . . . . . . . . . . . . . . . . . 42

2.3.2 Assignment of storage locations to incoming containers . . . . . . . . 42

2.3.3 Transportation tasks scheduling for the stacker crane . . . . . . . . . . 44

2.3.4 Optimization approaches for the AGV . . . . . . . . . . . . . . . . . . 45

2.3.5 Optimization questions in the test area . . . . . . . . . . . . . . . . . 46

2.3.6 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 A simulation model for the FMS 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Discrete event simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Simulating the FMS with AMSEL . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iii



iv CONTENTS

4 Optimizing the movements of the stacker crane 63
4.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 The optimization program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 On-line phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Related problems in the literature . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Bounds for on–line strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Offline-HPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.2 The construction of time windows for all jobs . . . . . . . . . . . . . . 77
4.6.3 Off–line HPP with precedence constraints . . . . . . . . . . . . . . . . 77
4.6.4 Off–line HPP with time windows . . . . . . . . . . . . . . . . . . . . . 78

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Hamiltonian path problems with precedences 81
5.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Linear Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Dimension of the polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Valid inequalities known from the literature . . . . . . . . . . . . . . . . . . . 93

5.4.1 Precedence forcing constraints . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Predecessor Inequalities (π–inequalities) . . . . . . . . . . . . . . . . . 93
5.4.3 Successor Inequalities (σ-inequalities) . . . . . . . . . . . . . . . . . . 95
5.4.4 Predecessor-Successor inequalities . . . . . . . . . . . . . . . . . . . . 96
5.4.5 Precedence cycle breaking inequalities . . . . . . . . . . . . . . . . . . 98
5.4.6 A lifting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 New valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.1 Strengthened D3-inequalities . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.2 Strengthened Tk–inequalities . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.3 Strengthened 2–Matching constraints . . . . . . . . . . . . . . . . . . . 107

5.6 Separation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6.1 A heuristic separation procedure based on shrinking . . . . . . . . . . 112
5.6.2 Separation of Tk–inequalities . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 A Branch&Cut Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.9 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Hamiltonian path problems with time windows 131
6.1 Introduction and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.1 Tightening of the time windows . . . . . . . . . . . . . . . . . . . . . . 135
6.2.2 Construction of precedences . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2.3 Elimination of arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Dimension of the polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.1 Relaxation I : Only one active time window . . . . . . . . . . . . . . . 140



CONTENTS v

6.4.2 Relaxation II : Two active time windows . . . . . . . . . . . . . . . . . 144
6.5 Valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5.1 Infeasible path constraints . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.2 A lifting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5.3 Generalized predecessor/successor–inequality . . . . . . . . . . . . . . 159
6.5.4 Strengthening of the MTZ–inequalities . . . . . . . . . . . . . . . . . . 162
6.5.5 Strengthening of the bounds on the t-variables . . . . . . . . . . . . . 163
6.5.6 Inequalities based on t–variables . . . . . . . . . . . . . . . . . . . . . 164
6.5.7 General cutting planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.6 The Branch&Cut Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.7 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.8 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Conclusions and outlook 181

Appendix 183

A List of symbols and abbreviations 185

B Statistics on SOP 187

C Statistics on AHPPTW 191

Bibliography 198

Index 208





Introduction

In the past decade many enterprises have successfully responded to rapidly changing market
demands and increasing competition ability by adopting concepts of flexible manufacturing.
There is no doubt that problems from the field of flexible manufacturing belong to the topics
of major interest of our time. This new technology, often described as the “third industrial
revolution”, has as well resulted in a continuous research in development and application of
high technology in manufacturing.

Mathematically based optimization tools can be applied to many of the problems arising
in the design and control of Flexible Manufacturing Systems (FMSs). Despite this
fact, the decision rules that are used in practice in order to control modern FMSs are often
based on strategies that are recommended chiefly by their simplicity, such as priority rules or
“First–In–First–Out” strategies. Still, the industry seems to trust more in experience–based
knowledge than in theory–based knowledge. But due to the rapid technological changes (e.g.,
in computer industry) and an intensified international competition “the era of trial–and–error
learning belongs to the past because changes occur faster than lessons can be learned.”[FGL92]

The problems arising in flexible manufacturing are interesting from a mathematical point
of view and have received considerable attention during the last years. A rapid increase
in the number of publications on such problems manifests this trend. But so far, very few
publications deal with real applications. Scanning through proceeding volumes of recent
conferences on Operations Research or Manufacturing (see, among others, [SS89, IEE90,
FGJ92]) demonstrates that most of the considered problems are “scientific problems”. The
applicability of the models and algorithms is very often not evident, as they are tested on
randomly generated data or the considered FMS is not of such high complexity as real systems
typically are.

The gap that exists between mathematical theory and industrial applications in manufac-
turing has been observed by several researchers. We give two quotations that can be found
in the literature and that try to provide an analysis of this fact. The first is by R.H.F. Jack-
son, deputy director of the Manufacturing Engineering Laboratory at the National Institute
of Standards and Technology, Gaithersburg, USA. He stated at the plenary address of the
“First Joint US/German Conference on New Directions for OR in Manufacturing” held at
his institute in July 1991 :

“... We believe this is a direct result of the declining number of operations re-
search practitioners who are not content simply to develop a model of a problem,
but insist on following through with implementation; who do not accept blindly a
decision maker’s description of a problem, but will expend considerable effort to
understand all the underlying assumptions and question the validity of each before
proceeding; who are not afraid to go out into the field or onto the factory floor to
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2 INTRODUCTION

gather data ... and perhaps most importantly ‘selling’ the solution to the decision
makers...” [FGJ92]

The second is by M. Grötschel who stated during an invited lecture on the Second Interna-
tional Conference on Industrial and Applied Mathematics, 1991:

“... there is still a huge gap between what could be done, and what is actually done
... It is my opinion that there are at least two reasons for this phenomenon. In
my experience many of the talented engineers who build and operate complicated
manufacturing systems so ingeniously, simply don’t have the background in the
rather new mathematical techniques ... Secondly only a few mathematicians are
willing to go through the laborious and occasionally painful process of understand-
ing, analyzing and modeling complex manufacturing systems and then discussing
their findings with the practitioners. Both parties suffer as a result. Companies in
particular miss opportunities for more efficient and cost-effective production, and
mathematicians opportunities to identify and solve challenging problems, problems
that arise in connection with one of the most fascinating technical developments
of our time...” [Grö92a]

To our point of view the mentioned gap between theoretical results and practical applications
has to be closed. This thesis is regarded as a step towards that direction.

The main motivation for the research, which is partly presented in this thesis, has been
derived from a joint project with the Siemens Nixdorf Informationssysteme AG (SNI). In
1987 SNI erected a factory in Augsburg (Germany) where all their personal computers (PCs)
and related products such as monitors, data terminals, keyboards, multi–user systems, etc. are
manufactured. But soon it turned out that this FMS was designed for a lower amount of
production as actually took place. As a result several components in this system turned out to
be bottlenecks in the flow of the material and the management was looking for possible ways
to improve the production process without having to carry out expensive technical changes.

After a thorough analysis of the system several bottleneck components have been de-
tected and the question of deactivating them has often led to Combinatorial Optimization
problems. In this thesis we focus on one of these problems, namely the question of sequencing
transportation tasks (jobs) of the stacker crane of an automatic storage system such that the
overall time needed for the unloaded moves is minimized. We developed and implemented an
optimization tool that is now running since more than two years in everyday production
on six automatic storage systems at SNI. Its use under heavy load conditions resulted in a
reduction of approx. 30% of the time needed for unloaded moves.

As there is a close relation between the application and the theoretical studies, we do not
restrict ourselves to describe only the interesting mathematical topics. We also outline the
typical Operations Research questions that have to be addressed, i.e., we discuss modeling
questions and briefly describe an implemented simulation package.

For a given set of jobs the problem of minimizing the overall time for the unloaded moves of
the stacker crane naturally leads to an asymmetric Hamiltonian path problem (AHPP).
But in contrast to this well known Combinatorial Optimization problem, the problem we
consider is of a dynamic nature. Suppose the stacker crane has a certain set of jobs to be
performed and that we calculated a sequence minimizing the time for the unloaded moves.
As soon as a new job is generated or a job is cancelled, this sequence has to be reoptimized.
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This means that a sequence that was optimal at a certain point in time is not necessarily
performed in the calculated order, and that it need not be optimal for the overall time period.
Problems with the property that not all input data (here the generated and cancelled jobs)
is known in advance is said to be an on–line problem. If in contrast all data is known, we say
that it is an off–line problem. Thus, we are actually confronted with an on–line asymmetric
Hamiltonian path problem.

Up to the present, not much attention has been paid to the study of on–line problems. In
general, an algorithm for an on–line AHPP will produce a non–optimal solution. Therefore,
a good measure for the quality of the found solutions is needed. So far, the concept of
competitiveness has been applied to compare the computational performance of on–line
algorithms, but leading to unduly pessimistic results.

As in the FMS that we consider, generated jobs cannot wait an unlimited amount of time
until they are performed, there exists an implicit due date for all jobs. This allows us to
derive lower bounds on the value obtained by an optimal on–line strategy by analyzing two
off–line problems: the asymmetric Hamiltonian path problem with time windows
(AHPPTW) and the asymmetric Hamiltonian path problem with precedence con-
straints, also known as sequential ordering problem (SOP). We show that the value of an
optimal solution to one of these problems is a lower bound to the value obtained by an optimal
on–line strategy. Thus, by solving these off–line problems we derive instance and application
dependent lower bounds to the on–line AHPP.

The SOP and AHPPTW are hard problems from the point of view of complexity the-
ory. Therefore, we cannot expect to find efficient algorithms solving all problem instances
to optimality. But lower bounds to the value of the optimal solutions to these problem in-
stances are lower bounds for the on–line AHPP as well. For the AHPP, which is trivially
equivalent to the ATSP, polyhedral approaches have turned out to be the appropriate
method to solve problem instances to optimality or to derive good lower bounds to the value
of the optimal solution. The key concept is to associate to each feasible solution a point in
an Euclidean space and to describe the polyhedron defined as the convex hull of these points
via linear inequalities and equations. If the combinatorial problem can be stated as a mini-
mization, resp. maximization, problem over this polytope we can apply cutting plane and/or
branch&bound methods to solve it. It is known that such descriptions exist, but it is unlikely
to find complete descriptions of the polytopes associated to the AHPPTW and SOP. Even a
partial description may already contain an exponential number of inequalities.

For the TSP and many other Combinatorial Optimization problems it has been shown
that even a partial description can be exploited to formulate an algorithm for the solution
of these problems. The so–called branch&cut algorithm is a variant of the well known
branch&bound algorithm where the lower bound calculations are performed by means of a
cutting plane algorithm, exploiting the knowledge about the facial structure of the polyhedron.

So far, additional side constraints to the TSP and ATSP have been considered very sel-
domly in the literature. Due to these additional constraints (in form of precedences, time win-
dows) the problem gets substantially more difficult. For example, it is already NP–complete
to find a feasible solution to the TSP with time windows.

By the time of writing, no implementations are known that solve both the SOP and the
AHPPTW to optimality by means of a branch&cut algorithm. So far, these problems have
been mainly attacked by means of heuristics or by applying concepts of implicit enumeration,
such as dynamic programming or branch&bound. We show that from a computational point
of view (quality of the found solutions, variety of problem instances that can be solved, etc.)
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branch&cut algorithms outperform or are at least comparable to the algorithms published so
far.

Outline of the thesis

This thesis contains 6 chapters and is divided into three parts. After an introductory part
(Chapters 1–2) we address some modeling and Operations Research questions (Chapters 3–
4). In the last part (Chapters 5–6) interesting mathematical problems are discussed in more
detail.

In Chapter 1 some basic mathematical definitions and results from graph theory, com-
plexity theory, and polyhedral theory are surveyed. Polyhedral results for the asymmetric
travelling salesman problem are summarized as far as they are of interest for this thesis.
Shortly Flexible Manufacturing Systems are introduced and the role of Discrete Mathematics
in Flexible Manufacturing is discussed. Finally, on–line problems and on–line algorithms as
far as they are discussed in the literature are surveyed. This chapter is not meant to be
comprehensive, but to provide the reader with the basic concepts and notations.

Chapter 2 contains a description of the considered Flexible Manufacturing System at SNI
and addresses several other optimization approaches that are not discussed in this thesis.

Chapter 3 is dedicated to a description of the concepts of event–oriented simulation and
a description of the implemented simulation package. This simulation program turned out to
be an important tool to study the on–line behaviour of the developed optimization packages.

In Chapter 4 we describe in detail the modeling of the problem of minimizing the un-
loaded travel time of the stacker crane and perform a computational study on several on–line
heuristics. Lower bounds on the value obtained by using a best possible on–line strategy are
derived.

In Chapters 5 we analyze the asymmetric Hamiltonian path problem with precedence
constraints. Classes of inequalities are summarized that are known in the literature. Fur-
thermore, several new classes of valid inequalities are given that are strengthenings of known
ATSP facet defining inequalities. A branch&cut algorithm is described that solves real–world
problem instances of up to 100 nodes and a varying number of precedences to optimality. One
result of the computational experiments was that the obtained lower bound is relatively good
but that additional effort has to be invested in the design of better heuristics. Computational
results on the unconstrained ATSP are given as well. It was possible to solve all six TSPLIB
instances to optimality in a short amount of computing time.

Chapter 6 is dedicated to the discussion of the asymmetric Hamiltonian path problem with
time windows. In contrast to many other publications we are not interested in minimizing
the overall completion time but in minimizing the total sum of intermediate set–up costs.
Therefore, we are not restricted to use the well known model based on a generalization of
the Miller–Tucker–Zemlin subtour elimination constraints but can define a TSP–like model.
Here the time window restrictions are modeled by infeasible path constraints, forbidding
paths that violate the given time windows. Several classes of inequalities of this type are
derived. Furthermore, known classes of inequalities are summarized. The implementation of
a branch&cut algorithm is described. The two models are compared from a computational
point of view on real–life problem instances of up to 50 nodes. This comparison shows that
the TSP–like model seems to be superior.
We close by giving some concluding remarks and sketching possible future research topics.



Chapter 1

Preliminaries

1.1 Notation

For completeness we summarize some basic definitions and results from graph theory, linear
algebra and polyhedral theory that will be of interest in this thesis. The aim is not to be
comprehensive but to provide the basic concepts and notations. Most of the definitions in
this section can be found in any introductory textbook. For a more detailed treatment of
these topics we refer, e.g., to Bondy and Murty [BM76], Chartrand and Lesniak [CL86],
Schrijver [Sch86], and Nemhauser and Wolsey [NW88].

1.1.1 Graph theory

A digraph (or directed graph) D = (V, A) consists of a nonempty, finite node set V and
a finite set of arcs A. An arc a ∈ A is an ordered pair of nodes i, j ∈ V and is denoted
by a = (i, j). We say that i is the tail and j is the head of arc a = (i, j), and i is said to
be the predecessor of j, whereas j is the successor of i. The arc a = (i, j) is said to be
directed from i to j, incident from i and incident to j. In the sequel we only consider loop
free digraphs, i.e., i �= j for all a ∈ A.

A digraph D = (V, A) is called complete, if each two nodes i, j ∈ V, i �= j are connected
by the arcs (i, j) ∈ A and (j, i) ∈ A. In the sequel a complete digraph on n := |V | nodes
is denoted by Dn = (V, An). A digraph D = (V, A) is called transitively closed, if for all
i, j, k ∈ V, i �= j �= k �= i, (i, j) ∈ A and (j, k) ∈ A implies (i, k) ∈ A.

An undirected graph (or graph) G = (V, E) consists of a nonempty, finite set of nodes
V and a finite set of edges E. To each edge e ∈ E two nodes u, v ∈ V are associated and it
is denoted with e = uv. In the sequel we only consider loop free graphs, i.e., u �= v for all
e ∈ E. A graph G = (V, E) is called bipartite, if V can be separated into two sets V1 and
V2, such that V = V1 ∪ V2, V1 ∩ V2 = ∅, and for all e = uv u ∈ Vi, v ∈ Vj, i �= j holds.

In this thesis we will mainly work on directed graphs. If not stated explicitly, the definitions
listed below translate directly to undirected graphs.

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs, such that V2 ⊆ V1 and A2 ⊆ A1,
then D2 is called a subdigraph of D1.

Suppose we are given a digraph D = (V, A). If W is a subset of V , then

A(W ) := {(i, j) ∈ A | i, j ∈ W}

5



6 CHAPTER 1. PRELIMINARIES

denotes the set of all edges with tail and head in W . For given node sets U,W ⊂ V with
U ∩W = ∅,

(U : W ) := {(i, j) ∈ A | i ∈ U, j ∈ W},
denotes the set of arcs with tail in U and head in W . To simplify notation, we write (W : j)
and (j : W ) instead of (W : {j}) and ({j} : W ). If U = ∅ or W = ∅, then (U : W ) = ∅.
Given a node set W ⊂ V,W �= ∅, we set

δ−(W ) := {(i, j) ∈ A | i ∈ V \W, j ∈ W},
δ+(W ) := {(i, j) ∈ A | i ∈ W, j ∈ V \W},
δ(W ) := δ−(W ) ∪ δ+(W ).

The arc set δ(W ) is called a cut. We know that δ−(W ) = δ+(V \W ). To simplify notation
we write δ−(v), δ+(v), δ(v), instead of δ−({v}), δ+({v}), δ({v}). The numbers |δ−(v)|, |δ+(v)|,
and |δ(v)| are called the indegree, outdegree, and degree of node v ∈ V . A node v ∈ V
is called isolated, if it has degree zero, i.e., |δ(v)| = 0.

If in a given digraph D = (V, A) arc weights ca are associated to each a ∈ A, we say that
D is a weighted digraph, and the weight of an arc set B ⊆ A is given by

c(B) :=
∑
a∈B

ca.

Suppose we are given a digraph D = (V, A), then the arc set

P = {(v1, v2), (v2, v3), .., (vk−1, vk)}, k ≥ 2, vi ∈ V ∀ i = 1, ..., k

is called a walk, or more precisely a [v1, vk]–walk. v1 is the starting node, vk is the end
node of the walk. The length of the walk equals the number of arcs in the path, is denoted
by |P | and equals k− 1. Each arc that is not in the walk but connects two nodes of the walk
is called a chord. A walk consisting of nodes that are all pairwise different, i.e., vi �= vj for
all i �= j, is called a path. A directed path of length |V |−1 is called a directed Hamiltonian
path. A walk

C = {(v1, v2), (v2, v3), ..., (vk−1, vk), (vk, v1)}
of length k with a starting and end node that coincide is called a circuit. Without risking
confusion we will also use the expression cycle instead of circuit. A cycle is called simple,
if all nodes are pairwise different, i.e., vi �= vj for all i, j = 1, ..., k, i �= j. A simple cycle of
length |V | is called a Hamiltonian cycle or a tour. A simple cycle of length less than |V |
is called a subtour. We say that a digraph D = (V, A) is acyclic, if its arc set A does not
contain a cycle.
For notational convenience we often abbreviate the path

P = {(v1, v2), (v2, v3), ..., (vk−1, vk)}

by stating only the nodes forming the path, i.e.,

P = (v1, v2, v3, ..., vk−1, vk).

But if doing so, we will always consider P to be a set of arcs.
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Given two paths P1 = (v1, v2, ..., vk) and P2 = (u1, u2, ..., um), we say that P2 is a subpath
of P1, if there exists a l, 0 ≤ l ≤ k −m, such that vi+l = ui for all i = 1, ..., m.

Two nodes u, v ∈ G = (V, E) are said to be connected , if there exists an [u, v]–path in G. If
each pair of nodes u, v ∈ V is connected, we say that G is connected. A digraph D = (V, A)
is said to be connected, if for each pair i, j ∈ V either a (i, j)–path or a (j, i)–path exists.
If both paths exist, D is said to be strongly connected. The components of D are the
maximal strongly connected subdigraphs of D with respect to arc inclusion. A node v ∈ V is
called articulation node, if G− v consists of more components than G.

A clique in a digraph D = (V, A) is a node set VC ⊆ V such that DC = (VC , A(VC)) is a
complete subdigraph of D.

For a given graph G = (V, E) a tree is a connected edge set of G that contains no cycle.
The tree is said to be spanning it it contains all nodes of the graph.

For a given digraph D = (V, A) a branching B is an acyclic arc set, such that every node in D
is the endpoint of at most one arc in B. A connected branching is called an arborescence.
Note, that in an arborescence there exists one node r of indegree |δ−(r)| = 0, called the
root of the arborescence, from which there exists a unique path to every other node in the
arborescence.

1.1.2 Polyhedral Theory

The vector y ∈ R
n is called a linear combination of the vectors x1, ..., xm ∈ R

n, if there
exists a1, ..., am ∈ R such that y =

∑m
i=1 aixi. If, in addition, the ai satisfy

• ∑m
i=1 ai = 1, then y is said to be an affine combination,

• ∑m
i=1 ai = 1 and ai ≥ 0, i = 1, ..., m, then y is said to be a convex combination.

If S ⊆ R
n, then the linear hull of S is defined as

lin(S) := {y ∈ Rn | ∃m ∈ N, a1, ..., am ∈ R, x1, ..., xm ∈ S, such that y =
m∑
i=1

aixi}.

Similarly, the convex hull conv(S) and affine hull aff(S) can be defined.

A nonempty set S ⊆ R
n is called linearly independent, if for every subset {x1, ..., xk} ⊆

S the equation
∑k

i=1 aixi = 0 implies ai = 0 for all i = 1, ..., k. The set S is called affinely
independent, if for every subset {x1, ..., xk} ⊆ S the equations

∑k
i=1 aixi = 0 and

∑k
i=1 ai =

0 imply ai = 0 for all i = 1, ..., k. Otherwise, S is called linearly (affinely) dependent. Every
linear (resp. affinely) independent set in Rn contains at most n (resp. n + 1) elements.

The rank (affine rank) of a set S ∈ Rn is the cardinality of the largest linearly (affinely)
independent subset of S, and the dimension of S, denoted by dim(S), is the affine rank minus
one. A set S ⊆ R

n is called full–dimensional, if dim(S) = n.

If 0 �∈ aff(S), i.e., S is contained in the hyperplane {x | ax = a0} with a0 �= 0, then dim(S)
is the maximum cardinality of a linearly independent set in S minus one.

The rank of a matrix is the rank of the set of the column vectors of the matrix. This is
the same as the rank of the set of its row vectors. An (m, n)–matrix is said to have full rank,
if its rank equals min{m, n}.

If S ⊆ R
n, then Ax = b is called a minimal equation system for S, if aff(S) = {x ∈

Rn | Ax = b} and A has full rank.
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To simplify notation, we write an inequality a1x1 + a2x2 + ... + anxn ≤ a0 in the form
ax ≤ a0 instead of aTx ≤ a0, i.e., a is considered to be a row vector, x to be a column
vector. For a, x ∈ Rn, a0 ∈ R an inequality ax ≤ a0 defines a halfspace in Rn, i.e., the set
{x ∈ Rn | ax ≤ a0}, and a hyperplane in Rn, i.e., the set {x ∈ Rn | ax = a0}.

A polyhedron is the intersection of finitely many halfspaces, i.e., every polyhedron P can
be represented in the form {x ∈ Rn | Ax ≤ b}. A bounded polyhedron is called a polytope.
In analogy to the definition given above, the dimension of the polyhedron is the maximum
number of affinely independent points in the polyhedron minus one. A polyhedron P ⊆ R

n

is said to be of full dimension, if dim(P ) = n.

Given any polyhedron P , we say that an inequality ax ≤ a0 is valid for P , if it holds for
all points x′ ∈ P . If ax ≤ a0 is valid for P , then the set {x ∈ P |ax = a0} determines a face of
P . It defines a facet of P , if it is valid and if there are dim(P ) affinely independent points in
the hyperplane induced by ax ≤ a0. A valid inequality ax ≤ a0 for P is called supporting,
if P ∩ {x ∈ Rn | ax = a0} �= ∅.

Given two inequalities ax ≤ a0 and bx ≤ b0 we say that ax ≤ a0 is dominated by bx ≤ b0,
if for all x′ ∈ P with ax′ = a0 we also have that bx′ = b0. The two inequalities are equivalent
with respect to P , if one can be obtained by multiplying the other with a positive scalar and
adding a linear combination of the equality system for P .

In this thesis inequalities are often “visualized” by means of a digraph. Therefore, let
ax ≤ a0 be any inequality, with a, x ∈ R|A|. The support graph of this inequality on a node
set S ⊆ V is given by Ga(S) = (S, Aa), where Aa := {(i, j) ∈ A(S) : aij �= 0}.

1.1.3 Complexity theory

We briefly review in an informal manner the basic concepts of complexity theory, as far as
they are used in this thesis. For a thorough description of the concepts and a comprehensive
survey we refer to Garey and Johnson [GJ79].

We distinguish between two types of problems:

• decision problems requiring a yes or no answer and

• optimization problems, that aim to detect a solution minimizing (or maximizing) a
certain objective function.

A decision problem is said to be in the class P, if there exists an algorithm with polynomial
time complexity that solves this problem. The class NP contains all problems such that
any instance of them that has a yes answer can be certified in polynomial time. Obviously,
P ⊂ NP . It is conjectured and commonly accepted that this inclusion is strict, i.e., P �= NP.

An important subclass in NP are the so–called NP–complete problems, i.e., problems
such that every other problem in this class can be transformed to it in polynomial time. The
problems of this class are considered to be the hardest problems, since if for one of them a
polynomial time algorithm is detected, it is shown that P = NP.

Note, that Combinatorial Optimization problems can be transformed into decision prob-
lems. An optimization problem is said to be NP–hard, if it has the property that the
existence of a polynomial time algorithm for the solution of the associated decision problem
implies the solvability of an NP–complete problem.
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1.2 Branch&Cut Algorithms

A combinatorial optimization problem (E, I, c) can be described as follows:
We are given a finite set E (e.g., the arcs of a digraph), a set of feasible solutions I ⊆ 2|E|,
and a cost function c : E → K , assigning a certain weight to each e ∈ E. The “value” of each
subset F ⊆ E is given by c(F ) :=

∑
e∈F c(e). The problem consists of finding an element

I∗ ∈ I, such that c(I∗) is minimal (or maximal). For the sake of simplicity we always refer to
minimization problems in the sequel. For maximization problems the statements are derived
in an analogous way.

Although we considered the ground set E to be finite, the “interesting” combinatorial
optimization problems have a number of feasible solutions that is exponential in the size n of
the ground set E, (e.g., 2n or n!). Therefore, it is impossible to simply enumerate all feasible
solutions. The aim of Combinatorial Optimization is to design algorithms that are faster than
simple enumeration techniques.

In the 60s and 70s Polyhedral Theory developed as a theoretical tool to describe combina-
torial optimization problems. In the end of the 70s and in the beginning of the 80s it turned
out that this approach can successfully be used to solve these problems, namely by the means
of cutting plane algorithms. Their basic principles are described now.

To apply linear programming techniques to solve combinatorial optimization problems we
assign variables xe to each e ∈ E. The variable xe is considered to be a component of the
vector x ∈ K |E|. In order to simplify notation we write from now on KE instead of K |E|. To
each subset F ⊆ E we assign a so–called incidence vector χF ∈ KE , χF = (χF

e )e∈E that is
defined as

χF
e :=

{
1, if e ∈ F,
0, else.

Thus, to each F ⊆ E we uniquely associate a 0/1–vector χF , and vice versa. We define

PI := conv{χI ∈ KE | I ∈ I}(1.2.1)

to be the convex hull of the incidence vectors of the feasible solutions of the considered com-
binatorial optimization problem. Hence, PI is a polytope and the vertices of PI correspond
to the incidence vectors of the feasible solutions I ∈ I. If the function c : E → K is considered
to be a vector c ∈ KE , every optimal vertex of the linear program

min{cTx | x ∈ PI}(1.2.2)

is the incidence vector of an optimal solution to the considered combinatorial optimization
problem (E, I, c), and vice versa.

The program (1.2.2) is of a form that is not suitable to be attacked by linear programming
techniques. Therefore, it is necessary to find a system of equations and inequalities, such that

PI = {x ∈ KE | Dx = d, Ax ≤ b}.
From a theoretical point of view this is possible, but the problem of finding such a description
is not always easily solvable, as, e.g., exponentially many inequalities might be necessary to
describe PI . Thus, for algorithmic purposes it is often sufficient, to find descriptions that are
“sufficiently good enough”, i.e.,

PI ⊆ {x ∈ KE | D′x = d′, A′x ≤ b′}.
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If these equations and inequalities are selected properly, solutions to the linear program

min{cTx | D′x = d′, A′x ≤ b′}

often lead to optimal solutions or at least to good lower bounds to the value of the optimal
solution of the considered combinatorial optimization problem.

Polyhedral Theory aims to describe the polytope PI (1.2.1) as good as possible by nonre-
dundant equations and inequalities. Nonredundant means that the system does not contain
any equation or inequality that might be left out without changing the set of feasible solu-
tions. Complete descriptions are known for many polytopes that correspond to combinatorial
optimization problems that are solvable in polynomial time.

Very often the polytope PI might be described as

PI = conv{x ∈ KE | Dx = d, Ax ≤ b, xi ∈ {0, 1}, i = 1, ...|E|},

i.e., each vertex has just 0/1–components. The typical way of relaxing the problem is to
consider a polytope P that is obtained by transforming the conditions xi ∈ {0, 1} into bounds
on the variables, i.e.,

P = conv{x ∈ KE | Dx = d, Ax ≤ b, 0 ≤ xi ≤ 1, i = 1, ...|E|}.

This polytope satisfies
PI ⊆ P

and therefore we know

min{cTx | x ∈ P} ≤ min{cTx | x ∈ PI}

Furthermore, we know that each extreme point of PI is an extreme point of P . If

min{cTx | x ∈ P}(1.2.3)

leads to a 0/1–solution, we have found a solution to the combinatorial optimization problem
(E, I, c). If not, we have to find inequalities that are valid with respect to PI and that are
violated by the actual solution of (1.2.3). Here the knowledge of facet defining inequalities
is very important, as these inequalities are supposed to provide the “deepest cut” into the
polytope.

The problem of finding such a valid violated inequality is known as the separation prob-
lem. We know state this more formally.

Separation problem:
Given a polytope PI ⊆ K

E and y ∈ KE .
Decide whether y ∈ KE , and if not determine a violated inequality aTx ≤ a0 with aT y > a0.

Grötschel, Lovász, and Schrijver [GLS88] showed that the optimization problem can be solved
in polynomial time, if the separation problem can be solved in polynomial time.

Suppose we are given a class of inequalities Ax ≤ b. A procedure that determines for a
given point y ∈ K

E such a violated valid inequality, i.e., Aiy > bi, is called a separation
routine for the inequality system Ax ≤ b. We have to distinguish between exact and heuristic
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separation routines. A separation routine for a class of inequalities Ax ≤ b and a given point
y ∈ KE is called exact, if it either finds a violated inequality Aiy > bi or gives the answer
that no such inequality exists. If the routine might just find a violated inequality, but does
not terminate with the answer that no such inequality exists, it is called to be a heuristic
separation procedure. Thus, it might happen that a heuristic separation procedure does
not detect a violated inequality of a certain class, although there exists such an inequality.

Start

LP  = LPk 0

inequalities 
found ?

Try to find violated

valid inequalities

(separation problem)

SOLVE   LPk

k = 0
INITIALIZE :

Stop

REVISE  LP:

Set k = k+1

k+1 k
LP     = LP   + violated

inequalities

yes

no

Figure 1.2.1 Flowchart of a cutting plane algorithm

Now we are able to give the standard version of a cutting plane algorithm (see Figure
1.2.1). We solve an initial linear program, try to find violated valid inequalities, add them to
the LP, resolve it, etc. This is certainly a very brief outline of a cutting plane algorithm and a
lot of details that are important for an efficient implementation are left out. In case that this
approach results in a 0/1–solution we have found an optimal solution to our problem. If this
is not the case, we can either stop and output the value of the current LP as a lower bound
on the value of the optimal solution or embed this cutting plane algorithm in a enumerative
branch&bound framework. Therefore, we create two new subproblems by fixing a certain
variable either to its lower bound 0 or its upper bound 1, and proceed with applying the
cutting plane algorithm to each of the subproblems, and so on. If doing so, this approach is
called a branch&cut algorithm.

Figure 1.2.2 gives a simplified flowchart of a branch&cut algorithm, as it was given in
[JRT92]. As already mentioned, the branch&cut algorithm is a variant of the well known
branch&bound algorithm where the lower bounds are obtained by cutting plane algorithms.
The main task of the branch&cut algorithm is to maintain a list of active subproblems. At
the beginning this list is initialized by the problem itself. At each major iteration of the
algorithm a global upper bound (feasible solution) and a local lower bound is calculated.
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StopStart

    and

compute 

global upper bound (gub)

local lower bound (llb)

gub > llb ?

BRANCH

FATHOM

SELECT

INITIALIZE OUTPUT

list empty ?

feasible ?

yes

no

yes

no

no

yes

Figure 1.2.2 Flowchart of a branch&cut algorithm

If the local lower bound equals or exceeds the global upper bound, we know that we can
fathom that subproblem (node), as in that branch of the branch&cut tree we will never find
a feasible solution better than the one we already have. We than select another subproblem
and continue until there are no subproblems left (list is empty). In case that the local lower
bound is lower than gub, we check if the subproblem contains a feasible solution. If no, we can
fathom this node, else we create two new subproblems, add them to the list of all subproblems
and proceed.

This is just a brief sketch of the general concept of branch&cut algorithms. There are a
lot of details that have to be clarified for an efficient implementation of such an algorithm.
See [NW88] for an introduction to linear programming and [PR91, JRT92] for more details
concerning branch&cut algorithms.
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1.3 The asymmetric travelling salesman problem

In Chapters 5 and 6 we study variants of the asymmetric Hamiltonian path problem
(AHPP) where additional side constraints are present. In graph theoretical terminology the
classical AHPP can be defined as follows: Given a complete weighted digraph Dn = (V, An)
with arc weights cij for all arcs (i, j) ∈ An, find a Hamiltonian path with minimal cost through
the nodes in V . The AHPP is equivalent to one of the most studied problems in Combinatorial
Optimization: the asymmetric travelling salesman problem (ATSP). In the ATSP one
is interested in finding a minimum cost Hamiltonian circuit (tour) through Dn.

The AHPP on n nodes can easily be transformed into an ATSP on n+ 1 nodes as follows.
Add a node vn+1, arcs (vi, vn+1) and (vn+1, vi) with cost coefficients 0 for all vi ∈ V , and
calculate a cost minimal tour in the digraph Dn+1 = (V ∪ {vn+1}, An+1). Now, let s be a
vector, such that s(vi) denotes the successor of vi ∈ V ∪ {vn+1} in the optimal tour. Let
vk ∈ V be the node, such that s(vk) = vn+1. Thus, with

C = (vn+1, vs(vn+1), vs(s(vn+1)), ...., vk)

we denote an optimal tour in D′
n+1 = (V ∪ {n + 1}, An+1). Obviously, the path

P = (vs(vn+1), vs(s(vn+1)), ..., vk)

corresponds to an optimal Hamiltonian path in Dn = (V, An).

As we are interested in solving the AHPP with side constraints by polyhedral methods, results
about the facial structure of the corresponding polytopes are of particular interest. So far,
the AHP–polytope was not considered explicitly in the literature, but most of the published
polyhedral results can be found on the ATS–polytope. Therefore, we restrict ourselves in
citing the results for the ATSP.

The following binary linear program models the ATSP

min cTx
s.t. (1) x(δ−(i)) = 1 ∀ i ∈ V

(2) x(δ+(i)) = 1 ∀ i ∈ V
(3) x(A(W )) ≤ |W | − 1 ∀ W ⊂ V, 2 ≤ |W |
(4) xij ∈ {0, 1} ∀ (i, j) ∈ An

(1.3.4)

We follow the notation introduced in Grötschel and Padberg [GP85b] and denote by

Pn
T := conv{x ∈ {0, 1}An | x satisfies (1.3.4)(1)− (3)}

the asymmetric travelling salesman polytope, i.e., the convex hull of the incidence
vectors of all (n− 1)! tours in the complete digraph Dn = (V, An). A common approach to
obtain results about the facial structure of Pn

T is to analyze its monotone relaxation. Here
it is assumed that each node is visited at most once, i.e., the equations (1.3.4)(1) and (2) are
relaxed to

(1′) x(δ−(i)) ≤ 1 ∀ i ∈ V,
(2′) x(δ+(i)) ≤ 1 ∀ i ∈ V.

(1.3.5)

The monotone ATS–polytope is defined by

P̃n
T := conv{x ∈ {0, 1}An | x satisfies (1.3.5)(1′)(2′) and (1.3.4)(3)}
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The symmetric travelling salesman polytope Qn
T can be defined in an analogous way as Pn

T .
The polytopes Pn

T and P̃n
T have been studied, among others, by Grötschel [Grö77], Grötschel

and Padberg [GP77], Balas [Bal89], Fischetti [Fis89, Fis91, Fis92], Balas and Fischetti [BF92,
BF93a], Chopra and Rinaldi [CR90], and Queyranne and Wang [QW94]. In this section we
review some of the known polyhedral results that will be of interest in this thesis.

It is well known that

dim(Pn
T ) = n · (n− 1) − 2n + 1

and

dim(P̃n
T ) = n · (n− 1)

The description of Pn
T by means of equations and inequalities caused the interest of researchers

for a long period of time. The first results about its facial structure are due to Heller and
Kuhn. In 1953 Heller [Hel53] published a (partial) description of P5T consisting of 9 equations
and 215 inequalities. In 1955 Kuhn [Kuh55] presented two more classes of inequalities and
stated that his description of 9 equations and 390 inequalities is complete and nonredundant.
In 1989 Bartels and Bartels [BB89] calculated by means of a computer program a complete
and nonredundant description by P5

T leading to the same result. Euler and Le Verge [EL92]
calculated complete descriptions of P̃ 5

T and P 6
T . The number of inequalities necessary to

describe these polytopes is summarized in the following table.

# equations # facets # classes

P 5
T 9 390 6

P̃ 6
T 0 7615 51

P 6
T 11 319015 287

Symmetric inequalities

An inequality ax ≤ a0 is called symmetric, if aij = aji for all (i, j) ∈ A, otherwise the
inequality is called asymmetric.

The symmetric TSP is equivalent to the ATSP, as it can be transformed into an ATSP,
and vice versa. An obvious question is, if there is a relation between facet defining inequalities
for Pn

T and Qn
T . Given a valid TSP–inequality by ≤ b0, one can derive a symmetric ATSP–

inequality ax ≤ a0 by replacing ye by xij + xji and setting a0 = b0, aij = aji = be for
all e ∈ E, e = ij. Conversely, every symmetric ATSP–inequality corresponds to an TSP–
inequality. Examples for symmetric ATSP inequalities are, among others,

• subtour elimination constraints,
• 2–matching constraints,
• comb–inequalities,
• clique tree inequalities.

Unfortunately, the result that a certain facet defining inequality for Qn
T is facet defining for

Pn
T as well, cannot be derived automatically. Suppose the inequality ay ≤ a0 is facet defining

for Qn
T . Then there exist

n·(n−1)
2 − n linearly independent tours satisfying this inequality

with equality. By directing the edges of each tour in the two possible directions we obtain
n · (n− 1)− 2n directed tours. It is not known under which conditions these ATSP solutions
are linearly independent. Moreover, if they are linearly independent this is not sufficient for
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proving that ax ≤ a0 is facet defining for Pn
T , as dim(Pn

T ) = n · (n− 1) − 2n + 1. Thus, one
more tour has to be constructed that is linearly independent to the others.

Grötschel [Grö77] (see also [GP85b]) showed that the subtour elimination constraint

x(A(W )) ≤ |W | − 1

defines a facet of Pn
T , n ≥ 5, if 2 ≤ |W | ≤ n − 2, and for P̃n

T , n ≥ 3, if 2 ≤ |W | ≤ n − 2.
Fischetti showed that

• comb inequalities define facets of Pn
T , except when n = 6, and P̃n

T [Fis91],

• the clique tree inequalities, which have been introduced by Grötschel and Pulley-
blank [GP86], define facets of Pn

T and P̃n
T , n ≥ 6 [Fis89].

Asymmetric inequalities

For the symmetric and asymmetric travelling salesman problem the cycle inequality

x(C) ≤ |C| − 1

can be lifted to be facet defining for the polytopes Pn
T and P̃n

T . For the symmetric case
no new inequalities are obtained, as the lifted cycle inequalities are the subtour elimination
constraints.

But for the asymmetric case new facet defining inequalities can be found. If C = (i1, ..., ik)
is a directed cycle of length k, these inequalities are the so–called Dk–inequalities (see e.g.,
[GP85b]). Dependent on the order in that the arcs are lifted different inequalities are obtained.
Figure 1.3.3 gives all inequalities derived from the sequential lifting of cycles of length 3 and
4. The bold lines represent variables with coefficient 2 and the numbers on the arcs indicate
the order in that the arcs are lifted.

The number of inequalities derived from the sequential lifting of k–cycles grows fast with
k. Although there is only one facet defining inequality for the ATS–polytope derived from
a cycle of length 3, there are already four obtained from for a cycle of length 4. Until now
there is no formula known that describes all the inequalities that can be obtained by applying
the sequential lifting procedure to the cycle inequalities. Grötschel [Grö77] discusses several
classes of inequalities, among them the so–called D+

k – and D−
k –inequalities.

(1.3.6) Theorem.
Let C = (i1, ..., ik), {i1, ..., ik} ⊂ V, 3 ≤ k ≤ n−1, be a simple cycle, then the D+

k –inequalities

k−1∑
j=1

xij ij+1 + xiki1 + 2
k−1∑
j=2

xij i1 +
k−1∑
j=3

j−1∑
h=2

xij ih ≤ k − 1

and D−
k –inequalities

k−1∑
j=1

xijij+1 + xiki1 + 2
k∑

j=3

xi1ij +
k∑

j=4

j−1∑
h=3

xijih ≤ k − 1.

define facets of Pn
T and P̃n

T , for all 3 ≤ k ≤ n− 1.
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Proof. Validity : See Grötschel [Grö77].
Facet defining property for P̃n

T : See Grötschel [Grö77].
Facet defining property for Pn

T : See Grötschel [Grö77] for the case of k = 3, 4 and Fischetti
[Fis91] for all other cases.
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Figure 1.3.3 Lifted 3– and 4–cycle–inequality
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The subtour elimination constraint x(A(W )) ≤ |W | − 1 can be generalized by attaching
a source node p and a sink node q. The obtained inequality is known as a Tk–inequality.

(1.3.7) Theorem.
Let W ⊂ V be a vertex set in Dn = (V, An) with 2 ≤ |W | = k ≤ n − 2, let w ∈ W and

p, q ∈ V \W , then
x(A(W )) + xpw + xpq + xwq ≤ k

is called a Tk–inequality and is valid with respect to Pn
T and P̃n

T .
For n ≥ 4, 2 ≤ k ≤ n− 2 it defines a facet of P̃n

T . If, in addition, k �= n− 3, it defines a facet
of Pn

T .

Proof. See Grötschel [Grö77].

This inequality can be further generalized by attaching a source and sink to a comb.

(1.3.8) Theorem.
Let H ⊂ V be a “handle” and T1, ..., Ts be pairwise disjoint “teeth” satisfying
(i) |H ∩ Ti| ≥ 1 for all i = 1, ..., s,
(ii) |H \ Ti| ≥ 1 for all i = 1, ..., s,
(iii) s ≥ 3 and odd.

For each pair of distinct vertices p and q in (V \H) \ (∪si=1Ti), the following C2–inequality

x(A(H)) +
s∑

i=1

x(A(Ti)) +
∑
v∈H

(xpv + xvq) + xpq ≤ |H | +
s∑

i=1

(|Ti| − 1) − s + 1

2
+ 1

is valid and facet defining for Pn
T and P̃n

T .

Proof. Validity: See Grötschel [Grö77].
Facet defining property: See Fischetti [Fis91].

T1 T2
T3

p q

H

C2-inequality

<- 8<- 4

i1

i2

i 3
W1

W2

C3-inequality

Figure 1.3.4 ATSP facets

(1.3.9) Theorem.
Let i1, i2, i3 be three different vertices, and let W1,W2 ⊂ V be such that
(i) W1 ∩W2 = ∅,
(ii) Wj ∩ {i1, i2, i3} = {ij},
(iii) |Wj| ≥ 2 for j = 1, 2
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then the C3–inequality

x(A(W1)) + x(A(W2)) +
∑
j∈W2

xi1j + xi2i1 + xi3i1 + xi3i2 ≤ |W1| + |W2| − 1

is valid and facet defining for Pn
T and P̃n

T

Proof. Validity: See Grötschel [Grö77].
Facet defining property: See Grötschel [Grö77] for the case that |W1| + |W2| = n − 1, and
Fischetti [Fis91] for all other cases.

Odd CATs

This class of inequalities has been introduced by Balas [Bal89]. We need to set up more
notation in order to describe the inequalities of this class.
Two arcs a1 = (i1, j1) and a2 = (i2, j2) are said to be incompatible, if
(i) j1 = j2 or
(ii) i1 = i2 or
(iii) i1 = j2 and j1 = i2.

Otherwise, they are said to be compatible.
Roughly speaking, a closed alternating trail (CAT)

T = (a1, a2, ..., at)

is defined to be a set of distinct arcs ak with the property that for k = 1, ..., t the arc ak is
incompatible with arcs ak−1 and ak+1 and compatible with all other arcs in T (with a0 := at
and at+1 = a1). If t is odd, the CAT is said to be odd. A node v is said to be a source, if it
is the common tail of two arcs in the CAT and a sink, if it is the common head of two arcs
in the CAT. Note, that a node v can either be a sink, a source, both or none. If it is neither
a source nor a sink, it is said to be neutral.

By definition an alternating trail T is an arc set where the directions of two subsequent
arcs ai and ai+1 differ with the exception of pairs that form a 2–cycle. Figure 1.3.5 shows
examples of odd closed alternating trails.

(a) (b) (c)

Figure 1.3.5 Odd closed alternating trails

Now, let C be a set of chords (i, j) ∈ A \ T such that i is a source and j is a sink. We can
now state the following theorem.
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(1.3.10) Theorem. (Balas, 1989)
Let Dn = (V, An) be a complete digraph on n nodes. Let T be an odd CAT, and let C be
the set of its chords connecting a source to a sink. Then for all n ≥ 6 the inequality

x(T ∪C1) ≤ t− 1

2

defines a facet of Pn
T (except for two pathological cases for n = 6).

Proof. See Balas [Bal89].

Euler [Eul89] has generalized this result by “gluing” together several odd CATs at a
distinguished 2–cycle and has shown that a new class of facet–defining inequalities for PnT is
obtained, the so–called odd CAT–bundles.
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1.4 Flexible Manufacturing and Discrete Mathematics

In the early 80s “Flexible Manufacturing System (FMS)” was a well used buzz–word. Huge
amounts of money were poured into FMS technology. These systems were described as the
automation approach to cure the ills of the manufacturing industry – an industry organized on
contemporary technology which could not respond to the new markets requiring flexibility in
production. Especially the ever shorter life cycles of products (e.g., in computer industry) and
the variety in the product spectrum made it necessary to install flexible production systems.

In Section 1.4.1 we describe recent developments in manufacturing that have led to the
modern Flexible Manufacturing Systems that are playing an ever larger role in today’s au-
tomation of industry. Detailed surveys can be found, among others, in Fine [Fin93], Parish
[Par90] or Tetzlaff [Tet90].

During the planning and control of an FMS a lot of decisions have to be made, where
models and methods from Discrete Mathematics, embedded in a decision support system,
can help to analyze the system and increase the system performance. In Section 1.4.2 we
summarize some of these approaches.

1.4.1 Flexible Manufacturing Systems (FMSs)

For a long period of time the market accepted a small product variety for the sake of cheap
mass–produced goods. This is changing nowadays, as the richer markets of today demand for
flexibility from their industrial suppliers to meet greater individual requirements.

During the last decades two main streams have characterized the developments in the field
of manufacturing, namely automation and integration. Automation means the substitution of
costly human labour by machines and integration can be described “as the reduction of buffers
between physical or organizational entities”[Fin93]. This development is closely related to the
advent of computers and electronic data communication, in particular by the introduction of
digital computers during the 1950s and integrated circuits (IC) and microcomputers during
the 1970s.

During the 50s machines were developed that were equipped with a “computer”, known
as numerical controllers (NC), and could be run by a computer program. These so–called
stand alone NC–machine needed an operator to load and unload the workpieces, tools and
NC–programs. Although this was not a fully automated machine it required less interference
than manually–operated machines. The capacity of the NC–computers increased in the fol-
lowing years and resulted in the ability to control all peripheral equipment and the machine
tools. These enhanced controllers, developed in the 1970s, became known as computer nu-
merical controllers (CNC) and are still developing. These CNC–machines have been
equipped with their own small computers and had the advantage over the NC–machines that
all NC–programs could be stored locally. Some CNC–machines had the additional feature of
automated parts loading and unloading and of automated tool changing. But still for most of
these machines the provision of data and material was completely manual, i.e., NC–programs
are loaded manually to the CNC, pallets are manually loaded, etc.

The next improvement in order to avoid manual interaction and interference was the
development of Distributed Numerically Controlled (DNC) systems which normally
consist of several CNC machines that are under the control of a larger computer system. This
computer automatically downloads the NC–programs via a DNC–link from an NC–program
storage computer to the distributed machines.
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Next, a group of machines has been connected physically using a transportation system
for the workpieces. This automatic material handling system might consist of automatically
guided vehicles (AGVs), conveyor belts, rail systems, etc. and has the task to move the
material and workpieces between the work stations, storage locations and shipping points.
The transportation system is one of the main integrating components, as it connects several
points in the system.

Finally, cell systems have been developed where a host computer takes over many of the
organizational tasks originally carried out by an operator. This computer is called the “FMS–
host”. The modern FMSs also include tool flow systems as well as piecepart flows. Nowadays
FMSs might also contain robots, which are automated equipment, typically programmable,
that can be used for moving material to be worked on (pick and place) or assembling compo-
nents into a larger device. They also substitute human labour in the use of tools or equipment.

In earlier time, the host computer was a mainframe due to the lower performance of the
computers available at that time. The high costs of computers in these days were one of
the main reasons for not decentralizing functions on several expensive computers. But this
had the disadvantage, that if the central host malfunctioned then the whole FMS stopped.
Today with cheaper high–performance hardware and software, the FMS control hierarchy is
much more decentralized. Many functions have been off–loaded from the host to the periph-
eral controllers in the FMS, e.g., to CNCs and Programmable Logical Controllers (PLCs).
This decentralization of functions across more localized hardware results in a higher system
reliability. If the host breaks down, the FMS can still function, although not with such a
high degree of automation and without integration of all components. Alternative emergency
strategies have been developed for the peripheral controllers to take over certain functions in
such situations.

The FMS is flexible in the sense that this system enables to produce a greater variety
of products than this is typically possible on standard highly–automated transfer lines. This
is possible, as both the operations performed on each machine and the routing between the
machines can be influenced by means of a software control system and without costly and
time–consuming changeover requirements between product–mixes. Certainly the flexibility
of the system is restricted by the technical limits of the FMS (speed of machines, capacities,
etc.).

It is not easy to give a formal definition of an FMS. In the literature there were several
attempts to point out the main aspects of an FMS. Following this line an FMS is accepted
to be

a fully integrated manufacturing system consisting of flexible machines or robots,
linked by an automated material handling system, where all the system components
and the whole system are under computer control.

Although there is that widely accepted definition of an FMS, all systems certainly differ
in their layout and operational rules with respect to their strategic purposes and impact.
The integration of automated industry is now recognized by the widely accepted label of
“Computer Integrated Manufacturing” (CIM). One aspect of the CIM concept is the
application of FMS technology.
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1.4.2 The role of Discrete Mathematics in Flexible Manufacturing

In a process that started in the beginning of the 80s industry became aware of the importance
of competitive manufacturing and, as a result, there was a remarkable increase in the interest
in the contribution Discrete Mathematics could make to the field of modern manufacturing.
The rapid increase in the number of mathematically oriented journals, books and papers in
the manufacturing field manifests this development. The intention of this section is not to
survey all the mathematical problems that arise in that area. Due to the richness of the field
of manufacturing this would be out of the scope of this thesis. Rather we like to characterize
the ongoing research activities and give an idea of what is done and what could be done.

Most of the FMSs are extremely complex. It is difficult both for researchers and man-
agers to achieve a clear, coherent picture of how such systems work. The result is that it is
not possible to predict “with the naked eye” which consequences any layout or operational
decision will have on the performance of the whole system. As some sort of help is needed
to obtain an understanding of the behaviour of the FMSs, to support in their design and
to compare alternative operational decision rules, it will be necessary to model the FMS
mathematically. The aim of this modelling phase is to transform the manufacturing problem
to some quantitative relations, equations or inequalities and to make them suitable to be
attacked by algorithmic methods. The resulting optimization tools, embedded in a decision
support system, should help the designer or controller of the system to make decisions to
questions of a rather complex structure.

Not only the FMS in itself is rather complex. But, as a result, also the question of
modelling the FMS or the problem of “optimizing an FMS” is of an extremely high degree
of complexity, typically involving nonlinear system dynamics as well as stochastic elements.
With the known methodology it is not possible to solve the problem in its entirety. Therefore,
a very common approach to attack that problem is by decomposing it into a hierarchical
structure of subproblems that are suitable to be attacked by the known methodology.
In this approach the solution of one subproblem is accepted, as the starting point for the
next subproblem. Certainly this approach does not guarantee to find the global optimum
of the original problem, even under the assumption that every subproblem is solved to opti-
mality. As some of the subproblems themselves turn out to be NP–hard, even this cannot
be achieved in a reasonable amount of time. It is very common to approximately solve the
subproblems by means of heuristics. But nevertheless, this hierarchical approach turned out
to give satisfactory results for many practical problems.

The occurring mathematical subproblems may be divided into two classes, namely

(1) layout and design problems of an FMS and

(2) problems arising in the scheduling and in the control of the system.

The first problem class deals with the selection of equipment and with the system layout
whereas the second addresses operational questions within an existing FMS. In the following
we summarize some of these problems. It is not possible to describe all the mathematical
models in detail, since it would be necessary to also describe the technical environment within
the FMS to give an “understandable” description of the mathematical models. Thus, for more
details the reader is referred to the cited literature. A good survey about related mathematical
problems can be found in [GRZ93].
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Beside the mathematically based approaches simulation tools are also very common in
practice. They are discussed in detail in Chapter 3.

Design problems for FMS

As FMS–technology is very expensive in general, the users are interested in having an “opti-
mal” design and layout of the system. This design and planning phase is prior to the beginning
of production and includes among others questions like:

(1.4.11) FMS design problems.

• optimal kind and number of products to be manufactured,

• optimal kind, number and size of the FMS–components (machines, buffers, transporta-
tion system, etc.),

• optimal floor layout of the FMS,

• optimal structure of the planning and control system (hard– and software, structure of
the computer network, etc.).

Two different optimization directions are discussed in the literature. In the first class the
problem of minimizing the inventory cost of an FMS configuration while meeting a prescribed
throughput rate is discussed. The second deals with the problem of maximizing the through-
put while fulfilling some budgetary and capacity restrictions. Some approaches are known
that try to combine these two objectives. A major problem is that there is no clear–cut
measure of the performance of a proposed production system. The absence of a computable
“performance rate” of an FMS makes it difficult to decide between competing system designs.

There are two approaches that are very common in the rough–cut analysis of a system.
That are simulation approaches and analytic queueing models. Simulation models are
very common in practice and are discussed in more detail in Chapter 3. Among the most
propagated approaches in the academic world are analytic queueing models (open or
closed queueing networks) capable of analyzing the steady–state behaviour of a system. They
are briefly sketched in the following.

Queueing networks

The research on queueing networks in the context of manufacturing questions was initiated
by two publications of Jackson in 1957 and 1963 ([Jac57, Jac63]). It was motivated by the ob-
servation that in the modern manufacturing systems arising at that time, products sometimes
spend a long time waiting for some resources (material, work stations, etc.). Therefore, one
was looking for a methodology that takes waiting times into account, with the aim of quan-
tifying the impact of alternative manufacturing strategies. This was provided by queueing
theory.

In that approach each manufacturing cell is considered as a station with a queue and
one or more servers, dependent on the number of workstations (CNC–machines, robots, etc.)
within this cell. These stations are connected by the underlying transportation system. In
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closed queueing networks a fixed number of pallets or work pieces are circulating in the
system, whereas in an open queueing network pieces are assumed to arrive at the loading
station due to a certain probability distribution and they leave the system when they are
completed.

Briefly sketched the results of Jackson are the following. Under certain assumptions on
the underlying model (e.g., parts enter the system according to a Poisson process, service
times are exponentially distributed, service according to a “first–come–first–serve rule”, part
routing according to a Markov chain) he could show that the steady state joint queue length
distribution of the system can be computed relatively easy. It follows a so–called product–
form, which means that it can be studied by analyzing the length of each server queue
independently. In the following years the research activities concentrated on elaborating
other conditions under which the product–form holds.

But an observation that has been made is that in most practical applications these as-
sumptions are rather unrealistic. For these networks the assumptions seldomly hold and an
exact analysis appears to be impossible. Therefore, a new tendency has gone towards the
development of approximate solutions for a general class of problems.

But once being confronted with real problems the results are not yet convincing, as, e.g.,
R. Suri and S. de Treville state in an article about the future of modelling technologies in the
world of competitive manufacturing (see [ST91]):

“...the use of queueing models in manufacturing...remains limited. True, queueing
models are commonly discussed in academic operations management courses, pub-
lications cite their applicability to manufacturing and research proposals assume
their wide use. However, we have noticed that queueing models are seldom used
for manufacturing decision–making.”

We believe that this is mainly due to the fact that real production systems (not the arti-
ficial systems that are studied in the academic literature) seldom reach a steady state. But
this approach, as well as a simulation model, is certainly suitable for a rough–cut analysis of a
system needed for initial decisions. Bottlenecks of the system can be detected, and an approx-
imate prediction on system variables (throughput, waiting queues in front of workstations,
machine utilization, etc.) can be made.

For more details concerning queueing networks the reader is referred to Suri et al. [SSK93].
A survey on problems attacked in the literature by means of queueing networks can be found in
Solot and van Vliet [SV93]. A case study where queueing models were used for the long–term
design and production planning of a company can be found in de Treville [Tre92].

Other approaches

To our knowledge there are no comprehensive models to determine “optimal” FMS–config-
urations. The approaches in the literature mainly concentrate on one of the optimization
questions mentioned in (1.4.11) and try to find their optimal values. But depending on the
objective (linear, nonlinear), the kind of variables (continuous, binary, integer) and the kind
of constraints (linear, nonlinear) various models are proposed.

In most cases the resulting mathematical models (e.g., Mixed Integer Programs) are too
complex to be solved efficiently to optimality. Therefore, for the most part the problem is
attacked by means of heuristics, sometimes with an additional phase of implicit enumeration
(branch&bound).
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For a more detailed survey the reader is referred, among others, to Graves et al. [GRZ93],
Tempelmeier and Kuhn [TK92]. In Tetzlaff [Tet90] several LP–models for FMS design prob-
lems can be found. An overview over methods and algorithms arising in that field can be
found in Nemhauser at al. [NKT89].

Optimization problems in the control of the FMS

The optimization problems in the control of an FMS occur once we are given a physically
installed FMS and want to organize the production in detail, s.t. an “optimal” utilization of
the expensive manufacturing technology is achieved. The arising problems might be classified
in problems on a strategic (long–term) level and on an operational (short–term) level. The
goal of the optimization process on the strategic level is to develop a rough production plan
for the coming months, whereas the decisions on the operational level cover the specification
of detailed production decisions, typically for time horizons up to a month. In general these
problems are too complex to be solved in their entirety. Therefore, they are divided into a
hierarchical structure of subproblems, as, e.g., part type selection, routing, scheduling, etc.

All the subproblems are somehow rather system specific and depend very much on the
underlying architecture of the FMS. They include, among others, questions such as

(1.4.12) FMS control problems.

• the selection of subsets of jobs to be produced as a batch (part type selection problem),

• the assignment of tools to machines,

• the scheduling of jobs,

• the routing of jobs.

Here several modellings with different objectives are known (minimize the makespan,
minimize the number of delays, minimize the cost for production and inventory holding, etc.).
These often lead to linear binary problems or mixed integer programs. But some system
restrictions can lead to models that have to deal with nonlinear constraints or nonlinear
objectives.

These problems are mainly attacked by means of heuristic methods or implicit enumer-
ation. In practice there is a tendency towards priority–rules and knowledge based systems.
There are also reports on the use of simulation approaches for the prospective valuation of
solution variants.

Among the most studied problem classes in the field of FMS–control problems are the
scheduling problems. A typical scheduling problem is of the form that, for a given set of
operations each with a certain processing time and a given set of machines, the starting times
of the operations on the machines have to be found. The models in the literature differ in
several details, e.g., if it is allowed to interrupt the processing of a job on a certain machine
(preemption), if there are identical machines or not, etc.

Although for some special cases it was shown that the problem can be solved in polynomial
time for most cases that arise in practice the problems are NP–complete. Some of the
problems are very hard from a computational point of view. A job–shop–scheduling problem
stated in 1963 by Fisher and Thompson (10 machines, 10 jobs, 100 operations per job)
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remained unsolved for more than 25 years, until it was solved to optimality in 1989 by Carlier
and Pinson.

Due to the complexity of these problems they are mainly attacked by approximation
algorithms based on local enumeration, simulated annealing, taboo search, etc. If the problem
needs to be solved to optimality, this is done by a branch&bound approach. Approaches based
on linear programming techniques which produce good results for many other combinatorial
optimization problems are still at an initial stage and the results are not yet satisfactory.

For a review on scheduling problems the reader is referred to Lawler et al. [LLRS93]
and B�lazewisz et al. [BCSW86, BESW93]. For a survey on polyhedral approaches to single
machine scheduling we refer to Queyranne and Schulz [QS94].
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1.5 On–line optimization

Although a great variety of problems (also problems in the control of an FMS) are of an
on–line character the theory of on–line optimization has developed just since the mid 1980s,
and from our point of view is still in its infancy. There are not many scientific investigations,
and only a few practical applications using these concepts are reported. Beginning with the
work of Sleator and Tarjan [ST85] a development in Discrete Mathematics and Computer
Science started that might be called “theory of on–line algorithms”.

The general concepts and notation are introduced in the following sections. Furthermore,
we give some examples for the on–line problems studied so far, and explain why these concepts
are not useful for the studies that are the topic of the following chapters.

To our knowledge there are no survey articles on on–line optimization but the proceedings
volume [MS92] and Albers [Alb93] give a good review on the scope of on–line optimization
so far.

1.5.1 On–line problems

The classical theory of algorithms is based on the assumption that the algorithm is assumed to
have complete knowledge of the input data. But in many applications this is not realistic. In
almost every dynamic system the process of making decisions can be described to be on–line
because it is necessary to make decisions without having full information about the future
and the influences of the decisions on the system. This statement is justified by means of
several examples.

Computer systems:
In the management of computers with a 2–level memory system that have a certain number
of pages of fast memory, one is confronted with the so–called paging problem. A page fault
occurs whenever a page which is not in fast memory is needed there. The computer has to
decide which page to take out of the fast memory whenever a page fault occurs. This decision
has to be taken without knowing what the future requests will be. The goal is to minimize
the number of page faults.
The caching problem occurs for example while caching fonts into a printer or into the
memory of a bitmap display. The printer (or display) can store bitmaps with a fixed number
of characters in its font memory. The number of bits required to transmit the bitmap of a
character varies according to its complexity. The problem is to decide which font to take out
of the font memory when a request for a nonloaded font occurs. This has to be done without
knowledge about future requests and with the objective to minimize the overall transmission
time.
A similar problem occurs in the management of a two–headed disk where you have to plan
the motion of the heads that drive along a linear track. Each time that a request occurs, one
head has to move to a particular point along the line. The problem is to decide which head
should move to that point, such that the total movements of the heads are minimized.
These three problems belong to the class of most studied problems in on–line optimization,
the so–called k–server problem, and are discussed in more detail in the following sections.

Communication networks:
An on–line problem occurring in communication networks is that of establishing flexible
multipoint connections, e.g., in video broadcasts and multiperson conferences. This problem
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is typically a routing problem within an existing communication network and is treated as
the problem of finding a minimum cost spanning tree connecting the set of terminal nodes.
If all the terminal nodes are known in advance, this is the classical Steiner tree problem. But
it is typical for the described application that the nodes are added to or removed from the
connection without knowing in advance when and where this will happen. In principle it is
possible to reroute the connection when such an event occurs. But as it is time–consuming
and may require a significant use of network resources, this has to be avoided, especially if
an attempt is made to reroute the entire connection. Thus, you have to solve a so–called
dynamic Steiner tree problem. This problem has been introduced and studied by Imase and
Waxman [IW91].

Vehicle routing:
An on–line problem in vehicle routing occurs, e.g., in the dispatching of a fleet of vehicles
to satisfy multiple demands for service. These vehicles might be taxis, ambulances, bicycles
of a messenger service within a city, etc. The demands for these vehicles occur “randomly”
in time and site and someone has to decide which vehicle to move to which request in order
to optimize a certain objective function, e.g., minimize the waiting time until the demand is
served. For further examples and details see, e.g., [Psa88, BR91, BR93a, BR93b].

In these so–called on–line problems the input data is supplied to the algorithm only in
units, one unit at a time. The algorithm has to take decisions every time that new data occurs
and these decisions cannot be changed later. Thus, the algorithm has to make decisions based
only on partial information about the whole input. The on–line optimization problem is
to find an output of the algorithm of minimal (maximal) cost for a given input.

Next,we give some examples of studied on–line problems without having the goal to be ency-
clopaedic and thus this list should not be regarded as a comprehensive survey of this topic. By
giving these examples we just want to give an understanding of the nature of these problems
and of the principles underlying the research activities.

k–server problem :
The k–server problem has been introduced by Manasse, McGeoch and Sleator [MMS88,
MMS90] as a problem derived from the caching- and paging–problem in computers with
different memory units. It can be stated as follows. We are given a finite metric space (e.g.,
a graph with distances on the edges) and k servers at some initial positions. They have to
fulfill sequentially given tasks by moving one of the servers from its current position to the
position where the task occurs. The choice of which server is moved must be made without
knowledge about the future requests and the tasks have to be worked off in the sequence of
their appearance. The objective is to minimize the sum of distances that all servers cover.
The paging problem can be modelled as a k–server problem as follows. You have n nodes in
a complete graph which correspond to the n pages of addressed space in the computer. The
k servers correspond to the k pages of fast memory. You say that a page is in fast memory,
if one of the servers is on the corresponding node. All distances on the edges are equal to 1.
When a request occurs and no server is located on the request–node, one server has to move
to that node. The objective is to minimize the number of moves (sum of distances).
The caching–problem and the two–headed–disk–problem can be modelled in a similar way.
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On–line matching :
Suppose we are given a complete bipartite graph G = (V, E) with V = VR ∪ VS and |VR| =
|VS| = k. The nodes in VS correspond to “service nodes” the nodes in VR to “request
nodes”. The on–line behaviour is that the weights on the edges are revealed in k different
time intervals. In the i–th interval all the weights of the edges incident with the request node
i are exposed and an unmatched service node has to be selected to match the request node i.
The objective is to find a matching of minimum (maximum) weight (cmp. [KVV90, KP93]).

On–line graph coloring:
In an on–line model for graph coloring the graph is presented one vertex at one time. Each
new vertex is given together with all the edges connecting it to already generated vertices. The
on–line problem is to assign a color to each vertex as it is received, such that no two vertices of
the same color are adjacent. Once a color is assigned it cannot be changed. The algorithm has
no information about the order in which the nodes appear or about the chromatic number of
the input graph. The objective is to use as less colors as possible (cmp. [LST89, KT92, HS92],
among others).

On–line bin packing:
We are given an infinite number of bins and have to pack an unknown number of objects
of different sizes into them. As soon as we get an object, we have to put it into a bin such
that it is completely contained in it. This decision cannot be revised afterwards. The aim
is to use as few bins as possible. The known “First–Fit–Heuristic”, where every object is
assigned to the first bin it fits in, is certainly an on–line algorithm because it does not use any
information about forthcoming objects. For further information about on–line bin packing
see, e.g., [CV93, RT93].

Further examples for on–line problems, e.g., on–line partitioning problems [FKT89], dy-
namic location problems [CGS89], etc. could be added. Although there is a big variety of
off–line combinatorial problems, these problems have not yet been studied such intensively in
its on–line versions.

1.5.2 On–line algorithms

In general it is difficult to compute the optimal solution of an on–line problem. Therefore, the
research community was looking for a measure for on–line algorithms. First the probabilistic
analysis was used where the performance of an algorithm is analyzed under the assumption
of “typical inputs”. But this approach suffers from the criticism that seldom a probability
distribution is known that models a typical input and if you input a worst–case sequence the
algorithm may perform extremely poor.

Competitiveness

This dilemma resulted in the development of competitive analysis which was defined in
1988 in papers by Manasse, McGeoch and Sleator [MMS88] and by Karlin, Manasse, Rudolph
and Sleator [KMRS88]. This was based on an idea already used earlier by Sleator and Tarjan
in their paper on maintaining linear lists [ST85]. The concept of competitiveness is now com-
monly used in the literature as a measure of performance of algorithms for on–line problems.
For the sake of convenience we describe the concept only for on–line minimization problems.
The idea behind this concept is that the performance of an algorithm should be measured
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by the ratio of the cost it incurs on a sequence of inputs to the minimum off–line cost for
processing the sequence. This has the advantage that one can avoid making assumptions
required by probabilistic analysis. We now state it more formally.

(1.5.13) Definition.
Let P be an on–line problem, A an on–line algorithm for P . Given an instance I of problem
P , costA(I) denotes the value (or cost) of the solution calculated by A, whereas costopt(I)
denotes the value of the optimal (off–line) solution. Let c ≥ 1 and b be constants that do not
depend on the input string I . We say that an on–line algorithm A for P is c–competitive,
if for any instance I of problem P

costA(I) ≤ c · costopt(I) + b

holds. We say that a given on–line problem P is c–competitive, if there exists a
c–competitive algorithm for P . And we say that it is not better than c–competitive,
if there exists no c′–competitive algorithm for P for any c′ < c. �

Using the concept of competitiveness on–line problems can be regarded as a game of two
players (the algorithm A and the so–called adversary) who act alternately. The algorithm
tries to get the best result as possible, whereas the policy of the adversary, who supplies the
algorithm with input, is to avoid that. The adversary has the advantage that it can examine
the code for A and will choose the input in the worst possible way. But it is typical for
most applications that the input data does not behave that bad. Therefore, the concept of
competitiveness is just a first step into the right direction, but many side constraints that
are relevant for practical on–line applications (e.g., tasks have to be fulfilled in certain time
windows, existence of priorities between the tasks, etc.) are not considered in that concept.
This criticism is also mentioned in the preface of the already cited proceedings volume [MS92]
where the editors Lyle McGeoch and Daniel Sleator state :

“... A high point of the workshop was the panel discussion, which featured Richard
Karp, Larry Larmore, Mark Manasse, Prabhakar Raghavan, and Daniel Sleator
.... The panel considered the interaction between the theory and practice of on–
line algorithms. Competitive analysis, while being a useful mathematical tool,
sometimes yields bounds that are unduly pessimistic. It was agreed that it is worth-
while to consider other approaches to evaluating on–line algorithms...”

Randomized on–line algorithms

Randomized algorithms have turned out to be a powerful tool in the design of algorithms for
several problems, covering a wide range of applications from number theory and algebra, pat-
tern matching, sorting and searching, computational geometry, graph theory, data structure
maintenance, combinatorial enumeration, distributed computing (see, e.g., Karp [Kar91] for
further details). They are often very easy to understand and to implement. Using random-
ization very simple deterministic algorithms with a poor worst–case behaviour turn out to be
an applicable method to give (with high probability) good results on every possible input.

Randomization is also a powerful tool in the design of competitive algorithms. The un-
certainty about the future data can be partially compensated by allowing an algorithm to
make probabilistic choices. By these random choices the “adversary” has less power, since the
moves of the on–line algorithm are no longer predictable. By playing that “mixed” strategy
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the adversary has problems in choosing an input that will cause difficulties to the algorithm.
The adversary can examine the code for A, but cannot predict the outcome of the random
choices within A. Therefore, it cannot predict the output of A.

The concept of competitiveness can be defined in an analogous way for randomized on–
line algorithms, but due to the randomness it is inevitable that a description of a randomized
algorithm will involve probabilistic statements.

(1.5.14) Definition.
Let P be an on–line problem, A a randomized on–line algorithm for P . Given an instance
I of problem P , E[costA(I)] denotes the expected cost of the solution A will calculate for a
given input I , costopt(I) denotes the value of the optimal (off–line) solution. Let c ≥ 1 and b
be constants that do not depend on the input string I . We say that a randomized on–line
algorithm A for P is c–competitive, if for any instance I of problem P

E[costA(I)] ≤ c · costopt(I) + b

holds. �

For the k–server problem results are known where a randomized algorithm outperforms
all deterministic algorithms with respect to the concept of competitiveness (see below). The
same holds for the on–line bipartite matching problems where Karp et al. [KVV90] give a
simple on–line algorithm that achieves the best possible performance.

For further details about randomized algorithms the reader is referred to [BDBK+90,
Kar91].

Results on on–line algorithms

We continue by citing some of the typical results that are known for the on–line problems
mentioned in the previous section. As the scientific research in the area of on–line optimization
is mainly concentrated on the design of c–competitive algorithms, most of the results deal
with this concept. We concentrate on the k–server problem as the most studied problem in
on–line optimization. For results on the other problems, that follow the same philosophy, the
reader is referred to the cited literature.

k–server problem.
Manasse, McGeoch and Sleator [MMS90] showed that the k-server problem is not better than
k–competitive for any metric space with at least k + 1 points. The problem of whether there
is a general on–line algorithm with competitiveness k remains open.

For k = 2, the problem was solved by Manasse, McGeoch and Sleator [MMS90] who gave
a 2–competitive algorithm for 2 servers. Although for arbitrary k no k–competitive algorithm
is known, there are already some partial results in this direction. Fiat et al. [FRR90] have
presented a competitive algorithm for k servers whose constant is an exponential function of
k. Grove [Gro92b] has proven that for a special case (harmonic k–server problem) the so–
called harmonic algorithm is competitive for any k. Most of the other results are typically of
the form that it is shown that a certain algorithm is c–competitive, while given a performance
ratio measure for c that is as close as possible to k.

As stated above, randomization can be a powerful tool in the design of competitive al-
gorithms. The uncertainty about the future data can partially be compensated by allow-
ing an algorithm to make probabilistic choices. For example, it is known that there is a
2Hk–competitive randomized algorithm where Hk corresponds to the k–th harmonic number
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(Hk = 1 + 1
2 + 1

3 + · · · + 1
k ; this function is closely approximated by the natural logarithms:

ln(k + 1) ≤ Hk ≤ ln(k) + 1). This competitive factor of, more or less, ln(k) is far better
than the lower bound k for deterministic algorithms. Furthermore, it has been shown that
there does not exist a randomized on–line algorithm with competitive factor less than Hk (see
[FKL+91, MS91]).

Several other approaches for studying on–line problems have been presented, including
request–answer games [BDBK+90] or on–line games [CL92]. But as these approaches have
not yet prevailed, we just mention them without going into details.



Chapter 2

Description of the considered FMS

2.1 Introduction

The Siemens Nixdorf Corporation (SNI) operates a factory in Augsburg (Germany) where all
their personal computers (PCs) and related products (monitors, data terminals, keyboards),
and multi–user systems are manufactured. This factory was erected in 1987 and designed
according to a CIM/CAI–concept, i.e., it has been designed to produce small series with a
large product range. The system consists of computer supported production lines and a fully
automated transportation system, including conveyor belts and automatic guided vehicles
(AGV). The daily production is planned after the customers’ order. An automatic repeat
order of used parts following a Just–In–Time concept was planned, but was relaxed to a 3–
days buffering. This means that with the currently stored material it should be possible to
produce for three more days.

The whole system is computer controlled, making use of a central computer and indepen-
dent software units, connected by a local area network (LAN).

At the start of the project the factory had two production halls. In the main manufacturing
hall all PCs and related products are assembled, in the other the multi–user–systems are
produced. In the course of the project two more production halls were built, mainly to
produce all the software packages that have to be delivered together with the computers and
to establish a delivery–center for the whole of Germany. In 1990, when the project began,
the daily production of the PC manufacturing hall where the main production process takes
place, was approximately

• 60 PC Towers,

• 300 – 400 PCs,

• 400 – 500 data terminals and monitors,

• 700 keyboards.

The system was designed for a smaller scale of production. As a result several components
within this hall turned out to be bottlenecks in the flow of the material and the management
was looking for possible ways to improve the production process without having to carry out
expensive technical changes. We were confronted with the problem of optimizing the flow of
material within the main manufacturing hall.

33
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A team of researchers of the University of Augsburg, now with the Konrad–Zuse–Zentrum
für Informationstechnik in Berlin, a group of students and a support team from SNI, worked
for almost three years together in a project that had the overall aim to develop a software
package that optimizes the material flow through the whole factory. This was an ambitious
goal and the problems that occur in the modelling and optimization of modern manufacturing
systems, as they were described in Section 1.4.2, could also be observed in our case. But
this overall goal was kept in mind whenever a new optimization or simulation program was
designed, as the output and the performance of the whole system should be improved and
not the speed of a few components.

Due to organizational reasons within SNI the project did not reach its ambitious goal in
the end. A simulation model as well as several optimization methods were developed and
implemented. Some of the software tools (e.g., the one described in Chapter 4) are running
with good success in everyday production. The most successful tool as well as all involved
mathematical problems will be described in detail. All other approaches are briefly mentioned
and it will be referred to the related literature.

Before continuing we would like to make some general remarks. As the developed opti-
mization tools should be tested with real–life production data, one of the central points in
the project has been the collection of data. An experience everybody who ever worked in
such projects can confirm is that this is sometimes as difficult as solving the mathematical
problems.

The system is computer controlled and in principle most of the necessary data is available
somewhere, in most cases partially distributed on different computers or in different control
systems. It is necessary to find somebody having a good general knowledge about all sys-
tems, or to write interfaces to filter out all the data that is needed, as one is not interested
in obtaining gigabytes of information that is not relevant. Sometimes data could only be
obtained by recording the telegrams between some hardware components (e.g., the stacker
crane) and their controllers. The software packages that had to be designed have to take this
into account. Optimization algorithms that depend on the input of certain data that is not
available or that can only be made available with an immense (and sometimes unacceptable)
use of network resources will never be used in everyday production.

This chapter is organized as follows. First, a description of the considered FMS is given,
including a description of the physical factory layout as well as of the material flow. Next,
the bottlenecks, the work–off strategies and possible optimization approaches are presented.
As the optimization problems for the automatic storage systems will be of interest in the
following chapters, these systems are described in more detail than the other components.
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Figure 2.1.1 Layout of the FMS
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Figure 2.2.2 AGV at the reception area

2.2 Layout of the system

We now briefly describe the main components of the considered production hall (see Fig-
ure 2.1.1 for a sketch of the layout). For a more detailed description of technical terms the
reader is referred to Sims [Sim91].

Receiving area

All parts necessary for production (floppy disks, chassis, cables, etc.) —some of them already
preassembled— are delivered by trucks. The printed circuit boards, e.g., are manufactured
in another Siemens plant in Augsburg only a few kilometers away. The parts arrive in con-
tainers differing in size and shape (two kinds of tote boxes, pallets, box pallets and special
purpose pallets). After detrucking they are supplied with a bar code and booked into the
computer system. The bar code and a system of scanners makes an identification of a con-
tainer throughout the system possible. Together with the registration a storage location in
one of the storage systems is reserved. (If no storage location is available, the container is
rejected.) One of several conveyor belts transports the container to the loading point for
the AGV, where a transportation task is generated. A vehicle picks up the container and
transports it to its destination (Figures 2.2.2 and 2.2.3).

Automatically guided vehicles (AGV)

The system of AGV is responsible for all internal transportation between the reception areas
(of all halls) and the storage systems and consists of 14 vehicles serving all 4 production halls.
For control and guidance a wire is buried in the floor. A small electromagnetic field is radiated
from the wire and inductive–type sensors on the vehicles are used as guidance detectors. To
interface with the conveyor system at the receiving area and at the loading– and unloading
points of the automatic storage systems (AUSS) the vehicles are equipped with a conveyor
deck. The vehicles are battery operated and equipped with controllers that take over all
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local tasks such as track following, precision stops, loading, unloading, etc. The vehicles are
connected to a central AGV host computer via remote radio control. This computer has all
information about the current positions of the vehicles, their status (loaded, unloaded, etc.)
and all transportation tasks. The computer control system has to decide which vehicle should
serve which transportation task.

The system is organized as a so–called block system, which means that it is divided into
small sections and only one vehicle is allowed to be in one section. The travel directions are
one–way streets although from a technical point of view it would be possible to travel in both
directions on the tracks. Although a dynamic rerouting of the vehicles is possible this has
not been taken into consideration for the control system. The computer has the necessary
information about congestions (vehicles do not leave their section) and could reroute the
vehicles, but they always follow a prescribed route (shortest path) to come from point A to
point B, unless this is changed manually.

Figure 2.2.3 AGV at the automatic storage system
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Automatic storage systems

In the considered manufacturing hall there are three automatic storage systems (AUSSs) that
mainly serve as material buffers between the reception area and the assembly lines, located
on each side of the AUSS. They are approximately 45 meters long and seven meters high,
single aisled, with storage locations on each side of the aisle. The storage system is divided
into two levels. In the upper part of the system the storage locations are mounted, whereas
the lower part serves as a buffer for the assembly lines. Here all parts necessary for the
manufacturing of the current product mix are buffered. As these assembly line buffers are
limited, both in size and capacity, not all parts necessary for the amount of production of
one shift can be buffered there. Thus, in case that another product is manufactured or a
container is empty a refill of the buffers has to take place.

Storage locations

Storage locations

locations
Storage

Assembly line buffers

Side view

Stacker crane

Input

buffer

Output

buffer

AGV

Plain view

Assembly line

Assembly line

Figure 2.2.4 Sketch of an automatic storage system

As containers of different sizes have to be stored in the system, the storage locations are of
different sizes, too (cmp. Figure 2.2.5). The storage locations for tote boxes, so–called cells,
are of capacity three. Small boxes occupy one unit of capacity, large boxes two. Due to their
larger height special purpose pallets can not be stored in locations for pallets and box pallets,
but vice versa.

An input and an output buffer both of capacity two are located at the head of the
AUSS. All transportation tasks within the system are performed by a (automatic) stacker
crane that can move both horizontally and vertically simultaneously. Depending on the input
at the reception area, the consumptions at the assembly lines and the degree of utilization of
the storage locations the stacker crane has to transport containers
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storage location
for pallets

cell
small box

large box

Figure 2.2.5 Storage locations within the AUSS

1. from the input buffer directly to an assembly line buffer (in case that items enter the AUSS
that were requested but not stored in the system),

2. from the input buffer to a storage location (storage task),
3. from a storage location to an assembly line buffer (refill task)
4. from an assembly line buffer back to a storage locations (restorage task),
5. from an assembly line buffer to the output buffer (in case that the container is empty –

retrieval task),
6. from one storage location to another storage location (in case that a relocation of the

system is necessary – relocation task).

Light barriers and scanners recognize that a certain container is entering the input buffer or
that some assembly line buffers are empty. In that case a transportation task is generated
automatically. Some of the assembly line buffers are half–automatic where the personnel at
the assembly lines have to press a button in order to generate a transportation task. Some
others are so–called manual buffers that are refilled only if the request for a certain item is
generated manually by the help of some software tools.

Assembly lines

An assembly line is located on each side of the automatic storage systems. They are partially
equipped with robots (Figure 2.2.6), but the bigger part of the assembly is done manually
(Figure 2.2.7). In case that robots assemble the devices the only manual interaction is the
refilling of material from the assembly line buffers of the AUSS into the robot buffers. Except
for the keyboards that need special machines (e.g., a laser for engraving the keys) each product
can be produced on each assembly line. In practice this is not done, as each storage system
would then have to be equipped with all parts of all products. Due to the variety in the
product mix and the limited storage capacity this would be impossible. Thus, we have one
assembly line for PC, Tower PC, monitors, data terminals and keyboards each. One assembly
line is reserved for a final test and the packing of the devices.

The parts necessary for production are provided by the assembly line buffers of the AUSS.
Assembly line buffers are prefixed and able either to contain tote boxes or the different types
of pallets. In the first case, once the last box is pulled out of a buffer, the system detects by
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means of light barriers that a new box has to be provided. A corresponding request is sent
to the system automatically. As the pallets are too heavy to be removed manually from the
buffers, a button has to be pressed in the case that they are empty. Then transportation tasks
for the disposal of the container and for the refill of the buffer are generated. The control
system tries to achieve that each part is delivered to a buffer that is as close as possible to
the point where it is needed for the manufacturing process.

Figure 2.2.6 and 2.2.7 Assembly lines

Testing area and delivery

As soon as the PCs and other products except keyboards are assembled they are brought by
conveyor belts to a testing area where at several levels tests concerning the full functionability
of the devices are performed. In a first step some simple tests are performed, e.g., it is checked
if the power supply is working, or if it is possible to address the floppy disk. If this is not the
case, the defective devices are repaired immediately.

After passing this preliminary test the units run into an automatic test area, where for
approximately 24 hours test programs are run under aggravated conditions, e.g., high tem-
perature (Figure 2.2.8). If an error occurs during the testing period, it is recorded, e.g., on
the floppy disk.

The architecture of this run–in test is similar to that of the AUSS. It consists of two aisles,
each served by a stacker crane and storage locations on each side of the aisle. An I/O–buffer
is located at the head of the run–in test. There are premounted storage locations of two
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Figure 2.2.8 Run–in test

different sizes, suitable to store the two differently sized products (PC–Tower or PC / data
terminals / monitors). The whole test area is divided into several electric circuits, each of
them put under current for 115 minutes with a subsequent break of 5 minutes. The testing
period of a device starts after its storage location is disconnected for the first time from the
power supply.

In 1992 a second test area was built that differs in a few details. The I/O–buffer is not at
the head of the system but in the middle and the storage locations are not fixed in size, thus
it is possible to store the devices in a more flexible way.

After the completion of the testing period the device is brought to a final test where last
checks are performed, including an analysis of the results of the run–in test, a short–circuit
test, sharp focussing of the monitors, etc. Afterwards the units are packed and delivered.

2.3 Work–off strategies and optimization approaches

Besides a “good” layout of the system, the way how requests for the production units are
worked off is a central aspect for obtaining good performance. If this is done in an unfavourable
way, the whole system suffers. After analyzing the system at SNI several bottleneck com-
ponents were detected and possible optimization approaches were developed. As the layout
cannot be changed without expensive reconstructions, the suggested improvements address
the work–off strategies.

The optimization approaches can be divided into two levels: decisions on a strategic or
operational level. The first might be addressed in non–productive periods (weekends, nights,
breaks, etc.) whereas the others have be to solved during everyday production.

Decisions on an operational level often lead to on–line problems as described in Chap-
ter 1.5 because decisions have to be taken within a dynamically changing system and without
knowledge about the future. The production process is not completely predictable as manual
labour is involved, machines break down, parts are received too early or too late, received
parts are defective, etc. Therefore, the control system is often confronted with the problem
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of making decisions, without having full knowledge about the future, but which will have an
influence on the future behaviour of the system.

The decisions on the strategic level are taken prior to the production process where you
only have expectations about the future, but no complete knowledge. But as no dynamic
changes of the system are involved during the process of taking decisions they are not con-
sidered to be on–line problems. These are problems with stochastic aspects.

In this section we describe the work–off strategies that were used for some components so
far, and which were considered to be unfavourable. Furthermore, we sketch the suggested op-
timization approaches. A more detailed analysis will be given either in the following chapters
or in the cited references. These optimization approaches were discussed with the production
managers, foremen and computer scientists of SNI. As a result some of the approaches were
chosen to be implemented, whereas others could not yet be realized.

2.3.1 Inner architecture of the storage systems

As described in the previous section, articles are received in differently sized containers. In the
automatic storage systems (AUSSs) there are premounted storage locations for each type of
container. The management has expectations about the products that will be sold during the
next planning period. As the product spectrum changes, the parts that have to be stored in
the system change too (in quantity and kind). In order to avoid bottlenecks, because storage
locations for a certain kind of container are not available or locations are only available far
away from the assembly line buffer where this article is needed, it is necessary to rearrange
the locations. Approx. every half year a reconstruction of the storage locations is necessary.
This is not done more often, as it is necessary to empty the system in order to rearrange the
premounted locations.

Out of the expected sales and with the additional information how many containers of
each type are needed for that amount of production, approximations on the minimal number
of storage locations for each type of container can be given. Furthermore, the production
managers have expectations as to which assembly line buffer will have a high throughput.
Storage locations of that type should then be mounted close to that buffer in order to minimize
the transportation moves of the stacker crane.

The optimization question is where to mount a storage location for a certain kind of con-
tainer, such that all containers can be stored and the expected utilization of the stacker crane
by the forthcoming transportation tasks is as small as possible. Some modelling questions
concerning this topic can be found in Abdel–Hamid [Abd94].

2.3.2 Assignment of storage locations to incoming containers

The following strategy was used to assign storage locations to incoming containers.

As soon as a new container arrives in the reception area it is booked into the system and
a storage location in one of the automatic storage systems (AUSS) is reserved. The main
reason for that reservation is that it is necessary to check if there are capacities available to
store the incoming container.

As different products (PC, monitors, keyboards, etc.) are produced on different assembly
lines, it is clear in which AUSS the container has to be stored. Furthermore, for most articles
it is clear in which assembly line buffer they will be needed. The nearest empty location to
that buffer is than searched in a greedy way. For each incoming container the best location
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is reserved. Containers with articles that do not have a fixed assembly line buffer a storage
location as close as possible to the input buffer of the AUSS is reserved. This reservation
cannot be changed.

This work–off strategy has several disadvantages. First, the reservation is done too early.
Sometimes it takes several hours until the container reaches its destination in the AUSS. In
the meanwhile the reserved storage location cannot be used for other purposes. Furthermore,
even better storage locations might be available as the container enters the AUSS. But due
to the early reservation they are not taken into consideration. Thus, a simple change in the
organizational structure could result in an improved performance of the AUSS.

Moreover, it is a greedy strategy where only for one container the best location is found.
The “good” reservations for some containers may block locations for others, which have to
be stored in a “bad” location.

But as there are up to 50 containers at the reception area, that are not yet brought to the
storage systems, it would be better to use a global approach taking all these containers into
account. This could result in a better overall performance. We explain that by means of an
example (cmp. Fig. 2.3.9).

A

C

13 2

13 2

B C

BA

Figure 2.3.9 Optimized assignment of storage locations

Suppose three containers (1,2,3) arrive in that order at the reception area. They are
suitable to be stored only in the locations A,B,C. The assembly line buffers where the items
in the containers are used are labelled with 1,2,3. The use of the greedy strategy results in
a assignment as given in the upper picture, whereas the assignment given in the lower part
would be better. An optimization model, a detailed analysis of the problem and the related
mathematical background can be found in Abdel–Hamid [Abd94].

Reassignment of storage locations to stored containers

In practice this is done only in the case that some of the tote boxes block a cell, and then
only within that cell. But it does make sense to rearrange the assignment of containers to
storage locations in case that no other transportation requests are present (e.g., at night).
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Containers that are needed within the next production period should be brought as close as
possible to the assembly line buffers where they will be needed, and storage locations close to
the input buffer of the AUSS should be emptied for incoming containers. This might reduce
the utilization of the stacker crane under heavy load conditions.

The problem of reassigning containers to storage locations is similar to the problem of
finding optimal storage locations for incoming containers, just by assuming that all stored
containers reenter the system. Thus, you have to assign all stored containers to an empty
AUSS.

2.3.3 Transportation tasks scheduling for the stacker crane

The work–off strategy for the transportation tasks of the stacker crane was a priority based
rule. As described in Section 2.2, the stacker crane has to fulfill certain transportation tasks
differing in the location of their source and sink. To each generated transportation task a
priority dependent on the type of task is assigned, cmp. Table 2.3.10.

priority type

1 relocation task of boxes within a cell (for boxes),
1 combined storage– and relocation task,
2 retrieval task,
3 storage task,
4 refill task of assembly line buffers for pallets
5 refill task of assembly line buffers for boxes
6 relocation within the storage area,

Table 2.3.10

The task with the lowest priority value is always scheduled next. If there is more than one
task with the same priority, the one with the earliest generation time is scheduled next. The
priorities of the tasks do not change except this is done manually.

This work–off strategy has several disadvantages. First, it implies that tasks with a
higher priority value always have to wait until all tasks with a lower priority value are per-
formed, although they might be generated much later in time. This resulted in a lot of manual
interferences where the priority of a task that had already been waiting for a long time was
changed by the foreman responsible for the AUSS.

Another problem is that this strategy does not allow to schedule transportation tasks of
higher priority value in between, although this might result in a shorter overall travel path of
the stacker crane. This is described by means of Figure 2.3.11.

Suppose we are given the four transportation tasks depicted by the arrows, where the tail
gives the location of the source, the head the location of the sink. The dashed lines in between
represent the unloaded moves of the stacker crane, the dot its current position. The stacker
crane travels along the arrow (performs a transportation task) and then moves unloaded along
the dashed line from the sink of the last task to the source of the next. Once these tasks are
given you have no influence on the loaded parts of the moves, as the containers have to be
brought from their source to their destination. But you have an influence on the unloaded
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Figure 2.3.11

parts of the moves. A control of the stacker crane due to the priority rule might result in a
travel path as depicted in the upper part, whereas an optimized strategy results in a shorter
overall travel path (lower part of the picture). The question of minimizing the unloaded
travel times in everyday production leads to the question of solving on–line Hamiltonian path
problems. The modelling and the related mathematical problems will be discussed in detail
in Chapter 4.

2.3.4 Optimization approaches for the AGV

The automatically guided vehicles (AGVs) turned out to be a critical component in the
system as some layout decisions and the selection of the work–off strategies were not carried
out in a way to achieve the best possible system performance. Due to organizational reasons
within SNI (the layout design could not be changed, and the design and implementation of
the control system was carried out by another company) we could not attack the problem,
although we considered it to be central. We briefly describe the disadvantages of the current
control system.

As there are no alternative tracks, the vehicles are often blocked by other vehicles that
stand in front of a station and have to load or unload a container. This process takes approx. 30
seconds (including the precision stop) and during that period all following vehicles have to
wait until this action is carried out. Furthermore, not all potential properties of the system
that are physically installed are exploited. Several switches are not used because experience
showed that their use (under the current control system) often led to heavy congestions.

One of the tasks of the central AGV computer control system is to assign vehicles to
generated transportation tasks (jobs). This is done in a greedy way as described in the
following.

Strategy for assignment of vehicles to jobs:
Each station where containers have to be picked up has a certain prescribed priority reflecting
the relative importance of that station. Each generated transportation task contains, among
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others, the following information: time of generation, source and destination and priority
of the task. This priority is initialized with the priority of the task’s source station. This
transportation task is added to the set T = {T1, T2, ..., Tn} of all generated but not yet worked
off tasks. A task is booked off once the corresponding container has been loaded onto some
vehicle. Once a task is finished it is deleted from this set and the priority of all remaining
tasks in T is increased by one.

From the set T of all tasks only a certain subset TA ⊆ T is considered for an assignment
of tasks to vehicles. In practice the strategy is to assign those tasks whose current priority
is exceeding a certain limiting value. Let Prioi be the priority of task Ti ∈ T , Priomax =
max{Prioi | Ti ∈ T} be the highest current priority and let FG be a fixed value that can be
changed manually by the system operator. Then the set of assignable tasks TA = {Ti ∈ T |
Prioi > Priomax − FG} contains only those tasks whose priority is “big” enough. Only the
tasks in TA can be assigned to vehicles. The aim of this strategy is to assure that important
tasks are scheduled early (high priority for the source) and that unfavourable tasks, i.e., tasks
with high cost for each vehicle, are assigned as well. This is assured, since the number of
tasks in TA decreases as the priority of one tasks raises.

The assignment of tasks in TA to vehicles is done as follows. For each vehicle a cost
for moving from its current position to the source of each task in TA is calculated. This
cost coefficient is calculated out of the shortest distance between these points (relative to
the one–way system of the AGV), the importance of a certain travel route and the speed of
the vehicles. For each disposable vehicle, starting with the vehicle with the lowest internal
number, the transportation task in TA with the lowest cost coefficient is assigned. Certain
side constraints (e.g., upper and lower bounds for the number of vehicles in each hall, upper
bounds for vehicles with the same destination, etc.) are fulfilled. While the vehicles are
moving through the system, or tasks enter TA, or tasks are deleted, the internal cost matrix
is updated. As long as a vehicle has not loaded the container the assignment can be changed
in case a more favourable task is generated.

The aim of an optimization strategy should be to guarantee a smooth run of the system,
such that the generated tasks have to wait for a period as short as possible until they are
finished. This results in an “optimal” assignment of tasks to the vehicles (to avoid long
waiting times of the containers at the stations) and an “optimal” routing of those (to avoid
long transportation times). Up to now possible congestions have not been taken into account
in both operational decisions. Furthermore, it should be possible that tasks of blocked vehicles
are assigned to other vehicles, the one–way system should be abolished, and a variable rule
on right–of–way (now “First–Come–First–Served”) should be introduced.

2.3.5 Optimization questions in the test area

As soon as a device enters the input buffer of the test area it is necessary to find a storage
location. The control system always chooses among all available locations the one that is
closest to the input buffer. Retrievals are performed following a “First–In–First–Out (FIFO)”
strategy. This results in the fact that storage and retrieval tasks are not combined in a
favourable way to avoid unloaded moves of the stacker crane. It could happen that the crane
is moving unloaded from one end to the other in order to pick up a device, although it would
have been possible to retrieve a device just next to the location where the incoming device
was stored.
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The shelves in the test area are divided into power circuits that are put under current
for 115 minutes followed by a five minutes’ break. The times when a circuit is switched
off circulate in the system in a fixed order. Every one and a half minutes another circuit
is switched off. The test period of a device starts as soon as it is switched on for the first
time in its storage location. The current storage strategy does not take these circuits into
account. The “best” storage location is that one closest to the input buffer, or equivalently
the one resulting in the shortest move of the stacker crane. In the worst case the device has
to spend almost two additional hours in the test area. A better strategy, that can easily be
realized, is to store the device in a circuit that will soon be switched off. Just by this simple
organizational change it should be possible to reduce the period the devices stay in the test
area by approx. one hour, thereby increasing the throughput and improving the utilization of
existing capacities.

In the management of the new test area an additional optimization question occurs. The
incoming devices have different heights. As there are no premounted storage locations, it is
possible to store them at any possible combination. In addition to the question of finding a
storage location in a circuit that is soon switched off, the devices have to be stored in such a
way that there is as little space wasted (no devices can be stored there) as possible.

So far, the strategies have been looking for storage locations for one device. But similar
to the storage question occurring in the management of the AUSS all incoming but not yet
stored devices should be taken into consideration. But doing so a severe problem is that one
has to deal with “time–dependent” cost functions as the “quality” of a storage location has
to be modified as soon as a another circuit is put under current. A certain location can turn
from “good” to “bad” within seconds. Therefore, it seems difficult to define a proper model
to take these effects into account.
A detailed analysis of these questions and a comparison of several heuristics can be found in
[KM93].

2.3.6 Other approaches

Optimized reception of containers

Another strategic decision that is closely related to the topic mentioned in Section 2.3.1 is
how many items should be stored in a container as this influences the minimal number of
locations needed for that type of container. As only a limited number of products contains
a special article, e.g., a certain CPU, a half–emptied container may block a storage location
for a long period of time, until it is needed again for production. If there are fewer items in
a container, a larger number of containers is needed in order to achieve the same amount of
production. Thus, the system will be overloaded.

Another question is when a certain container should be received. If they arrive too early,
storage locations within the AUSS are blocked for a certain period of time, if they arrive too
late production might be delayed.

Thus, the question is to find an “optimal” load for each container and an “optimal”
receiving date.

Strategies at the assembly lines

Another aspect that influences the overall performance of the system concerns one of the
central parts of the manufacturing system – the assembly lines. The production of the PCs,
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etc. influences all other parts of the system. Used parts are re–ordered and the received
containers pass through the components receiving area, AGV, and automatic storage systems.
The assembled devices are the input for the test area and are afterwards brought to the
delivery zone.

Therefore, it seems central to optimize the behaviour of the assembly lines. There are
two possible parameters that are suitable to optimization approaches: the choice when and
where to start a certain product on the assembly lines and the distribution of workers on the
different lines.

But the production managers did not consider these questions to be that important, as
there are not that many possibilities to vary in the load–in of the assembly lines or in the
distribution of workers. Furthermore, the experience based decisions taken by the production
managers and foremen were considered to be good enough. Therefore, only a simulation–
based analysis tool was developed which will not be described in detail.

Master optimization process

Suppose that all the optimization tools mentioned in this section are realized. Then there
exist a dozen of optimization programs which are either competing against each other or are
hierarchically organized. A major point of future research is to find a “master optimization–
tool” controlling all the local optimization programs. This master process has to tune all
the local optimizers, to feed them with the appropriate parameters, in order to optimize the
overall production system. In some cases it might be better to accept a suboptimal solution
because it does not cause that much problems to neighboring components (e.g., it might be
better to accept longer travel paths for the stacker crane of the AUSS in order to avoid a
blocking of the input buffer, which might cause congestions of the AGV, as vehicles cannot
unload their containers). In our approach this control function is realized by a simulation
program that checks the influences of decisions taken locally on the whole system. But this
is just a “trial–and–error”–method. You observe that some decision taken locally influences
the behaviour of the whole system in an unintentional way, and then you change the input
parameters for the local optimizer and rerun the procedure.



Chapter 3

A simulation model for the FMS

3.1 Introduction

The necessity of simulation

In most problems of flexible manufacturing we are confronted with rather complex systems
consisting of several components that interact in a nontrivial way. In case that strategic
or operational decisions have to be taken, it is necessary to “predict” the influence of these
decisions on the behaviour of the system. From a theoretical point of view this could be done
by performing experiments within the real system. But these experiments are often too risky,
too time–consuming, involving immense costs, or even not possible – especially if the system
is not yet realized and alternative layouts have to be analysed. Therefore, it is necessary to
model the whole system in order to forecast the effects that a change of one component will
have on the whole system or to obtain quantitative results about the behaviour of the system.

It would be good to have an overall mathematical model for the system. But with today’s
insight into these systems and today’s mathematical methodology (cmp. Chapter 1.4.2) it
seems illusory to develop a mathematical model that captures all the important aspects of a
complex FMS (as the one described in Chapter 2) and that can be attacked by algorithmic
methods. Due to their high complexity and their dynamic nature, these systems cannot be
fully studied by analytic models, such as mathematical programming or queueing network
models. Therefore, most analytic models are based on simplifying assumptions and often do
not capture the complexity of reality, or cannot be treated with algorithmic tools.

As no mathematical model is available, we restricted ourselves to something else, namely
simulation techniques. These techniques are very common in industrial applications and are
widely used, e.g., as a design aid, to validate designs, to troubleshoot, or to gain insight into
operations.

In general, simulation is the reproduction of a real system by means of a computer
program. Although no mathematical optimization techniques can directly be applied in the
simulation model it has the advantage that it is an (almost exact) copy of the real system.
Within this model it is possible to perform the experiments that are not possible within
the real system, and therefore to verify the quality of the solutions found by the optimization
programs, measure the achieved improvements, and study the on–line behaviour of the system.

49
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Simulation models

There are several types of simulation models that might be classified into time–dependent
(dynamic) or time–independent (static or “Monte–Carlo”) simulation models. In the static
models it is assumed that the states of the system are the (time–independent) results of the
input of certain values to an “algorithm”. These models are, e.g., used for the evaluation of
complex integrals.

In the time–dependent models we assume that the states of the system develop inde-
pendently within the considered period of time. Dependent on the transitions of the states of
the system we distinguish between discrete and continuous simulation models. If the transi-
tions take place only at discrete points in time, we talk about discrete simulation models,
if they take place continuously they are considered as continuous simulation models. In
the latter models time is considered to change continuously and they can often be described
by means of differential equations. This is, e.g., the case in models for crystal growing, crash
tests in automobile industry, or aircraft models for experiments in a wind tunnel.

Within discrete simulation models two main approaches are widely used, namely event–
oriented and process–oriented simulation. In the second the system is represented as
a set of processes through which a set of objects passes in the simulation model. This is
somehow a general modelling technique, but if detailed models are required this approach
often fails, as it produces large scale models when all interdependencies have to be taken into
account. Beside that, debugging and tracing is rather difficult within these models. Therefore,
the event–oriented approach is often used to model a complex system in detail.

In many applications in manufacturing the state of the system does not change continu-
ously but only at some distinguished points of time (events). Therefore, it is only necessary
to observe and update the state of the system at these discrete points in time. This method
is called (time) discrete event simulation and is described in detail in Section 3.2.

Another distinction can be made in the way the transitions can be described. If the
outcome of the activities is completely predictable, we call it deterministic model. If the
effects of a certain activity vary over a set of various outcomes, we say that it is a stochastic
model. In any case it is necessary to determine either the rules or probability distributions
causing the transitions.

Advantages of simulation models

If modelling is done in a proper way, simulation models can be a helpful tool in the treatment
of problems in flexible manufacturing. As from a theoretical point of view it is possible to
model exactly all knowledge about the behaviour of a possibly rather complex system, these
models can be considered as an almost exact copy of the system. Certainly it is not possible
to exactly reconstruct a complex system by means of a computer model. But as the model
only has to reflect the most important aspects of the system it should be possible to construct
a suitable model for the special application you have in mind just by modelling the aspects
that you consider to be important.

Once we are given a computer model we are in the situation that we can forecast the conse-
quences of changes in the system by performing experiments within the model — experiments
that would have been impossible, too expensive or too risky in the real system.
The advantages of a simulation model may be summarized as follows:

• it is an almost exact copy of the real system,



3.1. INTRODUCTION 51

• one might obtain a system wide view of the effect of changes within the system,

• it is an experimental laboratory to answer “what–if” questions in the design and control
of a manufacturing system,

• modifications in the model are easier to perform, less expensive and less time–consuming
than modifications of the real system,

• results are obtained faster as model time runs faster than real time,

• it is easy to take stochastic aspects (e.g., machine breakdowns) into account,

• it is possible to learn something about the behaviour of a dynamic real–life system,

• a tool for studying the effects of on–line optimization of the system is provided,

• if the model is as exact as possible the understanding of the system is improved and the
influence of parameters on system behaviour is illustrated,

• a validation tool to analyse the solutions of the analytic models is provided.

And as a positive side effect it is easier to convince the management with the help of a
simulation model. The simulation model looks like the real system and is not such an abstract
representation as a mathematical model. Therefore, simulation models may be easier to accept
and understand than their mathematically–based counterparts.

Limitations to simulation models

But certainly there are not only advantages of simulation models. This approach of modelling
also has his limitations and restrictions. We list some of them.

The first is that a simulation model just leads to a “trial–and–error” optimization method.
You just input some parameters, see how the system reacts, and if you are not convinced with
the results you change the input parameters and rerun the procedure. A goal would be to
develop a combined “simulation–optimization” approach where the process of adjusting the
input parameters in order to optimize a certain output parameter is automatized. To our
knowledge this has not been done so far.

Beside that, the process of building a “good” simulation model is in general very time–
consuming and difficult as a good compromise between accuracy and computing time has to
be found. This has to be done with respect to the specific application you have in mind. If the
model considers too many parameters and facts that are not important for the conclusions,
computing times will be too high. Some authors take the view that more time is spent on
building and debugging the model than on running it and that therefore the running time is
unimportant (e.g., Swan [Swa91]). But we do not completely agree with that statement. It
depends on the specific goal one pursues. If the simulation model is used in the design stage,
investments in shortening the simulation’s CPU–time are often economically not justified.
But if the simulation program is used on the operational level in the on–line control of a
manufacturing system a short CPU–time is essential.

An important but time–consuming step is the verification of the model. Here it is tested
if the model reflects the real system exact enough. This decision has to be taken with respect
to the questions you want to analyse. This can be done, e.g., by a comparison of simulation
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results with measurements in the real system. If the model does not reflect the system
sufficiently, as parameters or facts are missing or modelled in the wrong way, it is not possible
to take the conclusion you want to take. Furthermore, the model should only be used for
conclusions that are within the verified and validated range.

3.2 Discrete event simulation

In this section we describe in more detail the steps of building a discrete event simulation
model. This is done together with the description of the simulation control as it is difficult
to separate them. The concepts described in this section are also the basis for the simulation
package AMSEL that was developed and implemented by the author. The main aim will be
to explain the principles in an easily understandable and clear way without being too formal.

Basic idea of the simulation method

For the simulation of the material flow within a system consisting of components that are
linked in a fixed way (discrete) event oriented simulation seems to be the proper method. The
run within the model is dependent on the transitions of the states of the real system. These
mainly occur when a part enters or leaves a component.

We introduce some notation. The components that are permanently at a fixed location
in the system (work stations etc.) will be called modules. The elements that are only
temporarily in the system or are moving through the system (e.g., automatic guided vehicles,
workpiece carriers, containers) will be called objects.

The event points are all the points in the system where the state of the system changes
in a way that is important for the special application, whenever an object passes that point.
If an object passes that event point, we say that an an event takes place. Events always take
place when an object passes an event point — these events will be called route events—
but also other incidents, such as breakdowns, cause an event. These will be called system
events.

The control of the simulation run is performed by a so–called event list that contains all
events that are known at a certain point in time, but that have not yet occurred. The content
of that list is time–dependent and events are sorted by the time they occurred.
The transitions between the states of the system are performed by so–called event routines.

A simulation step or iteration is performed in the following way:

(1) Get the next event from the top of the event list.

(2) Adjust the simulation time to the time when this event takes place.

(3) Call an event routine that initiates (starts) all activities that this event causes (update
of the state of the system, update of the event list etc.).

(4) Check if the desired simulation time is reached or if the event list is empty.
If yes, then STOP, else GOTO (1).

To simulate a material flow system it is necessary to describe the three main elements
of the system, namely the physical layout, the parts moving through the system (objects)
and the logical control in a way that they are suitable to an algorithmic realization. The
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physical layout is represented by the event points and the connections between them, the
logical control is performed by the event routines, and the objects are described by a data
record that can be identified by an internal object number.

Model building

The first decision in the model building process is to decide with which precision the real
system has to be modelled. This implies the decision which components of the physically
existing system should be mapped to modules and event points. Furthermore, all the control
elements that are important for the application have to be identified and have to be included
into the model. Identification of event points and control elements cannot be done separately
but have to be complementary to each other.

Modules and event points:
In a first step the real system is divided into single components (modules). The event points
are derived from the decomposition into the modules. But they are not yet exactly deter-
mined by the modules but differ in the desired accuracy. E.g., the number of event points is
dependent on the same proportion as congestions in front of the modules (e.g., work stations)
are modelled.
In general, the following different types of route event points occur:

• points where an object enters a module,

• points where an object leaves a module,

• points where possible congestions can occur,

• points where objects enter or leave the system.

Each module has at least one entry event and one exit event. More entry or exit events can
be possible, e.g., in the case of switches. In case that there are points within the modules that
are important for the control of waiting queues we have additional neutral event points.

To each event point a waiting queue is associated that is identified by the internal
number of the event point. The waiting queue contains at each point in time the sequence
of all objects that are waiting between this event point and its predecessor. These waiting
queues are activated if an object passes a certain event point.
Each event point is described by a set of attributes, such as

event number: Internal number of the event point.

event type: To each event point a type is associated, indicating if it is an entry–point,
exit–point, neutral–point, or any other type of event point.

module: Whenever an object passes a certain event point (enters or leaves a
module) it might be necessary to increase or decrease the actual load
of modules. Which modules are affected is an attribute of that event
point.

successors: Each event point has predecessors and successors. They are defined in a
natural way, namely as a subset of all event-points, that an object could
have passed immediately before coming to that event point or as the
event points an object can move to from this event point.
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capacity: Each event point has a certain capacity that is nothing but the number
of objects that can be in the section between this event point and its
predecessor at the same time.

waiting queues: If an event point is passed by an object, it might be necessary to activate
an object in a waiting queue.

special procedures: There are event points where application–specific procedures have to be
called. A pointer to a specific function and the parameters are further
attributes of an event point.

The above list only contained constant attributes of an event point. These attributes
are initialized at the start of the simulation and do not change while the simulation program
is running. But the data record also contains variable attributes that are changing during
the simulation run. These are, e.g., the number of objects registered at an event point, a
parameter of the identification for the waiting queue whose head has to be activated next,
pointers to the head and tail of the waiting queue associated to this event point.

Event types and event routines:
Basically, two different types of events take place. On the one hand an event takes place
whenever an object passes an event point (route events). On the other hand all other incidents
that influence the state of the system are treated as events, e.g., the begin and the end of a
breakdown. They will be called system events. The logical control of the events is performed
by event routines that might call special procedures that are dependent on the application.
The event types given in Table 3.2.1 are necessary for the simulation of manufacturing systems.

route events :

entry event an object enters a module
exit event an object leaves a module
neutral–event an object reaches a point where it might block

other objects
generation–event an object enters the system (is generated)
quit–event an object leaves the system

system events :

S–event beginning of a breakdown
s–event end of a breakdown
request event a request for some system component was

generated (e.g., transportation tasks)

Table 3.2.1 Event types

For each event type an event routine exists that performs all the transitions in the state
of the system, the manipulations on the objects etc. that are caused by that certain event
point. This is in particular the update of the state of the simulated system, the update of the
object data, the insertion, deletion or delay of other planned events, and the actualization
of the model time. If it is a route event, it also has to handle the waiting queues (activate
objects in a queue, or insert an object into a queue).

The application–dependent special procedures are controlled by a single interface, which
is fed by the event routines with a pointer to the special routine and parameters for that
procedure.
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Objects:
The elements moving in the system are called objects and are identified by an object number.
When an object enters the system a data record containing all necessary information about
that object is generated.

Event list:
The simulation run is controlled by a so–called event list that contains so–called event notes.
An event note contains the times of occurrence of an event, event type, event number, and
the number of the object causing that event. By successively deleting the event notes the
activation of the event routines associated to a certain type of event is performed. This
routines then perform all necessary updates of the data structures.

3.3 Simulating the FMS with AMSEL

Software survey

In 1988 there were more than 150 commercial software tools available, varying from general
purpose simulation programs (such as to SIMULA, GPSS, and SIMSCRIPT) to specialized
simulation tools. More than 20 of them were oriented towards manufacturing systems (e.g.,
Siman, See Why, Simfactory, XCell, Witness2) (see [AG]).

In these “simulation languages” either already existing high level programming languages
are extended with a set of procedures in order to realize the simulation tasks, or independent
languages were developed with interfaces to high level programming languages. E.g., SIM-
ULA was developed out of Algol 60 and extended with language elements for the simulation.
GPSS (General Purpose Simulation System) was developed in 1962 by IBM with interfaces
in the form of FORTRAN procedures. For a detailed review on the most popular commercial
packages see [AG, Swa91].

These tools are user–friendly. Most codes are equipped with graphical user interfaces. It
is often possible to graphically describe the model (“draw the model”) or graphical output is
provided beyond character–based output. This is especially true among the specialized prod-
ucts, e.g., for the simulation of manufacturing systems. The graphical output may consist
of block diagrams, charts, output statistics, and time plots of selected statistics. A grow-
ing number of tools support animation what is valuable for selling the system, debugging,
verification, and trouble shooting. The trends in commercial codes go towards an increased
specialization in simulation software and an increased integration between simulation software
and other programs. Increasingly simulation languages will be able to accept input from a
variety of sources (CAD, spreadsheet files) and write output to other programs (databases,
spreadsheets) to facilitate analysis and report writing. Up to now expert systems are used as
a part of a simulation very seldom and little attention is paid to interpreting the outputs in
a statistical sense.

But for the convenience in input and output you have to pay in other aspects. The first is
computing time, the other the possibility to model exactly large and complex systems. Due
to the graphical overhead, e.g., for the animation, the computing times are relatively close to
real–life and to be effective the run length has to be limited.

All the commercial tools did not allow to model the manufacturing system that was
described in Section 2.2 as exact as it was necessary for our purpose, at least not within an
acceptable computing time. Large complex systems are hard to be modelled with any of the
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general purpose simulation tools, e.g., [Kle92] reports on a simulation model for a (not such
complex) manufacturing system developed in SIMULA that took a computing time of six
hours on a mainframe. As far as we know the specialized tools do not offer all the possibilities
that were needed for our application either.

What is AMSEL ?

As we intend to use the simulation program as an on–line control instrument for a complex
manufacturing system, we need to have a simulation program that is fast, exact, and flex-
ible. It should be possible to simulate two shifts of the whole system within a few minutes.
As decisions have to be taken that are based on the results of the simulation model, it has
to be as exact as possible. As alternative operational strategies (as well as layouts) have to
be compared, the system should be flexible enough to take changes of the real system into
account easily.

Therefore, we developed the software package AMSEL (A Modelling and Simulation En-
vironment Library). Here data structures and procedures are provided that take over all
the simulation tasks (update of the event list, waiting queues etc.). The AMSEL–procedures
are implemented in C and are provided in form of a callable library. The user has to write
additional procedures that take the special features of the modelled system into account.

A preliminary version was developed by P. Bauer (now University of Cologne) and was
used in a joint project with industry on the simulation and optimization of an assembly line
of printed circuit boards (see [Bau90]). The concepts developed there were further elaborated
and a simulation software package was designed and implemented that differs in some aspects
from the commercial codes.

On the one hand simulation programs developed under AMSEL require less computing
time. Therefore, it is possible to model bigger systems than is possible with the commercial
codes. This enables us to use these simulation programs as a validation tool for the opti-
mization procedures, and as a planning instrument for everyday production. On the other
hand the programs use as much as possible exact and realistic parts instead of stochastic
components. Therefore, a high accuracy in the modelling of the real system can be achieved.

But this certainly requires some insight into the system that has to be modelled. A
careful study of the system is inevitable. As all overhead in the input and output of the
data is avoided, some insight into the simulation technique is needed to set up all necessary
input data. But the simulation programs implemented with AMSEL turn out to have a good
performance when they are used for the simulation of material flow systems with work stations
linked together in a fixed way. This enables the direct exploitation of the specific structure
of such systems and to support the demands of speed and accuracy. But certainly the use as
a general purpose simulation tool suffers due to these aspects.

We believe that our goals concerning speed, accuracy and flexibility of the simulation
program are fulfilled by AMSEL. The computational results in the next section show that
the programs are fast and exact. Flexibility was achieved by a clear distinction between the
data area, containing the layout and all input parameters, and the program area, containing
all the logical control elements of the system. For more details see [Asc92].
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Example: A simulation model for an Automatic Storage System

To illustrate the theoretical concept given in this section we explain in detail a simulation
model for the automatic storage system (AUSS) that was described in Section 2.2. The aim
of this simulation approach should be to model the movements of the stacker crane in order
to compare different operational strategies for performing the transportation tasks.

Although the movement of the stacker crane is continuous the states of the system AUSS
change only at discrete points in time (stacker crane loads or unloads a container, a container
enters or leaves the system etc.). Therefore, discrete event simulation is a proper technique for
modelling the system. As the system cannot be mapped one–to–one, certain simplifications
have to be performed that do not destroy the validity of results based on that model. They
will be described in the following.

The elements that are moving through the system are the containers. Thus in the following
a container is synonymous with an object. The stacker crane is assumed to be fixed in its
position. The time between the loading and unloading of the container is just the time that
the stacker crane needs to travel to its destination.

The system AUSS is divided into different modules in such a way that the desired accuracy
in which you want to model the system is achieved. In our application these modules are
input buffer, output buffer, stacker crane, and storage locations. The whole system is not
closed but connected to the environment as it receives input from it and outputs to it. Each
module has a certain capacity as given in Table 3.3.2.

module capacity

input buffer 2
output buffer 2
stacker crane 1
storage locations ∞
environment ∞

Table 3.3.2

The input buffer for example has capacity two, which means that two objects (containers)
can be in that module at the same time. A third object has to wait in front of the buffer
until there is free capacity again, i.e., it is inserted into the corresponding waiting queue. The
storage locations are assumed to have infinite capacity as only containers enter the system
that can be stored. Therefore, there will never be capacity problems in storing incoming
containers. The environment is assumed to be capable of accepting all containers leaving
the system at any time. Therefore, it also has infinite capacity. Each module (except the
environment) has one entry event (E) and one exit event (A). Each time an object passes one
of these events the state of the system changes and has to be updated.

Figure 3.3.3 gives a sketch of the linkage of the event points and a simplified description of
the interactions between the modules. Solid lines indicate that there is a uniquely determined
successor of an event point. Dashed lines indicate that a certain event point has more than
one successor, and a special procedure has to determine the one that will be scheduled next.
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Figure 3.3.3 Simulation model for the AUSS

The system receives its input via the input buffer. All incoming containers pass first a
generate–event (G) where a data record is generated that contains all necessary information
about the object, e.g., the exact storage location. After entering the input buffer a trans-
portation task for the stacker crane is generated (request event (R)). In case that there are
some problems with the container (the contour exceeds some limiting values, it is too heavy
etc.) the stacker crane just passes the container to the output buffer. In all other cases
the module “stacker crane” loads the object (E–event), transports it to its destination, and
delivers it there (A–event followed by the E–event of the module “storage location”). The
travel time of the stacker crane, or equivalently the time difference between the E–event and
A–event of the module “stacker crane”, is dependent on the length of the theoretical move
of the stacker crane and is calculated by a special procedure. All other durations, e.g., the
loading of a container, or equivalently the time difference between the A–event of the input
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buffer (or storage location) and the E–event of the stacker crane are fixed values that were
measured in the real system.

Once a container enters a storage location it will remain there for an unpredictable period
of time and it is booked out of the simulation system (quit event (Q)). In case that it is
needed again it is reactivated by the generation of a transportation task (request event (R)).

If an object has to leave the system, it either leaves it via the assembly line buffers or via
the output buffer. In any case a Q–event is performed that, e.g., deletes the corresponding
data record.

The logical control of the system is performed in the following way (see Figure 3.3.3.c).
The simulation run is triggered by the generation of the transportation tasks. In a list (or
file) all requests and generation tasks are stored that take place during the simulated period.
In our case these tasks were recorded in the real system. In case that they are deterministic
this list also contains all breakdowns of system components. This is, e.g., the case if you want
to reproduce the behaviour of the real system with recorded data from everyday production.
Always the next request in time is added to the event list. If that job is generated (the
corresponding event routine is called), it is added to the list of all generated but not yet
performed jobs and the next request is loaded into the event list. Among all available jobs
the next one that has to be performed is selected, using, e.g., the priority strategy described
in Section 2.3.3 or the optimized strategy described in Chapter 4. The corresponding event
(e.g., A–event of the storage location) is added to the event list. If this job is performed, the
next job has to be selected, and so on.

Computational results using this model will be given in the following section.

3.4 Computational results

Validation of a simulation model

Once a simulation model is developed it has to be decided if the model is a good representation
of the real system. It is not possible to exactly reproduce the system, as some technical data
is simply not available, was measured in the system with the help of a stop watch, or was
estimated by specialists. Furthermore, not all breakdowns and all manual interferences were
recorded. Therefore, the goal of the validation process is a fine adjustment of all the technical
parameters that were not determined exactly and verification if the layout and all the logical
interactions between the technical components have been modelled and implemented correctly.
The system should be modelled in such a way that for any production day the behaviour of
the real system is reproduced in the simulation model in the best possible way.

This process of validation is a lot of work and very time–consuming. The most accepted
approach is the so–called trace–driven simulation where you feed the system with real–life
data, run the simulation with that data, and compare the simulation output to the real–life
output. Certainly the more real–life data you input the more powerful the test will be.

In principle there are two possible strategies to perform the validation. The first is to
simply “eyeball” the behaviour by comparing parts of the systems one by one, or to apply
methods of mathematical statistics. But to obtain the full potential of statistical methods
they often require that the observations are identically independently distributed. As this is
not the case with most of the data, we restricted ourselves to comparing just the mean values
and taking the deviation into account. This strategy was accepted to give results that were
good enough.
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What we did exactly was the following: First we performed so–called individual val-
idation runs where during non–productive periods, objects were fed into the system, and
their running time was measured with the help of stop watches. This was done for the AGV,
e.g., when during weekends engineers of the SNI support team ran the system just for that
purpose. This gave us approximations of the times when no congestions, breakdowns and
manual interferences were involved. Then global validation runs where performed where
during everyday production data was protocolled and measured. This data was inputed to
the simulation model and the simulation results were compared with the recorded production
data.

But the amount of data that is produced in that way is immense, and therefore it can not
be documented here in its entirety. We restrict ourselves to give just some of the results. We
concentrate on the model of the automatic storage system as described in Section 3.3.

Validation results for the AUSS model

For one week all requests and movements of the stacker crane in everyday production were
recorded and the times of the moves in the simulation model were compared with the times of
the moves in the real system. Table 3.4.4 summarizes the validation results for this real–life
data of one week.

# jobs ØSNI ØSIM ØDEV max DEV % DEV Time

1 416 76.27 76.83 2.42 20 0.73 11.47
2 423 75.45 76.34 1.96 11 1.17 11.60
3 403 78.81 78.95 2.01 9 0.18 11.17
4 399 76.19 76.58 2.09 9 0.51 11.08
5 450 77.11 76.73 2.06 20 0.49 12.30

Table 3.4.4 Validation results for the AUSS–simulation–model

One job consists of the unloaded positioning move, the pick–up of a container, the loaded
move with the container, and the delivery of the container. The average time that was needed
for a job on day 1 was 76.27 seconds (see column ØSNI in Table 3.4.4). This time was obtained
by measuring all operations of the day and averaging them out. In total 416 transportation
tasks were recorded during day 1. The simulation model produced an average job length of
76.83 seconds (column ØSIM) for this day resulting in 0.73 % deviation (column % DEV).
Deviations are bound to occur since always some interruptions and manual interactions occur
that are not taken into account by the simulation model; see also column ØDEV for the
average and column max DEV for the maximum deviation that occurred throughout a day.
The CPU–time needed for running the simulation model for the whole day on a SIEMENS
PC MX300 is given in column Time. It is about 12 seconds.

One can observe that the system behaviour was reproduced relatively exactly and the
results were considered to be very satisfactory by our industry partners and it was decided
to accept proposals that are based on the use of this simulation model.

Some further figures

The simulation model for the FMS covering the reception zone, AGV, and all three AUSS
was constructed in a similar way. Simulation models for each component were developed
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independently and were than “glued” together. This model consists of approx. 300 event
points (route events). Thus it is too large to be described in detail within this thesis. A
simulation run for two shifts (17 hours) leads to approx. 40,000 iterations and a CPU–time
of 5 minutes on a SIEMENS PC MX2 (including I/O–operations).

Using AMSEL a simulation program for the whole system of AGV, serving all four man-
ufacturing halls, was developed. This model contains approx. 300 modules and 850 event
points. The simulation of one working day (14 vehicles serving 1400 tasks) leads to ap-
prox. 100,000 iterations and took a CPU–time of 1 minute on a SUN SPARC station (including
I/O–operations).
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Chapter 4

Optimizing the movements of the
stacker crane

4.1 The problem

As described in Section 2.3.3, the work–off strategy for the transportation tasks of the stacker
crane was a priority–based FIFO–rule. This led to a high proportion of time needed for the
unloaded moves of the stacker crane. This was acceptable for normal working conditions
but after breakdowns of the stacker crane the number of jobs to be performed accumulated
and this work–off strategy often led to delays. Furthermore, an increase in production was
expected and the stacker crane was supposed to be a potential bottleneck in the flow of
the material. The management was looking for ways to speed up the stacker crane without
performing expensive technical changes.

The problem was discussed with our industry partners and they agreed that an optimiza-
tion package minimizing the unloaded moves would increase the system performance consid-
erably. But they also wished to see certain side constraints taken into account, namely that
storage tasks should receive privileged treatment and that it is guaranteed that a generated
job is not waiting too long until it is performed.

Thus, the problem was: Given a set of jobs, sequence them in such a way that the sum of
unloaded moves between these jobs is minimized and the waiting times of the jobs until they
are performed do not exceed certain limits.

4.2 Modelling

The question of minimizing unloaded moves between the transportation tasks leads to the
solution of an asymmetric Hamiltonian path problem (AHPP), as will be described in
the following (see also Figure 4.2.1).

Suppose we are given n − 1 jobs. With each job and with the current position of the
stacker crane we identify a node in a complete digraph Dn = (V, An). The current position
of the stacker crane is considered to be a job (node) where the start and end coordinates
coincide. Let node 1 represent the current position of the stacker crane. Each arc (i, j) ∈ An

represents the possibility to sequence job j immediately after job i.

With each arc (i, j) ∈ An we associate a cost coefficient cij ∈ Rwhich is nothing but the

63
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unloaded travel time between jobs i and j, denoted by time(i, j). This coefficient is calculated
from the speed of the stacker crane, the coordinates of the endpoint of job i and the starting
point of job j. As the current position has to be the first node in any sequence, we have to
guarantee that no arc entering node 1 will be in the optimal solution. Therefore, we set:

cij =

{
time(i, j) , i, j ∈ V, i �= j, j �= 1,

∞ , j = 1, i ∈ V \ {1}.(4.2.1)

The value time(i, j) is, of course, only an approximation to the real travel time of the stacker
crane, as e.g., acceleration and deceleration are not taken into account. Furthermore, it was
not possible to take delays into account that resulted from an overload of the data nets. But
the computational results within the simulation model (cmp. Section 3.4) showed that this
approximation is satisfactory.

Furthermore, we have logical 0/1-variables xij describing possible sequences of jobs. To
state this more formally we set

xij =

{
1, if j is sequenced immediately after i,
0, else.

Given a set V of jobs one can formulate the problem of sequencing these jobs, such that the
overall unloaded travel time is minimized, as a linear 0/1-program.

(4.2.2) Linear 0/1–program for the AHPP.

min cTx
s. t. (1) x(A) = n− 1

(2) x(δ−(i)) ≤ 1 ∀ i ∈ V
(3) x(δ+(i)) ≤ 1 ∀ i ∈ V
(4) x(A(W )) ≤ |W | − 1 ∀ W ⊂ V, 2 ≤ |W |
(5) xij ∈ {0, 1} ∀ (i, j) ∈ An
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Equality (1) assures that every feasible solution consists of n− 1 arcs, (2) and (3) guar-
antee that at most one arc is entering and leaving each node, and the inequality system
(4) avoids subtours. The AHPP, which is trivially equivalent to the Asymmetric Travelling
Salesman Problem (ATSP), is known to be a NP-hard problem, but it is also one of the most
intensively studied problems in Combinatorial Optimization and for the instance sizes that
arise in our application (up to 50 - 60 nodes) several codes are known that solve the resulting
problem instances to optimality in a reasonable amount of computing time (e.g., Fischetti
and Toth [FT92]).

4.3 The optimization program

The optimization program had to be designed to be used under heavy load conditions. It
is obvious that there is no necessity and no potential for optimization approaches, if there
is only a low number of jobs. But a feature that was needed was a quick recovery from
“catastrophes”.

The situation is the following: At a general point in time the control program of the
stacker crane has to decide which job is scheduled next. The stacker crane is either executing
some job or is idle because there is no job to perform. Due to calls from the assembly lines
or deliveries from the AGV new jobs are generated.

In case that the stacker crane is idle the generated job is performed immediately. The
management would not accept waiting times of the stacker crane. If there are other jobs
present, the newly generated job is inserted into a list of all jobs and an optimization process
is called minimizing the unloaded moves between them. A situation that should never occur
is that the stacker crane is idle because the optimization process has not yet finished its
calculations. Therefore, a 3–phases process was implemented that can be interrupted during
its execution and still guarantees to supply a feasible solution.

(4.3.3) Optimization process.
Suppose that we are given a sequence S = (j1, ..., jn) of n jobs that have to be performed.
The job that is presently being performed is job j1. The job that is newly generated is jnew.
Assume jnew �∈ S.

Phase 1: Run a simple insertion heuristic
Job jnew is inserted between k and k + 1, where
k = minl=1,..,n{cjljnew + cjnewjl+1

− cjljl+1
}

(Assume that c(i,n+1) = 0 ∀ i = 1, ..., n).
Here we just scan through the current sequence S and try to insert job jnew as
cheaply as possible.

Phase 2: Run a more sophisticated heuristic
Here we have the possibility to use any of the available heuristics for the ATSP,
e.g., the farthest insertion heuristic.

Phase 3: Solve the problem to optimality
This is done using the branch&bound code of Fischetti and Toth [FT92] that
solves the instances arising here in a reasonable amount of time.

It can happen that a new job is created while that process is still computing. In that case
we stop the optimization process and turn to the new enlarged problem. As the process
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is stopped only after the completion of phase 1, it is guaranteed that a solution (enlarged
sequence) is supplied with almost no time delay. This sequence will be improved by phases 2
and 3, if there is still computing time available.

As mentioned in the introduction, we had to take technical side constraints into account.
We shortly outline how this was done. To give preference to certain jobs we defined three
classes of jobs. The first are urgent jobs, the second normal jobs, and the third jobs that can
wait any amount of time until they are performed (e.g., rearrangements within the system).
In the overall sequence the jobs of class one always precede those of class two, and so on. The
coordinates of the end node of the jobs in class i are considered to be the coordinates of the
starting node (position of the stacker crane) in the partial sequence in class i + 1.

Each job in class two is initialized with a certain system–dependent counter that is de-
creased by one as soon as another job is finished. If the counter of such a job is zero it is
inserted into class one. If the waiting time of a job exceeds some limiting value, it is scheduled
next. With that strategy it is assured that jobs do not wait too long until they are performed.
To give preference to storage tasks, they are always inserted into class one.

This is just a brief outline of the optimization module that was developed for Siemens
Nixdorf. There are certainly further details that are important for an efficient implementation
within a production system, e.g., interfaces to the software environment, behaviour in case of
system errors. But a detailed description would be beyond the scope of this thesis.

4.3.1 Computational results

The optimization process was embedded into the simulation model and we used the results
obtained within the simulation model to compare our approach with the old strategy. As
there is an unrestricted amount of computing time for the optimization process within the
simulation model, all problem instances of the AHPP were solved with phase 3 of the opti-
mization process. Table 4.3.2 shows the results for the real–life data of the week that was
used for the simulation model validation (cmp. Section 3.4).

# jobs uTr–P uTr–O Imp. % max# jobs Ø# jobs

1 416 8599 8325 3.18 6 2.31
2 421 8655 8141 5.93 8 1.94
3 405 8238 7956 3.42 6 2.27
4 398 8017 7634 4.77 8 1.93
5 447 9411 8951 4.88 8 2.13

Table 4.3.2 Minimizing the unloaded travel times
(normal load conditions)

Key to Table 4.3.2:
# jobs : Number of transportation tasks (jobs).
uTr–P : Unloaded travel time of the stacker crane with the old priority based

rule (in seconds).
uTr–O : Unloaded travel time of the stacker crane with the optimization process

(in seconds).

Imp. % : Improvement in %, calculated by
(uTr–P)−(uTr–O)

(uTr–P)
· 100.

max# jobs : Maximal number of jobs at the same time.
Ø# jobs : Average number of jobs at the same time.
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The results in the improvements of the unloaded moves (cmp. column Imp. %) of 3% to
6% were rather disappointing. By analyzing the data it turned out that the week considered
was a week of low production volume, furthermore no major breakdowns of the stacker crane
occurred. On the average there were only two jobs at the same time (see column Ø# jobs)
and thus nothing to optimize.

As the process of gathering data in the real system is quite difficult, we and our industry
partners decided to perform experiments with the available data. Therefore, we just added
major breakdowns of the stacker crane to the input data and artificially created heavy load
conditions. This was easy to perform within the simulation model. Some of the computational
results achieved under heavy load conditions are reported in the following.

Experiment 1

We inserted a breakdown of one hour and collected all the jobs that were generated during
that time period. We only take these jobs into consideration for our optimization process.
All other jobs are ignored, namely those generated before the breakdown and those during
the execution of the jobs. The results are reported in Table 4.3.3.

# jobs uTr–P uTr–O Imp. %

1 18 344 239 30.52
2 10 194 143 26.28
3 18 347 211 39.19
4 26 507 330 34.91
5 20 388 283 27.06

Table 4.3.3 Minimizing the unloaded travel times
(heavy load conditions – artificial breakdown)

This is a rather static experiment, since we do not take into account previously generated
tasks or jobs that are generated during the performance of these jobs. Thus, this experiment
does not reflect the dynamic nature of the system, but it shows us that there is an immense
potential for optimization approaches.

Experiment 2

Next we performed a more realistic experiment to construct heavy load conditions in a dy-
namically changing environment.

The simulation started at 6 a.m. with the first deliveries at the receiving area and the
assembly line buffers are supplied with the articles for the first production lot. The first
shift started at 7 a.m. The stacker crane is working without any problems until 7 a.m., but
then we inserted a breakdown from 7 a.m. until 9 a.m. All jobs generated during that time
period were collected and sequenced optimally. Starting at 9 a.m. the transportation tasks
were performed again and all newly generated jobs were also taken into consideration, i.e.,
the sequence is updated each time a new job is generated. The simulation run was stopped
at 10 a.m. The results are shown in Table 4.3.4.
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# jobs uTr–P uTr–O Imp. % max# jobs Ø# jobs

1 50 917 693 24.42 29 13.32
2 49 974 749 23.10 20 8.32
3 50 1007 783 22.24 26 12.23
4 49 889 662 25.53 31 15.24
5 50 985 839 14.82 25 13.08

Table 4.3.4 Minimizing the unloaded travel times
(heavy load conditions – artificial breakdown)

The computational results with that process (see Section 4.3.1) were very satisfactory and
this process was put into use at the SNI plant. The computational experience in the real
system showed that at almost all times there was enough time to finish phase 3.

4.4 On-line phenomena

The model described in Section 4.2 that was the basis for the optimization tool described in
Section 4.3 is a static model. That means that it does not take the dynamic changes of the
system into account. In the model it was assumed that for a given set V of transportation
tasks an optimal sequence is calculated and that this sequence is performed in that order.

But this is not exactly what we needed for our application. The practical application we
have in mind requires a dynamic model taking all the changes in the system into account.
The modelling problem caused by the dynamic nature will be described in the following.

Assume that for a certain point in time i we are given a set of jobs Vi that are sequenced
optimally and that are started to be performed. As soon as a job is finished, it is deleted and
it is not necessary to consider that job any longer. But as soon as a new job is generated
a new sequence containing the remainder of the old sequence and the new node has to be
calculated.

(4.4.4) Notation.
We say that a Hamiltonian path problem is off–line or static, if the input to the problem
does not change, neither during the execution of the algorithm, nor during the execution of
the route.
On the other hand we call a Hamiltonian path problem on–line, if the input may (and will)
change or be updated during the execution of the algorithm, or during the execution of the
route.
The problem of (re–) calculating the current sequence that has to be performed at a certain
point in time, will be addressed as a subproblem of the on–line HPP.

The modelling problem is to find a local criterion for the solution of the subproblems
leading to a global optimum of the on–line HPP. This will be illustrated by the following
example:

(4.4.5) Example.

Suppose that we are given the nine nodes (eight jobs and current position of the stacker
crane) as given in Figure 4.4.5 that have to be sequenced starting with node 1 (current
position of the stacker crane). The shortest sequence is given in Figure 4.4.5 (a). Now we
start performing the jobs. After t units of time nodes 2, 3 and 4 have already been visited
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and a new node 10 is generated. A new sequence starting at node 5 and visiting nodes 6 – 10
has to be calculated. Again the optimal sequence is calculated. The resulting overall travel
path is given in Figure 4.4.5(c).

Now suppose that in the initial step you choose a path that is not locally optimal (Figure
4.4.5(d)). Again after t time units a new job is generated that has to be visited. If the new
node is inserted best possible (Figure 4.4.5(e)), the overall travel path is the one depicted in
Figure 4.4.5(f). This one is shorter than the one you obtain if you solve every subproblem to
optimality.

Up to now it is not clear how such dynamic behaviour can be modelled correctly to
guarantee that the overall travel path of minimal length is found. An important step might
be to find objective functions taking these dynamic changes into account. But today’s theory
(and practice) of on–line optimization is still far away from giving satisfactory answers. That
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is why we restricted ourselves to implement an optimization package based on the static model
only. The computational results showed that this approach gives satisfactory results for the
application we have in mind.

Studies on the on–line behaviour

An obvious question is how the problem of optimizing the movements of the stacker crane –
that is modelled as an (on–line) Hamiltonian path problem – should be attacked. How should
every subproblem be solved? Should one use a greedy heuristic with the argument that the
sequence will change anyway and that it is good to have the “cheap” nodes in front of the
sequence? Should one apply one of the heuristics that are known to work well for the ATSP?
Should every subproblem be solved to optimality, as optimality cannot be that bad?

We were in the lucky situation that we had available several heuristics (implemented
by Michael Jünger and Gerd Reinelt) and a branch&bound code (implemented by Matteo
Fischetti and Paolo Toth [FT92]) for the ATSP. Furthermore, we have the simulation program
for the AUSS (cmp. Section 3.3). Thus, we could simply test several strategies with real–
life data within a (simulation) model that represents the real system exactly enough to take
qualitative conclusions. We tested the following strategies:

priority : SNI-priority rule (old strategy run in FMS).
random : Generation of random sequences.
optimal : Each subproblem is solved to optimality.
greedy : Greedy heuristic.
greedy+2opt : Greedy heuristic with additional improvement heuristic (2–opt

heuristic).
greedy+3opt : Greedy heuristic with additional improvement heuristic (3–opt

heuristic).
farins : Farthest insertion heuristic.
listins : List insertion heuristic: The nodes to be inserted best possible are

taken in the order 1, 2, ..., n.
randins : Random insertion heuristic: The nodes to be inserted best possible

are chosen randomly.
bestins : Best insertion heuristic: Choose always the best possible insertion.
shuffle : Shuffle heuristic: Start with sequences of length 1, “shuffle” them

together to sequences of length 2, “shuffle” these together to se-
quences of length 4, etc.

Table 4.4.7 summarizes the results we achieved for 5 different real–life data sets. Further
information on that data can be gathered from of Table 4.4.6.

1 2 3 4 5

# jobs 50 49 50 48 50
Ø# jobs 12–15 7– 9 10–12 15–19 13–15
max. #jobs 30 21 27 32 26

Table 4.4.6: Data information

# jobs : number of transportation tasks (jobs)
max# jobs : maximal number of jobs at the same time
Ø# jobs : average number of jobs at the same time
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strategy 1 2 3 4 5
∑

priority 17.98 19.48 19.74 18.14 19.31 94.65
random 19.16 19.02 18.07 17.92 19.03 93.20
optimal 11.50 14.72 11.33 10.34 13.77 61.66
greedy 12.07 15.42 11.98 11.83 11.92 63.22
greedy + 2opt 11.87 15.34 11.87 11.72 12.69 63.49
greedy + 3opt 11.81 15.32 12.22 11.42 12.85 63.62
farins 13.00 15.16 12.64 10.00 13.87 64.67
listins 12.50 15.12 11.87 10.92 12.63 63.04
randins 11.64 15.28 12.17 11.20 12.74 63.03
bestins 11.92 14.66 12.29 11.85 12.94 63.66
shuffle 11.94 15.36 11.94 11.27 12.65 63.16

improvement 36.0% 24.7% 42.6% 44.9% 38.2% 34.85%

Table 4.4.7: Average unloaded travel time

The numbers in rows 2–12 give the average unloaded travel time in seconds between
the jobs, if every subproblem is solved with the strategy given in the first column. Using
the priority rule for the first set of data results in an average unloaded travel time of 17.98
seconds whereas the use of the greedy strategy results in an average unloaded travel time
of 12.07 seconds. The row “improvement” gives the improvement of the strategy giving the
best results compared with the old priority rule (optimal for data set 1, bestins for data set 2
etc.). This improvement factor is calculated by 100 · prio−best

prio , where prio stands for the value
achieved by the priority rule and best for the value achieved by the strategy producing the
best results.

In the following we derive an order of the strategies with the aim to distinguish between
good and bad on–line heuristics. It is certainly not possible to take final conclusions based
on these five data sets only but we give possible orders of the eleven on–line heuristics. Let
res(i, k) denote the average unloaded travel time obtained by using strategy i and applying
it to data k. Table 4.4.8 gives three possible orders that are obtained as follows:

1.) Calculate si :=
∑5

k=1 res(i, k) for all heuristics i and sort them in increasing order
(order 1).

2.) Perform a pairwise comparison: Set αkij := 1, if res(i, k) > res(j, k), and 0 otherwise.

Set up a matrix A = (aij) with aij :=
∑5

k=1 α
k
ij, i.e., aij gives the number of data sets on

which i achieves a better result than j. With the cost matrix A solve a linear ordering
problem (order 2).

3.) Perform a weighted pairwise comparison: Set up a matrix B = (bij) with bij :=∑5
k=1 max{0, res(j, k)− res(i, k)}, and solve a linear ordering problem on B(order 3).
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Order 1 (
∑

) Order 2 Order 3

1. optimal (61.66) optimal optimal
2. randins (63.03) listins randins
3. listins (63.04) randins listins
4. shuffle (63.16) greedy + 2opt shuffle
5. greedy (63.22) shuffle greedy
6. greedy + 2opt (63.49) greedy + 3opt greedy + 2opt
7. greedy + 3opt (63.62) greedy greedy + 3opt
8. bestins (63.66) bestins bestins
9. farins (64.67) farins farins
10. random (93.20) random random
11. priority (94.65) priority priority

Table 4.4.8: Orders of the on–line heuristics

(4.4.6) Remarks.
Some interesting observations can be derived from of Tables 4.4.7 and 4.4.8.

(a) First, note that orders 1 and 3 give the same sequence of the on–line heuristics.

(b) There is almost no difference between the old priority rule and the generation of random
sequences. The generation of random sequences gives slightly better results. Compared
with the other strategies these results are significantly worse.

(c) Once you apply any optimization strategy a considerable improvement can be achieved.
The best possible improvement ranges from 25% to 45%, on the average an improvement
of 34 % was achieved.

(d) Optimal seems to be the best strategy under all orders. Although farins once gave the
best result (on data 4) it seems to give worse results than the other heuristics. There
is almost no difference in the results obtained by applying one of the other insertion
heuristics or one of the greedy versions.

(e) Randins and listins tend to give slightly better results, although they never achieved the
best result on any of the data sets.

(f) Surprisingly, it seems not worth to apply an exchange heuristic after the greedy heuristic
has constructed a sequence.

(g) All the tested strategies are static strategies that do not take the dynamic changes of the
system into account.
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4.5 Related problems in the literature

In this section, we review some problems that are related to the solution of the on–line Hamil-
tonian path problem and that can be found in the literature. These are either dynamic or
probabilistic versions of the travelling salesman problem or case studies on practical problems.

In 1985 the so–called probabilistic travelling salesman problem (PTSP) was intro-
duced by Jaillet [Jai85] (see also [JO88, Ber92, BH93]). In the PTSP a complete weighted
graph on n nodes is given. At each node i a demand occurs with probability pi and does not
occur with probability 1− pi. Thus, in a given instance of the problem only a subset S of the
nodes will be present. The goal is to find an a priori tour through all nodes that has minimal
expected length for a particular instance. The convention is that the nodes in the instance
are visited in the same order as in the a priori tour and that nonactive nodes are skipped.

Some interesting facts about optimal PTSP–solutions were elaborated by Jaillet [Jai85],
e.g., that in the Euclidean plane the optimal PTSP–tour may intersect itself. This is in
sharp contrast to the TSP. A couple of asymptotic results for the PTSP are known, e.g.,
that a PTSP strategy is asymptotically equivalent to a reoptimization strategy (calculate
the optimal TSP-tour through the nodes in S), if the nodes are uniformly distributed in the
unit square [BH93]. Furthermore, probabilistic results for heuristics, such as the space–filling
curve heuristic and the nearest neighbour heuristic, are known. For the nearest neighbour
heuristic, for instance, it was shown that on the average it produces poor solutions for the
PTSP. But all results are based on the stochastic assumption that the points are uniformly
and independently distributed in the unit square.

A remarkable amount of work was done on dynamic vehicle routing mainly derived out
of the necessity to solve problems that arise in practice. Dynamic vehicle routing problems
address the movement of vehicles over a given planning horizon, where the demands for
vehicles to carry loads between the locations arrive sequentially over time and are uncertain.
This is, for example, the case in the management of rental cars, or in the distribution of empty
railroad freight cars, see [Pow86, FP90] among others. The scheduling of the vehicles has to
be done in such a way that it is economical, e.g., such that the company’s profit is maximized,
that the deadhead miles driven by the vehicles (i.e., empty miles from the current location to
a pickup point) are minimized, or an acceptable service is provided (minimize waiting times
for delivery or service).

A study for one of North American’s largest truckload motor carriers which must supply
empty trucks to different cities is described in [ABN+88]. The optimization approach is
based on the construction of a stochastic time–space network, where each node represents
a particular region on a given day. The known loads are represented by “deterministic“
links in that network, whereas the expected loads are represented by “stochastic” links. The
uncertainties of the future (expected loads) are captured by a data–base, recording all loads
during the last months. A flow in that model corresponds to a truck driving (loaded or
unloaded) through the different regions. The benefit of this approach is measured within a
Monte–Carlo simulation model.

In a survey article Psaraftis [Psa88] reviews the dynamic aspects of vehicle routing and
compares it to static approaches. In the chapter “Directions for further research” the dy-
namic travelling salesman problem (DTSP) is introduced. To our knowledge this was
the first time a dynamic version of the TSP was mentioned. It is defined as follows: Given a
complete graph G = (V, E) on n nodes with cost tij (travel time from i to j) on each arc. The
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demands at each node occur independently according to a Poisson process with parameter λ.
These demands have to be served by a salesman who is initially located on node 1 and spends
a service time t on each demand.

The question is which “optimal” policy the (dynamic) salesman should follow. It is men-
tioned that the measure for optimality may vary dependent on the objective. It is possible
to apply either a throughput measure or a delay measure. The maximization of throughput
means to maximize the average expected number of demands served per time unit. The min-
imization of delays is equivalent to the minimization of the average (or maximal) expected
time from the appearance of the demand until its service is completed. Furthermore, a com-
bination of both measures might also be taken into consideration. One of the main questions
that is posed is under which circumstances a policy is optimal that is based on the known
demands only. Unfortunately no results are presented.

The main difference between the DTSP and the PTSP is that the PTSP, in the strong
sense, is a static problem although the active nodes depend on the (probabilistic) demands.
This is due to the fact that the calculation of the route R is made before the actual start
of the salesman’s tour. This tour cannot be changed later on. In the DTSP, however, the
salesman reacts to the dynamically changing environment, characterized by the generated
demands. The salesman’s decisions are based on the current and, generally, on the future
states of the system as well, which are given by a stochastic process.

In a series of papers Bertsimas and van Ryzin [BR91, BR93a, BR93b] studied the DTSP
which they call the dynamic travelling repairman problem (DTRP): a routing problem
in a stochastic and dynamically changing environment. The research was motivated by an
application, namely the scheduling of a repair crew to service geographically dispersed fail-
ures. Their objective is to minimize the sum of waiting times until a demand is satisfied. As
the request for demands is uncertain, they consider it to be a stochastic process. First they
analyzed the problem for the case of uniformly distributed demand locations and Poisson
arrivals. Their aim was to find stationary policies for routing one (or more) vehicles. They
proposed several strategies and proved that, under the stochastic assumptions, they are op-
timal in light traffic and provably within a constant factor in heavy traffic. The results were
later on extended to the case where demand locations have an arbitrary continuous distribu-
tion and arrivals follow a general renewal process. Computational results are presented only
with random data but not with real–life data.

Burkard et al. [BFR91] present a study on the design of an operating system for vehicles
in an automated warehouse with a given layout. The considered warehouse consists of seven
double–sided aisles being served by three stacker cranes. Each stacker crane is capable of
moving into each aisle. The delivery and arrival area is being served by an additional stacker
crane each. One of the optimization problems that have to be attacked is to minimize the
stacker cranes’ idle movements and waiting times. A difference to the system considered in
Section 2.2 is that the system has more stacker cranes, which might block each other. There-
fore, a strategy is needed avoiding such conflicts. The solution approach that is presented in
the report is to build up a decision tree for a restricted time horizon. In that tree branches
correspond to taken decisions and are weighted by idle stacker crane seconds caused by that
decision. The solution corresponding to a shortest path from the root to a leaf is accepted as
the current control for the next time period.

Besides the question of optimizing the stacker crane movements other optimization ap-
proaches are discussed. The overall control of the optimization packages is also performed
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with the help of a decision tree. Although the study was made for a company and the opti-
mization tool is now running in that factory no computational results (e.g., a comparison of
different strategies) are presented.

4.6 Bounds for on–line strategies

Remark (4.4.6)(g) leads to the question how good the found solutions summarized in Ta-
ble 4.4.7 are. One could surely imagine designing a more sophisticated on–line heuristic that
takes the dynamic changes better into account and that produces even better results. That
question can be reformulated as:

Are there lower bounds for a “good” or even “optimal” on–line strategy for the
Hamiltonian path problem?

There are two possible ways of analyzing the problem, namely to perform an on–line
analysis or an off–line analysis. In the on–line analysis you still deal with the uncertainties
of the system due to its unpredictable dynamic nature. You either have to apply a theo-
retical concept of on-line optimization (cmp. Chapter 1.5) or model that behaviour with the
help of probability distributions in order to apply methods from mathematical statistics or
stochastics. In the off–line analysis you eliminate the uncertainties by collecting all neces-
sary data and information over a certain time period and perform the analysis with the now
deterministic data.

As the use of the concepts of on–line optimization is rather limited and no probability
distribution is available that models the dynamic behaviour satisfactorily, we decided to
choose the second approach. We solved three different problems, namely the

(1) off–line Hamiltonian path problem (HPP),

(2) off–line HPP with time windows (HPPTW),

(3) off–line HPP with precedence constraints (SOP).

The asymmetric Hamiltonian path problem with precedence constraints is also known as
Sequential Ordering Problem (SOP) (see Chapter 5).

Some notation:
In the following we assume that over a considered time period (e.g., one manufacturing shift)
n−1 jobs are generated that have to be performed. As described in Section 4.2, with each job
and with the current position of the stacker crane a node in a complete digraph D = (V, A)
is associated. Node 1 is assumed to be the current position of the stacker crane. Thus,
in total we have |V | = n. In the following the expressions “node” and “job” will be used
synonymously. The cost coefficients cij of each arc (i, j) ∈ A are calculated as described in
4.2.1.

Any optimal Hamiltonian path (or sequence of jobs) starts with node 1. Let Sa denote
the optimal sequence obtained by solving problem a (a ∈ {HPP, HPPTW, SOP}), let Sonline
be a sequence generated by an on–line algorithm for the HPP (e.g., one of the heuristics in
Section 4.4), and let Sopt

online be the best possible sequence generated by an on–line algorithm
for the HPP. By c(S) we denote the cost of sequence S.
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In the following sections, we show that the inequalities

c(SHPP ) ≤ c(SSOP ) ≤ c(SHPPTW ) ≤ c(S
opt
online) ≤ c(Sonline)(4.6.7)

hold which will be essential for the on–line studies that are presented. They imply that the
optimal solutions of problems (1)–(3) and even lower bounds on these values are lower bounds
for the “optimal” on–line strategy for the problem of minimizing the unloaded moves of the
stacker crane. It cannot be expected that the inequalities in (4.6.7) will be tight. The relative
error of these approaches compared to the on–line heuristic will always be calculated by the
formula

GAP =
c(Sonline) − c(Sa)

c(Sa)
· 100.(4.6.8)

In the following sections we briefly sketch the models and summarize the results achieved
by the use of these approaches. The mathematical background and details can be found in
Chapters 5 and 6.

4.6.1 Offline-HPP

A first approach is to solve the so–called off–line Hamiltonian path problem. Here you just
calculate the shortest Hamiltonian path SHPP among the nodes 1, ..., n.

The value of the optimal solution to the off–line HPP is a lower bound for the optimal
on–line strategy for the considered time period, since it is trivially true that

c(SHPP ) ≤ c(Sopt
online)

otherwise SHPP would not be an optimal Hamiltonian path.
We solved the off–line HPP resulting out of the same sets of real–life data as were used in

Table 4.4.7. The Hamiltonian path problems were solved with the help of the branch&bound
code of Fischetti and Toth [FT92]. Unfortunately the achieved results, which are summarized
in Table 4.6.9, are relatively poor.

1 2 3 4 5

on–line HPP 11.50 14.66 11.33 10.00 11.92
off–line HPP 7.36 6.64 6.38 5.89 8.14
GAP 56.2% 120.7% 77.5% 69.7% 46.4%

Table 4.6.9: Off–line HPP

The numbers in the row off–line HPP give the average unloaded travel time between the
jobs in the optimal sequence SHPP for the Hamiltonian path problem, whereas the numbers
in the row on–line HPP are the average unloaded moves of the best on–line strategy so
far (cmp. Table 4.4.7). The row GAP gives the relative error between these two values
(cmp. (4.6.8)).

This approach leads to rather poor bounds. The GAP is between 50 % and 120 %. But
this is not very surprising, if you retranslate this model to the practical application we have
in mind. This means that during the considered time period the stacker crane does not move
at all. All generated jobs are collected and at the end of the time period the optimal sequence
among them is calculated and the jobs are then performed in that order. Thus, to achieve
tighter bounds more realistic models are needed.
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4.6.2 The construction of time windows for all jobs

The first approach of solving the off–line HPP suffers from the criticism that it does not take
the dynamic behaviour of the system into account. But it is possible to model the dynamic
aspects by time windows [ri, di]. Here, ri denotes the release date of job i (i.e., the earliest
possible time when job i can start) and di denotes its due date (i.e., the latest possible time
job i can start). The problem is to find the appropriate values for ri and di. This has to
be done in such a way that it is guaranteed that a solution of the off–line HPP with time
windows is a lower bound for an “optimal” on–line strategy.

These time windows are already indirectly given in the manufacturing system we consider.
A job cannot start before it is generated and thus there is no problem in finding the release
dates ri. The problem reduces to constructing appropriate due dates di for each job i ∈ V .
Not every on–line strategy would produce acceptable solutions for our practical problem.
Thus, we can make use of some system specifics.

During a production period without breakdowns all jobs should be performed within a
given time period (e.g., one hour). If a job waits too long, it is given preference. Making use
of that fact one can construct the time windows. Let gi be the generation time, fprioi the
completion time of job i with the use of the priority strategy, and let p be the time–period
within the real system in which each job has to be finished. Then we set

ri = gi
di = fprioi + p.

(4.6.9)

By these settings we have guaranteed that a feasible solution to the problem exists and
furthermore that the lower bound is feasible for our problem. This is true as every feasible
on–line solution is a feasible solution to the AHPP with time windows as constructed above.
In the manufacturing system we consider the stacker crane is not allowed to be idle as long
as there are jobs to perform. Therefore, an optimal solution of the AHPP with time windows
is not necessarily a feasible on–line solution, as it can imply waiting times.

For the general on–line HPP this setting of the due dates di is certainly not feasible as
it is possible that a job can wait as long as possible. Therefore, it would be necessary to
set di = ∞. But the wider the time windows are the closer the result will be to the result
obtained by the solution of the off–line HPP. With the settings in (4.6.9) we have chosen time
windows that are tighter than the ones for the general case. Thus, they will produce tighter
bounds.

4.6.3 Off–line HPP with precedence constraints

Once we are given the time windows [ri, di] for each node i ∈ V it is possible to relax them
to precedence constraints.

Suppose that for each job i ∈ V we are given a time window [ri, di] where ri gives the
release date of node i (earliest time when the job can be performed) and di the due date
(latest possible starting time) of job i. With si we denote the service time (time needed to
perform the job) of job i ∈ V . If there are two time windows [ri, di] and [rj, dj], i �= j, with

di < rj + sj ,(4.6.10)

then we know that i has to precede j, because if we perform j at the earliest possible time
rj and then try to perform job i we would violate the due date of job i. If di ≥ rj + sj and
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dj ≥ ri + si holds for two jobs i and j, then the jobs can be sequenced in any order i → j
or j → i and therefore no precedence relationship can be derived. Applying the described
procedure it is possible to relax all time windows to precedence relationships. For the case of
the general on–line HPP where we have di = ∞ for all i ∈ V no precedences can be derived
out of the time windows and we have c(SHPP ) = c(SSOP ).

As the HPP is a special case of the HPP with precedence constraints and every solution
of the SOP is feasible for the HPP, we have

c(SHPP ) ≤ c(SSOP ).

Furthermore, we have
c(SSOP ) ≤ c(Sopt

online)

as every on–line solution of the considered HPP is a feasible solution to the SOP, but not vice
versa.

The resulting problem instances of the SOP were solved using a branch&cut code that was
implemented jointly with M. Jünger, G. Reinelt, and S. Thienel in the SCIENCE-project of
the European Community. The results that are slightly better than the ones for the off–line
HPP are summarized in the following table 4.6.10. They are read in the same manner as the
results in Table 4.6.9.

1 2 3 4 5

on–line HPP 11.50 14.66 11.33 10.00 11.92
off–line SOP 8.18 7.40 8.10 7.46 9.59
GAP 40.6% 98.1% 39.5% 34.0% 24.3%

Table 4.6.10: Off–line HPP with precedence constraints

4.6.4 Off–line HPP with time windows

The SOP as considered in the last section is a relaxation of the asymmetric Hamiltonian path
problem with time windows (HPPTW). Therefore, we have

c(SSOP ) ≤ c(SHPPTW ).

If we can solve the HPPTW directly, we expect to obtain better bounds. Since from the
computational point of view the HPPTW belongs to the difficult problems in combinato-
rial optimization (cmp. Chapter 6), we cannot expect to solve every problem instance to
optimality. But as the inequality

c(SHPPTW ) ≤ c(Sopt
online)

holds, we know that any lower bound on the value of c(SHPPTW ) will be a lower bound on
the value of c(Sopt

online). The time windows for nodes i ∈ V are constructed as described in
Section 4.6.2.

We now calculate a shortest Hamiltonian path SHPPTW that satisfies all the time windows
with the help of a branch&cut code that was implemented jointly with M. Fischetti. In case
that we cannot solve the problem instance to optimality, this polyhedral approach guarantees
to find at least good lower bounds on the value c(SHPPTW ). The results are summarized in
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Table 4.6.11. If the problem was not solved to optimality, this is indicated in the table by
giving the upper and lower bounds ([lower,upper]). In that case, for the calculation of the
gap with formula (4.6.8) the lower bound is used instead of the optimal value.

1 2 3 4 5

on–line HPP 11.50 14.66 11.33 10.00 11.92
off–line HPPTW 8.45 [8.54,19.17] [9.14,19.18] [9.68,18.21] [10.37,18.12]
GAP 36.1% 71.7% 24.0% 3.3% 14.9%

Table 4.6.11: Off–line HPP with time windows

The large gaps for the off–line HPPTW are due to the fact that the heuristics used so
far do not produce satisfactory results. We believe that the lower bound is far closer to the
value of the optimal solution than the upper bound is. The use of better primal heuristics
will close this gap.

4.7 Summary

In the last sections we derived lower bounds on the value of an optimal on–line solution. The
results are summarized in Table 4.7.12.

1 2 3 4 5

on–line HPP 11.50 14.66 11.33 10.00 11.92

off–line HPP 7.36 6.64 6.38 5.89 8.14
off–line SOP 8.18 7.40 8.10 7.46 9.59
off–line HPPTW 8.45 8.54∗ 9.14∗ 9.68∗ 10.37∗

GAP HPP 56.2% 120.7% 77.5% 69.7% 46.4%
GAP SOP 40.6% 98.1% 39.5% 34.0% 24.3%
GAP HPPTW 36.1% 71.7% 24.0% 3.3% 14.9%

∗ lower bound, as instance not solved to optimality

Table 4.7.12: lower bounds for on–line HPP

For data sets 2–5 the problem instances for the HPPTW could not be solved to optimality.
Therefore, the corresponding bounds are supposed to improve in case that optimal solutions
are calculated.

First, note that the gap reduces the tighter the off–line model is to the real application.
For the HPPTW it varies between 3% and 70%. We believe that these are instances, where
we had “good luck”, resp. “bad luck”, in the calculations. In the average a gap of approx. 30%
can be observed. Although this gap seems relatively big, it is likely to occur, since the on–line
problem is attacked by means of “off-line” heuristics and the lower bound might be improved
by solving the time constrained AHPP where no idle time is allowed when a node can be
processed.
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Chapter 5

Hamiltonian path problems with
precedence constraints (Sequential
ordering problem)

5.1 The problem

The asymmetric Hamiltonian path problem with precedence constraints (AHPP-
PC), also called sequential ordering problem (SOP), can be phrased in graph theoretical
terminology in the following way.

We are given a directed, complete graph Dn = (V, An) on n nodes and cost coefficients
cij ∈ R, cij ≥ 0, associated with each arc (i, j) ∈ An. The precedences that have to be satisfied
are given by an additional precedence digraph P = (V, R) that is defined on the same node
set V as Dn. An arc (i, j) ∈ R represents a precedence relationship i ≺ j, i.e., i has to precede
j. In this chapter we consider the case where each Hamiltonian path has a distinct starting
node, say node 1, and a distinct final node, say node n. Therefore, (1, i) ∈ R ∀i ∈ V \ {1}
and (i, n) ∈ R ∀i ∈ V \ {n}. If this condition is not satisfied, it can always be achieved by
adding additional nodes.

Let posH(i) denote the position of node i in the Hamiltonian path H . The path H is called
a feasible Hamiltonian path (with respect to P ), if it does not violate the precedence
relationships given by P , or to state it more formally, if posH(i) < posH(j) is satisfied for
every given precedence relationship i ≺ j. Obviously, the precedence digraph P has to be
acyclic, otherwise no feasible solution exists. Moreover, P can be assumed to be transitively
closed, because if i ≺ j and j ≺ k we can conclude that i ≺ k.

The problem is to find a feasible Hamiltonian path with minimal cost in Dn.

The asymmetric travelling salesman problem with precedence constraints
(ATSP-PC) is defined in a similar way. In order to achieve that the concept of precedences
does make sense we need to have a designated starting node, say node 1. The problem is to
find a Hamiltonian cycle “starting” and “ending” at node 1 of minimal length that satisfies
all given precedence relationships among the nodes in V \ {1}.

Note that the AHPP-PC (or SOP) reduces to the asymmetric Hamiltonian path problem
(AHPP) in the case that the precedence digraph P = (V, R) has empty arc set R. Thus the
AHPP is a special case of the SOP. As the AHPP is an NP-hard problem, the same holds for

81
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the SOP.

There is a great variety of real–world problems that can be modelled as a SOP. They occur,
e.g., in routing applications where a pick–up has to precede the delivery, or in scheduling
applications where a certain job has to be completed before other jobs can start.

Although the travelling salesman problem is one of the most investigated problems in
Combinatorial Optimization, very little attention has been paid to the precedence constrained
version.

The sequential ordering problem (SOP) as stated in the form here, seems to have been
mentioned first by Escudero [Esc88a, Esc88b]. The aim of his investigations has been to
design heuristics for a production planning system that perform well in practice with respect
to solution guarantee and running time.

Ascheuer [Asc89] and Ascheuer, Escudero, Grötschel, and Stoer [AEGS90, AEGS93] de-
scribe a cutting–plane approach to obtain lower bounds on the value of the optimal solution.
These lower bounds have been used to measure the quality of the solutions obtained by
the heuristics developed by Escudero. The authors compare three different models and give
computational results on real–life data of IBM that was provided by Escudero. The model
that will be presented in Section 5.2 turned out to give satisfactory bounds with a gap of
approx. 5% and to be superior to the other models from a computational point of view.

Around the same time a similar model has been developed independently by Balas, Pul-
leyblank, and Timlin [Tim89, PT91]. They considered the symmetric case and the aim of
their research has been to design heuristics to schedule helicopters that have to visit offshore
oil–platforms in a certain order. It was desired to find a route for each daily set of stops
that satisfies all the requirements (precedence constraints, helicopter capacity, etc.) and that
minimizes the total distance flown.

Savelsbergh [Sav90] describes a k–exchange heuristic for the single–vehicle dial–a–ride
problem where a vehicle has to pick up and deliver n customers. Each customer has a pick
up and delivery location and the pick up must precede the delivery. He outlines a procedure
where the feasibility check can be done in constant time. In the problem he describes the
precedences are very structured, as any node has one uniquely determined predecessor or
successor.

Bianco et al. [BMRS] attack the problem with the help of a dynamic programming algo-
rithm. Their algorithm has been tested with randomly generated data. As it can be expected,
the dynamic programming algorithm performs the better the more precedences are given, be-
cause the number of possible states can be reduced dramatically. They have been able to
solve very special dial–a–ride problems up to 105 nodes in approx. 5 minutes.

Very recently the first polyhedral investigations have been carried out by Balas, Fischetti,
and Pulleyblank [BFP92]. We refer to their results in the following sections.

5.2 Linear Programming Model

In the literature several models for the SOP are known (cf. [Esc88a, Esc88b], [Asc89, AEGS90],
[BFP92]). Ascheuer et al. [AEGS93] performed computational experiments showing that the
model described in the following is superior to the others from a computational point of view.
This model is based on a linear programming formulation of the asymmetric Hamiltonian
path problem. The precedence relationships are modelled by an exponentially large class of
inequalities.
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For each arc (i, j) ∈ An, we introduce a binary variable xij ∈ {0, 1} with the interpretation
that

xij =

{
1, (i, j) ∈ An is in the Hamiltonian path,
0, else.

With each arc (i, j) ∈ An, a cost coefficient cij ≥ 0 is associated. Immediately, some
reductions can be performed.

(5.2.1) Lemma.
Given Dn = (V, An) and P = (V, R), then
(i) xji = 0 ∀ (i, j) ∈ R
(ii) xik = 0 ∀ (i, k) ∈ R s.t. ∃(i, j) ∈ R and (j, k) ∈ R.

Proof. If i ≺ j, we know that j can never precede i in a feasible Hamiltonian path. Therefore,
xji can be fixed permanently to 0.
If i ≺ j and j ≺ k, we know that we can fix xik permanently to 0, as at least node j has to
be scheduled in between.

Balas, Fischetti, and Pulleyblank [BFP92] proved that this lemma yields a complete char-
acterization of all variables that can a priori be fixed to zero. The variable set (resp. arc set)
is reduced by fixing these variables to 0 (resp. deleting the arcs). To state this more formally,
we set

R1 = {(j, i) ∈ An | (i, j) ∈ R}
R2 = {(i, k) ∈ An | (i, j) ∈ R and (j, k) ∈ R}.

By setting

A = An \ (R1 ∪R2)

we end up with the digraph D = (V, A) in which we look for feasible Hamiltonian paths. We
only associate variables with the feasible arc set A.

The linear 0/1-model can now be stated as follows.

(5.2.2) Linear 0/1–Programming Formulation for SOP.

min cTx
s. t. (1) x(δ−(i)) = 1 ∀ i ∈ V \ {1}

(2) x(δ+(i)) = 1 ∀ i ∈ V \ {n}
(3) x(A(W )) ≤ |W | − 1 ∀ W ⊂ V, 2 ≤ |W |
(4) x(j : W ) + x(A(W )) + X(W : i) ≤ |W | ∀ (i, j) ∈ R and

∀ W ⊆ V \ {i, j},W �= ∅
(5) xij ∈ {0, 1} ∀ (i, j) ∈ A

(1)–(3),(5) is the standard formulation for finding an asymmetric Hamiltonian path from 1 to
n. (1) and (2) guarantee that one arc is entering and leaving each node (in– and out–degree
constraints). Inequalities (3) avoid subtours (subtour elimination constraints). The
inequality system (4) assures that all precedences are satisfied. These inequalities are called
precedence forcing constraints. Note that the arcs in δ−(1) and δ+(n) are eliminated
due to Lemma (5.2.1). Therefore, the equations x(δ−(1)) = 0 and x(δ+(n)) = 0 are trivially
valid and need not be considered.
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The linear programming model for the ATSP-PC is more or less the same but equations
(1) and (2) have to be substituted by

(1’) x(δ−(i)) = 1 ∀ i ∈ V
(2’) x(δ+(i)) = 1 ∀ i ∈ V

It is obvious that every feasible solution of (1)–(5) is the incidence vector of a feasible
Hamiltonian path and vice–versa.

In the sequel we investigate the sequential ordering polytope

SOP (n, P ) = conv{x ∈ RA | x is a feasible Hamiltonian path from 1 to n}

whose vertices are the characteristic vectors of the feasible Hamiltonian path of D. In a
similar way the precedence constrained ATSP polytope

PPC(n, P ) = conv{x ∈ RA | x is satisfies (1′)(2′), (3)− (5)}

is defined. The study of the structure of the sequential ordering polytope (dimension, facets,
etc.) is of particular interest for the solution of the SOP with the help of a branch&cut
approach and is done in the following sections. This is closely related to the study of the
ATSP polytope (cf. Section 1.3).
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5.3 Dimension of the polytope

Generally, the first step in establishing facial results about a certain polytope P is to deter-
mine the dimension of P . For the SOP this turns out to be a difficult problem involving
a lot of technical details. Partial results have been proven by Balas, Fischetti and Pulley-
blank [BFP92]. In this section we derive a dimension formula for a large class of instances of
the sequential ordering problem. This is a more general result as the one by Balas et al. and
has been developed jointly with Mechthild Stoer.

(5.3.3) Definition.
Given D = (V, A) and the precedence digraph P = (V, R), the set π(j) of predecessors of
j ∈ V and the set σ(i) of successors of i is defined by

π(j) := {i ∈ V |(i, j) ∈ R},
σ(i) := {j ∈ V |(i, j) ∈ R}.

V − (resp. V +) is defined to be the set of all nodes having at least one predecessor (resp. suc-
cessor), i.e.,

V − := {i ∈ V |π(i) �= ∅},
V + := {i ∈ V |σ(i) �= ∅}.

A node i ∈ π(j) is called a direct predecessor of j, if the precedence relationship is not
implied by a transitivity relation, i.e., (i, j) ∈ R and (i, j) ∈ A.
A node k ∈ V is called free, if π(k) = {1} and σ(k) = {n}, i.e., k is not involved in any
precedence relationship, except for the starting node 1 and the ending node n. �

In the sequel we will consider some special instances of the SOP. Therefore, we need the
following definitions.

(5.3.4) Definition.
With (V, A, R) we denote an instance of the SOP given by the digraphs D = (V, A) and
P = (V, R). As it was done in the previous section, let n := |V | be the ending node of every
feasible Hamiltonian path.
An instance (V, A, R) of the SOP is called regular, if one of the following conditions is
satisfied:
(a) there exists a free node, or
(b) n has more than two direct predecessors, or
(c) if n has exactly two direct predecessors, say i and j, then π(i) �= π(j) holds

Otherwise, the instance is called nonregular. �

Results on the dimension of the polytope are known for the case that a free node exists.
Balas et al. [BFP92] showed that for this case all but one of the degree constraints (1’) and
(2’) form a minimal equation system for PPC(n, P ), i.e.,

dim(PPC(n, P )) = |A| − 2n + 1.

Therefore, we obtain
dim(SOP (n, P )) = |A| − 2n + 3

if a free node exists. The assumption of the free node is essential for the proof, because it is
based on interchange arguments for constructing feasible tours. This can be done relatively
easy with a free node, as this node can be reinserted anywhere in the remaining sequence



86 CHAPTER 5. HAMILTONIAN PATH PROBLEMS WITH PRECEDENCES

1

2

3

4

7

6

5

8
1

32

4

5

6

7

(a) (b)

Figure 5.3.1

without constructing an infeasibility. But this is certainly a rather restrictive assumption,
since it does not cover precedence digraphs as given in Figures 5.3.1(a) and (b).

Having a look at Figure 5.3.1(b) one immediately recognizes that the problem can be
decomposed into two subproblems, namely to find shortest feasible Hamiltonian paths through
the node sets V1 = {1, 2, 3, 4} and V2 = {4, 5, 6, 7, 8}.

To state this more formally, let m ∈ V be a fixed node. Set V1 := {v ∈ V | v ∈ π(m)}∪{m}
and V2 := V \ π(m). We now solve the Sequential Ordering Problem on the smaller digraphs
D1 = (V1, A(V1)) and D2 = (V2, A(V2)). Observe that m is the ending node of the optimal
path on D1 and the starting node on the optimal path on D2 and that the concatenation of
these two paths at node m is an optimal path on the original instance (V, A, R).

If we split the original instance at a fixed node in the way described above, we also
say that the instance (D,A,R) decomposes into the two instances (V1, A(V1), R(V1)) and
(V2, A(V2), R(V2)).

It is easy to see that in each of the subproblems (or in the problem instance itself, if it is
not decomposable) one of the degree constraints is linearly dependent. Therefore, a correction
term in the dimension formula is necessary. Set

F := {i ∈ V \ {1, n} | ∃ k, 0 < k < n, s.t. |π(i)| = k and |σ(i)| = n− k − 1}(5.3.5)

to be the set of nodes that are fixed in their position. If i ∈ F , it will be called fixed. For
example, in Figure 5.3.1(b) node 4 is fixed. In the following we show that

dim(SOP (n, P )) = |A| − 2n + 3 + |F |

holds for regular instances. This will be done by first discussing the case where |F | = ∅ and
then prove the formula for the more general case where |F | �= ∅. We conjecture that this
dimension formula holds for all classes of instances, but a proof remains open.

(5.3.6) Theorem.
Suppose we are given a regular instance (V, A, R) of the SOP with n ≥ 4. If |F | = ∅, then

dim(SOP (n, P )) = |A| − 2n + 3.
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Proof. If there exists a free node, the result has already been established by Balas et
al. [BFP92]. Therefore, assume in the following that no free node exists. We are going to
prove the remaining cases by induction over |R|.
It is easy to see that the result holds for the easiest case where n = 4 and R = {(1,2), (1,3),
(2,4), (3,4)}.

Now suppose we are given an instance on D = (V, A) on n := |V | nodes with a precedence
digraph P = (V, R).

In case that n has more than two direct predecessors, choose any of these predecessor. In
case that n has exactly two direct predecessors, say i and j, choose a predecessor i such that
π(i) �⊆ π(j). In the sequel this selected predecessor is denoted with vn−1.

We now shrink n and vn−1 to a single node n′. Let (V ′, A′, R′) denote the shrunken
instance. Through this shrinking operation the precedences not involved with n and vn−1 are
not influenced. We set i ≺ n′, if

i �= vn−1 and
i ≺ n or i ≺ vn−1.

holds. As the instance is regular, a direct predecessor of n can be found such that the shrunken
instance does not contain a fixed node.

Note that through this shrinking operation precedences might occur that are implied
by transitivity relations (e.g., arcs e and g in Figure 5.3.2) and that this operation has an
influence on the feasible arc set A′, as well.

If we identify the arcs (i, n′) ∈ A′ with the arcs (i, vn−1) ∈ A, the arc sets A′ and A differ by
the following arcs (dashed lines in Figure 5.3.2(c)):
(i, n) such that (i, n) ∈ R and (i, n) ∈ A,
(i, vn−1) such that i is a direct predecessor of vn−1 and there exists an [i, n]–path

in R not using vn−1 (e.g., arcs e, g in Figure 5.3.2(b)),
(j, vn−1) such that j �∈ π(vn−1), and j is not a direct predecessor of n,
(vn−1, i) with i �∈ π(vn−1) (e.g., arc (vn−1, vn−2) in Figure 5.3.2).

Let a′x′ = a′0 be an equation that is satisfied by all feasible solutions of the shrunken instance
(V ′, A′, P ′). By induction we know that this equation is a linear combination of the degree
constraints, i.e., these equations can be combined such that a′ij = 0 for all (i, j) ∈ A′.

Now, let ax = a0 be an equation that is satisfied by all feasible solutions of the original
instance (V, A, P ). The same combinations that led to a′ij = 0 for all (i, j) ∈ A′ can be used
in the original instance to set the coefficients of the following arcs (i, j) ∈ A to 0:
(i, vn−1) if (i, n) ∈ R, (i, n′) ∈ A′, i �= vn−1,
(i, vn−1) if (i, vn−1) ∈ R, i is a direct predecessor of vn−1 and � ∃ a [i, n]–path in

R not using vn−1,
(i, j) for all i, j ∈ V \ {vn−1, n}.

Assume that in the shrunken instance the equation x′(δ−(n′)) = 1 was not used. Therefore,
two of the three equations

(i) x(δ−(n)) = 1,
(ii) x(δ+(vn−1)) = 1,
(iii) x(δ−(vn−1)) = 1,
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can be used to set further coefficients to 0. We use (i) to fix akn = 0 for one direct predecessor
k of n, k �= vn−1, and (iii) to fix avn−1,n = 0. Such a k exists, since vn−1 is not fixed. Figure
5.3.3 shows all arcs whose coefficients are not yet fixed to 0.
To simplify notation we introduce the following node sets:

V1 := {l ∈ π(vn−1) | (l, vn−1) ∈ A and ∃ a [i, n]–path in R not using vn−1},
V2 := {k ∈ V \ {vn−1} | (k, n) ∈ A and (k, n) ∈ R},
V3 := {j ∈ V | j �∈ π(vn−1), j �= n},
V4 := {j ∈ π(vn−1) | (j, vn−1) ∈ A, and � ∃ a [i, n]–path in R not using vn−1},
Ṽ := V \ {1, V1, V2, V3, vn−1, n},

i.e., the sets Vi, i = 1, ..., 3, correspond to nodes that are incident to arcs whose coefficient is
not yet fixed to 0. As vn−1 is not a fixed node, we know that V2 �= ∅.

Let S1, ..., Sk be any disjoint partition of V \ {1, n}. If in the sequel a Hamiltonian path
is given in the form (1, S1, S2, ..., Sk, n), this means that the nodes of Si, i = 1, ..., k− 1, are
visited before any node of Sj, i < j, is visited and that the nodes in Si, i = 1, ..., k, may be
sequenced in any (uninterrupted) feasible order.
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In the following we construct Hamiltonian paths and claim that they are feasible. By definition
we know that
vn−1 can be sequenced before any node in V2 ∪ V3,
l ∈ V1 can be sequenced before any node in V2 ∪ V3 ∪ {vn−1},
j ∈ V3 can be sequenced before any node in V1 ∪ V2 ∪ {vn−1},
k ∈ V2 can be sequenced before {vn−1}.

We now construct feasible Hamiltonian paths to fix the remaining coefficients of ax = a0 to 0.
Let k ∈ V2 be the arbitrary but fixed node that was previously used to set a coefficient akn
to 0.

First, consider the path

(1, Ṽ \ V4, {V4 ∪ V1 ∪ V3}, V2, vn−1, n).

Since at least one of the sets V1, V3, V4 is nonempty and vn−1 cannot be a predecessor of any
node in that union, a path of this form exists. As all coefficients are 0, we can conclude that
a0 = 0.

In the following we discuss several possible cases for V2. Note, that if V3 = ∅, not all of
the constructed paths have to be considered.

Case 1: |V2| ≥ 3

1.) Consider the path (1, Ṽ , V1, V3, q, vn−1, p, k, n) for any distinct p, q ∈ V2 \ {k}. We can
conclude that avn−1,p = 0 for all p ∈ V2 \ {k}.

2.) Consider the path (1, Ṽ , V1, V3, k, vn−1, q, V2\{k, q}, q, n). We can conclude that aqn = 0
for all q ∈ V2.

3.) Consider the path (1, Ṽ , V1, V3, V2 \ {k}, vn−1, k, n). We can conclude that avn−1,k = 0.
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4.) Consider the path (1, Ṽ , V1, V3, vvn−1, V2, n). We can conclude that aj,vn−1 = 0 for all
j ∈ V3.

5.) Consider the path (1, Ṽ , V3, V1, vn−1, V2, n). We can conclude that al,vn−1 = 0 for all
l ∈ V1.

6.) Consider the path (1, Ṽ , V1, vn−1, V3, V2, n). We can conclude that avn−1,j = 0 for all
j ∈ V3.

Thus, we showed aij = 0 for all (i, j) ∈ A and the result follows.

Case 2: |V2| = 2
Assume V2 = {k,m}.

1.) Consider the path (1, Ṽ , V1, V3, m, vn−1, k, n). As all coefficients except avn−1,k are 0, we
can conclude that avn−1,k = 0.

2.) Consider the path (1, Ṽ , V3, V1, vn−1, m, k, n). We can conclude that al,vn−1 = β for all
l ∈ V1 and avn−1,m = −β.

3.) Consider the path (1, Ṽ , V3, V1, vn−1, k, m, n). We can conclude that am,n = −β.

4.) Consider the path (1, Ṽ , V1, V3, k, vn−1, m, n). We can conclude that avn−1,m = −am,n.

Therefore, β = 0. The paths

5.) (1, Ṽ , V1, vn−1, V3, V2, n),

6.) (1, Ṽ , V1, V3, vn−1, V2, n)

complete the proof of this case.

Case 3: |V2| = 1
Assume V2 = {k}. First, note that due to the regularity of the instance there exists a node
l ∈ V2 such that k can be sequenced before l in a feasible Hamiltonian path.
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1.) Consider the path (1, Ṽ , V3, V1, vn−1, k, n). We can conclude that al,vn−1 = β for all
l ∈ V1 and avn−1,k = −β.

2.) Consider the path (1, Ṽ , V1, V3, vn−1, k, n). We can conclude that aj,vn−1 = β for all
j ∈ V2.

3.) Consider the path (1, Ṽ , V1, vn−1, V3, k, n). We can conclude that avn−1,j = −β for all
j ∈ V2.

4.) Consider the path (1, Ṽ , V3, k, l, V1 \ {l}, vn−1, n). We can conclude that al,vn−1 = 0.

Therefore, β = 0, and aij = 0 for all (i, j) ∈ A. The discussion of this case completes the
proof.

We now prove the result for the case where |F | �= ∅.

(5.3.7) Theorem.
Suppose we are given an instance (V, A, R) of the SOP on n ≥ 4 nodes that decomposes into

regular instances. Then

dim(SOP (n, P )) = |A| − 2n + 3 + |F |.

Proof. We prove the result by induction over |F |.
For |F | = 0 the result holds due to Theorem (5.3.6).

Suppose |F | ≥ 1. Choose the node m ∈ F , such that i ≺ m for all other nodes i ∈ F \ {m}
and split the original instance at m into two smaller instances (V1, A1, R1) and (V2, A2, R2),
where

V1 := π(m)∪m, V2 := σ(m) ∪m,
A1 := {(i, j) ∈ A | i, j ∈ V1}, A2 := {(i, j) ∈ A | i, j ∈ V2} = A \A1,
R1 := {(i, j) ∈ R | i, j ∈ V1}, R2 := {(i, j) ∈ R | i, j ∈ V2}.

Due to the assumption these two instances are regular. Set n1 := |V1| and n2 := |V2| and let
F1 denote the set of all fixed nodes in the instance (D1, A1, R1). As node m occurs in each
instance, we know that n1 + n2 = n + 1. Furthermore, we know that |F1| = |F | − 1. As a
solution to the original instance can be obtained by first solving the problems on the smaller
instances and then composing the two solution, we know that

dim(SOP (n, P )) = dim(SOP (n1, P1)) + dim(SOP (n2, P2))

= |A1| − 2n1 + 3 + |F1| + |A2| − 2n2 + 3

= |A| − 2(n1 + n2) + 5 + |F |
= |A| − 2n + 3 + |F |



92 CHAPTER 5. HAMILTONIAN PATH PROBLEMS WITH PRECEDENCES

We conjecture that the result holds as well for the case of nonregular instances. In the
proof of Theorem (5.3.6) the assumption that after shrinking two nodes the shrunken instance
does not contain a fixed node is essential for the induction step.

It is easy to see that the argumentation as outlined in the proof can be applied if instead
nodes vn−1 and n, nodes 1 and one of its direct successors are shrunk. Just the role of
predecessors and successors changes. We believe that a similar argumentation can be applied
to any two nodes i, j ∈ V such that the shrunken instance does not contain a cutnode. But
here it is necessary to simultaneously maintain the predecessor and successor structure of the
instance.

Finally, we would like to mention that the conjecture that the dimension formula of
Theorem (5.3.6) holds for general instances has been verified by means of a computer program
for small instances (n ≤ 7 and varying precedence digraphs P = (V, R)).
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5.4 Valid inequalities known from the literature

Not much attention has been paid to the polyhedral investigation of the precedence con-
strained travelling salesman problem. In this section we summarize the classes of valid ine-
qualities for the SOP that are known from the literature. These are mainly inequalities very
recently developed by Balas, Fischetti, and Pulleyblank [BFP92].

5.4.1 Precedence forcing constraints

Ascheuer [Asc89] and Ascheuer et al. [AEGS93] describe the implementation of a cutting
plane approach for the asymmetric case. The inequalities they use are mainly ATSP–like
constraints. They use only one class of inequalities that especially have been designed to
take precedences into account, the so–called precedence forcing constraints. A similar class of
inequalities was independently developed by Balas & Pulleyblank (cmp. [BFP92]). Although
these inequalities are not strong enough to be used in a computational frame, we list them
for the sake of completeness.

(5.4.8) Lemma.
Let (i, j) ∈ R be a precedence relationship, then for all W ⊆ V \ {i, j},W �= ∅, the so–called
precedence forcing constraints

x(j : W ) + x(A(W )) + X(W : i) ≤ |W |
are valid with respect to SOP (n, P ).

Ascheuer et al. [AEGS90] have shown that this class of inequalities can be separated in
polynomial time. Roughly speaking their approach is the following. For each precedence
relationship (i, j) ∈ R shrink i and j to a single node vij and look for a violated subtour
elimination constraint (containing vij) in the shrunken digraph. This requires an overall
computing time of O(|R| · n3) ∼ O(n5).

Balas, Fischetti, and Pulleyblank [BFP92] have carried out polyhedral investigations for the
precedence constrained ATSP and developed several classes of valid inequalities. They remark
that the precedence forcing constraints can be strengthened to

x(j : W ) + x(A(W )) + X(W : i) + x(W : j) ≤ |W |
or

x(j : W ) + x(A(W )) + X(W : i) + x(i : W ) ≤ |W |.
But several classes of the inequalities Balas et al. [BFP92] present, strictly dominate these
strengthened versions of the precedence forcing constraints. Furthermore, they give polyno-
mial time separation algorithms for several of these classes that run in O(n4) time. Therefore,
the precedence forcing constraints are not used in the implementation of the branch&cut al-
gorithm that is described in Section 5.7.

5.4.2 Predecessor Inequalities (π–inequalities)

Recall that π(S) was defined to be the set of predecessors of S, i.e.,

π(S) := {i ∈ V | ∃j ∈ S, s.t. (i, j) ∈ R}.
Note that π(S) and S may intersect.
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(5.4.9) Theorem. (Balas, Fischetti, Pulleyblank, ’92)
Let S ⊆ V \ {1, n}, S̄ := V \ S, then the predecessor inequality (π–inequality)

x(S \ π(S) : S̄ \ π(S)) ≥ 1

is valid for SOP (n, P ).

Proof. See [BFP92].

The π–inequality implies that at least once a feasible Hamiltonian path has to leave S
through a node that has no predecessor in S and enter S̄ via a non predecessor node of
S. Otherwise, a precedence relationship is violated. Balas, Fischetti, and Pulleyblank have
shown that the inequalities of this class are facet defining for the precedence constrained
ATS–polytope PPC(n, P ) if there exits a free node and if π(s) ⊂ S and σ(S) ⊂ S.

The π–inequalities can be rewritten as

x(A(S)) + x(S : S̄ ∩ π(S)) + x(S ∩ π(S) : S̄ \ π(S)) ≤ |S| − 1.(5.4.10)

This demonstrates that the π–inequality is a strengthening of the subtour elimination con-
straint x(A(S)) ≤ |S| − 1.

It is not known if the π–inequalities can be separated in polynomial time, but Balas,
Fischetti, and Pulleyblank have given a polynomial time separation algorithm for a smaller
class of inequalities, the so–called weak π–inequalities. These inequalities are obtained by
substituting the node set S by a single node j.

(5.4.11) Definition.
For a given j ∈ V such that π(j) �= ∅ and any S ⊂ V such that j ∈ S, the inequality

x(S \ π(j) : S̄ \ π(j)) ≥ 1

is called a weak π–inequality. �

(5.4.12) Exact separation procedure for weak π–inequalities.

Input : D = (V, A), P = (V, R) and a fractional LP–solution x̄.
Output : violated weak π–inequality or the answer that no such

violated inequality exists.

For all j ∈ V \ {n} with π(j) �= ∅ do :

1. Construct a temporary digraph D′ = (V ′, A′) by deleting all nodes in π(j) and
all incident arcs, i.e.,

V ′ = V \ π(j),
A′ = {(i, j) ∈ A | i, j ∈ V ′}.

2. Associate arc weights c̄ij = x̄ij ∀ (i, j) ∈ A′.
3. Calculate a minimum (j, n)–cut δ−(S) in D′.
4. if c̄(δ−(S)) < 1 then j and S violate a weak π–inequality (5.4.11),

else no weak π–inequality is violated with respect to j.
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Note that a violated weak π–inequality can be strengthened by replacing π(j) by π(S). The
overall complexity of the algorithm is O(n4) assuming that the complexity of the maxflow
calculation in step 3 is O(n3). This is better than the complexity for the separation algorithm
of the precedence forcing constraints (PFC) presented in [AEGS90], which is more or less
O(n5). Moreover, in [BFP92] it has been shown that the π–inequalities and even the weak
π–inequalities strictly dominate the strengthened precedence forcing constraints.

5.4.3 Successor Inequalities (σ-inequalities)

The next class of inequalities is similar to the π–inequalities but the set of predecessors is
substituted by the set of successors. Recall that σ(S) was defined to be the set of successors
of S, i.e.,

σ(S) := {j ∈ V | ∃i ∈ S, s.t. (i, j) ∈ R}.
Note that σ(S) and S may intersect.

(5.4.13) Theorem. (Balas, Fischetti, Pulleyblank, ’92)
Let S ⊆ V \ {1, n}, S̄ := V \ S, then the successor inequality (σ–inequality)

x(S̄ \ σ(S) : S \ σ(S)) ≥ 1

is valid for SOP (n, P ).

Proof. See [BFP92].

It was shown that the inequalities of this class are facet defining for PPC(n, P ) under the
same conditions as for the π–inequalities.

As it was the case for the π–inequalities, the σ–inequalities are a strengthening of the subtour
elimination constraints. They can be written as

x(A(S)) + x(S̄ ∩ σ(S) : S) + x(S̄ \ σ(S) : S ∩ σ(S)) ≤ |S| − 1.(5.4.14)

No exact separation algorithm is known for the σ–inequalities, but a smaller class of inequal-
ities, the weak σ–inequalities, can be separated in polynomial time.

(5.4.15) Definition.
For a given j ∈ V such that σ(j) �= ∅ and any S ⊂ V such that j ∈ S, the inequality

x(S̄ \ σ(j) : S \ σ(j)) ≥ 1

is called a weak σ–inequality. �

In [BFP92] it has been shown that even the weak σ–inequalities strictly dominate the
strengthened precedence forcing constraints.

As the σ–inequality is the counterpart of the π–inequality by replacing predecessors by
successors, it is obvious that the separation procedure for the weak σ–inequalities will follow
the same philosophy as described above.
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(5.4.16) Exact separation procedure for weak σ–inequalities.

Input : D = (V, A), P = (V, R) and a fractional LP–solution x̄
Output : violated weak σ–inequality or the answer that no such

inequality is violated.

For all j ∈ V \ {1} with σ(j) �= ∅ do :

1. Construct a temporary digraph D′ = (V ′, A′) by deleting all nodes in σ(j) and
all incident arcs, i.e.,

V ′ = V \ σ(j)
A′ = {(i, j) ∈ A | i, j ∈ V ′}.

2. Associate arc weights c̄ij = x̄ij ∀ (i, j) ∈ A′.
3. Calculate a minimum (1, j)–cut δ−(S) in D′.
4. If c̄(δ−(S)) < 1 then j and S violate a weak σ–inequality (5.4.15),

else no weak σ–inequality is violated with respect to j.

In analogy to the π–inequalities the overall complexity of the separation algorithm is O(n4)
assuming that the complexity of the maxflow calculation in step 3 is O(n3). Note that a
violated weak σ–inequality can be strengthened by replacing σ(j) by σ(S).

5.4.4 Predecessor-Successor inequalities

This class of inequalities combines the two structures of predecessors and successors in one
inequality.

(5.4.17) Theorem. (Balas, Fischetti, Pulleyblank, ’92)
Let X, Y ⊆ V , s.t. i ≺ j ∀ pairs i ∈ X, j ∈ Y,W := π(X) ∪ σ(Y ). Then for all S ⊂ V ,

s.t. X ⊂ S, Y ⊂ S̄
x(S \W : S̄ \W ) ≥ 1

is called a predecessor–successor inequality or (π, σ)–inequality and is valid with re-
spect to SOP (n, P ).

Proof. See [BFP92].

In contrast to the π– and σ–inequalities there are no conditions known under which these
inequalities are facet–defining. Similar to the π– and σ–inequalities the inequalities of this
class are a strengthening of the subtour elimination constraints, as they can be written as

x(A(S)) + x(S : S̄ ∩W ) + x(S ∩W : S̄ \W ) ≤ |S| − 1.(5.4.18)

Furthermore, they also strictly dominate the precedence forcing constraints. No polynomial
time separation algorithm for the (π, σ)–inequalities is known. But a smaller class of inequal-
ities can be separated in polynomial time. These are the weak (π, σ)–inequalities.

(5.4.19) Definition.
Let X = {i} and Y = {j} with i ≺ j and Wij := π(i)∪ σ(j). Then

x(S \Wij : S̄ \Wij) ≥ 1

is called a weak (π, σ)–inequality. �

The (π, σ)–inequality is a combination of the π– and σ–inequalities. Also the separation
procedure can be regarded as a combination of the two procedures (5.4.12) and (5.4.16).
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(5.4.20) Exact separation procedure for weak (π,σ)–inequalities.

Input : D = (V, A), P = (V, R) and a fractional LP–solution x̄
Output : violated weak (π,σ)–inequality or

the answer that no such inequality is violated

For all (i, j) ∈ R do :

1. Construct a temporary digraph D′ = (V ′, A′) by deleting all nodes in π(i) and
σ(j) and all incident arcs, i.e.,

V ′ = V \ (π(i)∪ σ(j))
A′ = {(i, j) ∈ A | i, j ∈ V ′}.

2. Associate arc weights c̄ij = x̄ij ∀ (i, j) ∈ A′.
3. Calculate a minimum (i, j)–cut δ−(S) in D′.
4. If c̄(δ−(S)) < 1 then i, j and S violate a weak (π,σ)–inequality (5.4.19),

else no weak (π,σ)–inequality is violated with respect to (i, j) ∈ R.

The complexity of that procedure is O(|R| · n3), assuming that the complexity of the
maxflow-algorithm used in step 3 is O(n3). Note that it is sufficient to run Procedure (5.4.20)
only for (i, j) ∈ R that are not transitively derived.
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5.4.5 Precedence cycle breaking inequalities

The next class of inequalities is derived from the requirement that the precedence graph has
to be acyclic.

(5.4.21) Theorem. (Balas, Fischetti, Pulleyblank, ’92)
Let S1, .., Sm ⊆ V,m ≥ 2, be disjoint node sets such that σ(Si)∩Si+1 �= ∅ with Sm+1 = S1.
Then the precedence cycle breaking inequality (or pcb–inequality)

m∑
i=1

x(A(Si)) ≤
m∑
i=1

|Si| − m− 1(5.4.22)

is valid for SOP (n, P ).

Proof. See [BFP92].

If |S1| > 3 the pcb–inequalities strictly dominate the precedence forcing constraints.

(5.4.23) Example.
In the simplest form the precedence cycle breaking inequality for m = 2 and |S2| = 1 (see
Figure 5.4.5) is of the form

x(A(S1)) ≤ |S1| − 2.(5.4.24)

S    1

S2
i kj

precedence
relationship

Figure 5.4.5

This inequality will be called a simple pcb–inequality.
Due to (5.4.24) this is also a strengthening of the subtour elimination constraint where the
right hand side is decreased by 1. This can be done whenever there exists a pair i, k ∈ S1, j �∈
S1 such that i ≺ j ≺ k.
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5.4.6 A lifting procedure

Balas, Fischetti, and Pulleyblank [BFP92] describe a lifting procedure that is similar to the
clique lifting procedure for facet defining inequalities for ATSP(n) as introduced in [BF93b].

Suppose we are given a digraph D = (V, A) and a precedence digraph P = (V, R). Consider
a partition S1, ..., Sm of V into nonempty sets. Let D̃m = (Ṽ , Ãm) be a digraph on m nodes,
where each node v ∈ Ṽ corresponds to a node set Sv of the partition. The precedence structure
can be extended to D̃m. Therefore, introduce for two given nodes u, v ∈ Ṽ the precedence
relationship u ≺ v if there exists s ∈ Su and t ∈ Sv such that s ≺ t. Let P̃ be the precedence
digraph with respect to the digraph D̃m. We can assume that P̃ is transitively closed.

The digraph D̃ = (Ṽ , Ã) is obtained from D̃m by deleting all arcs fixed to 0 due to Lemma
(5.2.1). You might think of D̃ and P̃ as obtained by replacing the node sets Sv , v = 1, ..., m, by
a single node v in a such a way that the precedence relations between the sets are “preserved”.
Let cl(i) denote the cluster (or node set) in D̃ containing node i ∈ V . Set

B = {(i, j) ∈ A | (cl(i), cl(j)) ∈ Ã},
B̄ = {(i, j) ∈ A | (cl(i), cl(j)) �∈ Ã},

i.e., B is the set of arcs of A that are also present in Ã, whereas B̄ are the set of arcs
that are not (due to the precedence relationships among the clusters Si). Furthermore, let
I := {i ∈ {1, ..., m} | |Si| ≥ 2}.

(5.4.25) Lifting Theorem. (Balas, Fischetti, Pulleyblank, 1992)
Let ãy ≤ ã0 be a valid inequality for SOP (m,P̃ ) and let σij be arbitrary (finite) numbers.
There exists μ0k, k ∈ I , such that for any μk ≥ μ0k, k ∈ I , the inequality ax ≤ a0 is valid for
SOP (n, P ) with

aij =

⎧⎪⎨
⎪⎩

μcl(i)(= μcl(j)), if cl(i) = cl(j) and (i, j) ∈ A,
ãcl(i)cl(j), if cl(i) �= cl(j) and (i, j) ∈ B,
σij, if cl(i) �= cl(j) and (i, j) ∈ B̄,

and

a0 := ã0 +
∑
i∈I

μi(|Si| − 1).

Proof. See [BFP92].

In case that no precedence relationships are present this reduces to the lifting procedure
given by Balas and Fischetti [BF93b] with

μcl(i) = max{ãcl(p)cl(i) + ãcl(i)cl(q) − ãcl(p)cl(q) | cl(p), cl(q) ∈ Ṽ \ {cl(i)},
cl(p) �= cl(q) }.

This procedure is based on cloning, a technique where each node that is added to the graph
becomes an indistinguishable copy of some other node with respect to the inequality to be
lifted. The difference to the procedure above is that each node of a set Si may be required to
follow distinct sets of nodes, i.e., may have distinct sets of predecessors and/or successors in
D.
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The lifting procedure may be interpreted as follows. Suppose we are given a valid ine-
quality ãy ≤ ã0 for SOP (m, P̃), we define an inequality a′x ≤ ã0 by setting

a′ij =

⎧⎪⎨
⎪⎩

0, if cl(i) = cl(j) and (i, j) ∈ A
ãcl(i)cl(j), if cl(i) �= cl(j) and (i, j) ∈ B
σij, if cl(i) �= cl(j) and (i, j) ∈ B̄.

a′x ≤ ã0 is valid for SOP (n, P ) if every Hamiltonian path is required to enter and exit each
set Sk, k = 1, ..., m, exactly once, i.e., each subtour elimination constraint x(A(Sk)) ≤ |Sk|−1
must hold with equality for each node set Sk with |Sk| ≥ 2. Hence, ax ≤ a0 may now be
regarded as a nonnegative linear combination of a′x ≤ ã0 weighted with 1, and the subtour
elimination constraints for clusters Sk, s.t. |Sk| ≥ 2, weighted with μk.

Note that a′x ≤ ã0 might not be valid for SOP (n, P ), but the combined inequality
ax ≤ a0 becomes valid if the μk are chosen sufficiently large enough. In order to obtain a
tight inequality the problem is to find the lowest value μ0k for which ax ≤ a0 is valid for
SOP (n, P ).

Inequalities obtained by applying the lifting procedure

We close this section by giving a list of inequalities valid for SOP (n, P ) as they were given
by Balas, Fischetti, and Pulleyblank [BFP92]. These classes of inequalities are obtained by
applying Theorem (5.4.25) to classes of inequalities that are trivially valid for SOP (m,P̃ ).

(5.4.26) Lemma.
Let S1, S2, S3 ⊂ V \ {1, n} be disjoint node sets, with σ(S1) ∩ S2 �= ∅, σ(S2) ∩ S3 �= ∅. The
following inequalities are valid for SOP (n, P ) :

(a) x(S : S) + x(1 : S) ≤ |S| − 1, S ⊂ V \ {1}, s.t. π(S) \ S �= ∅,
(b) x(S : S) + x(S : n) ≤ |S| − 1, S ⊂ V \ {n}, s.t. σ(S) \ S �= ∅,
(c) x(S2 : S2) + x(S2 : S1) + x(S1 : S1) ≤ |S2| + |S1| − 2,

(d)
∑3

i=1 x(Si : Si) + x(S1 : S3) ≤ |S1| + |S2| + |S3| − 3.

Proof. Apply lifting Theorem (5.4.25) to the following inequalities:

(a) y1i ≤ 0, for i ∈ Ṽ , s.t. π̃(i) �= ∅.

(b) yin ≤ 0, for i ∈ Ṽ , s.t. σ̃(i) �= ∅.

(c) yij ≤ 0 for i, j ∈ Ṽ , s.t. (i, j) ∈ R̃1.

(d) yik ≤ 0 for i, k ∈ Ṽ , s.t. (i, k) ∈ R̃2.

For more details see [BFP92].



5.5. NEW VALID INEQUALITIES 101

5.5 New valid inequalities

In the literature several classes of facet defining inequalities are known for the asymmetric
Hamiltonian path polytope or equivalently for the asymmetric travelling salesman polytope
(cf. [Grö77], [GP85b], [Fis91] among others). As the SO-polytope is contained in the AHP-
polytope these inequalities are at least valid for SOP (n, P ). But they can be strengthened
as they do not take the precedences at all into account. In the π–inequalities, σ–inequalities
and (π, σ)–inequalities we have already seen examples for strengthened subtour elimination
constraints. It is not clear if these classes of inequalities cover all possible strengthenings of
the subtour elimination constraints. One should note that dependent on the structure of the
precedences one obtains different inequalities.

In this section we give more examples of facet defining inequalities for the asymmetric
travelling salesman polytope that can be strengthened in case that precedences are involved.
This will be done for D3–inequalities, Tk–inequalities and 2–matching constraints.

5.5.1 Strengthened D3-inequalities

In Section 1.3 the so–called D−
k –inequalities

k−1∑
j=1

xijij+1 + xiki1 + 2
k∑

j=3

xi1ij +
k∑

j=4

j−1∑
h=3

xijih ≤ k − 1.

and D+
k –inequalities

k−1∑
j=1

xij ij+1 + xiki1 + 2
k−1∑
j=2

xij i1 +
k−1∑
j=3

j−1∑
h=2

xij ih ≤ k − 1

have been introduced. Note that for k = 3 they define the same inequality. In this section
we discuss how D3–inequalities can be strengthened in case that the cycle nodes are involved
in precedence relationships.

(5.5.27) Lemma.
Let n ≥ 4, i, j, k ⊂ V, S = {i, j, k}. Then

(a) xij + xjk + xki + 2xik + x(S̄ ∩ σ({i, j}) : k) + x(S̄ ∩ σ(k) : i) ≤ 2
(b) xij + xjk + xki + 2xik + x(i : S̄ ∩ π({j, k}), k) + x(k : S̄ ∩ π(i)) ≤ 2

are valid for SOP (n, P ).

Proof.

(a) Let H be any feasible Hamiltonian path. Let a ∈ (S̄∩σ({i, j}) : k) and b ∈ (S̄∩σ(k) : i).
If neither a ∈ H nor b ∈ H , the inequality reduces to the D3, that is facet defining for

P
(
Tn) and is therefore valid for SOP (n, P ).

If a ∈ H and b ∈ H , only arc (i, j) can be used without violating the degree constraints.
But this violates some of the precedence relationship, as either j or k is sequenced after
his successor.
If only a ∈ H , it follows that (i, k) and (j, k) �∈ H . If both (k, i) and (i, j) ∈ H either i
or j is sequenced after its successor.
If only b ∈ H , neither (i, k) �∈ H nor (k, i) �∈ H , as either k ≺ σ(k) or a degree constraint
is violated. If both (i, j) and (j, k) ∈ H the precedence relationship k ≺ σ(k) is violated.
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(b) Similar arguments.

Figure 5.5.6 shows the support digraphs of two examples for strengthened D3–inequalities.

additional arcsprecedences

i

jk

2

i

jk

2

i

jk

i

jk

Precedence structure Strengthened inequality

Figure 5.5.6 Strengthened D3–inequalities
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5.5.2 Strengthened Tk–inequalities

The inequalities in this class are valid for PnT and most of these inequalities are known to be
facet defining for Pn

T (see [GP85b] for more details). Therefore, we have the following lemma.

(5.5.28) Lemma.
Let W ⊂ V, 2 ≤ |W | = k ≤ n− 2, let w ∈ W and p, q ∈ V \W , then

x(A(W )) + xpw + xpq + xwq ≤ k

is called a Tk–inequality and is valid with respect to SOP (n, P ).

The support graph of a T3–inequality with W = {2, 4, 5} is shown in Figure 5.5.7.

1 2

4

3

5

x12 + x13 + x23 + x24 + x42+
x25 + x52 + x45 + x54 ≤ 3

Figure 5.5.7 T3–inequality

Note that the Tk–inequality is obtained from the subtour elimination constraint (SEC)
x(A(W )) ≤ |W |−1 by applying the so–called T–lifting procedure (see [Fis92]), i.e., a “source”
p and a “sink” q are attached and the right hand side is increased by 1. In Section 5.4 we
have seen several strengthenings of SECs in case that precedences are involved. This can also
be applied to the “SEC–part” of the Tk–inequalities. But we have to take care of the node w
connecting the “source” p and the “sink” q to the SEC. This node has to be excluded from
the determination of the predecessor and successor sets. Further classes of inequalities are
obtained in case that the tournament (p, w, q) is involved in precedence relationships. The
classes of inequalities derived from Tk–inequalities are given in Theorems (5.5.29), (5.5.30),
and (5.5.31).

(5.5.29) Theorem.
Let W ⊂ V, 2 ≤ |W | = k ≤ n − 2, w ∈ W , p, q ∈ V \ W , W̃ = W \ {w}, and x(A(Tk)) :=
x(A(W )) + xpw + xpq + xwq. Then

(a) x(A(Tk)) + x(W̄ ∩ σ(W̃ ) : W ) + x(W̄ \ σ(W̃) : W ∩ σ(W̃ )) ≤ k

(b) x(A(Tk)) + x(W : W̄ ∩ π(W̃ )) + x(W ∩ π(W̃ ) : W̄ \ π(W̃ )) ≤ k

are valid with respect to SOP (n, P ).

Proof.

(a) Let A1 := (W̄ ∩ σ(W ) : W ), A2 := (W̄ \ σ(W̃) : W ∩ σ(W )), m := x(A1) + x(A2) and
γ = xpw + xwq + xpq.
If m = 0 we have the standard Tk–inequality, as given in (5.5.28).
Therefore, assume m > 0.
We have to show that x(A(W )) + m + γ ≤ |W |.
If γ ∈ {0, 1}, we know that x(A(W )) ≤ |W | − 1 −m, otherwise a precedence relationship
would be violated.
If γ = 2 we obtain x(A(W )) ≤ |W | − 2 − m. The result follows.
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(b) Similar arguments.

Figure 5.5.8 shows the support graph of a strengthened T3–inequality due to Theorem
(5.5.29(a)). (To simplify the figure the arcs corresponding to A(W ) are not drawn.)

Strengthened Tk-inequality

precedence relationship additional arcs

p w q

W

Precedence structure

W

p qw

Figure 5.5.8 Strengthened T3–inequalities

For the SEC we have seen that under certain conditions to the precedence structure it
is possible to reduce the ride hand side by 1 (see 5.4.24). This is also true for the Tk–
inequalities. Furthermore, if the tournament nodes p, w, q are involved, it is possible to lift
the arcs in (p : W̃ ) or (W̃ : q). This is summarized in the following theorem.

(5.5.30) Theorem.
Let p, q, w,W,W̃, x(A(Tk)) be defined as in Theorem (5.5.29).

(a) If there exist nodes i, k ∈ W̃ and j �∈ W ∪{p, q}, such that i ≺ j ≺ k, then the inequality

x(A(Tk)) ≤ k − 1

is valid with respect to SOP (n, P ).

(b) If there exists an i ∈ W̃ such that i ≺ q ≺ w, then the inequality

x(A(Tk)) + x(p : W̃ ) + xwp ≤ k − 1

is valid with respect to SOP (n, P ).

(c) If there exists an k ∈ W̃ such that w ≺ p ≺ k, then the inequality

x(A(Tk)) + x(W̃ : q) + xqw ≤ k − 1

is valid with respect to SOP (n, P ).

Proof.

(a) Let δ = xpw + xpq + xwq .
The validity of the inequalities follows from the fact that x(A(W )) ≤ |W |−2 if δ ∈ {0, 1},
and x(A(W )) ≤ |W |−3 if δ = 2. Otherwise, a precedence relationship related to i ≺ j ≺ k
would be violated.
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(b) As we know that a feasible path has to leave and reenter W at least once in order to
satisfy the precedence relationship related to i ≺ q ≺ w, we know that

x(A(W )) ≤ |W | − 2.

Let γ = xpw+xpq +x(p : W̃ )+xwq . As γ ≤ 2, it remains to show that x(A(W )) ≤ |W |−3
whenever γ = 2.
γ = 2 implies xwq = 1. We can conclude that xpw + xpq = 0, otherwise a precedence
relationship or a SEC is violated.
On the other hand, if x(p : W̃ ) = 1 we obtain a subpath (w, p, k), k ∈ W̃ , k �= i. We
entered W twice and in order not to violate the precedence relationship related to i ≺
q ≺ w is violated. The result follows.

(c) Similar arguments as in (b).

Figure 5.5.9 shows the support graph of a strengthened T3–inequality due to Theorem (5.5.30)
with ride hand side of 2. The arcs corresponding to A(W ) are not drawn.

p w q

(a) 

precedence relationship

additional arcs

p w q

(c)

k

p w q

i

(b) 

Figure 5.5.9 Strengthened T3–inequalities

It should be mentioned that no strengthenings are possible if i, j, or k coincides with the
intersection node w.
It is possible to obtain further classes of valid inequalities for SOP (n, P ) in case that the
nodes p, w, q are involved in precedences.

(5.5.31) Theorem.
Let p, q, w,W,W̃, x(A(Tk)) be defined as in Theorem (5.5.29).

(a) If w ≺ p or q ≺ p, then

x(A(Tk)) + x(p : W̃ ) + x(q : W ) ≤ k

is valid with respect to SOP (n, P ).
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(b) If q ≺ w, then
x(A(Tk)) + xwp + x(W̃ : q) ≤ k

is valid with respect to SOP (n, P ).

Proof.

(a) We first prove the result for w ≺ p.
Let m := x(p : W̃ ) + x(q : W ), and δ := xpq + xwq. Note that xpw = 0.
We know that δ + xqw ≤ 1, and x(A(W )) ≤ |W | − 1 − m. Otherwise, the precedence
relationship w ≺ p would be violated. The result follows.

Now consider the case that q ≺ p.
Let m := x(p : W̃ ) + x(q : W ) and γ = xpw + xwq + xqw. We know that γ ≤ 1. (Note
that xpq = 0.)
It is easy to see that x(A(W )) ≤ |W |−γ−m, otherwise the precedence relationship q ≺ p
would be violated. The result follows.

(b) Analogous to the case w ≺ p, discussed in (a).

Figure 5.5.10 shows the support graph of two strengthened T3–inequalities due to Theorem
(5.5.31). Once again the arcs of A(W ) are not drawn.

p w q p w q

precedence relationship additional arcs

(a) (b) 

Figure 5.5.10 Strengthened T3–inequalities
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5.5.3 Strengthened 2–Matching constraints

(5.5.32) Lemma.
Let Dn = (V, A) be a complete digraph on n ≥ 6 nodes, and assume that H, T1, T2, ..., Tk ⊂
V, k ≥ 1 are vertex sets satisfying

|H ∩ Ti| = 1 i = 1, ..., k,
|Ti \H | = 1 i = 1, ..., k,
Ti ∩ Tj = ∅ 1 ≤ i < j ≤ k,
k ≥ 3 and odd , or k = 1 and |H | ≥ 4

Then

x(A(H)) +
k∑

i=1

x(A(Ti)) ≤ |H | +
k − 1

2

is called a 2–matching inequality and is valid with respect to SOP (n, P ).

Generalizations of the 2–matching constraints are known as comb– and clique–tree inequal-
ities. As only 2–matching constraints are used in the branch&cut code we restrict ourselves
to give strengthened versions just for 2–matching constraints. Similar to the inequalities dis-
cussed in the last subsections different classes of valid inequalities are obtained dependent
on the structure of the precedences. This is summarized in the following Theorems (5.5.33),
(5.5.34), and (5.5.35).

(5.5.33) Theorem.
Let Dn = (V, A) be a complete digraph on n ≥ 6 nodes, P = (V, R) be a given precedence
graph, let H and T1, ..., Tk be defined as in (5.5.32), T = ∪k

i=1Ti, S = H∪T . Let si := H∩Ti,
ti := Ti \H , and x(2M) := x(A(H)) +

∑k
i=1 x(A(Ti)).

Then the following inequalities are valid with respect to SOP (n, P ):

(a) x(2M) +
k∑

i=1
x(S̄ ∩ σ(ti) : si) +

k∑
i=1

x(si : S̄ ∩ π(ti)) ≤ |H |+ k−1
2

(b) x(2M) +
k∑

i=1
x((H \ T ) ∩ σ(si) : ti) +

k∑
i=1

x(ti : (H \ T ) ∩ π(si)) ≤ |H |+ k−1
2

Proof. If none of the additional arcs is used, the inequalities above reduce to the standard
2–matching constraints and are therefore valid.

(a) Note that x(S̄ ∩ σ(ti) : si) + x(si : S̄ ∩ π(ti)) + x(Ti) ≤ 1. Otherwise, a precedence
relationship is violated. The result from the validity proof for the 2–matching constraints.

(b) Similar arguments as in (a)

Figure 5.5.11 gives examples for strengthened 2–matching constraints due to Theorem
(5.5.33) with right hand side of 6. The arcs corresponding to the support graph of the
standard 2–matching constraint are not drawn in order to simplify the figure.
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precedence relationship additional arcs

(b)(a)

Figure 5.5.11 Strengthened 2–matching constraints

(5.5.34) Theorem.
Let Dn = (V, A) be a complete digraph on n ≥ 6 nodes, P = (V, R) be a given precedence
graph, let H and T1, ..., Tk be defined as in (5.5.32), T = ∪k

i=1Ti, S = H∪T . Let si := H∩Ti,
ti := Ti \H , and x(2M) := x(A(H)) +

∑k
i=1 x(A(Ti)).

Then the following inequalities are valid with respect to SOP (n, P ):

(a) x(2M)+
k∑

i=1
x(H \ si : ti ∩ σ(Ti)) ≤ |H | + k−1

2

(b) x(2M)+
k∑

i=1

k∑
j=1
i�=j

x(si ∩ π(Ti) : tj) ≤ |H | + k−1
2

(c) x(2M)+
k∑

i=1
x(ti ∩ π(Ti) : H) ≤ |H | + k−1

2

(d) x(2M)+
k∑

i=1

k∑
j=1
i�=j

x(tj : si ∩ σ(Ti)) ≤ |H | + k−1
2

Proof.

(a) Let a ∈ (H \ si : ti ∩ σ(Ti)) and let F be any feasible Hamiltonian path. To simplify
notation set x(A(T )) :=

∑k
i=1 x(A(Ti)).

If a �∈ F , the result follows from the validity of the standard 2–matching constraint.

If a ∈ F , we know that no other arc in (H : ti ∩ σ(Ti)) ∪ (si, ti) can be in F without
violating the degree constraint for ti. Therefore, we have x(Ti) = 0 and x(A(T )) ≤ k−1.

Furthermore, as k is assumed to be odd, we know that

x(T ) ≤
{

k − 1, if x(T ) is even,
k − 2, if x(T ) is odd.

Note that

x(A(H)) ≤
⎧⎨
⎩

|H | − 1
2x(A(T )) − 1, if x(T ) is even,

|H | − x(A(T ))−1
2 , if x(T ) is odd.
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For the case that x(A(T )) is even it follows that

x(A(H)) ≤ |H | − x(A(T ))
2 − 1

⇔ x(A(H)) + x(A(T )) ≤ |H | + x(A(T ))− x(A(T ))
2 − 1

≤ |H | + x(A(T ))
2 − 1

≤ |H | + k−1
2 − 1

= |H | + k−3
2

As x(H : ti ∩ σ(Ti)) = 1 we have

x(A(H)) + x(A(T )) + x(H : ti ∩ σ(Ti)) ≤ |H | +
k − 1

2
.

The case that x(A(T )) is odd is carried out in an analogous way.

(b) Similar arguments as in (a).

(c) Similar arguments as in (a).

(d) Similar arguments as in (a).

Figure 5.5.11 gives examples for strengthened 2–matching constraints due to Theorem
(5.5.34) with right hand side 6. Note that the reverse arcs of the precedences are not present.

precedence relationship additional arcs

(a) (b)

(c) (d)

Figure 5.5.12 Strengthened 2–matching constraints
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For the SEC it was possible to reduce the right hand side by 1 if a certain structure
appeared in the precedences. The same holds for the 2–matching constraints but the structure
is more complicated than for the SEC.

precedence relationship

Figure 5.5.13 Strengthened 2–matching constraints

(5.5.35) Theorem.
Let Dn = (V, A) be a complete digraph on n ≥ 6 nodes, P = (V, R) be a given precedence
graph, let H and T1, ..., Tk be defined as in (5.5.32), k ≥ 3, T = ∪k

i=1Ti.
If there exists m := k+1

2 triples (ui, vi, wi), i = 1, ..., m, such that

{ui, wi} ∈ H ∩ T
vi ∈ H̄ \ T
ui ≺ vi ≺ wi ∀ i = 1, ..., m
vi �= vj ∀ i, j = 1, ..., m, i �= j
wi = ui+1 ∀ i = 1, ..., m− 1,

then the inequality

x(A(H)) +
k∑

i=1

x(A(Ti)) ≤ |H | +
k − 1

2
− 1

is valid with respect to SOP (n, P ).

Proof. Let F be a feasible Hamiltonian path violating the above inequality. As the 2–
matching constraint (5.5.32) is valid, the 2–matching constraint has to be tight for F .

To simplify notation, set x(T ) :=
∑k

i=1 x(A(Ti)). As x(A(H)) ≤ |H | − �x(T )
2 � we can

conclude that k − 1 ≤ x(T ) ≤ k. Thus it suffices to consider the following two cases

x(T ) = k and x(A(H)) = |H | − k+1
2

x(T ) = k − 1 and x(A(H)) = |H | − k−1
2

and show that this violates a given precedence relationship ui ≺ vi ≺ wi for some i = 1, ..., m.
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Case 1 : Let x(T ) = k, i.e., all teeth Ti are used by F . In order to achieve
x(A(H)) = |H | − k+1

2
k−1
2 pairs of teeth have to be connected through

H , i.e., there are direct paths from si to sj using only nodes in H .
Finally, the last tooth is visited and all nodes of H not yet visited. But
as we have k+1

2 precedence triples (ui, vi, wi) at least one of them is
violated.

Case 2 : Let x(T ) = k − 1. In order to achieve x(A(H)) = |H | − k−1
2 the k − 1

teeth have to be connected through nodes in H . As k+1
2 precedence

triples (ui, vi, wi) are given this leads once again to a violation.

Note that the precedences have to intersect the teeth, i.e., either the teeth node ti or the
handle node si have to be involved. In contrast to the SEC no strengthening is possible if
just a precedence relationship i ≺ j, {i, j} ∈ H \ T is given. This is due to the fact that a
SEC x(A(W )) ≤ |W | − 1 is only tight, if the node set W is entered just once. In contrast the
2–matching constraint is tight if the node set H ∪ T is entered twice.
An open question is, if it is possible to combine the strengthenings in case that a mixture
of the different precedence structures of types in Theorems (5.5.33)(a)(b) and (5.5.34)(a)–(d)
occurs. It is not possible to strengthen the “SEC” of the handle of the 2–matching constraint
as it was done in the case of some of the inequalities presented in Section 5.4 (e.g., as π–, σ–,
or (π,σ)–inequalities). Counterexamples are known for many of these situations.
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5.6 Separation procedures

To apply linear programming techniques we need a description of the sequential ordering
polytope SOP (n, P ) by means of equations and inequalities. The classes of inequalities
presented in the last sections are part of that description. As most of theses classes are of
exponential size, we cannot consider all of them in the LP we intend to solve. Given an optimal
solution x̄ of the current linear program we have to decide, if x̄ satisfies all inequalities ax ≤ a0
that are known to be valid for SOP (n, P ), and if not to identify such a violated inequality.
This problem is addressed as the separation problem.

The separation problems for the subtour elimination constraints and 2–matching
constraints are solved by procedures developed for the TSP. This is motivated by the fact
that each TSP–inequality by ≤ b0 might be transformed into a symmetric ATSP–inequality
ax ≤ a0 by substituting yij with xij + xji and setting a0 = b0, aij = aji = bij, and vice versa.
Due to that fact, every separation algorithm for TSP–inequalities can be used as a “black
box” for the ATSP as well.

Suppose we are given a point x̄. First set

ȳe := x̄ij + x̄ji for all e = ij ∈ E

and then apply the TSP separation algorithm to ȳ. If a violated inequality is detected,
it is transformed into its ATSP counterpart. In the last years several exact and heuristic
separation procedures for TSP–inequalities have been proposed. All of them can be used for
the ATSP and for the SOP as well. For a description of these separation routines the reader
is referred to the literature (e.g., [GP85a, JRR94]).

In this section we describe heuristic separation procedures that are used in the current
implementation of the branch&cut algorithm. These are

• a heuristic procedure to identify strengthened Tk–inequalities,

• a heuristic procedure based on shrinking and clique lifting in order to identify violated
pcb–inequalities and inequalities of type (5.4.26)(c)(d).

Furthermore, we describe an exact separation procedure for Tk–inequalities.

5.6.1 A heuristic separation procedure based on shrinking

Based on the lifting Theorem (5.4.25) it is possible to design a heuristic separation procedure
for precedence cycle breaking inequalities and inequalities of type (5.4.26)(c)(d). This proce-
dure was already outlined in [BFP92] and is roughly speaking the following. Shrink node sets
Si ⊂ V , s.t. the subtour elimination constraint x(A(Si)) ≤ |Si| − 1 is fulfilled with equality.
Within this “shrunk digraph” one checks for violated valid inequalities. These inequalities
are then lifted to be valid for SOP (n, P ) by applying Theorem (5.4.25).

(5.6.36) Heuristic separation procedure.

Input : D = (V, A), P = (V, R) and a fractional LP–solution x̄
Output : violated pcb–inequality or

violated inequality of type 5.4.26(c) and (d) or
the answer that no such inequality is found
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1. Initialize: Set m = n, Si = {i} ∀ i ∈ V, ỹij = x̄ij, D̃ = D, P̃ = P .
2. Find a set S ⊆ Ṽ , s.t. |S| ≥ 2 and ỹ(S) = |S| − 1.

If found : shrink S to a single node, update D̃ = (Ṽ , Ã), P̃ = (Ṽ , R̃), m and y,
else STOP

3. If R̃ contains a cycle, then a violated precedence cycle breaking inequality
(5.4.22) is found.

4. If ỹij > 0, for some (i, j) ∈ Ã s.t. (i, j) ∈ R̃1 (resp. (i, j) ∈ R̃2), then a violated
inequality of type (5.4.26)(c) (resp. (5.4.26)(d)) is found.

5. Goto 2.

One of the central steps in this procedure is how to detect the saturated SEC in step 2.
This can be computational expensive. Therefore, in a first step we shrink all arcs with value
ỹij = 1. If no violated inequality is found, we shrink node sets of size 2, i.e., {i, j} ∈Ṽ with
ỹij + ỹji = 1. These nodes are detected by enumeration.

5.6.2 Separation of Tk–inequalities

No polynomial time separation algorithm for Tk–inequalities has been published in the liter-
ature so far.

(5.6.37) Lemma.
The Tk–inequalities x(A(W ))+xpw+xpq+xwq ≤ k for the ATSP, as defined in Theorem (1.3.7),
can be separated in polynomial time.

Proof. Let x̄ ∈ RA be a given vector satisfying the trivial bounds and the SECs.
For every three distinct nodes p, q, w ∈ V compute a cut δ−(W ) of minimum capacity
x̄(δ−(W )) separating w from p and q. Thus we compute

(n
3

)
minimum cuts, but observe

that this procedure can be made more effective.
Set α := xpw + xpq + xwq. We claim that, if

x̄(δ−(W )) < α

then x̄ violates the Tk–inequality x(A(W )) + xpw + xpq + xwq ≤ k. If x̄(δ−(W )) ≥ α holds for
all possible choices p, q, w ∈ V , then all Tk–inequalities are satisfied.
Indeed,

x̄(δ−(W )) < α
⇔ −x̄(δ−(W )) +

∑
v∈W x̄(δ−(v)) + x̄pw + x̄pq + x̄wq > |W |

⇔ x̄(A(W )) + x̄pw + x̄pq + x̄wq > |W |

Note, that the procedure outlined above can be made more effective, as the minimum
capacity cut has to be calculated just for choices p, q, w ∈ V such that

1 < x̄pw + x̄pq + x̄wq < 2.

A disadvantage of the procedure is that it does not take possible precedence structures into
account. Therefore, we suggest to use the following straightforward heuristic separation
procedure to detect such violated inequalities. Roughly speaking the idea is that one tries
to “guess” nodes p, w, q and a node set W that are likely to violate a (strengthened) Tk–
inequality.
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(5.6.38) Heuristic separation procedure for strengthened Tk–inequalities.

Input : D = (V, A), P = (V, R) and a fractional LP–solution x̄, α, β, ε
Output : violated Tk–inequality or

the answer that no such inequality is found

1. Determine node sets Si, such that |Si| ≥ 2 and x̄(Si) = |Si| − 1.
Let S := {S1, ..., Sm} be the set of all such node sets.

2. Determine node triples (p, w, q) such that
p �= w �= q �= p and α ≤ xpw + xpq + xwq ≤ β.
Let P := {(p1, q1, w1), ..., (pl, ql, wl)} be the set of all such triples.

3. for all (p, w, q) in P do :

(a) Determine all v ∈ V \ {p, q} such that x̄wv > ε or x̄vw > ε.

(b) For all such v determine the largest set W ∈ S such that v ∈ W .

(c) Check, if (p, w, q) and W violate an inequality of type (5.5.29)(a)(b),
(5.5.30)(a)–(c), (5.5.31)(a)(b).

In the first step node sets S with |S| ≥ 2 and x(A(S)) = |S| − 1 are determined. This is
done by enumerating nodes i, j ∈ V with xij +xji = 1, shrinking these nodes to a single node
and iteratively applying this enumeration procedure to the resulting shrunken digraph. Each
shrinking that was performed is stored in a shrinking digraph Ds = (V, As), where an arc
(i, j) ∈ As occurs whenever clusters i and j were shrunken to a new cluster j. The iteration
in which the arc is generated is stored as the arc weight of (i, j). Note that the outdegree of
each node is at most 1, whereas more than one arc can enter a node. For a given node i ∈ V
node sets Sk containing i and fulfilling x(A(Sk)) = |Sk| − 1 can easily be detected.

In step 2 promising node triples for the Tk inequality are enumerated. In order to keep
computing time moderate we only consider nodes p, w, q, such that xpw +xpq +xwq is between
some limiting values. Computational tests showed that it is most likely to find (within
a reasonable computing time) violated Tk–inequalities if 1.33 ≤ xpw + xpq + xwq ≤ 1.75.
Furthermore, we generate just n such triples.

Finally, it is checked, if a combination of the triples (p, w, q) and Sk violates a strengthened
Tk–inequality.
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5.7 A Branch&Cut Algorithm

The implementation of a branch&cut algorithm from scratch typically leads to a huge overhead
for maintaining the list of subproblems, choosing and implementing branching strategies,
regenerating the linear programs while switching to another node in the branch&cut tree, etc.
Jünger, Reinelt, and Thienel developed and implemented the general branch&cut framework
ABACUS, taking over all the maintenance of the branch&cut tree. The user “just” has to
implement problem specific routines, such as heuristics, separation procedures, etc.

In this section we discuss the used strategies and the parameter setting within this frame-
work. This will be accomplished by giving computational results for seven hard problem
instances we consider to be representative of the problem instances we had available (ESC47,
ESC78, rbg048a, rbg050c, ft53.4, ft70.1, prob.5). A description of these instances can be
found in Section 5.8.

Initial calculation of an upper bounds

Feasible solutions to the SOP instances are calculated at two points of the algorithm. In the
initialization step of the branch&cut algorithm an initial heuristic is called. Furthermore,
the information contained in the solutions of the linear programs is exploited by construct-
ing feasible Hamiltonian paths from the LP–solution obtained after each iteration of the
branch&cut algorithm.

The computational experience showed that it does not make sense to spend much com-
puting time for the calculation of the initial solution.

The heuristics we had available were originally designed to be used for the ATSP. They
have been modified to take precedences into account, i.e., feasibility checks were implemented
and a sequence is simply rejected, if a precedence relationship is violated. In the exchange
heuristics nonfeasible “intermediate” sequences are not allowed. The following heuristics have
been tested:

topsort() : The topological ordering (1, 2, ..., n) of the nodes is generated.
Nodes are exchanged until the sequence is feasible.

farins() : Farthest insertion heuristic.
listins() : List insertion heuristic: The nodes to be inserted best

possible are taken in the order 1, 2, ..., n.
randins() : Random insertion heuristic: The nodes to be inserted best

possible are chosen randomly.
bestins() : Best insertion heuristic: Choose always the best possible

insertion
2opt() : exchange heuristic on two nodes
3opt() : exchange heuristic on three nodes
locenu(m) : local enumeration on sequences of length m

The quality of the heuristic solutions in relation to the computing time needed to construct
them is not very satisfactory, as it is indicated in the following Table 5.1.
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ESC47 prob.5 ft70.1 rbg174a
n 49 42 71 176
|R| 10 10 17 1113
optimal 1288 243 39313 2033
topsort 3843 0:00.02 477 0:00.02 46060 0:00.05 2478 0:03.42
farins 4149 0:00.18 550 0:00.10 44663 0:00.50 2222 0:02.28
listins 3463 0:00.00 481 0:00.02 46968 0:00.02 2226 0:00.05
randins 4889 0:00.02 721 0:00.00 48193 0:00.02 2200 0:00.05
bestins 4149 0:00.17 550 0:00.10 44663 0:00.50 2222 0:02.28
topsort +2opt 3378 0:00.07 430 0:00.07 45014 0:00.27 2235 0:09.75
farins +2opt 4149 0:00.20 545 0:00.13 44293 0:00.65 2186 0:04.83
listins +2opt 3419 0:00.05 481 0:00.03 45102 0:00.17 2182 0:03.88
randins +2opt 4804 0:00.07 574 0:00.07 45136 0:00.23 2162 0:02.58
bestins +2opt 4149 0:00.18 545 0:00.13 44293 0:00.62 2186 0:04.83

topsort +3opt 2665 0:00.62 310 0:00.17 43058 0:02.22 2204 0:11.97
farins +3opt 2863 0:00.80 328 0:00.32 42911 0:01.97 2172 0:05.72
listins +3opt 2247 0:00.57 346 0:00.17 43441 0:01.43 2122 0:07.22
randins +3opt 2958 0:00.58 385 0:00.20 42462 0:02.88 2144 0:05.20
bestins +3opt 2863 0:00.77 328 0:00.32 42911 0:01.93 2172 0:05.70
topsort +2opt +locenu(8) 2948 0:00.90 381 0:00.28 44044 0:17.60 2055 5:05.05
farins +2opt +locenu(8) 2523 0:00.93 382 0:01.23 43220 0:03.87 2073 4:07.42
listins +2opt +locenu(8) 3127 0:00.30 429 0:00.67 44189 0:04.40 2089 2:43.08
randins +2opt +locenu(8) 3701 0:00.42 436 0:00.60 44059 0:08.17 2081 2:49.35
bestins +2opt +locenu(8) 2523 0:00.92 382 0:01.23 43220 0:03.85 2073 4:07.52
topsort +2opt +locenu(11) 2626 3:45.17 332 0:02.82 43713 33:26.75 2057 1038:16.07
farins +2opt +locenu(11) 2552 5:37.88 339 4:10.98 42829 4:05.83 2036 633:40.12
listins +2opt +locenu(11) 3038 1:24.07 345 5:23.32 43327 11:46.67 2075 490:08.85
randins +2opt +locenu(11) 3463 9:34.80 353 2:17.75 43750 6:35.70 2039 592:48.83
bestins +2opt +locenu(11) 2552 5:37.90 339 4:10.90 42829 4:05.80 2036 633:48.92
topsort +3opt +locenu(8) 2592 0:00.83 310 0:00.22 42913 0:05.35 2122 4:19.18
farins +3opt +locenu(8) 2863 0:00.93 328 0:00.43 42468 0:05.05 2059 3:18.80
listins +3opt +locenu(8) 2247 0:00.67 346 0:00.22 43251 0:05.82 2095 1:46.10
randins +3opt +locenu(8) 2958 0:00.70 364 0:00.33 42288 0:05.03 2076 3:42.75
bestins +3opt +locenu(8) 2863 0:00.93 328 0:00.43 42468 0:05.02 2059 3:19.00
topsort +3opt +locenu(11) 2293 4:04.30 310 0:19.07 42622 7:58.68 2082 1017:31.07
farins +3opt +locenu(11) 2293 2:31.18 320 1:29.85 41875 1:05.93 2039 473:38.47
listins +3opt +locenu(11) 2076 2:21.50 334 2:21.32 43063 9:10.80 2083 326:11.52
randins +3opt +locenu(11) 2580 3:14.80 364 1:00.92 42279 1:16.82 2046 590:38.40
bestins +3opt +locenu(11) 2293 2:31.08 320 1:29.78 41875 1:05.92 2039 472:35.45

Table 5.1. Results of SOP heuristics

We have chosen four instances (ESC47, prob.5, ft70.1, rbg174a) for which we know the op-
timal solution value and have run several combinations of the heuristics. Observe that the
results can be rather poor. For example, for problem instance ESC47 the best solution found
after more than two minutes of computing time has a value of 2076 whereas the optimal
solution value is 1288. The results for the other instances are in an analogous way not really
convincing, also compared to the computing time needed to solve these instances to optimality
(cmp. Section 5.8).

In the branch&cut code we are not working on the full variable set A, but only on a
subset A′ (see also “Initialization” in this section). As we want to assure that this subset
contains a feasible solution, we run a heuristic in order to obtain after “short” computing
time a “relatively good” feasible solution. Variables corresponding to this solution are added
to A′.

For our implementation we decided to use the list insertion heuristic with an additional
call of the 3–opt heuristic. After a few iterations of the cutting plane algorithm better solu-
tions will be constructed “on the fly” by the LP–exploitation heuristic (see “LP–exploitation
heuristic” in this section).
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Initialization

We start the branch&cut algorithm solving the initial LP

min cTx
s. t. (1) x(δ−(i)) = 1 ∀ i ∈ V \ {1}

(2) x(δ+(i)) = 1 ∀ i ∈ V \ {n}
(3) xij ≥ 0 ∀ (i, j) ∈ A
(4) xij ≤ 1 ∀ (i, j) ∈ A

As only a small subset of the variables will be in an optimal solution, we are not working
on the whole set of variables, but choose a promising subset of all variables, from which we
think that the optimal solution is among them. We have chosen the variables of the k–nearest
neighbour digraph, which we also denote as sparse digraph Ds(V, As). We run an initial
heuristic to obtain a feasible solution. The main purpose of this heuristic is to make the
sparse digraph Hamiltonian. Thus the arcs of that path are added to the sparse digraph. Only
the variables corresponding to the arcs of the sparse digraph are considered in the initial LP.
The value of the global upper bound is initialized with the value of this feasible Hamiltonian
path.

This keeps the size of the linear program “moderate” but makes it necessary to price
out nonactive variables, that are not considered in the actual LP. This pricing is performed
in a hierarchical order. First the variables in a so–called reserve digraph Dr(V, Ar) are
considered, before performing a pricing on the complete set of variables. We have chosen Dr

to be the m–nearest neighbour digraph for m > k . Arcs already contained in the As are not
considered in Ar. If the reserve–graph–pricing was successful, the complete pricing is omitted
(see also “Variable pricing” in this section).

The computational experiments showed that in the current implementation the choice
of m and k only has a minor influence on the overall computing time. We tested values
for k ∈ {2, 3, 4, 5, 6, 7} and m ∈ {5, 6, 7, 8, 9, 10} leading to more or less the same overall
computing times. We decided to choose k = 4 and m = 7 as default values.

Separation strategy

The separation phase is the “core” of the branch&cut algorithm. Here violated valid inequal-
ities are generated that are added as cutting planes to the actual linear program.

Each generated cut is additionally stored in a pool of inequalities that is, e.g., used
to regenerate the linear programs from scratch. Since not all pool inequalities are active,
i.e., are considered in the actual LP, this pool can also be used to check, if any of the cuts
generated in an earlier iteration of the algorithm is violated by the actual LP–solution. This
can be done by “checking” all nonactive pool–inequalities. As the size of the pool might be
very large, this can be very time consuming. Therefore, we do not separate pool–inequalities
for which “fast” separation routines exist.
We decided to use the following separation strategy:

(5.7.39) Separation procedure.

Input : Incumbent LP–solution x̄.
Output : An inequality ax ≤ a0 violated by x̄, i.e., ax̄ > a0.

1. Call an exact procedure for the separation of subtour elimination constraints.
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2. Check the pool for violated π–, σ–, (π, σ)–inequalities, pcb–inequalities,
strengthened 2–matching constraints and strengthened Tk–inequalities.

3. Call the shrinking separation procedure (5.6.36).
4. Call the exact procedure for weak π–inequalities (see 5.4.12)
5. Call the exact procedure for weak (π, σ)–inequalities (see 5.4.20)
6. Call the exact procedure for weak σ–inequalities (see 5.4.16)
7. Call a heuristic procedure for 2–matching constraints (see e.g. [PR90]),
8. Call a heuristic procedure for Tk–inequalities.

If one of the steps is successful, i.e., a violated inequality is found, no other separation
procedure is called. Whenever in step 1 a SEC is found it is checked, if it can be strengthened
to a π–, σ, (π, σ), or pcb–inequality. If this is possible, the strengthened inequality is added,
otherwise the SEC. If a violated 2–matching constraint is detected, it is checked, if it can be
lifted to any of the constraints presented in Section 5.5.3.

LP–exploitation heuristic

As we do not have a complete description of the sequential ordering polytope, it is very
unlikely that the branch&cut algorithm will result in an integer optimal solution, i.e., the
incidence vector of a feasible Hamiltonian path. But the fractional LP–solutions contain
some information about the structure of an optimal solution. We exploit this information by
the following LP–exploitation heuristic.

(5.7.40) Exploitation algorithm for fractional LP–solutions.

Input : LP–solution x̄,
2optfreq (frequency of 2–opt calls),
3optfreq (frequency of 3–opt calls),
locenufreq (frequency of local enumeration calls),
lwidth (width of local enumeration),
M (big value).

Output : feasible Hamiltonian path H .

1. If the LP–solution is a feasible Hamiltonian path, H = x̄, GOTO 5
2. Construct a temporary cost matrix C′ by applying one of the following strate-

gies:
c′ij = (1.0 − x̄2ij) ·M ;
c′ij = (1.0 − x̄ij) · cij;
c′ij = (1.0 − x̄ij) ·M ;

3. Call one of the following heuristics with the cost matrix C′:
H = topsort(C′);
H = listins(C′);
H = farins(C′);
H = bestins(C′);
H = randins(C′);

4. Try to improve the H :
Every 2optfreq times call: H = 2opt(H,C);
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Every 3optfreq times call: H = 3opt(H,C);
Every locenufreq times call: H = locenu(H,C, lwidth);

5. RETURN(H)

Roughly speaking, this heuristic is the following. Given a fractional LP–solution x̄, set up
a temporary cost matrix C′, which is obtained by combining the original cost matrix C
and the LP–solution in a proper way. Call a heuristic with the cost matrix C′ and then
call an improvement heuristic with the obtained solution and the original cost matrix C. If
the branch&cut algorithm was running for some iterations, the LP–solution does not change
dramatically from one iteration to the next. In order to avoid that the same solutions are
constructed several times, it is necessary to vary in the construction procedures for C′ and in
the heuristics.

The results obtained by this heuristic outperform the ones obtained by the initial heuristic.
The procedure is rather sensitive to the setting of the parameters. By decreasing the values
of 2optfreq, 3optfreq, and locenufreq, and by increasing the value of lwidth it is certainly
possible to construct better feasible Hamiltonian paths. But while doing so computing time
at each iteration will increase dramatically. Table 5.2 summarizes the computational times
for different settings of these parameters. See also Table 5.1 for the influence of lwidth on the
computing time. The entries in the first column of Table 5.2 have to be read like (2optfreq,
3optfreq, locenufreq, lwidth).

ESC47 ESC78 rbg048a rbg050c ft53.4 ft70.1 prob.5
(1,4,41,8) 10:47.55 874:38.87 2:13.78 3:05.65 113:01.22 25:45.98 27:54.07
(1,4,41,9) 11:13.82 –∗ 2:57.03 5:54.38 41:13.05 27:19.70 29:52.23

(1,7,100,8) 9:34.47 52:14.15 2:33.85 1:29.20 15:20.77 29:24.43 21:03.53
(1,7,100,9) 9:42.67 65:26.67 3:01.95 2:16.62 17:10.27 29:54.87 21:52.78

(3,10,201,8) 8:38.18 372:17.65 3:09.30 2:10.18 11:52.52 34:37.07 24:43.30
(3,10,201,9) 8:40.13 –∗ 3:23.48 2:42.15 15:41.93 36:35.83 25:33.53

–∗ : time limit of 15 hours CPU exceeded
Table 5.2. Comparison of different values for LP–exploitation heuristic

Comparing the results for ESC78 shows that the setting of these parameters has a dra-
matical influence on the overall computing time. In this problem instance the lower bound at
the root equals the value of the optimal solution and the computing time is mainly spent in
finding a feasible solution with this value. The following settings tend to give the best results
with respect to computing time:

2optfreq = 1 3optfreq = 7
locenufreq = 100 lwidth = 8

They are accepted as default values for the branch&cut algorithm.

Enumeration strategy

In order to keep the branch&cut tree small the way in which the subproblems in the tree
are processed is very important for an efficient implementation. The branch&cut framework
ABACUS provides three possible strategies: depth–first–search (DFS), breadth–first–search
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(BRFS), and best–first–search (BEFS). The computational results of the benchmark problems
show that DFS is not a good strategy, as the “risk” of spending too much time in a branch
of the tree that is useless for the computation of the bounds is too high. BRFS slightly
outperforms BEFS (see Table 5.3) as it tends to give more “stable” results. Thus, we decided
to use BRFS as a default strategy.

ESC25 ESC47 ESC78 rbg048a rbg050c ft53.4 ft70.1 prob.5

BEFS 0:08.10 8:03.35 494:44.83 1:33.72 2:20.52 20:39.38 45:39.92 24:57.60
BRFS 0:09.33 10:12.48 67:44.30 3:08.82 2:20.10 17:52.43 30:42.08 22:49.78

DFS 0:10.45 8:34.43 50:58.38 1:43.27 0:36.10 34:30.43 602:53.32 16:14.62

Table 5.3. Comparison of enumeration strategies

Variable pricing

As we are working only on a subset of all variables, it is necessary to price out all variables
that are not considered in the incumbent LP. The purpose is to check, if the LP solution is
valid for the complete graph, i.e., if all nonactive variables “price out” correctly.

As this might be very time consuming, it is done in a hierarchical way. Before considering
the whole set of variables, we first check the variables corresponding to the arcs of the reserve
digraph (see “Initialization” for the choice of the size of the sparse and reserve digraph).

This pricing step has to be done before branching, if an infeasibility was detected, and
if a tailing–off phenomena is observed. Furthermore, the pricing step is performed every
pricing freq iterations. This assures that variables needed in an optimal solution enter the LP
as early as possible. Table 5.4 gives the computing times for different settings of pricing freq.
We decided to accept pricing freq = 10 as default value.

ESC25 ESC47 ESC78 rbg048a rbg050c ft53.4 ft70.1 prob.5

5 0:10.37 13:12.17 91:03.67 6:10.63 0:48.63 37:09.98 50:17.08 33:20.60
10 0:09.12 10:03.78 68:04.43 3:12.97 2:18.18 17:33.75 31:47.67 23:29.25
15 0:10.10 10:23.15 71:12.22 1:59.03 2:16.53 19:01.28 39:50.37 27:56.45
20 0:09.08 8:47.30 66:34.57 2:18.62 2:29.48 18:51.75 78:28.60 23:48.33

Table 5.4. Comparison of different pricing frequencies

Branching rules

At the branching step a fractional variable is chosen and two new subproblems are generated
by setting the value of the variable to 0, resp. to 1. ABACUS supports the strategy to choose
the variable closest to 0.5 with highest cost coefficient, which we accept as default strategy.

Tailing off

If during the last k iterations of the cutting plane phase no significant improvement (of at least
p%) was achieved, a pricing step is performed. If this was not successful, i.e., no variables were
added, we leave the cutting plane phase and branch. We use the default values of ABACUS,
namely k = 5 and p = 2.5 · 10−5.
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5.8 Computational results

The branch&cut code is tested with four classes of problem instances that contain real–life
data, randomly generated data, and a combination of both. The instances ESC.. have been
supplied by L. Escudero. In [AEGS90] computational results of a cutting plane approach have
been already reported for these problem instances. The problem instances rbg.. are derived
from the stacker crane application as described in Section 4.6. The random instances prob..
have been supplied by M. Jünger and G. Reinelt. TSPLIB contains six hard ATSP instances
for which we randomly generate precedence digraphs P = (V, R) with a varying number of
precedences.

For the solution of the linear programs the LP–solver CPLEX2.2 was used. All compu-
tational results were obtained on a SUN SPARC IPX with 64 MB main memory under SUN
OS 4.1.2. For compilation the GNU C compiler with optimization option O2 was used. For
all runs we allowed a maximum CPU–time of 5 · � n

100� hours.

Key to the following tables:

problem : name of the problem instance.
n : number of nodes.
|R| : number of precedence relationships

(without transitively derived precedences).
Opt. : value of an optimal solution. If this value is not known, the best lower

lb and upper bound ub is given in the form [lb, ub].
Heur. : value of the solution obtained by the initial heuristic.
BC-root : Quality of the solution at the root LP, namely

...bounds : lower and upper bound at the root LP (if the problem instance was
solved to optimality at the root it is marked with “–”).

...GAP : optimality gap at the root LP. Let lbroot denote the lower before branch-
ing. Then the optimality gap at the root is defined as opt−lbroot

lbroot
· 100.

BC–tree ... : information on the branch&cut tree, namely
... (# N) : number of generated nodes in the branch&cut tree (except the root

node),
... (level) : depth of the branch&cut tree (the level of the root is 0).

#cuts : number of generated cutting planes.
#LPs : number of linear programs that had to be solved.
CPU : CPU time needed to solve the problem.

If the problem instance could not be solved to optimality within a certain
time limit, this is marked by giving the CPU–time after which the run
was stopped. (All computing times for SUN SPARC IPX).
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Results on real–life data

In this subsection we summarize the computational results on different sets of real–life data
that were all derived from a manufacturing environment. The instances ESC.. are production
data from IBM, the instances rbg.. have been derived from the stacker crane application as
described in Section 4.6. Table 5.5 summarizes the results obtained for small to medium sized
real-life instances varying from 9 – 100 nodes. Table 5.6 gives results for large sized real-life
instances on more than 100 nodes.

BC–root BC–tree
Problem n |R| Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
ESC07 9 6 2125 2125 – – 0, 0 4 3 0:00.10
ESC11 13 3 2075 2075 – – 0, 0 12 6 0:00.23
ESC12 14 7 1675 1728 – – 0, 0 24 12 0:00.52
ESC14 16 12 2125 2125 – – 0, 0 19 8 0:00.38
ESC25 27 9 1681 2692 [ 1678, 1684] 0.18 2, 1 67 41 0:04.33
ESC47 49 10 1288 2247 [ 1247, 1500] 3.29 90, 7 2620 1252 11:48.05
ESC63 65 95 62 64 [ 62, 64] 0.00 38, 5 2285 120 4:33.22
ESC78 80 77 18230 18475 [18230,18365] 0.00 66, 6 2209 246 19:10.20
ESC98 100 84 2125 2125 – – 0, 0 35 12 0:29.67

prob.faw1 56 45 210 226 [ 210, 226] 0.00 6, 2 53 21 0:16.12
rbg016a 18 26 167 172 – – 0, 0 3 2 0:00.18
rbg016b 18 30 132 145 – – 0, 0 78 26 0:01.37
rbg017a 17 38 129 135 – – 0, 0 15 13 0:00.48
rbg019a 21 43 198 203 [ 197, 199] 0.51 2, 1 13 8 0:00.48
rbg019b 21 57 199 225 – – 0, 0 4 2 0:00.13
rbg021a 21 68 158 164 – – 0, 0 31 9 0:00.45
rbg023a 23 79 155 161 – – 0, 0 19 9 0:00.52
rbg048a 50 192 351 408 [ 349, 357] 0.57 94,17 2693 315 8:55.53
rbg049a 51 241 355 415 [ 355, 377] 0.00 14, 3 211 39 0:18.57
rbg050a 52 225 400 455 – – 0, 0 316 40 0:15.02
rbg050b 52 258 397 418 [ 397, 405] 0.00 2, 1 150 26 0:09.73
rbg050c 52 256 467 511 [ 467, 478] 0.00 14, 3 860 106 1:37.37
rbg068a 68 249 609 633 – – 0, 0 30 9 0:03.92

Table 5.5. Results on small and medium sized real–life instances

All small and medium sized problem instances could be solved to optimality in the given
time limit of 5 hours. Half of the instances could be solved to optimality at the root of the
branch&cut tree. For all other instances the lower bounds on the root are close to the optimal
solution value. They either equal the optimal solution value or lie in a 3% range (see column
GAP). As outlined in the last section where the heuristics for the SOP are described, they
sometimes fail to quickly find good or even optimal feasible solutions. For some problem
instances (e.g., ESC47), the upper bound on the root is far away from the optimal solution
value. Considering instance ESC78 one recongnizes that the lower bound on the root already
equals the value of the optimal solution and that “most” of the computing time is spent to
find a feasible solution of that value.

Most of the large scale instances of more than 100 nodes could not be solved to optimality.
Due to the computational experience with the small to medium sized instances, we conjecture
that also for these instances the lower bound is close to the optimal solution value and that
the upper bound is the bound that has to improved.
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BC–root BC–tree
Problem n |R| Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
rbg109a 111 622 1038 1134 [ 1027, 1085] 1.07 752,18 4961 2114 189:51.18
rbg150a 152 952 [ 1748, 1750] 1807 [ 1747, 1753] ? 816,25 11290 3112 –∗

rbg174a 176 1113 2033 2122 – – 0, 0 469 57 10:32.02
rbg253a 255 1721 [ 2943, 2987] 3113 [ 2943, 2990] ? 218,21 5135 1044 –∗

rbg323a 325 2412 [ 3136, 3221] 3388 [ 3135, 3263] ? 78, 7 5169 670 –∗

rbg341a 343 2542 [ 2543, 2854] 2963 [ 2541, 2854] ? 54, 6 4548 594 –∗

rbg358a 360 3239 [ 2518, 2758] 2935 [ 2517, 2758] ? 14, 3 5613 443 –∗

rbg378a 380 3069 [ 2761, 3142] 3250 [ 2761, 3142] ? 20, 5 4148 370 –∗

–∗ : time limit exceeded

Table 5.6. Results on large scale real–life instances

In the appendix the interested reader will find further statistics on the branch&cut code,
such as generated cuts, distribution of the computing time, etc.

Randomly generated problem instances

BC–root BC–tree
Problem n |R| Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
prob.1 11 6 38 38 – – 0, 0 6 3 0:00.08
prob.2 11 6 287 287 – – 0, 0 2 2 0:00.10
prob.3 22 4 218 301 [ 216, 230] 0.93 6, 3 39 21 0:01.77
prob.5 42 10 243 346 [ 236, 245] 2.88 480,17 9138 3058 17:50.23
prob.6 82 5 614 915 – – 0, 0 94 21 0:37.27
prob.7 100 41 [1026,1542] 2531 [ 1016,1796] ? 638,15 7144 3383 –∗

–∗ : time limit exceeded

Table 5.7. Results on randomly generated problem instances

The results on the randomly generated data are more or less the same as for the real–life
instances. Half of them were solved at the root and for two of them the lower bounds on the
root are very good. One of the instances (prob.7) is still unsolved. We conjecture that also
here the problem mainly is in finding a good upper bound. Observe that the feasible solution
found after 5 hours of computing time is 1542, whereas the value of the best feasible solution
known so far is 1385. We conjecture that also this solution is far away from the optimum.

Note that prob.5 and prob.7 are random data in the sense that the precedence structure
was generated randomly. The surprising fact is that the branch&cut code has more problems
with randomly generated precedence graphs than with precedence graphs that typically occur
in the practical applications we considered.
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Pure ATSP instances

Note that the Hamiltonian path problem is a special case of the SOP where the set of prece-
dence relationships is empty. As the ATSP is an equivalent problem to the Hamiltonian path
problem, the branch&cut code for the SOP can be used to solve ATSP instances to optimality.

TSPLIB [Rei91] contains six (hard) asymmetric instances varying from 17–100 nodes,
that are used as benchmark problems for our branch&cut algorithm. One of these instances
(p43.atsp) contains noninteger values. We create two new instances: one by multiplying each
number by 2 (p43x2), and one by multiplying by 10 (p43). Furthermore, we ran ATSP in-
stances that have been derived from the stacker crane application (problem instances rbg*.0).

The results are summarized in the following Tables 5.8 and 5.9. The results in Table 5.8
are obtained without the separation heuristic for Tk–inequalities, whereas the results in Table
5.9 document the computational results with the use of that heuristic. As all rbg–instances
could be solved just with subtour elimination constraints (SEC), Table 5.9 does not contain
these instances. More detailed statistics can be found in the appendix.

BC–root BC–tree
Problem n Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU

br17.0 18 39 39 – – 0, 0 9 8 0:00.38
p43 44 28100 28135 [28055,28135] 0.16 194,25 172 353 2:07.62

p43x2 44 5620 5627 [ 5611, 5621] 0.16 440,34 267 642 3:50.53
ry48p 49 14422 15091 [14324,14444] 0.68 28, 7 150 95 0:40.12
ft53.0 54 6905 7481 – – 0, 0 30 22 0:09.55
ft70.0 71 38673 39342 [38653,38673] 0.05 6, 3 22 24 0:29.05

kro124p 101 36230 38776 [36106,36353] 0.34 28, 5 178 125 6:27.63

rbg323.0 324 1326 1650 [1326,1355] 0.00 2, 1 30 28 33:52.75
rbg341.0 342 1116 1485 – – 0, 0 18 20 27:56.38
rbg358.0 359 1163 1521 [1163,1164] 0.00 2, 1 16 21 35:04.35
rbg378.0 379 1633 1988 [1633,1635] 0.00 2, 1 15 21 37:29.18
rbg399.0 400 2048 2269 [2048,2058] 0.00 2, 1 22 22 43:07.30
rbg403.0 404 2465 2646 [2465,2491] 0.00 6, 2 15 16 37:41.82
rbg416.0 417 2126 2320 – – 0, 0 22 28 72:30.37
rbg423.0 424 2065 2318 – – 0, 0 10 10 35:51.23
rbg443.0 444 2720 2873 [2720,2725] 0.00 6, 2 19 22 62:00.30

Table 5.8. Solution of asymmetric TSP instances

BC–root BC–tree
Problem n Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU

br17 18 39 39 – – 0, 0 9 8 0:00.42
p43 44 28100 28135 [28055,28105] 0.16 142,17 202 309 2:50.77

p43x2 44 5620 5627 [ 5611, 5621] 0.16 90,21 202 234 1:39.50
ry48p 49 14422 15091 [14326,14444] 0.67 14, 5 168 87 0:40.80

ft53 54 6905 7481 – – 0, 0 28 24 0:11.82
ft70 71 38673 39342 [38653,38673] 0.05 6, 3 22 24 0:29.17

kro124p 101 36230 38776 [36177,36807] 0.15 20, 4 185 97 7:05.15

Table 5.9. Solution of asymmetric TSP instances (with Tk–inequalities)
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Although the code was not originally designed to solve ATSP instances, the achieved
results are comparable to those published in the literature (see [FT94]). All instances could
be solved to optimality in a reasonable amount of computing time. It is interesting to observe
that the stacker crane problems (rbg*) are easily solvable. Even large scale problems up to 440
nodes could be solved after a few iteration of the branch&cut algorithm. It was necessary to
generate just a few cutting planes, moreover, for all of these instances only subtour elimination
constraints were generated. Maybe this is one explanation for the fact that the available real–
life instances were easier to solve than some of the randomly generated ones.

The simple heuristic separation procedure for the Tk–inequalities does not really help
to solve ATSP-instances. For problem instances ry48p and kro124p the lower bound at the
root increased, in most instances fewer LPs had to be solved, and the branch&cut tree is of
smaller size. But the overall computing times are more or less the same with and without this
separation heuristic. The additional computing time is not spent in total in the separation
routine but also in other parts of the code, such as LP–solver, pricing, etc. A fine–tuning of
the parameters of the separation routine will improve the result for the ATSP–instances.
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TSPLIB problem instances with random precedences

As the ATSP that are the basis for the real–life problems rbg* are easy, the precedence
constrained instances derived form the stacker crane application are perhaps not really hard
benchmark problems for the branch&cut code. Therefore, we performed experiments to see
what influence additional precedence constraints will have on hard ATSP instances. For that
purpose we randomly generated precedence digraphs P = (V, R) and added them to the
TSPLIB problem instances. The results are summarized in Table 5.10.

The random precedence digraph P = (V, R) are constructed in the following way: Initially
set R = ∅. For each problem instance generate two lists l1, l2 of k random integers in the
interval [1, n]. List l1 corresponds to the tail list l2 to the head of potential arcs (i, j) ∈ R.
Starting from the first entry of the list add an arc (l1[i], l2[i]) to R, if l1[i] �= l2[i], (l1[i], l2[i]) �∈
R, and R ∪ (l1[i] �= l2[i]) remains acyclic; otherwise skip this arc. We construct problem
instances for k = n

4 ,
n
2 , n, 2 · n. As some infeasible arcs have been generated, the actual

number of added precedences is less than k. If name is the name of the TSPLIB-instance,
then

name.0: pure ATSP–instance,
name.1: additional k = n

4 potential precedence relationships,
name.2: additional k = n

2 potential precedence relationships,
name.3: additional k = n potential precedence relationships,
name.4: additional k = 2 · n potential precedence relationships.

BC–root BC–tree
Problem n |R| Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
br17.0 18 0 39 39 – – 0, 0 9 8 0:00.57
br17.1 18 4 41 41 [ 40, 41] 2.50 6, 3 29 33 0:03.65
br17.2 18 8 47 58 [ 44, 47] 6.82 8, 4 181 127 0:20.18
br17.3 18 14 49 54 [ 49, 52] 0.00 2, 1 96 44 0:06.72
br17.4 18 17 76 81 – – 0, 0 31 11 0:00.55
p43.0 44 0 27950 28000 [27945,27950] 0.00 452 60 551 5:35.48
p43.1 44 9 27990 55260 [27989,28010] 0.00 18, 4 162 109 1:18.40
p43.2 44 20 [28175,28330] 55790 [28110,28410] ? 2134,52 7526 –∗

p43.3 44 37 [28483,28670] 82370 [28242,28780] ? 1140,31 49246 13065 –∗

p43.4 44 50 [69569,82960] 110620 [55972,82990] ? 1730,39 116681 24107 –∗

ry48p.0 49 0 14422 15091 [14324,14444] 0.68 28,7 95 0:35.98
ry48p.1 49 11 [15220,15935] 16813 [14678,16181] ? 3406,24 14473 –∗

ry48p.2 49 23 [15940,17022] 20736 [15287,17831] ? 1268,20 36673 16242 –∗

ry48p.3 49 42 [18252,20334] 26874 [17740,21568] ? 742,22 47110 14821 –∗

ry48p.4 49 58 [29967,31446] 35479 [28694,32246] ? 670,20 73704 18274 –∗

ft53.0 54 0 690 7481 – – 0,0 23 0:09.40
ft53.1 54 12 [7438, 7570] 10623 [ 7160, 8406] ? 4738,26 13031 –∗

ft53.2 54 25 [7739, 8335] 11732 [ 7411,10314] ? 1928,23 34254 14028 –∗

ft53.3 54 48 [9473,10682] 12587 [ 9138,11585] ? 504,18 44444 12883 –∗

ft53.4 54 63 14425 15644 [13780,14628] 4.68 156,19 10814 2850 50:03.97
ft70.0 71 0 38673 39342 [38653,38673] 0.05 6, 3 25 0:23.30
ft70.1 71 17 39313 43441 [39153,40947] 0.41 682,16 4218 2408 88:00.63
ft70.2 71 35 [39862,41778] 44193 [39541,43776] ? 1684,17 16520 8352 –∗

ft70.3 71 68 [41482,44732] 48767 [40935,46714] ? 500,14 22280 7567 –∗

ft70.4 71 86 [52269,53882] 57794 [50642,55846] ? 556,18 43915 8802 –∗

kro124p.0 101 0 36230 38776 [36106,36998] 0.34 38,6 169 5:39.13
kro124p.1 101 25 [37916,42845] 54463 [37500,43244] ? 158,14 5349 2098 –∗

kro124p.2 101 49 [38621,45848] 54173 [38210,47520] ? 114,10 6508 1934 –∗

kro124p.3 101 97 [41478,55649] 73177 [40428,59006] ? 82,10 7326 1995 –∗

kro124p.4 101 131 [64858,80753] 93501 [58631,85035] ? 134,12 18674 3332 –∗

–∗ : time limit of 5 hours CPU–time exceeded
Table 5.10. TSPLIB instances with additional precedences
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It was surprising to see that although the pure ATSP–instances could be solved to optimality
in a reasonable amount of time this was not possible for most of these randomly generated
problem instances. All runs were stopped after 5 hours of CPU–time and the optimality GAP
(see column Opt.) was still that large that for most instances there is no hope that these
would have been solved to optimality in another 5 hours of computing time.

Therefore, we recognized two reasons. First, note that the results of the initial heuristic
are getting worse the more precedences are involved (e.g., p43.1–4). That is an indicator that
the heuristics we are working with at the moment, do not handle the precedence structure
properly. The results of the LP–exploitation heuristic are better but in most cases still far
away from the value of the optimal solution.

Second, recall that the pure ATSP instances derived from the stacker crane application
(rbgxxx.0) are easy. All of them can be solved just using the subtour elimination constraints
(SEC). This conjectures that the precedence structure of the considered real–life instances is
well captured by the strengthened versions of the SEC, namely by the π–, σ–, (π, σ)–, and
pcb–inequalities.

In contrast, the TSPLIB instances are hard, i.e., more complex inequalities than the SEC
are needed to solve them to optimality. These inequalities and their strengthened versions are
not yet used in the implementation. For example, we used a 2–matching separation routine
that was originally designed to be used for the unconstrained TSP. Whenever a violated
inequality is found we strengthen according to the precedences. But very seldomly such a
violated 2–matching constraint is detected, although a strengthened versions is violated. We
believe that a direct separation routine for the strengthened inequalities will improve the
computational results.

In a second experiment we have chosen the TSPLIB problem instance br17.atsp and
iteratively added randomly generated precedence relationships. The relationship i ≺ j is
added, if it has not been generated before, if it is not implied by a transitivity relation,
and if the instance remains feasible. Instance br17.x.i is derived from br17.x.(i-1) by adding
one additional precedence relationship. The computational results for these instances are
summarized in Table 5.11.

All but three instances are easy to solve; two of the instances can be considered to be
hard. Note that for the problem instances of this class the upper bound on the root always
equals the optimal solution value, whereas there is a gap of up to 20% on the lower bound
for instances br17.x.10, br17.x.12, and br17.x.13.
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BC–root BC–tree
Problem n |R| Opt. Heur. bounds GAP #N, Level # cuts #LPs CPU
br17.x.1 18 1 39 39 – – 0, 0 16 10 0:00.48
br17.x.2 18 2 39 39 – – 0, 0 22 12 0:00.68
br17.x.3 18 3 39 39 – – 0, 0 18 10 0:00.50
br17.x.4 18 4 39 39 – – 0, 0 18 10 0:00.50
br17.x.5 18 5 42 42 [ 40, 42] 5.00 20, 6 121 74 0:06.90
br17.x.6 18 6 42 65 – – 0, 0 68 28 0:01.75
br17.x.7 18 7 47 65 – – 0, 0 150 55 0:04.15
br17.x.8 18 8 47 65 [ 44, 47] 6.82 4, 2 132 57 0:04.70
br17.x.9 18 9 47 65 [ 44, 47] 6.82 30,11 190 125 0:13.95

br17.x.10 18 10 55 65 [ 45, 55] 22.22 1030,26 9298 5344 13:47.20
br17.x.11 18 11 55 65 [ 53, 55] 3.77 8, 4 434 158 0:17.77
br17.x.12 18 12 55 81 [ 44, 55] 25.00 874,27 6245 3965 10:49.67
br17.x.13 18 13 55 81 [ 44, 55] 25.00 188,18 1768 1022 2:21.72
br17.x.14 18 13 68 81 [ 67, 68] 1.49 4, 2 164 59 0:04.25
br17.x.15 18 14 68 81 [ 67, 68] 1.49 4, 2 198 72 0:06.18
br17.x.16 18 14 68 68 – – 0, 0 86 27 0:01.88
br17.x.17 18 13 84 89 [ 74, 84] 13.51 24, 6 389 149 0:15.15
br17.x.18 18 14 84 89 [ 83, 84] 1.20 2, 1 97 32 0:02.02
br17.x.19 18 14 139 143 – – 0, 0 42 15 0:00.88
br17.x.20 18 15 143 160 – – 0, 0 25 11 0:00.47
br17.x.21 18 15 233 271 – – 0, 0 27 12 0:00.52
br17.x.22 18 16 252 252 – – 0, 0 54 11 0:00.55
br17.x.23 18 14 294 294 – – 0, 0 21 10 0:00.37
br17.x.24 18 14 294 331 – – 0, 0 3 3 0:00.13
br17.x.25 18 14 294 294 – – 0, 0 1 2 0:00.15
br17.x.26 18 14 297 297 – – 0, 0 0 1 0:00.12
br17.x.27 18 15 297 297 – – 0, 0 0 1 0:00.08
br17.x.28 18 14 297 297 – – 0, 0 0 1 0:00.05

Table 5.11. TSPLIB instances br17.atsp with random precedences
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5.9 Summary and conclusion

In this chapter an algorithm for the exact solution of instances of the Sequential Ordering
Problem has been presented, that is based on an investigation of the Sequential Ordering
polytope SOP (n, P ). We have seen that it was difficult to study the facial structure of
SOP (n, P ) for general classes of instances. This is mainly due to the reason that the corre-
sponding polytope may change dramatically with the precedence relationships even for fixed n.
Several classes of valid inequalities have been derived that are based on facet–defining ATSP–
inequalities. It will be challenging to derive a general “strengthening–procedure” for valid
and facet–defining inequalties for the asymmetric travelling salesman polytope in case that
precedences are present.

Despite of theoretical difficulties in describing SOP (n, P ) properly, an algorithm has been
described that is capable of solving to optimality within a reasonable amount of time most
of the small and medium sized problem instances that arise in practical applications. If the
instance could not be solved to optimality, good lower bounds have been derived. In contrast
to other approaches this algorithm can deal with a varying number of precedences.

For the instances considered the SEC and their strengthened version as π–, σ-, (π, σ)–,
and pcb–inequalities are the most important classes of inequalities. 2–matching constraints
do not really help in solving the instances, mainly due to the reason that no separation routine
for their strengthened version exist.

We have seen that in the practical applications we considered, the corresponding ATSP–
instances are “easily solvable”. The described algorithm has problems in solving problem
instances that were artificially derived out of hard ATSP instances. To overcome these prob-
lems more separation routines for (asymmetric) inequalities are needed, e.g., derived from
ATSP–facets. Recently Fischetti and Toth [FT94] developed separation routines for Dk–
and odd CAT–inequalities. They made their implementations available to the author. Their
embedding into the branch&cut algorithm will certainly improve its performance.

Furthermore, it seems necessary to develop more exact and heuristic separation routines
that explicitly take the precedences into account instead of following the strategy of running
ATSP–separators and then strengthen the cuts due to the precedence structure.

The heuristics used so far need to be improved. A possible step would be to allow non-
feasible intermediate sequences within the exchange heuristics. We conjecture that for most
of the unsolved instances the calculated lower bounds are “relatively good”. Therefore, we
believe that some of the up to now unsolved instances could have been solved to optimality,
if a better upper bound could be supplied to the branch&cut algorithm, as the size of the
branch&cut trees would reduce dramatically.

As a by–product we obtained a branch&cut algorithm for the ATSP. The only separa-
tion routines used for pure ATSP–instances are the ones for subtour elimination constraints,
2–matching constraints, and the simple heuristic for Tk–inequalities. To the best of our knowl-
edge the only published results of a branch&cut approach for the ATSP is by Fischetti and
Toth [FT94]. Although it seems difficult to compare implementations running on different
platforms, we note that the computing times presented in this chapter are comparable to
those by Fischetti and Toth. From our point of view this is due to the advanced branch&cut
framework ABACUS and to the use of CPLEX instead of XMP. Fischetti and Toth use ad-
ditional separation routines for Dk–inequalities and odd CATs. Therefore, the number of
iterations of their algorithm is less than for ours.
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Chapter 6

Hamiltonian path problems with
time windows

Time constrained sequencing and routing problems arise in many practical applications. In
Chapter 4 we have seen an application of the asymmetric Hamiltonian path problem with time
windows (AHPPTW) originating in the sequencing of jobs to be performed by the stacker
crane in an automatic storage system. The AHPPTW is a generalization of the asymmetric
Hamiltonian path problem (AHPP) where each node has to be visited within one specified
time interval.

So far, not much attention has been paid to the design of exact algorithms to solve the
problem. As far as we know, all of them are based on implicit enumeration techniques
(branch&bound, dynamic programming). A polyhedral approach to solve problem instances
to optimality is known to work well for the TSP, ATSP (see [JRR94], [FT94]), and for the
precedence constrained ATSP (cmp. Chapter 5). A question that has not been answered
is whether a polyhedral approach can be applied successfully in order to solve the time
constrained ATSP and AHPP.

In this chapter an exact branch&cut algorithm to solve problem instances of the AHPPTW
to optimality is described. New classes of valid inequalities and a computational comparison
of two different models are presented. Preliminary computational results solving problems
of up to 50 nodes are reported. All results of this chapter were obtained in joint work with
Matteo Fischetti (University of Padova).

6.1 Introduction and notation

The asymmetric Hamiltonian path problem with time windows (AHPPTW) can
be described in graph theoretical terms in the following way.

Consider a directed, complete graph D = (V, An) on n := |V | nodes and nonnegative arc
weights cij associated with each arc (i, j) ∈ An. Furthermore, we assume that we are given a
processing time pi ≥ 0, a release date ri ≥ 0 and a deadline di ≥ ri for every node i ∈ V . The
release date ri denotes the earliest possible, the deadline di the latest possible starting time
for processing node i ∈ V . Throughout this chapter we assume that arc weights, processing
times, release dates and deadlines are integer values. For the deadline we also allow di = ∞.
The time delay for processing node j immediately after node i is given by

ϑij := pi + cij.

131
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If not stated differently, we assume throughout this chapter that the triangle inequality on ϑ
is satisfied, i.e.,

ϑij ≤ ϑik + ϑkj , for all i, j, k ∈ V.

The interval [ri, di] is called the time window of node i, the width of the time window is
given by di − ri. The time window for node i ∈ V is called active if ri > 0 or di < ∞. A
time window [0,∞) is called relaxed. In the sequel we denote with ti the start time for
processing node i ∈ V .

The problem is to find a sequence of the nodes with minimal cost such that for every node
i ∈ V the start time ti for processing (visiting) node i ∈ V lies within the given time window
[ri, di]. We will deal with the case that waiting times are allowed, i.e., one may arrive at a
node i ∈ V earlier than ri and wait until the node is released. In the objective function we
consider the travel distance only, waiting times for processing certain nodes are not taken
into consideration. In the literature other objective functions are also studied. One example
would be to minimize the route duration, i.e., the difference between the starting time of the
first node in the path and the completion time of the last node.

By introducing an additional node (depot) d whose time window is relaxed (i.e., [0,∞))
the AHPPTW can be transformed into an asymmetric travelling salesman problem with
time windows (ATSPTW). In the ATSPTW we are interested in finding a cost–minimal tour
through all nodes starting and ending at the depot node d and satisfying the time window
constraints for all nodes.

Note that the AHPPTW reduces to the standard asymmetric Hamiltonian path problem
(AHPP) for pi = 0, ri = 0, and di = +∞ for every i ∈ V . As the AHPP is an NP–hard
problem, we cannot expect that, except for some trivial cases, the problem will be easier,
if the additional time window constraints are involved. In fact, Savelsbergh [Sav85] showed
that it is already strongly NP–complete to find a feasible solution for the TSPTW. We want
to mention that this already follows from an older result of Garey and Johnson [GJ77], who
showed that it is strongly NP–complete to find a feasible schedule for nonpreemptive single
machine scheduling with release–times and deadlines. Ober [Obe92] adapted Savelsbergh’s
proof and showed that this also holds for the AHPPTW. Furthermore, Tsitsiklis [Tsi92]
showed that the TSPTW with general time windows is strongly NP–complete, even if all
points are on a line and all processing times equal 0.

Although problems of this type arise in many practical applications, not much attention
has been paid to that problem so far. In most publications exact algorithms play a minor
role and the authors concentrate on the design of heuristics, often based on local search, see
[Sav91] among others. To our knowledge there are only a few approaches that were aimed at
solving to optimality problem instances of the (symmetric) TSP with time windows.

Christofides et al. [CMT81] describe a branch&bound algorithm in which the lower bound
calculation is performed via a state space relaxation in a dynamic programming scheme.
They report the solution of problem instances of up to 50 nodes with “moderately tight” time
windows.

Baker [Bak83] also describes a branch&bound algorithm where the lower bound calcula-
tions are reduced to the solution of the dual problem of a relaxation. The problem that has
to be solved is a longest path problem on an acyclic network. The algorithm performs well
on problems of up to 50 nodes when only a small percentage of the time windows overlap.

Dumas et al. [DDGS93] present a dynamic programming algorithm for the TSPTW that
is able to solve problems of up to 200 nodes and “fairly wide” time windows. Here reductions
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of the state space and the state transitions are performed that are based on the time window
structure.

It seems difficult to compare the different approaches as there exists no standard test set
of problem instances for the TSPTW. The size of the problems that can be solved, typically
expressed by the number of nodes, is extremely dependent on the structure of the time
windows. In all cases, the authors only use randomly generated data. The case where the time
windows are active for only a subset W ⊂ V and all others are relaxed to [0,∞) is considered
to be more difficult to solve by means of implicit enumeration (see, e.g., Baker [Bak83], who
relaxed up to 50% of all time windows).

As far as we know, there are no publications where the attempt to address the problem by
means of a branch&cut algorithm is reported. Applegate and Cook [AC91] report on a cutting
plane algorithm for the job–shop scheduling problem (JSSP). In the JSSP we are given
a set of machines, a set of jobs to be scheduled on these machines, for each job a specified
processing order through the machines, processing times for each job on each machine, and
constraints that each machine can handle at most one job at a time. By considering only
one machine we can derive the earliest arrival time of a job on that machine. Thus, we
obtain release dates of the jobs. Therefore, many of the inequalities used for the JSSP can
easily be adapted to be valid for the AHPPTW. We will point out to these inequalities later.
The results Applegate and Cook report on the JSSP were not very promising, as several
10x10–problem instances could not be solved.

Some generalizations of the ATSPTW are discussed in the literature. These problem
classes mainly occur in vehicle routing problems, where the ATSPTW is, e.g., a subproblem in
a “cluster–first, route–second approach”. Here the nodes that have to be visited are clustered
heuristically and in the following routing step one tries to solve the arising ATSPTW within
each cluster to optimality. These related problems are known as m–ATSPTW, pick–up–
and–delivery problems and dial–a–ride problems with time windows. Solving these problems
to optimality is typically done by means of implicit enumeration (dynamic programming,
branch&bound). But here, too, these approaches are restricted to the case of small size with
tight time windows, i.e, time windows with small width. In other applications soft time
windows are considered instead of the hard time windows that can not be violated. In these
cases, a violation of the time windows is allowed, but results in an additional penalty cost.

For a survey on time constrained routing and scheduling problems see [DLSS88, DDSS93],
among others. In Desrosiers et al. [DDSS93] the interested reader can find a comprehensive
survey on the TSPTW.

Recall, that ti was the starting time for processing node i ∈ V , and that for notational
convenience a path P consisting of the arc set {(vi, vi+1) | i = 1, ..., k− 1} is denoted by its
node set, i.e., P = (v1, v2, ..., vk−1, vk). To simplify the notation within this chapter we need
the following definitions.

(6.1.1) Definition.
Suppose we are given a digraph D = (V, A) with cost coefficients cij for all (i, j) ∈ A,
processing times pi and time windows [ri, di] for all nodes i ∈ V .

(i) A Hamiltonian path is feasible, if each node is visited within its time window, i.e.,
ri ≤ ti ≤ di.

(ii) A path P = (v1, ..., vk), 2 ≤ k ≤ n, is said to be infeasible, if it does not occur as a
subpath in any feasible Hamiltonian path.
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(iii) For a given path P = (v1, ..., vk), 2 ≤ k ≤ n, let [P ] denote its transitive closure, i.e.,
[P ] := {(vi, vj) | vi, vj ∈ P, 1 ≤ i < j ≤ k}.

(iv) For a given path P = (v1, ..., vk) the earliest possible arrival time at vk when going
through path P is denoted by θ(P ).

(v) A path P = (v1, ..., vk) is called minimal, if ti > rvi for all i = 2, ..., k, i.e., the starting
time for processing each but the first node in this path is greater than its release time.

�

Given a path P = (v1, ..., vk), the arrival time θ(P ) at node vk (with respect to path P ) can
be calculated by

θ(P ) = max{...max{max{rv1 + ϑv1v2 , rv2} + ϑv2v3, rv3}....}.

If the path P is minimal, it is not necessary to take waiting times at nodes into consideration.
Therefore, the above expression reduces to

θ(P ) = rv1 +
k−1∑
i=1

pvi +
k−1∑
i=1

cvivi+1 = rv1 +
k−1∑
i=1

ϑvivi+1 .

Note that if P = (v1, ..., vk) violates the time window for vk but is not minimal, there exists
an l, 1 < l < k, such that P ′ = (vl, ..., vk) is infeasible (and minimal).

In order to distinguish between feasible and infeasible paths we need a more specific charac-
terization of the infeasibility of a path.

(6.1.2) Lemma.
Suppose we are given a digraph D = (V, A) with cost coefficients cij for all (i, j) ∈ A,
processing times pi and time windows [ri, di] for all nodes i ∈ V and that the triangle inequality
on ϑ is satisfied, i.e., ϑij ≤ ϑik + ϑkj∀, i, j, k ∈ V .
A path P = (v1, ..., vk) is infeasible, if one of the following conditions is satisfied:

(i) P violates the time window for vk, i.e., θ(P ) > dvk .

(ii) There exists a vi ∈ V, vi �∈ P , such that both paths P1 = (vi, v1, ..., vk) and P2 =
(v1, ..., vk, vi) violate the given time windows.

Proof.

(i) Obvious, since path P cannot be a subpath of a feasible Hamiltonian path (time window
for vk is violated).

(ii) Since in any feasible Hamiltonian path node vi cannot be sequenced either in front or
behind P .

Note that the conditions of Lemma (6.1.2) do not yield a complete description of all infeasible
paths. In case that condition (6.1.2)(ii) is satisfied, we say that node vi cannot be covered
by path P . Note, that if the triangle inequality on ϑ is not satisfied, the path (vi, v1, ..., vk)
might be infeasible but the path (vi, vj, v1, ..., vk) is feasible. Instead of considering ϑviv1 for
sequencing vi in front of v1 the shortest path on ϑ from vi to v1 has to be taken into account.
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6.2 Preprocessing

As for many other combinatorial optimization problems preprocessing is an important part of
an efficient implementation. Its main aim is to construct a “tighter” equivalent formulation
of the problem, such that no optimal solution to the original problem is lost and each optimal
solution to the tighter problem corresponds to an optimal solution to the original problem.

For the AHPPTW this includes three main steps: tightening the time windows, con-
structing precedences among the nodes, and fixing variables permanently. We detect paths
P = (v1, v2) infeasible due to the criteria given by Lemma (6.1.2). If such a path is detected,
the corresponding arc (v1, v2) cannot be used in any feasible solution and is therefore deleted
from the feasible arc set. If it is possible to derive precedence relationships between the nodes
in V , we can apply the methodology that has been developed for the precedence constrained
ATSP (see Chapter 5).

In the following we always assume that we are given a (not necessarily complete) digraph
D = (V, A), cost coefficients cij for all arcs (i, j) ∈ A, time windows [ri, di] and processing
times pi for all nodes i ∈ V . Recall that the minimum time delay for processing j immediately
after i was defined by ϑij = pi + cij.

6.2.1 Tightening of the time windows

In this section we present criteria that allow us to increase the release date (resp. to decrease
the deadline) of certain nodes. These reductions have already been presented in [DDS92,
DDSS93].
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Release date adjustment

If the earliest arrival time at node k ∈ V from any of its possible predecessors is bigger than
its release date rk (see Figure 6.2.1(a)), the release date of k might be increased, i.e.,

rk = max{rk, min
(i,k)∈A

{ri + ϑik}} ∀k ∈ V s.t. δ−(k) �= ∅.(6.2.3)

In order to avoid waiting times at the possible successor nodes of k ∈ V , the earliest
possible starting time of k, and therefore its release date might be shifted (see Figure 6.2.1(b)),
i.e.,

rk = max{rk,min{dk, min
(k,j)∈A

{rj − ϑkj}}} ∀k ∈ V s.t. δ+(k) �= ∅.(6.2.4)
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Due date adjustment

If the deadline dk of node k ∈ V is bigger than the latest possible arrival time at node k from
any of its predecessors, the deadline might be decreased (see Figure 6.2.1(c)), i.e.,

dk = min{dk,max{rk, max
(i,k)∈A

{di + ϑik}}} ∀k ∈ V s.t. δ−(k) �= ∅.(6.2.5)

If the latest possible departure time from node k ∈ V in order to fulfill all time window
constraints for its successors is less than its deadline, then it might be decreased (see Figure
6.2.1(d)), i.e.,

dk = min{dk, max
(k,j)∈A

{dj − ϑkj}} ∀k ∈ V s.t. δ+(k) �= ∅.(6.2.6)

6.2.2 Construction of precedences

In case that the time windows for two nodes i and j, i, j ∈ V , are “nonoverlapping” (i.e., rj +
ϑji > di) we know that node i has to precede node j in any feasible solution to the AHPPTW.
Therefore, precedences among the nodes in V might be derived and all the methodology
developed for the SOP can also be applied to the AHPPTW.

Let i ≺ j denote the fact that node i has to precede node j in every feasible solution. For
notational convenience we introduce the precedence digraph P = (V, R) that is defined on
the same node set as Dn and where an arc (i, j) ∈ R represents a precedence relationship
i ≺ j. Note that P must be acyclic and can be assumed to be transitively closed.

For a given arc (i, j) ∈ R we know that arc (j, i) cannot be used in any feasible Hamiltonian
path, as this would violate the precedence relationship among these nodes. Furthermore, for
any nodes i, j, k ∈ V with (i, j) ∈ R and (j, k) ∈ R we can conclude that arc (i, k) cannot be
used in any feasible Hamiltonian path as node j has to be sequenced in between. These arcs
are then eliminated from the feasible arc set A.

6.2.3 Elimination of arcs

For all arcs (i, j) ∈ A it is checked, if they can be used in a feasible Hamiltonian path.
Therefore, we start with the feasible path P = (i, j). We now try to enlarge this path by
sequencing nodes Q = {v1, ..., vk}, vl ∈ V \ {i, j}, l = 1, ..., k, around P . If this cannot be
done without constructing an infeasible path P′, we know that arc (i, j) cannot be used in
any feasible solution and it is eliminated from the feasible arc set A. For sets Q of small
cardinality (|Q| = 1, 2) this can be checked by enumerating all possible paths.

For Q = {k} we have to check, if both paths P1 = (i, j, k) and P2 = (k, i, j) are infeasible,
i.e., if {

max{ri + ϑij, rj} + ωjk > dk and
rk + ωki > di or rk + ωki + ωij > dj

where ωij denotes the shortest path on ϑ from i to j. Note that if k is in any precedence
relationship with i or j, only one of the conditions has to be checked. If the triangle inequality
on ϑ is satisfied, then ωij might be substituted by ϑij.

For Q = {k, l} the six paths P1 = (i, j, k, l), P2 = (i, j, l, k), P3 = (k, l, i, j), P4 = (l, k, i, j),
P5 = (k, i, j, l), P6 = (l, i, j, k) have to be checked. If there exist precedences among the nodes,
certain paths do not have to be considered.

For |Q| > 2 it seems computationally too expensive to apply this procedure.
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6.3 Modelling

In this section we provide two different ways of modelling the AHPPTW as integer linear
programs. Based on these models we implemented branch&cut algorithms to solve instances
of the AHPPTW to optimality. In Section 6.7 (preliminary) computational results on a set
of random and real–life data will be given.

Model 1 is the standard model that can be found in many publications. This model
involves arc variables as well as node variables. The time window restrictions are modelled
with the help of a “big M”. As in contrast to other publications the objective function is
defined on the arc variables only it is possible to get rid of both the node variables and the
“big M”. Therefore, in model 2 the time window constraints are modelled by a new class of
inequalities, the so–called infeasible path constraints.

Suppose we are given a digraph D = (V, A) with node set V and feasible arc set A. For
each arc (i, j) ∈ A we introduce a binary variable xij ∈ {0, 1} with the interpretation:

xij =

{
1, (i, j) ∈ A is in the Hamiltonian path,
0, otherwise.

6.3.1 Model 1

Miller, Tucker, and Zemlin [MTZ60] proposed to substitute the subtour elimination con-
straints for the TSP

x(A(W )) ≤ |W | − 1 ∀ W ⊂ V, |W | ≥ 2(6.3.7)

by a smaller class of inequalities, but at the expense of extra free variables ti, i = 1, ..., n. The
MTZ–subtour elimination constraints can be written as

ti − tj + (n− 1)xij ≤ n− 2 i, j = 1, ..., n, i �= j
1 ≤ ti ≤ n− 1 i = 1, ..., n.

The MTZ–formulation of the subtour elimination constraints results in a weak LP–formulation
(see, e.g., [PS88]), as the MTZ–inequalities are not facet defining for the corresponding trav-
elling salesman polytope. But they offer the advantage that they can easily be modified to
take side constraints into account (see [DL91]). For the ATSP with time windows we interpret
the t–variables to be time variables giving the starting times for processing the nodes. In the
following let M be a large value.

The MTZ–inequalities for the ATSPTW can be written as

ti + ϑij − (1 − xij) ·M ≤ tj i, j = 1, ..., n, i �= j
ri ≤ ti ≤ di i = 1, ..., n.

(6.3.8)

With the help of the binary arc variables xij and the integer node variables ti the AHPPTW
can be formulated as an integer linear program as follows:
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min cTx
s.t. (1) x(A) = n− 1

(2) x(δ−(i)) ≤ 1 ∀ i ∈ V
(3) x(δ+(i)) ≤ 1 ∀ i ∈ V
(4) ti + ϑij − (1 − xij) ·M ≤ tj ∀ (i, j) ∈ A
(5) ti ≤ di ∀ i = 1, ..., n
(6) ti ≥ ri ∀ i = 1, ..., n
(7) xij ∈ {0, 1} ∀ (i, j) ∈ A
(8) ti ∈ N ∀ i = 1, ..., n

(6.3.9)

Due to (1) the solution consists of n − 1 arcs, (2) and (3) guarantee that at most 1 arc is
entering and leaving each node. Inequalities (4) avoid subtours (MTZ–subtour elimination
constraints) and assure that whenever j is sequenced immediately after i (xij = 1), the
starting time tj for processing node j cannot be less than the starting time of node i plus its
processing time and travel time from i to j. If j is not sequenced immediately after i (xij = 0),
the inequality is always valid due to “big M”. Inequalities (5) and (6) guarantee that node
i ∈ V is processed within its time window. Note that an individual “big Mij” might be
defined for each inequality in (4), satisfying

Mij ≥ di + pi + cij − rj.

(1)–(3),(7) together with the subtour elimination constraints (6.3.7) forms the standard LP–
formulation for the asymmetric Hamiltonian path problem.

It is easy to see that every feasible solution x of (1)–(8) (if existent) is the incidence vector
of a feasible Hamiltonian path satisfying all given time windows. Due to the time windows
the above system might have no solution. In the sequel we always assume that a feasible
solution exists.

This model has some disadvantages. First the MTZ–inequalities (6.3.8) are not very
strong and they can be lifted in several ways (see Section 6.5.4). Furthermore, it is known
from practical experience that a “big M”–modelling will cause computational problems. Our
computations confirmed that observation. The fractional solutions we obtained with the use
of this model in a cutting plane algorithm do not have such a “nice” structure as for the
pure ATSP, where (at least during the first iterations) the fractional values tend to be 1

2 ,
1
3 ,

or 2
3 . But even more important is that the x– and t–variables are only weakly linked via the

MTZ–inequalities, i.e., the structure of the time windows will only have small influence on
the Hamiltonian path described by the x–variables.

As we are interested in the polyhedral structure defined by the convex hull of all feasible
solutions of (6.3.9), we denote with

PTW
1 := conv{(x, t) ∈ RA×V | (x, t) satisfies (6.3.9)(1)–(8)}

the AHPTW–polytope based on model 1.
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6.3.2 Model 2

Due to the fact that the objective function is defined only on the arc variables it is possible
to model the time window restrictions by an additional class of inequalities, the so–called
infeasible path constraints. The corresponding model is the following:

min cTx
s.t. (1) x(A) = n− 1

(2) x(δ−(i)) ≤ 1 ∀ i ∈ V
(3) x(δ+(i)) ≤ 1 ∀ i ∈ V
(4) x(A(W )) ≤ |W | − 1 ∀ W ⊂ V, 2 ≤ |W |
(5) x(P ) ≤ k − 2 ∀ infeasible paths

P = (v1, v2, ..., vk)
(6) xij ∈ {0, 1} ∀ (i, j) ∈ A

(6.3.10)

As far as we know, this model for the AHPPTW has not been defined before in the literature.
A similar model can easily be defined for the ATSPTW.
In (6.3.10)(5) x(P ) denotes the sum of the variables corresponding to the path P = (v1, ..., vk),
i.e., x(P ) =

∑k−1
i=1 xvivi+1 . Inequalities (6.3.10)(5) forbid infeasible paths, i.e., paths violating

the given time windows. Therefore, each solution x of (6.3.10)(1)–(6) is the incidence vector of
a feasible Hamiltonian path, and vice versa. The formulation of the infeasible path constraints
as stated in (6.3.10)(5) is weak. In Section 6.5.1 we present several stronger inequalities of
this type.
Note that no “big M” modelling is required in this model. Moreover, only arc variables
are present, which implies that no linking constraints between arc and node variables are
necessary. This suggests that this model is superior to the later one. The computational
results presented in Section 6.7 will confirm this expectation. But observe, that the use of
this model is restricted to the case of the standard TSP-objective, namely to minimize the
sum of travel times between the nodes.
Similar to model 1 we denote with

PTW
2 := conv{x ∈ RA | x satisfies (6.3.10)(1)–(6)}.

the convex hull of all feasible solutions of (6.3.10).
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6.4 Dimension of the polytope

In this section we show that it is an NP–hard problem to determine the dimension of the
AHPPTW polytope. First recall from the first section that it is an NP–complete problem to
find a feasible solution. Therefore, it is NP–hard to decide (for the general case) whether the
polytope is empty or not.

In the following we restrict ourselves to study two “simple” special instances of the AH-
PPTW. In the first, only one time window is active. We show that the solution of a min–cost
Hamiltonian path problem is required to calculate the dimension of the corresponding poly-
tope. Next, we consider the case where two time windows are active. To prove results on the
dimension of the corresponding polytope we need the additional assumption that the release
dates for the active time windows are greater than a certain big value M . For both cases we
restrict our analysis to the case where only the x–variables are present (model 2).

6.4.1 Relaxation I : Only one active time window

Consider the following instance of the AHPPTW, where a complete, loop–free digraph D =
(V, A) with n := |V | nodes, n ≥ 4, |A| = n · (n− 1) arcs, and only one active time window
[r1, d1] associated with node 1 is given. All other time windows are relaxed to [0,+∞).
Assume that ϑik + ϑkj ≥ ϑij ∀i, j, k ∈ V .

Partition the node set as follows :

V = {1} ∪Q ∪W

where
Q := {j ∈ V \ {1} | pj + cj1 > d1}

and
W := V \ ({1} ∪Q).

That is Q contains all nodes that cannot be sequenced before node 1 without violating the
time window for node 1.

Construct an undirected auxiliary graph Ga = (V \ {1}, E), where

E := {ij | i, j ∈ V \ {1}, i �= j, pi + pj + min{cij + cj1, cji + ci1} ≤ d1}.
That is ij ∈ E, if and only if either (i, j, 1) or (j, i, 1) or both are feasible paths. Note that
the nodes of Q are isolated in Ga (some nodes in W can also be isolated, i.e., be incompatible
with all j ∈ V ).

Consider the following equations:

(1) xj1 = 0, ∀ j ∈ Q
(2) x(δ+(1)) = 1, iff node 1 cannot be the final node

of a feasible Hamiltonian path
(3)

∑
j∈Sh

x(δ−(j)) = |Sh| − x(Sh : 1), h = 1, ..., m

(6.4.11)

where Sh ⊆ V \ {1}, h = 1, ..., m are the m connected components of Ga. Note that adding
up the m equations (3) leads to

m∑
h=1

(
∑
j∈Sh

x(δ−(j))) =
m∑

h=1

|Sh| −
m∑

h=1

x(Sh : 1),
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1Q

Figure 6.4.2 The auxiliary graph Ga

which can be rewritten as

x(A) = n− 1.(6.4.12)

Therefore, 6.4.12 is a combination of 6.4.11(3) and hence dependent. Furthermore, note that
it requires the solution of a min–cost Hamiltonian path problem to check the condition of
equation (2).

(6.4.13) Lemma.
If there is only one time window active in the AHPPTW, then the equations 6.4.11(1)–(3)
are valid for PTW

2 .

Proof. Obvious for equations (1) and (2).
W.l.o.g. assume that the time window for node 1 is active. Let now Sh ⊆ V \ {1} be any
connected component of Ga. Note that no edge can cross the cut [Sh, V \ ({1} ∪ Sh)].
Consider any feasible path x, and let k be the starting node. Hence x(δ−(k)) = 0. The left
hand side of (3) is then

∑
j∈Sh

x(δ−(j)) =

{
|Sh| − 1, if k ∈ Sh,
|Sh|, otherwise.

Assume first that k ∈ Sh and x(Sh : 1) = 0, and let j �∈ Sh be such that xj1 = 1. Then we
have that edge kj ∈ E, a contradiction (see Figure 6.4.3(a)).

hS

k
j

1 ...

k hS

j1...

(a) (b)

Figure 6.4.3

Now assume that k �∈ Sh and x(Sh : 1) = 1. Let j ∈ Sh, s.t. xj1 = 1, and note that edge
kj ∈ E, again a contradiction (see Figure 6.4.3(b)).
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(6.4.14) Lemma.
For any instance of the AHPPTW where only the time window for one node, say node 1, is
active, the equations 6.4.11(1)–(3) are linearly independent.

Proof. The m + |Q| equations (1) and (3) (and (2) if active) are linearly independent. To
see this, it is sufficient to provide for each equation of the family, say ax = a0, a point x ∈ RA
such that all the equations but ax = a0 are satisfied.
For equation xj1 = 0(∀ j ∈ Q) set x to be the (characteristic vector of the) path (Shj , 1, S1, S2,
..., Sm) with Shj = {j} consisting of a singleton node j ∈ Q (see Figure 6.4.4(a)).
For equation 6.4.11(3) set x to be the two subpaths (1, S1, ..., Sm)(Sh) (see Figure 6.4.4(b)).
And if equation 6.4.11(2) is active, set x to be the cycle on n−1 nodes (S1, ..., Sm), 1 �∈ Si, i =
1, ...m (see Figure 6.4.4(c)).

1j

Shj
= {j} S1 S2 Sm

...

1

S1 S2 Sm Sh

...

1

S2 SmS1

...

(a)

(b)

(c) 

Figure 6.4.4

We now show that (1) and (3), plus (2) if correct, form a (minimal) equation system for
the (relaxed) AHPPTW polytope PTW

2 , i.e., that no other independent equation exists. Let

μ =

{
1, if the condition in (2) is satisfied,
0, otherwise.

(6.4.15) Theorem.
Given an instance of the AHPPTW on n ≥ 4 nodes where only the time window for one node
is active, then

dim(PTW
2 ) = |A| − (|Q| + m + μ).

Proof. We give a direct proof, consisting of exhibiting |A| − (|Q| + m + μ) + 1 affinely
independent vertices of the polytope PTW

2 .
Consider first the face F of PTW

2 induced by x(δ−(1)) ≥ 0, containing all feasible paths
starting with node 1.
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Since we assume dj = +∞, ∀ j �= 1, every Hamiltonian path starting with node 1 is
feasible, hence a minimal equation system for this face is known to be

(i) xj1 = 0 ∀ j ∈ V \ {1},
(ii) x(δ−(j)) = 1 − xj1 ∀ j ∈ V \ {1},
(iii) x(δ+(1)) = 1.

Note that the right hand side of (ii) is 1. Therefore, dim(F ) = |A| − 2n + 1, thus there exist
dim(F ) + 1 = |A| − 2n+ 2 affinely independent vertices of this face. We need (n− 1− |Q|) +
(n− 1 −m) + (1 − μ) additional points, which we construct in the following way:

A. For each j ∈ (V \ {1}) \Q, construct the feasible path (j, 1, ....). They are affinely inde-
pendent due to equations (i) (since xj1 = 0 for all the remaining points so far considered).
Note that equations (ii)–(iii) still hold for these points.

B. For each h = 1, 2, ...,m, consider the component Sh. Let Th be any tree spanning Sh.
Choose any seed node rh ∈ Sh and give an orientation to the edges in Th so as to obtain
a directed tree (arborescence) rooted at rh. Then consider the nodes v ∈ Sh \ {rh} in any
sequence visiting each node after its father node in the arborescence. Let i be the father
node of v in the arborescence.
Since iv ∈ E, one of the two paths (v, i, 1, ...) or (i, v, 1, ...) is feasible and satisfies all the
equations (ii) except those with j = v or j = i.
Because of the particular sequence in visiting the nodes, all the points constructed so far
satisfy the equations (ii) written for j = v, hence the new point is affinely independent.
The above construction produces |Sh|−1 new points for each component Sh, i.e., n−1−m
new points in total.

C. If μ = 1, we are done; otherwise, the last point to be constructed is (..., 1). It is affinely
independent, since equation (iii) is satisfied by all the points so far constructed (since
n ≥ 4).

Call the instance of the AHPPTW 1–regular, if only one time window is active and the
associated auxiliary graph Ga is connected. This implies Q = ∅.

(6.4.16) Corollary.
Suppose we are given a 1–regular instance of the AHPPTW on n ≥ 4 nodes, then

dim(PTW
2 ) = |A| − 1 − μ.
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6.4.2 Relaxation II : Two active time windows

Now consider the case defined on a complete loop–free digraph D = (V, A), n := |V | and n ≥ 4,
where only two time windows are active. W.l.o.g. assume that nodes 1 and 2 correspond to the
nodes with the active time windows. The time windows for all nodes in V \{1, 2} are relaxed,
i.e., [0,∞). Furthermore, assume that the release dates for the two active time windows are
so that all nodes in V \ {1, 2} can be sequenced before {1, 2}, i.e., r1 ≥ M and r2 ≥ M .

Case 1: Both arcs feasible

We study first the case in which both arcs (1,2) and (2,1) are feasible, i.e.,

r1 + p1 + c12 ≤ d2
r2 + p2 + c21 ≤ d1

(6.4.17)

hold.
Note that due to the construction of the time windows, every feasible path can be “shifted”

so as to visit either node 1 or node 2 at its release time.
Indeed, let x be the (characteristic vector of) any Hamiltonian path of the form (..., k1, k2,

..., kr, ...), where k1 ∈ {1, 2} and kr = 3 − k1. Then x is feasible, if and only if

rk1 + (pk1 + ck1,k2) + ... + (pkr−1 + ckr−1,kr) ≤ dkr .

Let

σ =

⎧⎪⎨
⎪⎩

1, if no path of the form (..., 1, k, 2, ...)
or (..., 2, k, 1, ...) is feasible,

0, otherwise.

The conditions above can easily be checked by verifying

r1 + p1 + c1k + pk + ck2 ≤ d2

or
r2 + p2 + c2k + pk + ck1 ≤ d1

for all k ∈ V \ {1, 2}.
Now consider the following equations

(1) x(A) = n− 1
(2) x12 + x21 = 1 ( if σ = 1).

(6.4.18)

The two equations above are clearly valid and linearly independent.

(6.4.19) Theorem.
Assume we are given an instance of the AHPPTW on n ≥ 4 nodes, where only the time
windows for two nodes, say nodes 1 and 2, are active, r1 ≥ M and r2 ≥ M , where M is big
enough such that all nodes in V \{1, 2} can be sequenced before {1, 2}, and both arcs between
nodes 1 and 2 are feasible. Then

dim(PTW
2 ) = |A| − 1 − σ.
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Proof. Consider the face F of PTW
2 induced by the valid inequality x12 + x21 ≤ 1. Because

of our assumptions, every Hamiltonian path x, s.t. x12 + x21 = 1 is feasible w.r.t. the time
window, and hence belongs to F . Since x12 + x21 ≤ 1 defines a facet of the (unconstrained)
Hamiltonian path polytope PH , we have dim(PH) = |A| − 1 affinely independent points in F .
If σ = 1, we are done. Otherwise every feasible path x such that x21 = x12 = 0 produces an
additional independent point.
Therefore, we have |A|−1+(1−σ) affinely independent points in PTW

2 , from which the result
follows.

Case 2: Only one arc feasible

We now address the case in which conditions 6.4.17 do not hold. If both arcs (1,2) and (2,1)
are not feasible (i.e., r1 + p1 + c12 > d2 and r2 + p2 + c21 > d1), then the instance itself is not
feasible and PTW

2 = ∅.
Therefore, assume w.l.o.g. that (1,2) is feasible, but (2,1) is not, i.e.,

r1 + p1 + c12 ≤ d2
r2 + p2 + c21 > d1.

This implies that every feasible path must visit node 1 before node 2.
Construct a bipartite graph B = (N+ ∪N−, E), where each node k+ ∈ N+ corresponds

to the arc (1, k) ∈ δ+(1), k �= 2, each node h− ∈ N− to the arc (h, 2) ∈ δ−(2), h �= 1. We have
that an edge k+h− ∈ E whenever there exists a feasible path x, such that x1k = xh2 = 1.
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In other words k+h− belongs to E, if

r1 + p1 + c1k + pk + ckh + ph + ch2 ≤ d2, if h �= k,
r1 + p1 + c1k + pk + ck2 ≤ d2, if h = k.

Let S1, S2, ..., Sm be the m connected components of B (where Si ⊆ N+ ∪N−, i = 1, ..., m).
Consider the following equations

(1a) x(A) = n− 1
(1b) x21 = 0
(2) x(δ+(1)) = 1
(3) x(δ−(2)) = 1
(4)

∑
k+∈Si

x1k −
∑

h−∈Si
xh2 = 0 for i = 1, 2, ..., m

(6.4.20)



146 CHAPTER 6. HAMILTONIAN PATH PROBLEMS WITH TIME WINDOWS

Note that in case Si = {k+} (resp. Si = {h−}), the equation 6.4.20(4) becomes x1k = 0
(resp. xh2 = 0). Moreover, in case E = ∅ they imply x12 = 1 because of 6.4.20(2).

(6.4.21) Lemma.
Assume we are given an instance of the AHPPTW on n ≥ 4 nodes, where
• only the time windows for two nodes, say nodes 1 and 2, are active,
• r1 ≥ M and r2 ≥ M , where M is big enough such that all nodes in V \ {1, 2}

can be sequenced before {1, 2},
• and only one arc between the active nodes is feasible,

then equations 6.4.20(1)–(4) are valid for PTW
2 .

Proof. The validity of equations (1),(2),(3) is obvious.
We now prove the validity of equation (4). Take any feasible path x̄ and let k̄, h̄ ∈ V be
s.t. x̄1k̄ = x̄h̄2 = 1 (possibly k̄ = h̄). By definition, if (..., 1, k̄, ..., h̄, 2, ...), k̄ �= 2 (and hence
h̄ �= 1) then (k̄+, h̄−) ∈ E, hence (k̄+, h̄−) belong to the same component, say Sī. Let ī = 0,
if x̄12 = 1; i.e., k̄ = 2 and h̄ = 1. Therefore, all equations (4) are satisfied by x̄, since both
sums are either 0 (when i �= ī) or 1 (when i = ī).

Note that adding up all equations 6.4.20(4) leads to

x(δ+(1)) − x12 = x(δ−(2)) − x12.

Hence one of the equations 6.4.20(2) and (3) is redundant.

(6.4.22) Lemma.
Assume we are given an instance of the AHPPTW on n ≥ 4 nodes, where
• only the time windows for two nodes, say nodes 1 and 2, are active,
• r1 ≥ M and r2 ≥ M , where M is big enough such that all nodes in V \ {1, 2}

can be sequenced before {1, 2},
• and only one arc between the active nodes is feasible,

then the equations 6.4.20(1a),(1b),(2),(4) are linearly independent.

Proof. We prove the linear independence by exhibiting for each such equation, say ax = a0,
a point x ∈ RA satisfying all the equations except ax = a0.

– For equation (1a) consider the Hamiltonian cycle (1, 2, ...). Note that all equations (4) are
of the form 0 − 0 = 0.(See Figure 6.4.6(a)).

– For equation (1b) consider the cycle (1, 2) and the Hamiltonian path through the remaining
nodes (see Figure 6.4.6(d)). (All equations (4) are of the form 0 − 0 = 0.)

– For equation (2) consider the Hamiltonian path (2, , ..., 1). Note that again all equations
(4) are of the form 0 − 0 = 0.

– For equation (4) consider the path (1, a) and the Hamiltonian cycle (2, ...) through the
nodes in V \ {1, a} where a ∈ Si (see Figure 6.4.6(b)).
If Si ∩N+ = ∅, i.e., Si = {h−}, then take the point shown in Figure 6.4.6(c). Note that
these points do necessarily violate the redundant equation (3).
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We next show that the inequalities 6.4.20(1),(2),(4) form a (minimal) equation system for
PTW
2 , having rank m + 3.

(6.4.23) Theorem.
Assume we are given an instance of the AHPPTW on n ≥ 4 nodes, where
• only the time windows for two nodes, say nodes 1 and 2, are active,
• r1 ≥ M and r2 ≥ M , where M is big enough such that all nodes in V \ {1, 2}

can be sequenced before {1, 2},
• and only one arc between the active nodes is feasible,

then
dim(PTW

2 ) = |A| − (m + 3).

Proof. We construct n · (n− 1) − (m + 3) + 1 affinely independent x ∈ PTW
2 .

Consider first the face F of PTW
2 induced by x12 ≤ 1. The dimension of F is easily

established, since there is a one–to–one correspondence between F and the (unconstrained)
Hamiltonian path polytope on n − 1 nodes, PH

n−1. Therefore, we have dim(PH
n−1) + 1 =

((n − 1)(n− 2) − 1) + 1 affinely independent feasible Hamiltonian paths x having x12 = 1,
and hence satisfying

(i) x1k = 0 ∀ k = 3, . . . , n
(ii) xh2 = 0 ∀ h = 3, . . . , n

Note that we have an equation (i) and (ii) for each node in N+∪N−. We need 2 · (n− 2)−m
additional points x ∈ PTW

2 which we obtain as follows.
For i = 1, 2, ..,m, consider the component Si and let Ti ⊆ E be a tree spanning Si. Choose

any root node ri ∈ Si, and give an orientation to the |Si| − 1 edges of Ti so as to obtain a
directed tree (arborescence) rooted at ri.

Then consider, in turn, the nodes vα ∈ Si \ {ri}, α ∈ {+,−}, in a sequence visiting each
node vα after its father node in the arborescence. For each such node vα, let i−α be its father
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Si
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root

Figure 6.4.7

in the arborescence, and construct the feasible point

(1, v, i, 2, ...) if vα = v+

(1, i, v, 2, ...) if vα = v−

(1, v, 2, ...) in case v = i.

Note that this point satisfies all equations (i)–(ii), except the two equations associated with
the arcs in δ+(1) ∪ δ−(2) corresponding to the nodes vα and i−α of the bipartite graph B.
Because of the particular sequence in visiting the nodes of Si, all previously constructed points
satisfy the equation (i) and (ii) associated with vα, hence the new point is affinely independent
from the previous ones.

The above construction produces |Si|−1 new points for each component Si, hence 2 · (n−
2) −m new points in total. The thesis follows.

We call the problem instance of the AHPPTW 2–regular, if only the time windows for
two nodes, say nodes 1 and 2, are active, r1 ≥ M and r2 ≥ M , where M is big enough such
that all nodes in V \ {1, 2} can be sequenced before {1, 2}, and when its associated bipartite
graph B is connected (thus implies that all the arcs (1, k) and (h, 2) can be part of a feasible
path). In this case 6.4.20(1),(2),(3) form a minimal equation system for PTW

2 , i.e., we have
the following corollary.

(6.4.24) Corollary.
Suppose we are given a 2–regular instance of the AHPPTW on n ≥ 4 nodes, then

dim(PTW
2 ) = |A| − 4.
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6.5 Valid inequalities

As every feasible Hamiltonian path is a solution to the AHPP, we know that every valid and
in particular every facet defining inequality for the asymmetric Hamiltonian path polytope
is valid for the time constrained polytopes PTW

1 and PTW
2 . But in most cases these ine-

qualities can be lifted in several ways. Not many classes of valid inequalities for the time
constrained ATSP can be found in the literature. In Desrochers, Laporte [DL91] lifted ver-
sions of the Miller–Tucker–Zemlin subtour elimination constraints and lifted lower and upper
bound constraints on the t–variables can be found.

If we ignore the setup costs cij, the AHPPTW is related to single machine sequencing or
scheduling problems, sequencing a set of jobs V with processing time pi for all nodes i ∈ V
on a single machine such that given time window constraints are satisfied. Balas [Bal85]
introduced inequalities for this class of problems, that can be used for the AHPPTW, if node
variables (as in model 1) are used. Applegate and Cook [AC91] performed computational
experiments with several of these classes for the job shop scheduling problem and claimed
that they might be helpful for the solution of these problems within a polyhedral approach.
Note that in the job shop scheduling problem another objective, namely the minimization of
the makespan, is considered.

Recall that the AHPTW–polytopes are defined as follows

PTW
1 := conv{(x, t) ∈ RA×V | (x, t) satisfies (6.3.9)(1)–(8)}

and
PTW
2 := conv{x ∈ RA | x satisfies (6.3.10)(1)–(6)}.

In this section we summarize the inequalities valid for PTW
1 and PTW

2 known from the litera-
ture and state new classes of valid inequalities. This section is organized as follows. First we
give inequalities involving x–variables only, next we list inequalities with x– and t–variables,
and inequalities using only t–variables. Finally general procedures for obtaining valid cuts
are described. The preliminary computational experiments showed that model 2 is superior
to model 1. Therefore, many of the inequalities presented here (in particular those involving
the node variables ti) are just listed for the sake of completeness but are not yet used, and
probably will not be used, in the branch&cut code.

6.5.1 Infeasible path constraints

These inequalities are derived from the fact that certain paths are infeasible, i.e., they violate
a time window constraint. For a given infeasible path P = (v1, ..., vk) the basic version of
these inequalities is given by

x(P ) ≤ k − 2 ∀ infeasible paths P = (v1, v2, ..., vk).

There exist several possibilities to lift this inequality. In the following we discuss in detail
one of these lifted inequalities, the so–called tournament constraints. This is followed by
a list of other inequalities derived from of a lifting of the basic version.
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Tournament constraints

(6.5.25) Lemma.
For all infeasible paths P = (v1, ..., vk) the inequality

k−1∑
i=1

k∑
j=i+1

xvivj ≤ k − 2

is valid with respect to PTW
1 and PTW

2 .

Proof. Note that
∑k−1

i=1

∑k
j=i+1 xvivj = k−1 implies xvivi+1 = 1 for i = 1, ..., k−1. Therefore,

the inequality is valid iff x(P ) ≤ k − 2 is valid, i.e., the path P is infeasible.

Figure 6.5.8 gives an example of a tournament inequality derived from an infeasible path on
4 nodes.

_< 2

l

kj

i

path (i,j,k,l) infeasible 

Figure 6.5.8 Tournament constraint

The separation problem for the tournament constraints can be solved with the help of
a simple enumeration procedure. Suppose we are given a (fractional) point x∗. According to
Savelsbergh [Sav94] there are only polynomially many paths Pk for which

∑k−1
i=1

∑k
j=i+1 x

∗
vivj−

k + 2 is greater than 0. Note that for this conclusion the assumption that
∑

i∈V x∗ij =∑
j∈V x∗ij = 1 is necessary. These paths can easily be detected by enumeration (backtrack as

soon as
∑k−1

i=1

∑k
j=i+1 x

∗
vivj − k + 2 ≤ 0).

Lifted tournament constraints

The tournament constraints are not very strong, as they can be further lifted in several ways,
in the case when other infeasible paths through the nodes v1, ..., vk exist. For the tournament
constraint depicted in Figure 6.5.8, e.g., the variable xki might be added to the left hand side,
if the path (j, k, i, l) is infeasible.

(6.5.26) Definition.
Given a node set W ⊂ V . With Φ[W ] we denote a permutation of the nodes in W . �

(6.5.27) Theorem.
Let P = (v1, ..., vk) be a path and S := (v2, ..., vk−1), Q := (v1, ..., vk−1) be two subpaths.

(a) If all paths P ′ := (Φ[Q], vk) are infeasible, then the inequality

x(A(Q)) + x(Q : vk) ≤ k − 2

is valid with respect to PTW
1 and PTW

2 .
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(b) If all paths P ′ := (v1,Φ[S], vk) are infeasible, then the inequality

x(v1 : S) + x(A(S)) + x(S : vk) + xv1vk ≤ k − 2

is valid with respect to PTW
1 and PTW

2 .

Proof.

(a) If the condition is satisfied, all paths (Q, vk) are infeasible. Thus x(A(Q))+ x(Q : vk) =
k − 1 only holds for an infeasible path.

(b) Note that x(A(S)) ≤ k − 3 and that xv1vk = 1 implies x(v1 : S) = x(S : vk) = 0. If
xv1vk = 0 holds, we know that x(v1 : S) + x(A(S)) + x(S : vk) = k − 1 only holds for
infeasible paths.

Note that the inequality in (6.5.27)(a) is a strengthening of the subtour elimination con-
straint x(A(Q)) ≤ k−2. The inequality in (6.5.27)(b) has a similar structure as the precedence
forcing constraint (PFC)

x(j : W ) + x(W : j) + x(A(W )) + x(W : i) ≤ |W |

for a given precedence relationship i ≺ j (see Section 5.4.1). Note that for sets U ⊂ W a
similar PFC can be stated. This is not true for the inequality of type (6.5.27)(b) because for
a subset U ⊂ S, the infeasibility of the paths (v1,Φ[U ], vk) can no longer be guaranteed. Fur-
thermore, it is not possible to strengthen the inequality by lifting the variables corresponding
to the “reverse arcs” (vk : S) and (S : v1), as the infeasibility of all paths using these arcs
cannot be guaranteed.

It is not easy to decide whether all the paths (Φ[Q], vk) and (v1,Φ[S], vk) are infeasible.
For this the solution of an AHPPTW on Q, resp. S, is necessary in general. But there exist
conditions that imply the infeasibility of the paths and that can easily be checked. Some of
these conditions are given in the following lemma.

(6.5.28) Lemma.
Let P = (v1, ..., vk) be an infeasible path and S := (v2, ..., vk−1), Q := (v1, ..., vk−1) be two
subpaths.

(a) If

min
vi∈Q

{rvi} +
k−1∑
i=1

pvi +
k−1∑
i=1

min{cvivj | (vi, vj) ∈ A, vj ∈ Q ∪ {vk}} > dk,

then all paths P ′ := (Φ[Q], vk) are infeasible.

(b) If

rv1 + min{cv1vj | (v1, vj) ∈ A, vj ∈ S} +
k−1∑
i=1

pvi+

k−1∑
i=1

min{cvivj | (vi, vj) ∈ A, vj ∈ S ∪ {vk}} > dk

then all paths P ′ := (v1,Φ[S], vk) are infeasible.
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Proof. By definition.

In case that none of the conditions of Lemma (6.5.28) is satisfied, no efficient way of
strengthening the tournament constraints is known. The lifted arcs can be found by enumer-
ating all paths through P , which is computationally exhaustive for longer paths.

Generalized tournament constraints

In case that the triangle inequality on ϑ is satisfied the tournament constraint

k−1∑
i=1

k∑
j=i+1

xvivj ≤ k − 2

can easily be generalized using a clique lifting technique as described in Balas and Fischetti
[BF93b]. We obtain the following theorem.

(6.5.29) Theorem.
Let P = (v1, ..., vk) be an infeasible path and let Si ⊂ V, i = 1, ..., k be disjoint node sets
containing a node of the path P , i.e., vi ∈ Si, ∀i = 1, ..., k, Si ∩ Sj = ∅ for all i �= j. Assume
that ϑij ≤ ϑik + ϑkj holds for all i, j, k ∈ V .
Then the inequality

k∑
i=1

x(A(Si)) +
k−1∑
i=1

k∑
j=i+1

x(Si : Sj) ≤
k∑

i=1

|Si| − 2

is valid with respect to PTW
1 and PTW

2 , if

(i) the infeasibility of the path P is based on the fact that the time window for vk is
violated, or

(ii) the infeasibility of the path P is based on the fact that a node vl /∈ P can not be covered
by path P , and vl �∈ ∪k

i=1Si.

Proof. Note that the inequality can only be violated by an feasible path P′, if

x(A(Si)) = |Si| − 1 ∀i = 1, ..., k, and
k−1∑
i=1

k∑
j=i+1

x(Si : Sj) = k − 1

hold. But this implies that the infeasible path (possibly including some detours through the
Si) has to be used.

See Figure (6.5.9)(a) for an example of a generalized tournament constraint based on an
infeasible path of four nodes.

Note, that the assumption of the valid triangle inequality on ϑ is essential. Otherwise, a
detour through the nodes of Si could result in a feasible path. In the case that the triangle
inequality does not hold we obtain the inequality

k∑
i=1

x(A(Si)) +
k−1∑
i=1

k∑
j=i+1

xvivj +
k∑

i=2
|Si|>1

i−1∑
j=1

|Sj |>1

x(vi : Sj) ≤
k∑

i=1

|Si| − 2.
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Figure 6.5.9 Generalized tournament constraints

(See Figure (6.5.9)(b) for an example of an inequality of this type.) Note, that for the case
that there exist a Si with |Si| ≥ 2 the validity of this inequality is not based on the infeasibility
of path P . For this case, the inequality is valid for the unconstrained ATSP as well and is a
generalization of the C3–inequality (see Section 1.3). To see the validity of the inequality for
the ATSP, assume that there exists a feasible path H violating the inequality. It is easy to
see that H has to satisfy the two trivially valid inequalities

k∑
i=1

x(A(Si)) ≤ |Si| − 1 and

k−1∑
i=1

k∑
j=i+1

xvivj +
k∑

i=2
|Si|>1

i−1∑
j=1

|Sj |>1

x(vi : Sj) ≤ k − 1

with equality; a contradiction.
Note that for the path P = (v1, v2, v3) and |S1| = |S3| = 1 and |S2| = k for some k ≥ 2,

we obtain a Tk–inequality.
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Concatenation of paths

It can happen that paths are feasible in themselves but that the combination of these feasible
paths leads to an infeasibility.

(6.5.30) Definition.
Suppose we are given a family P = {P1, P2, ..., Pk} of node disjoint simple paths, Pi ∩ Pj =
∅, ∀i, j = 1, ..., k, i �= j. Let π be a permutation of the indices of P .
The path P = (Pπ(1), Pπ(2), ..., Pπ(k)) is called a concatenation of the paths in P . �

(6.5.31) Theorem.
Let P = {P1, P2, ..., Pk} be a family of node disjoint simple paths and let [Pi] denote the
transitive closure of path Pi. Furthermore, assume that the triangle inequality ϑij ≤ ϑik +ϑkj
holds for all i, j, k ∈ V . If any concatenation of the paths in P is infeasible, the inequality

k∑
i=1

x([Pi]) ≤
k∑

i=1

|Pi| − k − 1

is valid with respect to PTW
1 and PTW

2 .

Proof. Let Pi = (xiv1 , ..., x
i
vl

) denote the i–th path in P .

Note that
∑k

i=1 x([Pi]) =
∑k

i=1 |Pi| − k implies xivj ,vj+1
= 1 for all j = 1, ...., |Pi| − 1 in each

path Pi ∈ P . But at least one arc has to be forbidden as any concatenation of the paths is
infeasible.

For the case P = {P1, P2} we show one way of a further strengthening of such an inequality.

(6.5.32) Theorem.
Let P1 = (v1, v2, ..., vk) and P2 = (u1, u2, ..., ul) be two node disjoint simple paths and assume
that the triangle inequality ϑij ≤ ϑik + ϑkj holds for all i, j, k ∈ V . If any concatenation of
the paths P1 and P2 is infeasible, then the inequality

x([P1]) + x([P2]) +
k−1∑
i=1

l∑
j=2

xviuj ≤ k + l − 3

is valid with respect to PTW
1 and PTW

2 .

Proof. Let m :=
∑k−1

i=1

∑l
j=2 xviuj .

If m = 0, the inequality is valid due to Theorem (6.5.31).
Note that if m ≥ 1, the inequalities x([P1]) ≤ k − 1 − m and x([P2]) ≤ l − 1 − m hold. The
result follows.

In Theorems (6.5.31) and (6.5.32) the triangle inequality is required in the concatenation
of the paths. If this property does not hold, it is necessary to use the shortest path between
the paths in P in order to connect them.

In the inequalities in (6.5.31) and (6.5.32) we used the tournament constraint in each path
in P . Note that any of the infeasible path inequalities presented in the following could have
been used instead.
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Other infeasible path inequalities

Given an infeasible path P = (v1, ..., vk), one possible way of strengthening the basic infeasible
path constraint x(P ) ≤ k−2 to a tournament constraint x([P ]) ≤ k−2 was already presented.
But there exist several other ways to lift the basic infeasible path constraint. In this section,
we give some of these inequalities. Note that the validity of these inequalities is only based
on the assumption of the infeasibility of path P = (v1, ..., vk).
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k
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k

_< 2

j

i l

k

2
(a)

(b) (c)

(d) (e)

Figure 6.5.10 Lifted infeasible path constraints (1)

(6.5.33) Theorem. (Lifted path inequalities)
Let P = (v1, v2, ..., vk) be an infeasible path and x(P ) :=

∑k−1
j=1 xvjvj+1 . Then the following

inequalities are valid for PTW
1 and PTW

2 :

(a) x(P )+ 2
k−2∑
j=2

xvk−1vj +
k−3∑
j=2

k−2∑
l=j+1

xvlvj +
k−2∑
j=2

xvkvj ≤ k − 2

(b) x(P )+
k−2∑
j=1

xvjvk +
k−2∑
j=2

j−1∑
l=1

xvjvl ≤ k − 2

(c) x(P )+
k−1∑
j=2

j−1∑
l=1

xvjvl ≤ k − 2

(d) x(P )+
k−1∑
j=2

k∑
l=j+1

xvlvj ≤ k − 2

(e) x(P )+
k∑

j=3
xv1vj +

k−1∑
j=3

k∑
l=j+1

xvlvj ≤ k − 2

Proof.
Due to the infeasibility of the path P the inequality x(P ) ≤ k − 2 holds.

(a) Assume that m := 2
∑k−2

j=2 xvk−1vj +
∑k−3

j=2

∑k−2
l=j+1 xvlvj +

∑k−2
j=2 xvkvj .

As all arcs with coefficient 2 are leaving node vk−1 and as there are only k − 3 nodes
entered by lifted arcs, we know that m ≤ k − 2. Due to x(δ−(i)) ≤ 1, x(δ+(i)) ≤ 1 and
the fact that cycles are not feasible, it follows that x(P ) ≤ k − 2 − m. This proves the
result.
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(b) Assume that m :=
∑k−2

j=1 xvjvk +
∑k−2

j=2

∑j−1
l=1 xvjvl .

It is easy to see that m ≤ k − 2 and x(P ) ≤ k − 2 − m hold. The result follows.

(c) Assume that m :=
∑k−1

j=2

∑j−1
l=1 xvjvl .

Due to x(δ−(i)) ≤ 1 and x(δ+(i)) ≤ 1, we know that m ≤ k − 2 and x(P ) ≤ k − 2 − m
hold. The result follows.

(d) Analogous.

(e) Analogous.

Figure 6.5.10 gives examples of these inequalities for the infeasible path P = (i, j, k, l).
These inequalities can also be further lifted in the case where other infeasible paths through
the nodes of P exist.

For the sake of completeness and without stating the inequalities explicitly or giving an
explicit proof of their validity further lifted inequalities for infeasible paths of length 4 are
given in Figures 6.5.11–6.5.13. To avoid fractional coefficients all values of the variables in
Figure 6.5.13 have been multiplied by 2 or 3.
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Figure 6.5.11 Lifted infeasible path constraints (2)
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Figure 6.5.12 Lifted infeasible path constraints (3)



6.5. VALID INEQUALITIES 157

l

kj

i

_< 4

_< 6

j

i l

k

2

2

2

2
3

3

3 _< 6

j

i l

k

4

3

3
3

2

2

(a)

2
2

2

2

(c)(b)

Figure 6.5.13 Lifted infeasible path constraints (4)

6.5.2 A lifting procedure

In this section, we describe a lifting procedure, called V–lifting, that can be used to construct
new families of valid infeasible path inequalities for the AHPPTW. Assume that the triangle
inequality on ϑ is satisfied, i.e., ϑij ≤ ϑik + ϑkj holds for all i, j, k ∈ V .
Suppose we are given the valid infeasible path constraint αx ≤ α0 where the infeasibility of
the underlying infeasible path P = (v1, ..., vm) is based on the fact that P violates the time
window for vm. Let βx ≤ α0 + 1 be an inequality such that the following conditions are
satisfied:

(1) ∃k ∈ V, s.t. αij = βij ∀ (i, j) �∈ δ(k)
(2) αij = 0 ∀(i, j) ∈ δ(k)
(3) ∃u, v �= k s.t. βuv = βuk = βkv = 1

and βij = 0 ∀ (i, j) ∈ δ(k) \ {(u, k), (k, v)}
As the triangle inequality on ϑ is satisfied, the inequality βx ≤ α0 + 1 is valid as well. Now,
adding up the following three valid inequalities:

1
2 [ αx ≤ α0 ]
1
2 [ βx ≤ α0 + 1 ]
1
2 [ xuk + xkv + 2xuv ≤ 2 ]

we obtain
1

2
αx +

1

2
βx +

1

2
(xuk + xkv) + xuv ≤ 1

2
α0 +

1

2
α0 +

1

2
+ 1

that is

αx + xuk + xkv + xuv ≤ α0 + 1 + �1

2
�

i.e., we add the term xuk + xkv + xuv to the left hand side and increase the right hand side
by 1. Note that the coefficient of variable xuv will increase by 1 when the V–lifting operation
is applied. Figure 6.5.14 gives an example of a lifted inequality derived from a tournament
constraint.
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Figure 6.5.14 Lifted tournament constraint

(6.5.34) Remarks.
1. In Lemma (6.1.2) we have seen another type of infeasibility, i.e., a path P = (v1, ..., vm)

is infeasible, if a node vl �∈ {v1, ..., vm} cannot be covered by P . If in the above lift-
ing procedure k �= vl holds, the V–lifting procedure can also be applied to this type of
inequality.

2. The V–lifting procedure is in some analogy to the T–lifting for the ATSP described by
Fischetti [Fis92]. Here to a given ATSP–inequality αx ≤ α0 “triangles” xuk + xkv + xuv
are attached while the right hand side is increased by 1. But in contrast the inequality
and the triangles “intersect” not in an arc (u, v) but only in one single node k. In the Tk–
inequalities we have seen an example of a T–lifted subtour elimination constraint (SEC).
Note that the T–lifting procedure cannot be applied to the infeasible path constraints, as
the obtained inequality is not necessarily valid. Here the underlying inequality αx ≤ α0
must be valid for the ATSP.

3. It is easy to see that the lifting procedure as stated above is not valid for the ATSP. To
see this consider αx ≤ α0 to be subtour elimination constraint x(A(W )) ≤ n− 2 on n− 1
nodes. The V–lifted inequality x(A(W )) + xuk + xkv + xuv ≤ n− 1 is obviously not valid,
since a tour is cut off.
We conjecture that the V–lifting procedure is valid for the ATSP as well under the stronger
condition

(1′) ∃k ∈ V, s.t. αij = βij ∀ i, j �∈ δ(k),
(2′) αij = 0 ∀(i, j) ∈ δ({k, l}), k �= l
(3′) ∃u, v �= k s.t. βuv = βuk = βkv = 1

and βij = 0 ∀ (i, j) ∈ δ(k) \ {(u, k), (k, v)}
i.e., one node remains isolated after the lifting. A proof remains open.
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6.5.3 Generalized predecessor/successor–inequality

In Chapter 5 the predecessor, successor, and predecessor–successor inequalities have been
presented. These inequalities introduced by Balas et al. [BFP92] take the precedence structure
among the nodes into consideration and can be strengthened for the time constrained AHPP.

Generalized (π, σ)–inequality

The (π, σ)–inequalities can be described as follows. We are given two node sets X, Y ⊂ V
such that X has to precede Y , i.e., i ≺ j for all pairs i ∈ X, j ∈ Y . Furthermore, we are
given a node set S ⊂ V such that X is contained in S and Y in its complement S̄. In order
not to violate the precedence relationships among the nodes in X and Y , a feasible path
cannot cross the cut (S : S̄) through an arc incident with W := π(X)∪ σ(Y ). Therefore, the
(π, σ)–inequality

x(S \W : S̄ \W ) ≥ 1

is valid. Due to the time window restrictions, other paths from S \W to S̄ \ W might be
infeasible (cmp. Figure 6.5.15). They can also be eliminated from the left hand side.

(6.5.35) Lemma.
Given D = (V, A) and a precedence digraph P = (V, R). Let X, Y ⊂ V , s.t. i ≺ j ∀ pairs
i ∈ X, j ∈ Y , W := π(X)∪ σ(Y ). Assume that the triangle inequality on ϑ is satisfied.
Set Q to be the infeasible arc set
Q := {(u, v) ∈ A | ∃i ∈ X, j ∈ Y, s.t. (i, u, v, j) is infeasible} ∪

{(i, k) and (k, j) ∈ A | ∃i ∈ X, j ∈ Y, s.t. (i, k, j) is infeasible}.

Then for all S ⊂ V , s.t. X ⊂ S, Y ⊂ S̄ the inequality

x((S \W : S̄ \W ) \Q) ≥ 1

is valid with respect to PTW
1 and PTW

2 .

Proof. For any feasible Hamiltonian path the subpath from the node of X visited last to
the node of Y visited first cannot traverse any node of W without violating a precedence
relationship. Furthermore, it cannot use an arc of Q without being infeasible. Thus, an arc
in (S \W : S̄ \W ) \Q has to be used.

If X = {i} and Y = {j}, the generalized (π, σ)–inequality is called simple. The separa-
tion problem for the simple generalized (π, σ)–inequalities can heuristically be solved via
a separation procedure similar to the one used for the weak (π, σ)–inequalities (see Chap-
ter 5.4.20).

Suppose we are given a fractional point x∗. Set up a capacitated LP–solution digraph
D∗ = (V, A∗) with (i, j) ∈ A∗, if x∗ij > 0. To each (i, j) ∈ A∗ associate a capacity c∗ij = x∗ij.
For all i ≺ j apply the following procedure. Construct a digraph D̃ = (Ṽ , Ã) from D∗ by
deleting

– all nodes in π(i) ∪ σ(j),

– all nodes k such that (i, k, j) is infeasible, i.e., ri + ϑik + ϑkj > dj,

– all arcs (u, v) such that (i, u, v, j) is infeasible, i.e., ri + ϑiu + ϑuv + ϑvj > dj.
If we do not succeed to send one unit of flow from i to j in D̃, the minimum capacity cut in
D̃ separating i from j defines a violated simple generalized (π, σ)–inequality.
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Generalized π–inequality

In a similar way the π–inequality (see Section 5.4.9) can be strengthened.

(6.5.36) Lemma.
Given an instance of the AHPPTW defined on the digraph D = (V, A) with a node d ∈ V
such that |δ+(d)| = 0. Assume that the triangle inequality on ϑ is satisfied.
Let S ⊂ V \ {d}, S̄ := V \ S, and set Q to be the infeasible arc set
Q := {(u, v) ∈ A | ∃i ∈ S, s.t. (i, u, v, d) is infeasible} ∪

{(i, k) and (k, d) ∈ A | ∃i ∈ S, s.t. (i, k, d) is infeasible}.
Then the inequality

x((S \ π(S) : S̄ \ π(S)) \Q) ≥ 1

is valid for PTW
1 and PTW

2 .

Proof. Let H be a feasible Hamiltonian path. Let h be the node of S visited last. Note that
neither h nor the successor of h can be in π(S). Furthermore, H cannot leave S via an arc
contained in Q without being infeasible.

In analogy to the generalized (π, σ)–inequalities, an heuristic separation routine can be
designed for the generalized π–inequalities. For all i ∈ V perform the following operations.
First delete all nodes in π(i) from D∗; next delete all nodes k such that (i, k, d) is infeasible,
and then delete all arcs (u, v) from D∗ such that (i, u, v, d) is infeasible. If it is not possible
to send a flow of value one from i to d, the minimum capacity cut in D∗ that separates i from
d defines a violated generalized π–inequality.

Generalized σ–inequality

(6.5.37) Lemma.
Given an instance of the AHPPTW defined on the digraph D = (V, A) with a node s ∈ V
such that |δ−(s)| = 0. Assume that the triangle inequality on ϑ is satisfied.
Let S ⊂ V \ {s}, S̄ := V \ S, and set Q to be the infeasible arc set
Q := {(u, v) ∈ A | ∃j ∈ S, s.t. (s, u, v, j) is infeasible} ∪

{(s, k) and (k, j) ∈ A | ∃j ∈ S, s.t. (s, k, j) is infeasible}.
Then the inequality

x((S̄ \ σ(S) : S \ σ(S)) \Q) ≥ 1

is valid for PTW
1 and PTW

2 .
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Proof. Let H be a feasible Hamiltonian path. Let h be the node of S visited first. Note that
neither h nor the predecessor of h can be in σ(S). Furthermore, H cannot enter S via an arc
contained in Q without being infeasible.

The separation routine for the generalized σ–inequalities is similar to the one for the
generalized π–inequalities. In contrast to the latter routine the nodes in σ(i), the nodes
k corresponding to infeasible paths (s, k, i) and the arcs corresponding to infeasible paths
(s, u, v, i) are deleted. The flow is sent from s to i and the minimum capacity cut that
separates s from i defines a violated simple generalized σ–inequality.
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6.5.4 Strengthening of the MTZ–inequalities

In Section 6.3.1 the MTZ–subtour elimination constraints for the AHPPTW have been intro-
duced,i.e.,

ti + ϑij − (1 − xij) ·Mij ≤ tj(6.5.38)

Taking the reverse arcs (j, i) ∈ A and infeasible arc combinations into account Desrochers
and Laporte [DL91] observed that these inequalities can be lifted. In case that precedences
get involved the MTZ–inequalities can even be further strengthened.

Reverse arcs

(6.5.39) Theorem. (Lifted MTZ–inequalities)(Desrochers, Laporte, 91)
Let aji := max{ϑji, ri−dj}, Mij ≥ di+ϑij−rj. Then for all i, j = 1, ..., n, i �= j the inequality

ti + ϑij − (1 − xij) ·Mij + (Mij − ϑij − aji) · xji ≤ tj

is valid for PTW
1 .

Proof. See [DL91].

Infeasible paths

These inequalities can still be further strengthened by taking infeasible arc combinations into
account. For the sake of simplicity we give an example for the case where the path (k, i, j) is
infeasible.

(6.5.40) Lemma. (Desrochers, Laporte, 91)
Let i, j, k ∈ V such that rk + ϑki + ϑij > dj. Let aji := max{ϑji, ri − dj}, bki ≤ M − cij −
min{dk + cki, di} and M ≥ maxij{cij + cji}. Then the inequality

ti + ϑij − (1 − xij) ·M + (M − ϑij − aji) · xji + bkixki ≤ tj

is valid for PTW
1 .

Proof. See [DL91].

Precedences

The standard MTZ–inequality (6.5.38) can be strengthened in case that a precedence rela-
tionship i ≺ j is involved. Therefore, assume i ≺ j. As i must be scheduled before j, we have
that ti ≤ tj and, even more, that the inequality

ti + ϑijxij ≤ tj(6.5.41)

is valid. But this inequality is dominated when di + ϑij ≤ rj, since

ti + ϑijxij ≤ di + ϑijxij ≤ di + ϑij ≤ rj(≤ tj)

is a valid inequality.
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So far, only the case where j is sequenced directly after i has been considered in the
MTZ–inequalities. It could happen that one or more nodes are sequenced between i and j.
We now give a strengthening of the MTZ–inequality taking possible nodes k into account that
are sequenced in between.
As

∑
j∈V xij =

∑
i∈V xij = 1, the inequality (6.5.41) can be further strengthened, since

ti + ϑijxij +
∑
k �=i,j

(ωik + ϑkj)xkj ≤ tj(6.5.42)

is a valid inequality.

6.5.5 Strengthening of the bounds on the t-variables

Desrochers and Laporte [DL91] observed that the bounds on the t–variables ri ≤ ti ≤ di can
also be lifted, taking other arc combinations into account.

(6.5.43) Theorem. (Lifted t–bounds)(Desrochers, Laporte, 91)
Let aji := max{0, rj − ri + ϑji} and bij := max{0, di − dj + ϑij}. Then the inequalities

(i) ri +
∑n

j=1
i�=j

ajixji ≤ ti ∀ i ∈ V

(ii) di −∑n
j=1
i�=j

bijxij ≥ ti ∀ i ∈ V

are valid for PTW
1 .

Proof. See [DL91].
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6.5.6 Inequalities based on t–variables

There is a relation between the AHPPTW and one–machine scheduling problems with time
windows. This problem is to sequence n jobs on a single machine subject to a given set
of time windows while minimize a certain objective function. Balas [Bal85] and Dyer and
Wolsey [DW90] considered the case where only release dates are present. The inequalities
they derived can be used for the AHPPTW too. In the following we give two examples. So
far, these inequalities are not used in the branch&cut code.

In scheduling problems, very often only processing times pi but no set–up costs cij are
present. Therefore, it is helpful to construct an equivalent problem instance where the pro-
cessing times are increased and the cost coefficients are decreased as much as possible. To
calculate the amount by which the processing times, resp. the cost coefficients, might be
changed, the following assignment problem is solved:

min cTx
s.t. (1)

∑
i∈V xij = 1 ∀j ∈ V

(2)
∑

j∈V xij = 1 ∀i ∈ V
(3) xij ≥ 0 ∀(i, j) ∈ A

assuming that cii = ∞ ∀ i ∈ V . On the other hand, consider the dual problem

max
∑

i∈V (ui + vi)
s.t. cij − ui − vj ≥ 0 ∀i, j ∈ V.

Update now processing time and cost coefficients by

p̃i := pi + ui + vi,

c̃ij := cij − ui − vj.

Alternatively, one can proceed heuristically: Subtract the biggest value ai, resp. bi, from each
row, resp. column, in the cost matrix C = (cij) i=1,...,n

j=1,...,n
such that all cij remain nonnegative

and set

p̃i := pi + ai + bi,

c̃ij := cij − ai − bj.

Basic cuts

This class of inequalities has been introduced by Dyer and Wolsey [DW90].

Let S ⊂ V be a subset of the jobs to be processed. By considering the order in which the
jobs in S are scheduled, it is easy to check that the inequality

∑
j∈S

p̃j · tj ≥ min
j∈S

{rj} ·
∑
j∈S

p̃j +
∑

i �=j∈S
p̃i · p̃j

is satisfied by all possible sequences of the jobs.
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Two–job cuts

This class of inequalities has been introduced by Balas [Bal85]. It is a sharpening of the basic
cut for a pair {i, j}.

Suppose rj < ri + p̃i and ri < rj + p̃j. The two–job cut involving only processing times can
be written as

(p̃i + ri − rj) · ti + (p̃j + rj − ri) · tj ≥ p̃i · p̃j + ri · p̃j + rj · p̃i
(see [AC91]). By verifying that the inequality holds for the earliest possible starting times of
the two possible orderings of i and j, it is easy to see that the inequality is valid.

Balas [Bal85] already stated a sharpened version of the two–job cut involving order de-
pendent processing times. This inequality can be written as

(ωij + ri − rj) · ti + (ωji + rj − ri) ≥ ωij · ωji + ri · ωji + rj · ωij .

Violated inequalities of this class can be found by enumeration of all i and j satisfying
rj < ri + p̃i and ri < rj + p̃j.
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6.5.7 General cutting planes

Clique cuts

We now present a general scheme for obtaining valid cuts that is due to Balas [Bal85]. We
present it for the more general case where node and arc variables are present. This concept
is based on the enumeration of all feasible solutions on a small node set. Therefore, suppose,
we are given a set S ⊂ V of small cardinality, and let (x∗, t∗) be a fractional (LP) solution.
The problem is to find a (most violated) inequality αx + βt ≤ γ with support on S, i.e.,

αij ≥ 0 ∀ i, j ∈ S,
αij = 0 ∀ i �∈ S or j �∈ S,
βj ≥ 0 ∀ j ∈ S,
βj = 0 ∀ j �∈ S,

and which is violated by (x∗, t∗).

Let σ := αx + βt − γ denote the degree of violation. Now, the following linear program
determines a valid cut:

maxσ
s. t. (1)

∑
αj +

∑
βj = 1

(2) αx(k) + βt(k) − γ ≤ 0 ∀ k = 1, ...,K
(6.5.44)

where (1) is a normalization condition and (t(1), x(1)), ..., (t(K), x(K)) correspond to all the
feasible solutions on S to our problem. With the help of this LP we determine an inequality
that maximizes the degree of violation and is satisfied by all feasible solutions.

If the number of feasible solutions on the set S is too big to be added explicitly to the LP
(6.5.44), this problem can be solved by row generation: Start with a triple (α, β, γ) and see
whether there exists a k, s.t. αx(k) + βt(k) − γ > 0; if yes, add the corresponding inequality
to the LP, solve the LP, and proceed further.

General clique cuts

Let D∗ = (V, A∗) be the LP–solution support digraph, such that (i, j) ∈ A∗, if x∗ij > 0.
The cuts presented in this section were motivated by the fact that (at least for the problem
instances we consider) D∗ very often does not contain a feasible solution. If this is the case,
we have that

x(A∗) ≤ n− 2(6.5.45)

is a valid cut. As D∗ is usually very sparse, an enumeration procedure similar to one for the
separation of the tournament constraints (see Section 6.5.1) might be used to check if D∗

contains a feasible solution (backtrack as soon as the path is infeasible).
If D∗ does contain feasible solutions, but only those that are not better than the best one

known so far, the inequality (6.5.45) can also be used. But note that this inequality might
cut off feasible points but not the optimal solution.

A similar argumentation can be applied for smaller node sets S ⊂ V . If in D∗ no feasible
solution exists on S, the inequality

x(A∗(S)) ≤ |S| − 2

is a valid cut.
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6.6 The Branch&Cut Algorithm

Based on the general concept presented in Chapter 1.2 two branch&cut algorithms for the
AHPPTW were implemented. One implementation is based on the model with the extra
node variables and the big M (model 1, see Section 6.3.1), the other on arc variables only
(model 2, see Section 6.3.2). One of the main aims of these implementations is to compare
the computational performance of these two models (see also Section 6.7). In this section we
briefly sketch some of the implementation details.

Problem enlargement

Note that if π(i) �= ∅ (resp. σ(i) �= ∅), the degree constraint x(δ−(i) ≤ 1 (resp. x(δ+(i) ≤ 1)
turns to be an equation. Furthermore, several separation routines require the existence of a
fixed starting and ending node of a feasible Hamiltonian path. As it is more convenient for
the implementation, the problem instances are enlarged by two nodes, a source node s and
destination node d, and arcs {(s, j) | j ∈ V \{s, d}, π(j) = ∅}∪{(i, d) | i ∈ V \{s, d}, σ(i) = ∅}
with cost coefficients zero. Furthermore, precedences are added such that s is always the
starting node and d is always the final node of any feasible Hamiltonian path.

Preprocessing

The preprocessing reductions described in Section 6.2 are repeated iteratively until they fail.
The order in which the tests are applied is the following:

(1) Construction of precedences (see Section 6.2.2).

(2) Tightening of the time windows; the conditions are checked in the order (6.2.3), (6.2.4),
(6.2.5), (6.2.6).

(3) Elimination of arcs (i, j) ∈ A with |Q| = 1, 2 (see Section 6.2.3). The elimination proce-
dure for |Q| = 2 is called only if all other tests failed.

Heuristics

In the current version of the branch&cut code only very simple primal heuristics are used to
obtain feasible solutions. Before entering the cutting plane phase initial heuristics are called
in order to obtain a feasible starting sequence. The following procedures are applied:

(1) Check if the trivial sequence (1, 2, 3, ..., n− 1, n) is feasible.

(2) Sort the nodes due to increasing release dates and check if this sequence is feasible.

(3) Sort the nodes due to increasing deadlines and check if this sequence is feasible.

(4) Sort the nodes due to increasing midpoints of the time windows mi := ri + di−ri
2 and

check if this sequence is feasible.

(5) Apply a nearest feasible neighbor heuristic starting with each node.

The best solution found by any of the procedures is the initial feasible solution.

In order to make use of the information contained in the current LP–solution x∗ an LP–
exploitation heuristic is run at each iteration of the branch&cut algorithm. Therefore, the
LP–solution digraph D∗ = (V, A∗) is constructed where (i, j) ∈ A∗, if and only if x∗ij > 0.
In D∗ all feasible solutions are enumerated. It is possible to backtrack, as soon as the path
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becomes infeasible or the cost of the path is higher than the cost of the best feasible solution
so far. The computational results showed that D∗ very seldomly contains a feasible solution.

We are aware of the fact, that, especially in the initial step, more sophisticated heuristics
are required to improve the efficiency of the implementations.

Initial LP

The LP is initialized with the variables corresponding to the 5–nearest–neighbours–digraph
and to the best feasible solution determined by the initial heuristic. For model 1 all node
variables ti are added, too. We start with the equations

x(δ−(i)) = 1 ∀i ∈ V ∪ {d}
x(δ+(i)) = 1 ∀i ∈ V ∪ {s}.

In the implementation of model 1 for all variables xij the MTZ–inequalities (6.5.38), resp.
(6.5.42) in case that i ≺ j, are added, too.

Separation strategy

The separation routines are called in the following order:
(1) Subtour elimination constraints.
(2) Pool Separation.
(3) π–inequalities.
(4) σ–inequalities.
(5) (π, σ)–inequalities.
(6) Infeasible path constraints.
(7) Lifted 3–cycles.
(8) General cuts x(A∗) ≤ n− 2 (if used).

Whenever one of the procedures generates a cutting plane all subsequent routines (except
(8)) are skipped.

If the number of inequalities in the pool is large, it is computational exhaustive to check
if all these inequalities are satisfied by the current LP–solution x∗. Therefore, inequalities for
which exact and fast separation routines exist, such as subtour elimination constraints, are
never separated through the pool. At the moment being it is only checked if the infeasible
path constraints (6.5.27)(a), (6.5.27)(b), and (6.5.32) are satisfied.

The separation of the infeasible path constraints consists of several steps. Our computa-
tional experience showed that once an infeasible path constraint was generated the cutting
plane algorithm often tries to react to the generated cut by keeping the structure of this
forbidden low–cost path by taking a short “detour” or a “short cut”. Note, that a “short
cut” might result in a feasible path. In the heuristic separation procedure it is checked first
if a minor modification, in fact only an enlargement, of an already generated infeasible path
constraint is violated.
If no violated inequality is found, the enumerative separation procedure for tournament con-
straints (see Section 6.5.1) is run. If a violated tournament constraint is found, it is checked,
if it can be lifted to an inequality of type 6.5.27(a)(b). If yes, the lifted inequality is added,
otherwise the tournament constraint.
If no cut is found, it is verified if a concatenation of paths creates an infeasibility. So far,
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only a simple procedure is used in which paths corresponding to variables with value 1 are
concatenated.

Nodes i, j, k violating the lifted 3–cycle inequality xij+xjk+xki+2·xji ≤ 2 are determined
by enumeration.

As the LP–exploitation heuristic is based on an enumeration of all feasible path in D∗ =
(V, A∗), the information if the inequality x(A∗) ≤ n− 2 is valid is got almost “for free”. But
these cuts are not very strong and very dense. Therefore, the decision whether to branch
or not is not taken on the detection of such cuts. There exist a flag indicating if these cuts
should be used or not and the cut is added only if another cutting plane has been generated.
The computational results in Section 6.7 (see Table 6.7) show that these cuts are not useful
in solving the given problem instances to optimality.

Further implementation details

Branching: Branching is performed on x–variables only. The branching variable xij is chosen
to be the one closest to 0.5. If there exist several such variables, the one with highest cost
coefficient cij is chosen. Other branching strategies like

• branch on variables that occur in the best solution so far,

• branch on variables (arcs) that are incident with nodes with small in– or outdegree in
the input digraph,

• branch on variables that have a small in– and outdegree in the LP–solution digraph,

• branch on the fractional variables with an highest cost coefficient,

etc., should be tested.

Enumeration strategy: As enumeration strategy Depth–First–Search is applied. For the
TSP it is known that this strategy does not always give the best results (see [JRT92]). There-
fore, the implementation of other strategies like Best–First–Search and Breadth–First–Search
is necessary.

Pricing frequency: Nonactive variables are priced out after each iteration.

Tailing off: If within one node of the branch&cut tree cuts are added, but the increase
in the objective function is not sufficiently large enough, a “tailing off” of the cutting plane
algorithm is detected and a branching step is performed. This is done if the improvement over
the last ki LPs is less than pi% a branching step is performed. In the current implementation
the values k1 = 20, p1 = 1% and k2 = 10, p2 = 0% are used. This means that we branch, if
over the last 10 LPs no improvement or over the last 20 LPs only an improvement of 1% has
been achieved.
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6.7 Computational results

The branch&cut codes were implemented in C on a SUN SPARC Station 10. The imple-
mentations are based on a branch&cut framework developed and implemented by Michael
Jünger. (Note that the advanced branch&cut framework ABACUS, that was used for the
SOP, only supports 0/1–variables and could therefore not be used for model 1!) The subtour
elimination and 2–matching separation routines were implemented by Michael Jünger, too.
As LP–solver we used CPLEX 2.2 .

Two sets of data were tested. The problem instances of the first set (rbg...) were de-
rived from the stacker crane application described in Section 4. The second class consists of
randomly generated problem instances based on the TSPLIB instance br17.atsp (see [Rei91])
and on problem instance rbg27a.

We wanted to get an idea which influence the number of nodes with active time windows
and their width will have on the computational difficulty of the problem instance. Therefore,
we constructed several random instances.

First, we generated time windows and processing times to the cost matrix br17.atsp. These
values were taken randomly from fixed intervals (e.g., for the instances in br17.a.m, 1 ≤ m ≤ n
the time window width is taken from the interval [70, 140] and processing times from the
interval [30, 80], see Table 6.1). As a reference path we have chosen the second–nearest–
neighbour Hamiltonian path. The times for visiting each node in this path were chosen to be
the midpoints of the time windows. We generated a random ordering O of the nodes. For
problem instance br17.i.m of class i only the time windows of the first m, 0 ≤ m ≤ n, nodes
of O are active, the time windows for all other nodes are relaxed to [0,∞). Thus, br17.i.0
corresponds to the pure ATSP instance (enlarged by a source and destination node) and the
difference between instances br17.i.(m-1) and br17.i.m is that the time window for node O(m)
is activated.

Second, we kept the cost matrix of rbg27a and the interval for the processing times fixed
and varied the interval for the time window width. Beside that the same procedure as de-
scribed above is applied to obtain the different problem instances rbg27.i.m.

In Table 6.1 the CPU–times required to solve these random instances to optimality are
given. These results are based on model 2. More detailed tables can be found in the appendix.

We observe that the problem instances are easily solvable if only a few time windows
are active (m < n

6 ). The most difficult instances are in the range n
4 ≤ m ≤ n

2 , whereas
the instances for m > 2

3 · n are easily solvable again. For the polyhedral approach both
the instances with small and large time window width (rbg27.i.m, i ∈ {a, d, e, f}) can be
considered to be easier than the instances with “medium sized” time windows (rbg27.i.m,
i ∈ {b, c}).

This collection of problem instances is definitely not large enough to make final conclusions.
But we think that the problem instances for m = 1, 2 are easy because they are “more or
less” AHPP instances for which it is known that a polyhedral approach can successfully be
applied to solve these instances to optimality. We think that the instances for m > 2

3 · n
are easier than those for smaller m because the preprocessing already reduces the number of
variables and the precedence constraints and the infeasible paths give a certain structure to
the problem instance. Thus, there are not that many “degrees of freedom” for the solutions.
But further tests with will be necessary to obtain a better understanding of this behaviour.

In the following results are given only for the real–life instances rbg... and for one class of
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randomly generated data, namely br17.a.m. The tables for the other randomly generated
instances can be found in the appendix.

In Table 6.2 the effect of the preprocessing procedure is summarized. We observe that the
number of arcs was reduced by approx. 50 %. Note that the sum of columns |R1|, |R2|, Fix1,
and Fix2 can be larger than the difference between |An| − |A|, as after the fixing of variable
xij to 0 in a following iteration it can be detected that j ≺ i. Only for the real life instances a
huge number of time window tightenings could be performed. The most effective tightening
is the one due to (6.2.3).

Tables 6.3 and 6.4 give a short summary of the computational results achieved with the two
implementations. First observe that half of the small instances (< 30 nodes) could be solved
to optimality at the root and that all other small instances were solved in a reasonable amount
of time. The branch&cut trees are moderately sized. If the problem instance was not solved
to optimality in the root, the GAP at the root (opt−lb

lb ) is in most cases less than approx. 6%
for instances rbg.. and less than 10-20% for instances br17.a.m. The use of further separation
routines will close this gap.

If we compare the computational performance of the two models, we observe that for most
instances the use of model 1 results in less LPs that had to be solved (see column # LPs)
and in smaller branch&cut trees. But despite of this fact the computing times are higher (see
column CPU). This confirms that model 2 is superior to model 1 from a computational point
of view.

In Tables 6.5 and 6.6 it is summarized which cuts were generated. The pure ATSP con-
straints (subtour elimination, 2–matching, lifted 3–cycles) only play a minor role. Moreover,
only a few cuts were generated from the pool. Most generated cuts are based on the prece-
dence relationships or on infeasible paths.
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Influence of the number of active time windows

x = (a) x = (b) x = (c) x = (d) x = (e) x =(f)

tw-width [70, 140] [35, 70] [70, 140] [35, 70] [10 150] [100,150]
pi [30, 80] [15, 40] [15, 40] [30, 80] [15, 40] [15, 40]

br17.x.01 0:01.03 0:00.62 0:00.65 0:00.67 0:00.70 0:00.63
br17.x.02 0:00.85 0:00.78 0:01.52 0:00.67 0:06.13 0:54.12
br17.x.03 0:02.45 25:34.73 6:19.08 0:46.67 2:50.68 0:01.48
br17.x.04 13:42.65 8:25.32 0:01.98 0:46.67 0:01.52 0:02.42
br17.x.05 84:00.42 5:52.40 0:01.63 0:08.50 1:39.80 0:04.53
br17.x.06 89:43.17 6:09.52 0:00.87 0:02.87 0:01.62 0:05.40
br17.x.07 77:18.20 1:15.62 1:43.23 3:08.37 8:43.35 0:03.30
br17.x.08 27:18.40 1:21.75 0:00.70 0:59.18 4:22.30 0:04.52
br17.x.09 0:38.62 0:05.68 0:02.65 0:02.93 0:01.83 0:20.65
br17.x.10 1:44.63 0:03.25 0:01.55 0:00.97 0:13.08 0:03.85
br17.x.11 0:54.47 0:01.08 0:00.82 0:00.75 0:42.38 0:03.27
br17.x.12 1:23.72 0:00.87 0:00.82 0:04.37 0:28.67 0:01.78
br17.x.13 0:25.03 0:09.83 0:01.07 0:01.53 0:01.55 0:01.15
br17.x.14 0:01.78 0:00.72 0:00.63 0:00.62 0:01.18 0:01.87
br17.x.15 0:02.67 0:00.47 0:00.55 0:00.63 0:00.73 0:00.62
br17.x.16 0:00.53 0:00.43 0:00.48 0:00.37 0:00.43 0:00.57
br17.x.17 0:00.43 0:00.28 0:00.53 0:00.32 0:00.43 0:00.52

x = (a) x = (b) x = (c) x = (d) x = (e) x = (f)

tw-width [10, 30] [30, 50] [50, 70] [70, 90] [90 110] [110, 130]
pi [15, 40] [15, 40] [15, 40] [15, 40] [15, 40] [15, 40]

rbg27.x.01 0:01.87 0:01.47 0:01.37 0:01.68 0:01.43 0:01.33
rbg27.x.02 0:02.08 0:04.63 0:01.58 0:02.43 0:09.88 0:02.37
rbg27.x.03 0:02.42 14:43.22 0:02.35 0:23.90 4:17.08 0:01.43
rbg27.x.04 0:02.00 30:35.48 0:14.78 14:06.63 29:03.77 3:47.27
rbg27.x.05 0:07.27 145:16.18 126:47.22 78:38.15 31:30.08 0:05.52
rbg27.x.06 0:11.90 145:21.18 132:56.93 105:52.32 296:59.02 0:05.33
rbg27.x.07 15:31.18 192:59.80 125:15.77 16:18.07 26:12.70 0:08.63
rbg27.x.08 0:40.65 37:46.88 143:04.85 18:21.47 27:32.85 14:21.73
rbg27.x.09 1:55.68 86:31.70 282:06.47 60:13.47 29:38.80 1:39.48
rbg27.x.10 1:46.63 18:51.37 47:07.07 5:38.75 35:47.53 72:44.03
rbg27.x.11 2:07.73 13:36.68 52:00.05 2:00.78 16:12.08 74:47.43
rbg27.x.12 0:43.33 0:53.67 31:35.33 2:14.38 4:24.17 48:35.70
rbg27.x.13 1:05.65 0:42.10 34:56.53 3:27.47 2:58.13 18:52.82
rbg27.x.14 0:41.97 0:11.82 12:54.52 0:09.60 0:04.37 16:06.28
rbg27.x.15 9:07.85 0:48.65 2:55.93 0:10.47 0:03.93 12:16.13
rbg27.x.16 1:00.88 0:08.15 3:12.05 0:09.30 0:02.70 4:26.95
rbg27.x.17 0:37.33 0:05.13 2:47.28 0:06.72 1:15.88 0:18.05
rbg27.x.18 0:03.27 0:04.18 0:10.60 0:04.82 0:45.83 0:08.27
rbg27.x.19 0:03.32 0:13.18 0:06.82 0:04.90 0:18.35 0:08.85
rbg27.x.20 0:01.75 0:02.90 0:16.52 0:04.42 0:20.87 0:05.58
rbg27.x.21 0:01.37 0:02.60 0:11.37 0:10.48 0:07.37 0:04.73
rbg27.x.22 0:01.10 0:01.70 0:03.08 0:04.13 0:03.08 0:06.07
rbg27.x.23 0:01.07 0:01.62 0:01.92 0:02.87 0:04.13 0:06.00
rbg27.x.24 0:01.05 0:01.32 0:02.90 0:02.55 0:02.20 0:02.83
rbg27.x.25 0:01.13 0:01.08 0:02.72 0:01.53 0:01.72 0:02.52
rbg27.x.26 0:01.35 0:01.62 0:02.13 0:02.75 0:01.47 0:02.03
rbg27.x.27 0:01.02 0:01.03 0:01.30 0:01.17 0:01.22 0:01.75

Table 6.1. Computing time for random instances
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Preprocessing

An Iter. |R1| |R2| TW1 TW2 TW3 TW4 Fix1 Fix2 |A|
rbg10a 110 2 27 29 0 3 0 0 0 0 54
rbg10b 110 10 32 19 25 0 5 0 30 0 41
rbg16a 272 3 94 98 0 3 4 0 0 1 79
rbg16b 272 3 54 49 0 1 1 0 0 2 167
rbg17a 306 39 62 26 235 0 4 0 74 5 174
rbg19a 380 3 154 153 0 1 3 0 0 2 71
rbg19b 380 2 90 79 0 2 1 0 0 0 211
rbg19c 380 39 74 36 245 0 4 0 72 0 229
rbg20a 420 32 158 47 141 0 10 0 198 10 95
rbg27a 756 46 142 61 438 0 3 0 92 15 487
rbg48a 2352 105 577 360 1639 0 6 0 247 0 1288
rbg49a 2450 114 734 580 1842 1 5 0 102 1 1083
rbg50a 2550 3 485 429 0 3 2 0 0 7 1629
rbg50b 2550 115 732 591 1964 1 4 0 102 0 1175
rbg50c 2550 108 611 450 1604 0 4 0 172 0 1396

br17.a.00 306 1 0 0 0 0 0 0 0 0 306
br17.a.01 306 1 0 0 0 0 0 0 0 0 306
br17.a.02 306 2 1 2 0 0 0 0 4 0 299
br17.a.03 306 2 3 5 0 0 0 0 4 0 294
br17.a.04 306 2 6 9 0 0 0 0 8 0 283
br17.a.05 306 8 31 12 14 0 0 0 36 5 244
br17.a.06 306 7 34 18 11 0 0 0 39 9 226
br17.a.07 306 6 38 25 9 0 0 0 36 9 216
br17.a.08 306 6 43 33 8 0 0 0 34 6 206
br17.a.09 306 6 49 42 7 0 0 0 37 8 184
br17.a.10 306 6 55 49 6 0 0 0 27 7 180
br17.a.11 306 6 63 60 5 0 0 0 25 4 164
br17.a.12 306 6 72 72 4 0 0 0 29 7 134
br17.a.13 306 13 92 84 13 0 0 0 31 20 96
br17.a.14 306 13 101 98 11 0 0 0 16 18 86
br17.a.15 306 13 111 113 9 0 0 0 7 14 70
br17.a.16 306 9 121 129 3 1 1 0 3 6 51
br17.a.17 306 9 133 146 6 30 8 17 0 1 26

Table 6.2: Preprocessing

|An| : Number of arcs in input digraph
Iter. : Number of preprocessing loops
|R1| : Number of precedence relationships among the nodes

(including transitively derived relationships)
|R2| : Number of eliminated transitive relationships arcs
TW1 : Number of release date adjustments due to (6.2.3).
TW2 : Number of release date adjustments due to (6.2.4).
TW3 : Number of deadline adjustments due to (6.2.5).
TW4 : Number of deadline adjustments due to (6.2.6).
Fix1 : Number of variables fixed to 0 due to the criterion described

in Section 6.2.3 (|Q| = 1).
Fix2 : Number of variables fixed to 0 due to the criterion described

in Section 6.2.3 (|Q| = 2).
|A| : Number of remaining arcs / variables
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We summarize the keys to the tables on the following pages.

Key to Tables 6.3, 6.4 and 6.7:
n : Number of nodes
Opt : Optimal solution value.
BC-root : Quality of the solution at the root LP, namely
... bounds upper and lower bounds on the root node of the branch&cut tree, stated in the

form [lb, ub]. If the problem instance is solved to optimality in the root, this is
stated by “–”.

... GAP : optimality gap at the root node ( opt−lb

lb
· 100).

BC–tree : Size of the branch&cut tree characterized by
... # N : the number of nodes,
... level : the highest level (root is at level 0).
# cuts : Number of generated cutting planes.
# LPs : number of linear programs that were solved.
CPU : CPU–time to solve instances to optimality (on SUN SPARC 10)

Key to Tables 6.5 and 6.6:
Pool : Number of cuts generated from the pool.
SEC : Number of generated subtour elimination constraints.
TMC : Number of generated 2–matching constraints.
π : Number of generated π–inequalities (5.4.9).
σ : Number of generated σ–inequalities (5.4.13).
(pi, σ) : Number of generated (π, σ)–inequalities (5.4.17).
Inf.Path : Number of generated infeasible path constraints.
SH : Number of generated inequalities generated by

shrinking procedure (5.6.36).
3C : Number of generated lifted 3–cycle constraints.
GC : Number of generated cuts x(A∗) ≤ n− 1 (cmp. 6.5.45).
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Computational comparison of the two models

Model 1
BC-root BC–tree

Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg10a 12 149 – – 1 0 19 8 0:00.48
rbg10b 12 108 – – 1 0 0 1 0:00.25
rbg16a 18 179 – – 1 0 10 6 0:00.58
rbg16b 18 142 [ 133, 194] 6.77 35 8 306 183 0:41.02
rbg17a 19 146 – – 1 0 2 3 0:02.10
rbg19a 21 217 – – 1 0 2 2 0:00.52
rbg19b 21 182 [ 175, 290] 4.00 161 12 2713 1221 4:22.43
rbg19c 21 190 [ 182, 201] 4.40 151 12 1472 571 2:19.08
rbg20a 22 210 – – 1 0 0 1 0:01.80
rbg27a 29 268 [ 266, 268] 0.75 21 5 526 149 1:09.28
rbg48a 50 [455,856] [455,856] ? ? ? ? ? —∗

rbg49a 51 [410,920] [410,920] ? ? ? ? ? —∗

rbg50a 52 414 – – 1 0 499 88 22:02.87
rbg50b 52 [447,940] [447,940] ? ? ? ? ? —∗

rbg50c 52 [508,888] [508,888] ? ? ? ? ? —∗

Model 2
BC-root BC–tree

Problem n Opt. bounds GAP #N Level # cuts #LPs CPU
rbg10a 12 149 – – 1 0 23 11 0:00.37
rbg10b 12 108 – – 1 0 0 1 0:00.20
rbg16a 18 179 – – 1 0 13 7 0:00.48
rbg16b 18 142 [ 133, 194] 6.77 43 8 248 156 0:12.20
rbg17a 19 146 – – 1 0 2 3 0:01.73
rbg19a 21 217 – – 1 0 4 3 0:00.45
rbg19b 21 182 [ 175, 290] 4.00 113 16 1647 797 1:37.30
rbg19c 21 190 [ 182, 201] 4.40 175 12 1644 633 0:59.05
rbg20a 22 210 – – 1 0 0 1 0:01.92
rbg27a 29 268 [ 266, 268] 0.75 27 6 610 178 0:47.78
rbg48a 50 [455,856] [455,856] ? ? ? ? ? —∗

rbg49a 51 [410,920] [410,920] ? ? ? ? ? —∗

rbg50a 52 414 – – 1 0 264 57 1:56.90
rbg50b 52 [448,940] [448,940] ? ? ? ? ? —∗

rbg50c 52 [508,888] [508,888] ? ? ? ? ? —∗

Table 6.3: Computational results for data 1
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Model 1
BC-root BC–tree

Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

br17.a.00 19 25 – – 1 0 16 11 0:02.40
br17.a.01 19 25 – – 1 0 17 11 0:01.75
br17.a.02 19 25 – – 1 0 25 10 0:02.12
br17.a.03 19 27 – – 1 0 44 22 0:04.28
br17.a.04 19 34 [ 28, 37] 21.43 ? ? ? ? —∗

br17.a.05 19 37 [ 30, 42] 23.33 ? ? ? ? —∗

br17.a.06 19 37 [ 30, 42] 23.33 ? ? ? ? —∗

br17.a.07 19 37 [ 30, 44] 23.33 ? ? ? ? —∗

br17.a.08 19 37 [ 30, 44] 23.33 ? ? ? ? —∗

br17.a.09 19 54 [ 49, 68] 10.20 151 14 522 366 1:37.67
br17.a.10 19 55 [ 49, 111] 12.24 275 17 1936 944 3:44.63
br17.a.11 19 55 [ 50, 60] 10.00 141 14 1007 482 2:02.60
br17.a.12 19 57 [ 52, 74] 9.62 105 13 703 350 1:03.37
br17.a.13 19 62 [ 52, 71] 19.23 95 9 357 209 0:30.97
br17.a.14 19 62 [ 57, 109] 8.77 3 1 19 9 0:01.60
br17.a.15 19 69 [ 57, 69] 21.05 17 5 71 40 0:03.45
br17.a.16 19 81 – – 1 0 0 1 0:00.67
br17.a.17 19 81 – – 1 0 0 1 0:00.48

Model 2

BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

br17.a.00 19 25 – – 1 0 14 12 0:00.65
br17.a.01 19 25 [ 25, 29] 0.00 3 1 20 17 0:01.03
br17.a.02 19 25 – – 1 0 18 12 0:00.85
br17.a.03 19 27 – – 1 0 57 28 0:02.45
br17.a.04 19 34 [ 27, 37] 25.93 3199 35 12225 8781 13:42.65
br17.a.05 19 37 [ 30, 42] 23.33 16959 44 87563 43055 84:00.42
br17.a.06 19 37 [ 30, 44] 23.33 18883 38 100667 48251 89:43.17
br17.a.07 19 37 [ 30, 44] 23.33 16201 37 88099 41922 77:18.20
br17.a.08 19 37 [ 30, 44] 23.33 6709 31 36650 18621 27:18.40
br17.a.09 19 54 [ 49, 68] 10.20 161 15 677 433 0:38.62
br17.a.10 19 55 [ 49,111] 12.24 363 14 2204 1103 1:44.63
br17.a.11 19 55 [ 50, 72] 10.00 171 12 1311 605 0:54.47
br17.a.12 19 57 [ 52, 74] 9.62 355 23 3017 1234 1:23.72
br17.a.13 19 62 [ 52, 71] 19.23 153 15 1020 431 0:25.03
br17.a.14 19 62 [ 57,109] 8.77 11 3 35 27 0:01.78
br17.a.15 19 69 [ 57, 69] 21.05 19 5 72 51 0:02.67
br17.a.16 19 81 – – 1 0 0 1 0:00.53
br17.a.17 19 81 – – 1 0 0 1 0:00.43

Table 6.4: Computational results for data 2
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Model 1

Pool SEC TMC π σ (π, σ) Inf.Path SH 3C GC
∑

rbg10a 0 8 0 3 0 0 8 0 0 0 19
rbg10b 0 0 0 0 0 0 0 0 0 0 0
rbg16a 0 4 0 0 0 0 6 0 0 0 10
rbg16b 36 53 0 88 1 95 68 0 1 0 306
rbg17a 0 2 0 0 0 0 0 0 0 0 2
rbg19a 0 2 0 0 0 0 0 0 0 0 2
rbg19b 111 143 15 907 351 807 268 222 0 0 2713
rbg19c 52 177 4 184 0 120 985 0 2 0 1472
rbg20a 0 0 0 0 0 0 0 0 0 0 0
rbg27a 12 44 0 76 0 305 94 3 4 0 526
rbg50a 0 88 5 107 0 293 6 0 0 0 499

Model 2
rbg10a 0 8 0 7 0 0 8 0 0 0 23
rbg10b 0 0 0 0 0 0 0 0 0 0 0
rbg16a 0 3 0 0 0 0 10 0 0 0 13
rbg16b 10 44 0 58 1 73 70 0 2 0 248
rbg17a 0 2 0 0 0 0 0 0 0 0 2
rbg19a 0 2 0 0 0 0 2 0 0 0 4
rbg19b 30 121 7 502 160 413 211 232 1 0 1647
rbg19c 76 180 4 191 0 149 1119 0 1 0 1644
rbg20a 0 0 0 0 0 0 0 0 0 0 0
rbg27a 14 56 0 71 0 290 188 4 1 0 610
rbg50a 0 24 3 76 0 161 0 0 0 0 264

Table 6.5: Generated cuts for data 1 (solved instances only)

Model 1

Pool SEC TMC π σ (π, σ) Inf.Path SH 3C GC
∑

br17.a.01 0 16 0 0 0 0 0 0 1 0 17
br17.a.02 0 25 0 0 0 0 0 0 0 0 25
br17.a.03 0 28 0 1 0 3 10 0 2 0 44
br17.a.09 10 136 5 65 0 48 250 0 18 0 522
br17.a.10 79 326 17 291 5 183 1044 0 70 0 1936
br17.a.11 10 143 16 81 3 213 542 1 8 0 1007
br17.a.12 12 89 3 100 3 115 379 0 14 0 703
br17.a.13 0 37 2 8 0 20 287 0 3 0 357
br17.a.14 0 3 0 0 0 0 16 0 0 0 19
br17.a.15 0 8 5 10 0 4 44 0 0 0 71
br17.a.16 0 0 0 0 0 0 0 0 0 0 0
br17.a.17 0 0 0 0 0 0 0 0 0 0 0

Model 2
br17.a.00 0 14 0 0 0 0 0 0 0 0 14
br17.a.01 0 18 0 0 0 0 0 0 2 0 20
br17.a.02 0 18 0 0 0 0 0 0 0 0 18
br17.a.03 0 25 0 8 0 2 20 0 2 0 57
br17.a.04 607 2022 497 68 11 90 9394 16 127 0 12225
br17.a.05 42 9651 1408 1219 24 116 74354 0 791 0 87563
br17.a.06 8 10865 1558 1434 1 48 85866 7 888 0 100667
br17.a.07 0 8900 1409 1014 6 28 76090 4 648 0 88099
br17.a.08 261 5965 565 831 5 175 28719 5 385 0 36650
br17.a.09 12 108 14 85 2 46 392 5 25 0 677
br17.a.10 96 360 22 247 2 123 1408 0 42 0 2204
br17.a.11 13 121 21 135 1 234 783 4 12 0 1311
br17.a.12 45 391 77 325 0 211 1990 2 21 0 3017
br17.a.13 2 100 27 93 0 43 756 0 1 0 1020
br17.a.14 0 5 4 0 0 2 24 0 0 0 35
br17.a.15 0 17 4 0 0 7 44 0 0 0 72
br17.a.16 0 0 0 0 0 0 0 0 0 0 0
br17.a.17 0 0 0 0 0 0 0 0 0 0 0

Table 6.6: Generated cuts for data 2 (solved instances only)
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Influence of general clique cuts

We summarize the computational results obtained with the general cuts x(A∗) ≤ n− 2, that
are valid in case that the LP–solution digraph D∗ = (V, A∗) does not contain a feasible solution
(see also Section 6.5.7). We describe the results just for the implementation of model 2.

With general clique cuts

BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg10a 12 149 – – 1 0 22 10 0:00.37
rbg10b 12 108 – – 1 0 0 1 0:00.22
rbg16a 18 179 – – 1 0 13 7 0:00.53
rbg16b 18 142 [135,143] 5.19 17 6 406 185 0:36.05
rbg17a 19 146 – – 1 0 2 3 0:01.97
rbg19a 21 217 – – 1 0 4 3 0:00.52
rbg19b 21 182 [177,182] 2.82 53 11 3962 1299 11:05.57
rbg19c 21 190 [185,190] 2.70 59 11 1863 557 1:28.83
rbg20a 22 210 – – 1 0 0 1 0:01.82
rbg27a 29 268 [266,268] 0.75 13 4 1388 359 2:29.97
rbg50a 52 414 – – 1 0 465 78 3:22.32

br17a.00 19 25 – – 1 0 18 12 0:00.73
br17a.01 19 25 [25, 29] 0.00 3 1 31 22 0:01.72
br17a.02 19 25 [25, 29] 0.00 3 1 23 18 0:01.45
br17a.03 19 27 [27, 37] 0.00 3 1 70 34 0:03.98
br17a.04 19 34 [27, 37] 25.93 30021 47 200432 98479 151:03.23
br17a.05 19 37 [30, 42] 23.33 21021 45 120738 55911 104:58.98
br17a.06 19 37 [30, 44 23.33 ? ? ? ?
br17a.07 19 37 [30, 44] 23.33 21159 47 135532 60160 98:05.23
br17a.08 19 37 [30, 44] 23.33 7423 36 57141 23311 35:01.48
br17a.09 19 54 [49, 68] 10.20 159 12 1194 493 0:44.92
br17a.10 19 55 [49,109] 12.24 405 20 4253 1585 3:27.55
br17a.11 19 55 [50, 74] 10.00 889 26 18131 5347 13:07.78
br17a.12 19 57 [52, 74] 9.62 115 13 2016 676 1:14.08
br17a.13 19 62 [52, 71] 19.23 167 18 1733 581 0:38.65
br17a.14 19 62 [57,109] 8.77 17 5 40 34 0:02.25
br17a.15 19 69 [57, 69] 21.05 19 5 80 52 0:02.77
br17a.16 19 81 – – 1 0 0 1 0:00.58
br17a.17 19 81 – – 1 0 0 1 0:00.47

Table 6.7

It is interesting to observe that for most instances the use of these cuts results in smaller
branch&cut trees and in better bounds on the root. But despite this fact, the overall com-
puting times are higher (compare also Tables 6.3 and 6.4). The reason is that more cuts are
generated, the general clique cuts are very dense and typically not very strong, as they can
be strengthened taking arcs into account, that correspond to variables with LP value zero.
But on the other hand, they force the LP–solution to contain feasible solutions or at least
structures that can easily be extended to feasible solutions. Therefore, the LP–exploitation
heuristic tends to give better results. Further computational experiments with these cuts will
be necessary. E.g., it might be promising to use these cuts only in the root of the branch&cut
tree.
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Finally we mention, that this computational experience with these cuts extend in an analogous
way to the instances not mentioned in this table.
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6.8 Conclusions and outlook

In this chapter a polyhedral approach to solve problem instances of the AHPPTW to opti-
mality has been described. In the preliminary computational results we have seen that this
approach is capable of solving problem instances up to 30–50 nodes with varying number and
width of time window to optimality.
We emphasize that the implementational expense for the branch&cut code is higher than
for an implementation of a dynamic programming or branch&bound algorithm. But from
our point of view already now this approach is comparable to the exact algorithms based on
implicit enumeration, if not for all nodes the time windows are active or the time window
width is relatively large. The computational performance of the branch&cut code can further
be improved by

– the implementation of more sophisticated heuristics,

– the implementation of further heuristic separation routines for the infeasible path con-
straints,

– the implementation of further separation routines for the ATSP (see [FT94]),

– the use of a more sophisticated branch&cut framework (e.g., ABACUS 0.1).

This will be part of future research.

In the following we state two points that we consider interesting to be analysed.

An alternative model

The precedence constrained AHPP can be modelled by means of ATSP–variables and Linear
Ordering variables (see [AEGS93]). A similar model can be stated for the time constrained
AHPP. In addition to model 2 additional arc variables yij are introduced for all (i, j) ∈ An.
The Linear Ordering constraints defined on the y–variables can be used to model the time
window restrictions.

Beforehand, it is not clear if this model is competitive to the models presented in this
section. The y–variables offer the advantage that they capture the “transitivity” of the
infeasible paths but the disadvantage that a linking of the x– and y–variables is required.
For the SOP it has been shown in a computational comparison that the combined model
does not give better results than the one based on the x–variables only (see [AEGS93]). We
presume that this holds for the AHPPTW as well. But computational tests will be necessary
to confirm that fact.

Knapsack constraints

For two given nodes i and j the time windows define a knapsack with Wij = dj − ri. It will
be necessary to determine inequalities that take care of the fact that only a certain amount of
other nodes can be packed into this time interval (knapsack). Up to now it is not clear how
to decide for a given fractional solution x̄ how many items are packed into a time interval
between two nodes.
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On–line optimization

In this thesis we have described a practical problem that we encountered in the on–line
optimization of the movements of a stacker crane in an automatic storage system. We have
seen a problem, the so–called on–line Hamiltonian path problem, that has not been studied
in that form in the literature so far.

In 1989 Lovász et al. wrote:

“We believe that many other problems can and should be analyzed from the per-
spective of on–line algorithms.”[LST89].

As many practical applications are of an on–line character as described in this thesis, we
support this point of view. But despite the practical importance of on–line problems and
the fact that on–line optimization problems are mathematically interesting on their own, the
scientific literature on handling complex on–line situations is almost nonexisting. Even case
studies on practical problems can be found very seldomly in the literature.

Although an optimization package has been described that is running with success in
everyday production in a complex FMS, we are aware of the fact that the approach presented
in this thesis may not be the best one to handle on–line decisions of the type described here.
We believe that deeper theoretical investigations are necessary to get a better understanding
of on–line problems.

The concept of competitiveness, which has been used so far to compare the theoretical
performance of different on–line algorithms, leads to very pessimistic results. Furthermore,
this concept does not properly capture some of the restrictions that typically occur in complex
on–line situations (time windows, priorities, etc.). Therefore, we consider it important to
develop other approaches to evaluate on–line algorithms.

Fundamental research in modelling complex on–line situations, such as the stacker crane
application, seems to be important. The main point will be to develop models that capture
all restrictions that occur in the practical on–line application and that can then be attacked
by algorithmic tools. One should keep it mind that it is very important to meet the time
restrictions that typically occur in practical applications.

In order to derive efficient algorithms for complex on–line situations, we believe that the
on–line problem cannot be addressed only from the combinatorial point of view. For instance
for the stacker crane application, which has been discussed in this thesis, it seems to us
promising to combine the stochastic and combinatorial structure of the on–line problem in
one model, that might then contain stochastic and/or nonlinear components.

181
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AHPP with side constraints

We derived lower bounds on the value obtained by an optimal on–line strategy by analyzing
two off–line Combinatorial Optimization problems that have not yet been studied intensively
in the literature, namely to the asymmetric Hamiltonian path problem with precedence con-
straints, also called sequential ordering problem (SOP), and the asymmetric Hamiltonian path
problem with time windows (AHPPTW). No attempts to solve these problems to optimality
by means of polyhedral methods have been published so far.

We performed polyhedral investigations on these problems and derived several classes of
new valid inequalities. Branch&cut algorithms have been implemented, that are able to solve
reasonable sized real–life problem instances to optimality. For the SOP the branch&cut algo-
rithm outperforms the codes based on implicit enumeration, since it is able to solve instances
with a varying number of precedences. For the AHPPTW the code in its current preliminary
version is at least comparable to other approaches. We expect that the implementation of
further separation routines and the use of further classes of inequalities will improve the code.

But despite the impressive computational results we believe that further theoretical and
computational investigations on both problems are necessary. This is on the one hand due
to the fact that routing problems with additional side constraints (e.g., precedences or time
windows) occur in many practical applications. On the other hand there are several open
questions that are interesting from a theoretical point of view and that have been mentioned
in the corresponding sections. For the SOP for instance, it seems promising to derive a
general lifting procedure to derive valid inequalities from ATSP–inequalities. Furthermore,
we suggest to develop more exact and/or heuristic separation routines that explicitly take
care of the precedences among the nodes.

For the AHPPTW the time windows have an “unpleasant” influence on the structure of
the underlying polytopes, which makes it difficult to derive “nice” facial results. We believe
that there is no hope to develop as comprehensive results about their facial structure as it has
been done for the ATSP or many other Combinatorial Optimization problems. For instance,
it is already a hard combinatorial problem to determine the dimension of these polytopes.
One intuitive reason for this fact is, that there exists no complete characterization for the
infeasible paths of length 1, corresponding to variables that can a priori be fixed to 0. This
results in the feature that the minimal equation system cannot be determined, as not all
implicit equations of the form xij = 0 are known. If it is possible to derive conditions to
characterize all these variables and if that can be efficiently be computed (as it is the case
for the SOP), this will improve both, the theoretical understanding of the AHPPTW and the
computational performance of the branch&cut code.

Based on the computational experience we gathered so far, we presume that a combination
of polyhedral and enumerative methods will be a good way to attack the AHPPTW. For
instance, it might be worth to enumerate all infeasible paths on the nodes of a generated
tournament constraint, and then to add the strengthened tournament constraint to the LP.
Furthermore, we consider interesting to analyze if the clique cuts, that have been described
in Section 6.5.7, can help in solving the problem instances to optimality.

As a by–product we obtained a branch&cut code for the asymmetric travelling salesman
problem, whose computational performance on hard problem instances from TSPLIB is com-
parable to the codes published in the literature. A fine–tuning of the parameters of the
branch&cut code, originally developed for the SOP, the implementation of the exact separa-
tion of the Tk–inequalities and the embedding of the separation routine, recently developed
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by Fischetti and Toth, will improve the performance of the code.

Modelling of FMSs

The modern FMSs are complex systems characterized by many interdependencies that cannot
be modelled properly. Typically, the optimization of the FMS is addressed by a hierarchical
approaches reducing the overall problem to the optimization of certain subproblems – with
unpredictable influences on the rest of the system. This results in an enormous loss of the
potential of this technology. It would be better to optimize the whole process instead of
suboptimizing on a tool–by tool or machine–by machine basis. But still the research is far
away from giving satisfactory answers to this problem. Further research activities, especially
on the modelling of such systems, are necessary.
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Appendix A

List of symbols and abbreviations

We summarize the most important abbreviations and mathematical symbols that have been
used in different parts of the thesis.

cij : cost coefficient for arc (i, j).
P = (V, R) : precedence digraph; if (i, j) ∈ R, then i has to precede j in every feasible

solution.
i ≺ j : precedence relationship, i has to precede j in every feasible solution.

This implies (i, j) ∈ R.
π(i) : Set of predecessors of node i. If k ∈ π(i), then k ≺ i.
π(S) : ∪i∈Sπ(i).
σ(i) : Set of successors of node i. If k ∈ σ(i), then i ≺ k.
σ(S) : ∪i∈Sσ(i).

pi : processing time for node i.
ri : release time of node i.
di : due date for node i.
[ri, di] : time window for node i.
ϑij : time delay for processing j after i, defined as ϑij = pi + cij.
ωij : shortest path on ϑ from i to j.
Φ[W ] : Permutation of the nodes in W (p. 150).

Pn
T : Asymmetric travelling salesman polytope.

P̃n
T : Monotone asymmetric travelling salesman polytope.

PPC(n, P ) : Precedence constrained asymmetric travelling salesman polytope.
SOP (n, P ) : Sequential ordering polytope.
PTW
1 : Time constrained asymmetric Hamiltonian path polytope involving x–

and t–variables.
PTW
2 : Time constrained asymmetric Hamiltonian path polytope involving only

x–variables.
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AGV : automatically guided vehicle
AHPP : asymmetric Hamiltonian path problem
AHPPTW : asymmetric Hamiltonian path problem with time windows (see

page 131)
ATSP : asymmetric travelling salesman problem
AGV : Flexible Manufacturing system
JSSP : job–shop scheduling problem (see page 133)
ATSPTW : asymmetric travelling salesman problem with time windows (see

page 132)
SEC : subtour elimination constraint
SOP : sequential ordering problem (see Chapter 5)
TSP : travelling salesman problem
TSPTW : travelling salesman problem with time windows



Appendix B

Statistics on SOP

Generated cuts for pure ATSP instances

In the following table the number of generated cuts for the pure ATSP instances is given.
The upper part contains the runs without the heuristic Tk–inequality separation, the lower
the runs with this separation routine.

Problem SEC TMC Tk
∑

br17 9 0 – 9
p43 136 36 – 172
p43x2 214 53 – 267
ry48p 100 50 – 150
ft53 30 0 – 30
ft70 22 0 – 22
kro124p 133 45 – 178

br17 9 0 0 9
p43 125 37 40 202
p43x2 137 25 40 202
ry48p 94 42 32 168
ft53 26 0 2 28
ft70 22 0 0 22
kro124p 121 47 17 185

Table B.1: Generated cuts for ATSP–instances

Problem Name of the problem instance.
SEC Number of generated subtour elimination constraints.
TMC Number of generated 2–matching constraints.
Tk Number of generated Tk-inequalities.∑

Total number of generated cuts.
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Distribution of computing time for ATSP instances

In this table we summarize the proportion of time spent in the different parts of the im-
plemented branch&cut code. The entries have to be read as percent of total time spent
in a certain part, e.g., for instance br17 8.7% of the total computing time is spent in the
initialization phase.

As in the previous table the upper, resp. lower, part contains the values obtained without,
resp. with, Tk–separation. Note, that the major time is spent on the solution of the LPs and
in the LP–exploitation routine. The results do not differ significantly with or without the
Tk–inequality separation routine.

Problem init. LP improve separation pricing misc. total

br17 8.7 56.5 13.0 0.0 4.3 17.4 0:00.38
p43 0.9 36.6 33.8 5.5 16.4 6.9 2:07.62
p43x2 0.5 34.4 34.9 5.3 17.3 7.5 3:50.53
ry48p 3.3 29.7 57.6 4.2 2.7 2.4 0:40.12
ft53 19.5 15.9 60.0 2.3 1.7 0.5 0:09.55
ft70 38.5 8.1 46.4 2.4 3.7 1.0 0:29.05
kro124p 4.9 7.7 84.2 0.8 1.5 0.9 6:27.63

br17 16.0 52.0 16.0 4.0 8.0 4.0 0:00.42
p43 0.7 25.5 23.0 5.8 41.1 4.0 2:50.77
p43x2 1.1 29.2 32.2 6.4 27.1 4.1 1:39.50
ry48p 3.2 26.2 55.9 6.2 6.5 1.9 0:40.80
ft53 17.2 13.7 61.8 1.7 4.2 1.4 0:11.82
ft70 38.7 7.3 46.8 3.0 3.7 0.5 0:29.17
kro124p 4.4 5.4 58.1 1.0 30.4 0.6 7:05.15

Table B.2: Distribution of computing time

Problem Name of the problem instance.
LP Time needed to solve the linear programs (in %)
improve Time needed for the LP–exploitation heuristic (in %)
separation Time needed for the separation of violated inequalities (in %)
pricing Time needed to price out nonactive variables (in %)
misc All other time (in %)
total Total CPU time to solve the instance to optimality
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Generated cuts for the instances of SOP

In this table we summarize the number of cuts generated by the different separation routines.
The aim of this table is to give an idea which separation routines have been “important” for
the solution of the instances.

Problem SEC PCB SEC(π) SEC(σ) PI PI-SIGMA SIGMA TMC Shrink Tk

∑
ESC07 0 0 2 2 0 0 0 0 0 0 4
ESC11 1 0 3 3 1 0 2 1 0 1 12
ESC12 1 0 3 8 0 1 1 0 10 0 24
ESC14 1 0 9 9 0 0 0 0 0 0 19
ESC25 0 0 10 8 18 1 10 0 20 0 67
ESC47 63 0 164 120 916 390 858 2 107 0 2620
ESC63 0 0 33 88 313 1121 712 0 16 2 2285
ESC78 0 0 81 68 284 1176 379 0 202 19 2209
ESC98 1 0 16 18 0 0 0 0 0 0 35
prob.1 2 0 2 2 0 0 0 0 0 0 6
prob.2 0 0 1 1 0 0 0 0 0 0 2
prob.3 8 0 6 4 0 1 1 0 19 0 39
prob.5 456 0 556 641 1346 3783 1340 274 570 172 9138
prob.6 48 0 8 10 2 0 1 8 17 0 94
prob.7 1 0 2388 1670 596 0 734 463 1259 33 7144
prob.faw1 0 0 7 40 0 0 0 4 0 2 53
rbg016a 0 0 2 1 0 0 0 0 0 0 3
rbg016b 0 0 10 8 10 11 5 0 34 0 78
rbg017a 0 0 6 5 4 0 0 0 0 0 15
rbg019a 0 0 6 6 0 0 0 0 1 0 13
rbg019b 0 0 2 2 0 0 0 0 0 0 4
rbg021a 0 0 5 3 1 7 1 0 14 0 31
rbg023a 0 0 2 2 1 7 1 0 6 0 19
rbg048a 0 0 68 31 339 1734 275 2 229 15 2693
rbg049a 0 0 19 19 4 95 17 0 53 4 211
rbg050a 0 0 31 37 5 61 10 0 172 0 316
rbg050b 0 0 34 23 7 67 4 0 12 3 150
rbg050c 0 0 59 59 46 352 33 6 301 4 860
rbg068a 0 0 8 7 1 7 1 0 6 0 30

Table B.3. Generated cutting planes

Problem Name of the problem instance.
SEC Number of generated “pure” subtour elimination constraints.
PCB Number of generated “strengthened” subtour elimination

constraints as simple pcb–inequality.
SEC(π) Number of generated “strengthened” subtour elimination

constraints as π–inequality.
SEC(σ) Number of generated “strengthened” subtour elimination

constraints as σ–inequality.
PI Number of generated weak π–inequalities.
PI-SIGMA Number of generated weak σ–inequalities.
SIGMA Number of generated weak (π, σ)–inequalities.
TMC Number of generated 2–matching constraints.
Shrink Number of cuts generated by shrinking procedure.
Tk Number of generated Tk–inequalities.∑

Total number of generated cuts.
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Distribution of computing time for SOP–instances

In the following table we summarize the distribution of the computing time spent in the
different parts of the branch&cut code. The key is similar to the one for the ATSP instances.

Problem init. LP improve separation pricing misc. total

ESC07 20.0 60.0 0.0 20.0 0.0 0.0 0:00.10
ESC11 11.8 52.9 0.0 23.5 0.0 11.8 0:00.23
ESC12 2.9 62.9 11.4 11.4 8.6 2.9 0:00.52
ESC14 6.2 60.4 10.4 10.4 10.4 2.1 0:00.38
ESC25 1.7 35.8 20.5 10.3 28.1 3.6 0:04.33
ESC47 0.1 12.9 56.5 10.2 19.2 1.0 11:48.05
ESC63 0.4 16.3 16.2 20.8 45.8 0.4 4:33.22
ESC78 0.1 22.7 15.2 19.8 41.6 0.7 19:10.20
ESC98 0.9 21.5 11.3 3.6 60.4 2.4 0:29.67

prob.1 42.9 42.9 0.0 14.3 0.0 0.0 0:00.08
prob.2 25.0 75.0 0.0 0.0 0.0 0.0 0:00.10
prob.3 2.5 40.4 24.8 11.2 16.8 4.3 0:01.67
prob.5 0.0 14.7 10.3 26.7 47.4 0.9 27:39.27
prob.6 8.4 8.8 57.2 1.7 23.5 0.5 0:37.95
prob.faw1 7.1 12.3 48.0 4.1 27.5 1.1 0:22.68

rbg016a 10.5 52.6 5.3 15.8 10.5 5.3 0:00.18
rbg016b 3.7 50.0 13.4 20.7 6.1 6.1 0:01.37
rbg017a 1.9 53.8 7.7 15.4 15.4 5.8 0:00.48
rbg019a 9.4 50.0 3.1 18.8 6.2 12.5 0:00.48
rbg019b 50.0 37.5 12.5 0.0 0.0 0.0 0:00.13
rbg021a 1.7 43.3 5.0 16.7 28.3 5.0 0:00.45
rbg023a 9.1 38.6 4.5 11.4 27.3 9.1 0:00.52
rbg048a 0.1 10.5 40.2 22.2 25.7 1.3 8:55.53
rbg049a 2.6 17.5 25.4 12.9 39.0 2.7 0:18.57
rbg050a 1.2 27.9 19.1 14.0 33.6 4.3 0:15.02
rbg050b 2.7 20.6 25.1 10.6 38.1 2.8 0:09.73
rbg050c 0.2 22.6 34.1 20.1 20.5 2.5 1:37.37
rbg068a 15.1 18.3 36.3 13.4 14.5 2.4 0:03.92

Table B.4. Timing statistic
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Statistics on AHPPTW

In the following we give a more detailed statistic on the instances of the AHPPTW mentioned
in Table 6.1. The key to this table is the same as given in Section 6.7 (see page 174)

BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

br17b.01 19 25 – – 1 0 17 10 0:00.62
br17b.02 19 25 – – 1 0 21 9 0:00.78
br17b.03 19 32 [ 25, 88] 28.00 4859 54 19248 12195 25:34.73
br17b.04 19 33 [ 29, 89] 13.79 1537 49 7107 3860 8:25.32
br17b.05 19 33 [ 30, 89] 10.00 893 30 5925 2946 5:52.40
br17b.06 19 33 [ 30, 82] 10.00 1191 38 4855 2868 6:09.52
br17b.07 19 33 [ 31, 44] 6.45 277 29 1664 849 1:15.62
br17b.08 19 33 [ 29, 81] 13.79 285 24 1887 864 1:21.75
br17b.09 19 33 [ 31, 33] 6.45 15 5 194 69 0:05.68
br17b.10 19 45 [ 33, 45] 36.36 19 4 74 44 0:03.25
br17b.11 19 45 – – 1 0 5 4 0:01.08
br17b.12 19 48 – – 1 0 4 3 0:00.87
br17b.13 19 58 [ 48, 60] 20.83 81 10 252 191 0:09.83
br17b.14 19 72 – – 1 0 12 8 0:00.72
br17b.15 19 84 – – 1 0 0 1 0:00.47
br17b.16 19 90 – – 1 0 0 1 0:00.43
br17b.17 19 121 – – 1 0 0 1 0:00.28
br17c.01 19 25 – – 1 0 14 12 0:00.65
br17c.02 19 27 – – 1 0 48 21 0:01.52
br17c.03 19 27 [ 25, 72] 8.00 1475 51 6213 3038 6:19.08
br17c.04 19 27 – – 1 0 35 22 0:01.98
br17c.05 19 30 [ 30, 119] 0.00 5 2 27 19 0:01.63
br17c.06 19 30 – – 1 0 23 11 0:00.87
br17c.07 19 31 [ 30, 120] 3.33 369 17 1371 1032 1:43.23
br17c.08 19 42 – – 1 0 16 11 0:00.70
br17c.09 19 42 [ 42, 43] 0.00 7 3 52 38 0:02.65

Table C.1 (a).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU
br17c.10 19 42 [ 42, 43] 0.00 3 1 31 19 0:01.55
br17c.11 19 42 – – 1 0 23 11 0:00.82
br17c.12 19 42 – – 1 0 23 12 0:00.82
br17c.13 19 42 – – 1 0 27 13 0:01.07
br17c.14 19 42 – – 1 0 15 6 0:00.63
br17c.15 19 42 – – 1 0 17 6 0:00.55
br17c.16 19 42 – – 1 0 7 4 0:00.48
br17c.17 19 42 – – 1 0 10 4 0:00.53
br17d.01 19 25 – – 1 0 14 12 0:00.67
br17d.02 19 28 [ 25, 94] 12.00 103 14 233 286 0:27.37
br17d.03 19 34 [ 33, 155] 3.03 121 13 440 394 0:46.67
br17d.04 19 33 [ 33, 126] 0.00 3 1 82 39 0:05.75
br17d.05 19 34 [ 34, 87] 0.00 7 3 100 61 0:08.50
br17d.06 19 34 – – 1 0 65 31 0:02.87
br17d.07 19 34 [ 34, 58] 0.00 569 23 2627 1884 3:08.37
br17d.08 19 34 [ 34, 59] 0.00 209 22 1164 688 0:59.18
br17d.09 19 34 [ 34, 54] 0.00 3 1 71 36 0:02.93
br17d.10 19 40 – – 1 0 16 12 0:00.97
br17d.11 19 40 – – 1 0 8 7 0:00.75
br17d.12 19 69 [ 62, 140] 11.29 19 5 256 74 0:04.37
br17d.13 19 69 [ 62, 93] 11.29 9 3 62 23 0:01.53
br17d.14 19 78 – – 1 0 1 2 0:00.62
br17d.15 19 78 – – 1 0 6 4 0:00.63
br17d.16 19 90 – – 1 0 0 1 0:00.37
br17d.17 19 121 – – 1 0 0 1 0:00.32

br17e.01 19 25 – – 1 0 14 12 0:00.70
br17e.02 19 28 [ 27, 40] 3.70 15 6 129 57 0:06.13
br17e.03 19 27 [ 27, 75] 0.00 605 24 3118 1256 2:50.68
br17e.04 19 27 – – 1 0 31 18 0:01.52
br17e.05 19 28 [ 28, 84] 0.00 399 26 1539 953 1:39.80
br17e.06 19 28 [ 28, 84] 0.00 3 1 43 15 0:01.62
br17e.07 19 28 [ 28, 44] 0.00 2221 40 8387 5103 8:43.35
br17e.08 19 28 [ 28, 84] 0.00 885 33 4692 2512 4:22.30
br17e.09 19 33 – – 1 0 42 24 0:01.83
br17e.10 19 51 [ 48, 51] 6.25 29 12 173 123 0:13.08
br17e.11 19 53 [ 49, 53] 8.16 117 14 618 427 0:42.38
br17e.12 19 53 [ 49, 56] 8.16 63 9 446 286 0:28.67
br17e.13 19 54 – – 1 0 53 21 0:01.55
br17e.14 19 54 – – 1 0 33 20 0:01.18
br17e.15 19 54 – – 1 0 15 9 0:00.73
br17e.16 19 60 – – 1 0 0 1 0:00.43
br17e.17 19 60 – – 1 0 1 2 0:00.43

Table C.1 (b).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU
br17f.01 19 25 – – 1 0 12 10 0:00.63
br17f.02 19 28 [ 25, 75] 12.00 221 25 822 486 0:54.12
br17f.03 19 27 [ 27, 139] 0.00 3 1 26 17 0:01.48
br17f.04 19 33 – – 1 0 49 24 0:02.42
br17f.05 19 33 [ 33, 42] 0.00 5 2 64 38 0:04.53
br17f.06 19 33 [ 33, 43] 0.00 3 1 91 41 0:05.40
br17f.07 19 33 – – 1 0 69 32 0:03.30
br17f.08 19 33 [ 33, 44] 0.00 3 1 82 38 0:04.52
br17f.09 19 33 [ 33, 41] 0.00 55 13 173 144 0:20.65
br17f.10 19 33 [ 33, 108] 0.00 3 1 94 29 0:03.85
br17f.11 19 33 – – 1 0 94 30 0:03.27
br17f.12 19 33 – – 1 0 77 16 0:01.78
br17f.13 19 45 – – 1 0 47 13 0:01.15
br17f.14 19 45 [ 45, 51] 0.00 5 2 54 21 0:01.87
br17f.15 19 45 – – 1 0 15 6 0:00.62
br17f.16 19 48 – – 1 0 7 5 0:00.57
br17f.17 19 48 – – 1 0 8 4 0:00.52

Table C.1 (c).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg27.a.01 29 161 – – 1 0 23 14 0:01.87
rbg27.a.02 29 161 – – 1 0 11 13 0:02.08
rbg27.a.03 29 161 – – 1 0 15 15 0:02.42
rbg27.a.04 29 161 – – 1 0 11 14 0:02.00
rbg27.a.05 29 161 – – 1 0 53 35 0:07.27
rbg27.a.06 29 161 [161,278] 0.00 3 1 88 53 0:11.90
rbg27.a.07 29 184 [182,297] 1.10 449 24 4844 2709 15:31.18
rbg27.a.08 29 199 [193,294] 3.11 5 2 336 143 0:40.65
rbg27.a.09 29 204 [197,292] 3.43 29 10 1050 404 1:55.68
rbg27.a.10 29 218 [209,291] 4.31 47 8 1144 461 1:46.63
rbg27.a.11 29 230 [213,299] 7.98 49 8 1325 481 2:07.73
rbg27.a.12 29 227 [221,331] 2.71 9 3 475 173 0:43.33
rbg27.a.13 29 230 [226,362] 1.77 11 3 759 245 1:05.65
rbg27.a.14 29 232 [230,373] 0.87 9 4 685 183 0:41.97
rbg27.a.15 29 270 [252,281] 7.14 255 15 7283 2239 9:07.85
rbg27.a.16 29 265 [258,346] 2.71 73 10 932 357 1:00.88
rbg27.a.17 29 265 [261,341] 1.53 47 9 626 238 0:37.33
rbg27.a.18 29 272 [268,342] 1.49 3 1 72 24 0:03.27
rbg27.a.19 29 272 [268,340] 1.47 3 1 52 22 0:03.32
rbg27.a.20 29 284 – – 1 0 22 7 0:01.75
rbg27.a.21 29 287 – – 1 0 16 4 0:01.37
rbg27.a.22 29 287 – – 1 0 0 1 0:01.10
rbg27.a.23 29 287 – – 1 0 0 1 0:01.07
rbg27.a.24 29 287 – – 1 0 0 1 0:01.05
rbg27.a.25 29 335 – – 1 0 0 1 0:01.13
rbg27.a.26 29 335 – – 1 0 0 1 0:01.35
rbg27.a.27 29 344 – – 1 0 0 1 0:01.02

rbg27.b.01 29 161 – – 1 0 8 9 0:01.47
rbg27.b.02 29 161 [161,201] 0.00 3 1 22 27 0:04.63
rbg27.b.03 29 167 [164,212] 1.83 443 15 4184 3164 14:43.22
rbg27.b.04 29 170 [164,245] 3.66 729 18 8802 5764 30:35.48
rbg27.b.05 29 181 [165,263] 9.70 2673 31 39757 22861 145:16.18
rbg27.b.06 29 185 [176,281] 5.11 1485 28 33210 16898 145:21.18
rbg27.b.07 29 206 [180,282] 14.77 2889 23 54342 24391 192:59.80
rbg27.b.08 29 207 [194,394] 6.70 1319 37 12737 7435 37:46.88
rbg27.b.09 29 214 [197,363] 8.63 3303 30 31396 18138 86:31.70
rbg27.b.10 29 210 [202,395] 3.96 803 21 7685 4211 18:51.37
rbg27.b.11 29 220 [210,231] 4.76 211 18 4464 1893 13:36.68
rbg27.b.12 29 222 [219,231] 1.37 13 3 540 224 0:53.67
rbg27.b.13 29 224 [222,229] 0.90 19 5 377 185 0:42.10
rbg27.b.14 29 224 – – 1 0 131 60 0:11.82
rbg27.b.15 29 234 [231,241] 1.30 19 5 375 187 0:48.65
rbg27.b.16 29 238 – – 1 0 120 44 0:08.15
rbg27.b.17 29 238 – – 1 0 81 31 0:05.13
rbg27.b.18 29 238 – – 1 0 65 25 0:04.18
rbg27.b.19 29 262 [261,263] 0.38 9 4 199 79 0:13.18
rbg27.b.20 29 263 – – 1 0 50 13 0:02.90
rbg27.b.21 29 267 – – 1 0 45 13 0:02.60

Table C.4(a).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg27.b.22 29 267 – – 1 0 0 2 0:01.70
rbg27.b.23 29 267 – – 1 0 0 1 0:01.62
rbg27.b.24 29 310 – – 1 0 0 2 0:01.32
rbg27.b.25 29 310 – – 1 0 0 1 0:01.08
rbg27.b.26 29 326 – – 1 0 0 1 0:01.62
rbg27.b.27 29 344 – – 1 0 0 1 0:01.03

rbg27.c.01 29 161 – – 1 0 10 10 0:01.37
rbg27.c.02 29 161 – – 1 0 6 11 0:01.58
rbg27.c.03 29 161 – – 1 0 30 14 0:02.35
rbg27.c.04 29 162 [161,236] 0.62 3 1 112 63 0:14.78
rbg27.c.05 29 180 [162,255] 11.11 4067 44 32070 21014 126:47.22
rbg27.c.06 29 175 [163,290] 7.36 3207 39 39648 21688 132:56.93
rbg27.c.07 29 180 [166,295] 8.43 3431 38 37900 20728 125:15.77
rbg27.c.08 29 190 [169,303] 12.43 2407 38 41256 19221 143:04.85
rbg27.c.09 29 209 [184,300] 13.59 5861 37 97468 43261 282:06.47
rbg27.c.10 29 206 [189,300] 14.29 839 22 16106 7323 47:07.07
rbg27.c.11 29 236 [196,301] 20.41 2203 32 18921 10291 52:00.05
rbg27.c.12 29 226 [213,305] 6.10 627 19 14060 5328 31:35.33
rbg27.c.13 29 250 [231,342] 8.23 725 23 17830 6243 34:56.53
rbg27.c.14 29 251 [235,342] 6.81 677 24 7952 3283 12:54.52
rbg27.c.15 29 248 [239,301] 3.77 147 13 2180 834 2:55.93
rbg27.c.16 29 250 [240,298] 4.17 179 13 2493 969 3:12.05
rbg27.c.17 29 250 [244,261] 2.46 141 11 1806 795 2:47.28
rbg27.c.18 29 250 [249,250] 0.40 5 2 153 64 0:10.60
rbg27.c.19 29 250 [249,250] 0.40 3 1 119 47 0:06.82
rbg27.c.20 29 256 [253,256] 1.19 15 6 332 116 0:16.52
rbg27.c.21 29 267 [265,268] 0.75 23 5 187 96 0:11.37
rbg27.c.22 29 267 – – 1 0 71 19 0:03.08
rbg27.c.23 29 267 – – 1 0 22 9 0:01.92
rbg27.c.24 29 267 – – 1 0 0 1 0:02.90
rbg27.c.25 29 306 – – 1 0 2 2 0:02.72
rbg27.c.26 29 306 – – 1 0 0 1 0:02.13
rbg27.c.27 29 324 – – 1 0 0 1 0:01.30
rbg27.d.01 29 161 – – 1 0 13 12 0:01.68
rbg27.d.02 29 161 – – 1 0 12 16 0:02.43
rbg27.d.03 29 164 [163,227] 0.61 19 5 216 103 0:23.90
rbg27.d.04 29 168 [165,272] 1.82 377 22 4569 2916 14:06.63
rbg27.d.05 29 170 [164,274] 3.66 2339 33 20332 12708 78:38.15
rbg27.d.06 29 170 [163,269] 4.29 4613 34 30092 17591 105:52.32
rbg27.d.07 29 179 [175,253] 2.29 575 28 5610 2933 16:18.07
rbg27.d.08 29 181 [175,295] 3.43 493 17 6784 3148 18:21.47
rbg27.d.09 29 190 [178,282] 6.74 1251 19 20856 8723 60:13.47
rbg27.d.10 29 191 [185,288] 3.24 111 14 2289 910 5:38.75
rbg27.d.11 29 194 [192,197] 1.04 33 6 928 345 2:00.78
rbg27.d.12 29 206 [202,313] 1.98 35 7 1074 377 2:14.38
rbg27.d.13 29 221 [214,311] 3.27 29 9 1434 474 3:27.47
rbg27.d.14 29 221 – – 1 0 77 31 0:09.60
rbg27.d.15 29 221 – – 1 0 85 39 0:10.47

Table C.4(b).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg27.d.16 29 221 – – 1 0 90 32 0:09.30
rbg27.d.17 29 223 – – 1 0 41 21 0:06.72
rbg27.d.18 29 229 – – 1 0 5 3 0:04.82
rbg27.d.19 29 239 – – 1 0 17 7 0:04.90
rbg27.d.20 29 239 – – 1 0 1 3 0:04.42
rbg27.d.21 29 265 [261,272] 1.53 3 1 115 56 0:10.48
rbg27.d.22 29 253 – – 1 0 2 2 0:04.13
rbg27.d.23 29 271 – – 1 0 10 5 0:02.87
rbg27.d.24 29 279 – – 1 0 4 3 0:02.55
rbg27.d.25 29 297 – – 1 0 0 1 0:01.53
rbg27.d.26 29 306 – – 1 0 0 1 0:02.75
rbg27.d.27 29 322 – – 1 0 0 1 0:01.17

rbg27.e.01 29 161 – – 1 0 7 10 0:01.43
rbg27.e.02 29 163 [161,192] 1.24 9 4 44 54 0:09.88
rbg27.e.03 29 165 [164,240] 0.61 245 16 1287 1093 4:17.08
rbg27.e.04 29 168 [164,246] 2.44 1583 25 7684 6185 29:03.77
rbg27.e.05 29 179 [174,244] 2.87 1003 20 8900 5335 31:30.08
rbg27.e.06 29 187 [174,275] 7.47 11093 45 76716 46792 296:59.02
rbg27.e.07 29 187 [179,302] 4.47 781 22 9398 4586 26:12.70
rbg27.e.08 29 187 [179,298] 4.47 613 23 11068 4513 27:32.85
rbg27.e.09 29 188 [180,298] 4.44 673 22 11885 4402 29:38.80
rbg27.e.10 29 190 [182,313] 4.40 659 21 15488 5236 35:47.53
rbg27.e.11 29 196 [193,313] 1.55 493 31 7535 2866 16:12.08
rbg27.e.12 29 196 [194,309] 1.03 115 16 1643 660 4:24.17
rbg27.e.13 29 200 [197,310] 1.52 123 17 1736 718 2:58.13
rbg27.e.14 29 200 – – 1 0 58 30 0:04.37
rbg27.e.15 29 200 – – 1 0 49 21 0:03.93
rbg27.e.16 29 211 – – 1 0 19 12 0:02.70
rbg27.e.17 29 235 [233,238] 0.86 43 9 816 271 1:15.88
rbg27.e.18 29 235 [234,242] 0.43 35 9 561 193 0:45.83
rbg27.e.19 29 235 [234,239] 0.43 13 6 243 79 0:18.35
rbg27.e.20 29 235 [234,246] 0.43 23 6 218 119 0:20.87
rbg27.e.21 29 235 [234,235] 0.43 11 5 95 47 0:07.37
rbg27.e.22 29 252 – – 1 0 39 21 0:03.08
rbg27.e.23 29 260 – – 1 0 99 26 0:04.13
rbg27.e.24 29 260 – – 1 0 45 13 0:02.20
rbg27.e.25 29 263 – – 1 0 22 8 0:01.72
rbg27.e.26 29 263 – – 1 0 24 6 0:01.47
rbg27.e.27 29 270 – – 1 0 2 2 0:01.22
rbg27.f.01 29 161 – – 1 0 5 9 0:01.33
rbg27.f.02 29 161 – – 1 0 12 15 0:02.37
rbg27.f.03 29 161 – – 1 0 9 8 0:01.43
rbg27.f.04 29 171 [166,244] 3.01 189 16 1063 858 3:47.27
rbg27.f.05 29 170 – – 1 0 44 28 0:05.52
rbg27.f.06 29 170 – – 1 0 51 26 0:05.33
rbg27.f.07 29 170 – – 1 0 80 39 0:08.63
rbg27.f.08 29 175 [172,283] 1.74 449 35 4795 2141 14:21.73
rbg27.f.09 29 185 [183,303] 1.09 13 4 575 193 1:39.48

Table C.4(c).
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BC-root BC–tree
Problem n Opt. bounds GAP #N Level # cuts #LPs CPU

rbg27.f.10 29 196 [188,205] 4.26 245 15 8658 2499 72:44.03
rbg27.f.11 29 199 [191,214] 4.19 441 25 17063 4305 74:47.43
rbg27.f.12 29 202 [193,333] 4.66 725 26 17245 5124 48:35.70
rbg27.f.13 29 199 [195,216] 2.05 405 19 9502 2753 18:52.82
rbg27.f.14 29 199 [197,326] 1.02 499 24 9523 2904 16:06.28
rbg27.f.15 29 207 [198,216] 4.57 375 24 6892 2228 12:16.13
rbg27.f.16 29 217 [212,336] 2.36 111 16 2780 808 4:26.95
rbg27.f.17 29 220 – – 1 0 253 62 0:18.05
rbg27.f.18 29 228 – – 1 0 145 38 0:08.27
rbg27.f.19 29 232 – – 1 0 138 46 0:08.85
rbg27.f.20 29 235 – – 1 0 98 27 0:05.58
rbg27.f.21 29 235 – – 1 0 99 25 0:04.73
rbg27.f.22 29 247 [246,247] 0.41 3 1 133 36 0:06.07
rbg27.f.23 29 247 [246,247] 0.41 3 1 98 32 0:06.00
rbg27.f.24 29 249 – – 1 0 35 14 0:02.83
rbg27.f.25 29 263 – – 1 0 39 11 0:02.52
rbg27.f.26 29 263 – – 1 0 27 8 0:02.03
rbg27.f.27 29 270 – – 1 0 4 3 0:01.75

Table C.4(d).
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[Kar91] R.M. Karp. An introduction to randomized algorithms. Discrete Applied Math-
ematics, 34:165–201, 1991.

[Kle92] J.P.C. Kleijnen. Simulation and optimization in production planning. Decision
Support Systems, 8, 1992. (Only prelimary version available to the author).



BIBLIOGRAPHY 205

[KM93] T. Krippner and H. Matejka. On-line Optimierung eines Testregallagers. Mod-
ellierung und Vergleich verschiedener Heuristiken. Master’s thesis, Universität
Augsburg, Germany, 1993.

[KMRS88] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica 3, pages 79–119, 1988.

[KP93] B. Kalyanasundaram and K. Pruhs. Online weighted matching. Journal of
Algorithms, 14(3):478–488, 1993.

[KT92] H.A. Kierstead and W.T. Trotter. On–line graph coloring. In L.A. McGeoch
and D.D. Sleator, editors, On–line algorithms, pages 85–92. AMS, 1992.

[Kuh55] H. Kuhn. On certain convex polyhedra (abstract). Bulletin of the American
Mathematical Society, 61:557–558, 1955.

[KVV90] R. Karp, U. Vazirani, and V. Vazirani. An optimal algorithm for on–line bipartite
matching. In Proceedings, 22nd ACM Symposium on Theory of Computing, pages
352–358, 1990.

[LL90] G. Laporte and F. Louveaux. Formulations and bounds for stochastic vehicle
routing problems with uncertain supplies. In J.J. Gabewicz, J.-F. Richard, and
L.A. Wolsey, editors, Economic decision–making: games, econometrics and op-
timization, pages 443–455. North–Holland, Amsterdam, 1990.

[LLM89] G. Laporte, F. Louveaux, and H. Mercure. Models and exact solutions for a
class of stochastic location–routing problems. European Journal of Operational
Research, 39:71–78, 1989.

[LLRS93] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy
Kan, and P.H. Zipkin, editors, Logistics of production and inventory, volume 4 of
Handbooks in Operations Research and Management Science, chapter 8. North–
Holland, Amsterdam, 1993.

[LST89] L. Lovász, M. Saks, and W.T. Trotter. An on–line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics, 75:319–325, 1989.

[MMS88] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for
server problems. In Proceedings of the 20th Annual ACM Symposium on the
Theory of Computing, pages 322–333, 1988.

[MMS90] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11:208–230, 1990.

[MS91] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized algorithm.
Algorithmica 6, pages 816–825, 1991.

[MS92] L.A. McGeoch and D.D. Sleator, editors. On–line algorithms. AMS, 1992. Pro-
ceedings of a DIMACS workshop, February 11-13, 1991.



206 BIBLIOGRAPHY

[MTZ60] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations
and traveling salesman problems. J. Assoc. Comput. Mach., 7:326–329, 1960.

[NKT89] G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd, editors. Optimization,
volume 1 of Handbooks in Operations Research and Management Science. North-
Holland, Amsterdam, 1989.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, Chichester, 1988.

[Obe92] M. Ober. Asymmetrische Hamilton–Wege–Probleme mit Zeitfenstern. Master’s
thesis, Universität Augsburg, 1992.

[Par90] D.J. Parrish. Flexible Manufacturing. Butterworth-Heinemann, London, 1990.

[Pow86] W.B. Powell. A stochastic model of the dynamic vehicle allocation problem.
Transportation Science, 20(2):117–129, May 1986.

[Pow87] W.B. Powell. An operational planning model for the dynamic vehicle allocation
problem with uncertain demands. Transp. Res. B-Vol., 21B(3):217–232, 1987.

[PR90] M. Padberg and G. Rinaldi. Facet identification for the symmetric traveling
salesman polytope. Mathematical Programming, 47:219–257, 1990.

[PR91] M. Padberg and G. Rinaldi. A branch and cut algorithm for tyhe resolution of
large–scale symmetric traveling salesman problems. SIAM Review, 33:60–100,
1991.

[PS88] M. Padberg and T.Y. Sung. An analytical comparison of different formulations
of the travelling salesman problem. Technical report, Working Paper, New York
University, 1988.

[Psa80] H.N. Psaraftis. A dynamic programming solution to the single vehicle many–to–
many immediate dial–a–ride problem. Transportation Science, 14(2):130–154,
1980.

[Psa88] H.N. Psaraftis. Dynamic vehicle routing problems. In B.L. Golden and A.A.
Assad, editors, Vehicle Routing : Methods and Studies, pages 223–248. Elsevier
Science Publisher B.V. (North–Holland), 1988.

[PT91] W. Pulleyblank and M. Timlin. Precedence constrained routing and helicopter
scheduling : Heuristic design. Technical Report Research report RC17154
(#76032), IBM T. J. Watson Research Center, Yorktown Heights, NY, USA,
1991. (To appear in Interfaces.).

[QS94] M. Queyranne and A. Schulz. Polyhedral approaches to machine scheduling.
Technical Report 408/1994, Technische Universität Berlin, 1994.

[QW94] M. Queyranne and Y. Wang. Symmetric inequalities and their composition for
asymmetric travelling salesman polytopes. Technical report, Working paper 90-
MSC-002, University of British Columbia, Vancouver, 1990, revised 1994. (To
appear in Mathematical Programming.).



BIBLIOGRAPHY 207

[Rei91] G. Reinelt. TSPLIB – a travelling salesman problem library. ORSA Journal on
Computing, 3:376–384, 1991.

[RT93] W.T. Rhee and M. Talagrand. On line bin packing with items of random size.
Mathematics of Operations Research, 18(2):438–445, May 1993.

[Sav85] M.W.P. Savelsbergh. Local search for routing problems with time windows.
Annals of Operations Research, 4:285–305, 1985.

[Sav90] M. W. P. Savelsbergh. An efficient implementation of local search algorithms
for constrained routing problems. European Journal of Operations Research,
47:75–85, 1990.

[Sav91] M.W.P. Savelsbergh. The vehicle routing problem with time windows: minimiz-
ing route duration. Technical Report 91–03, Department of Mathematics and
Computer Science, Eindhoven University of Technology, 1991.

[Sav94] M. Savelsbergh, 1994. Personal communication (1994) . School of Industrial and
System Engineering, Georgia Institute of Technology, Atlanta, USA.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, 1986.

[SG83] W.R. Stewart Jr. and B.L. Golden. Stochastic vehicle routing: A comprehensive
approach. European Journal of Operational Research, 14:371–385, 1983.

[Sim91] E.R. Sims, Jr. Planning and Managing Industrial Logistics Systems, volume 12
of Advances in Industrial Engineering. Elsevier, Amsterdam, 1991.

[Spi93] F.C.R. Spieksma. Assignment and scheduling algorithms in automated manu-
facturing. PhD thesis, University of Limburg, Maastricht, Netherlands, 1993.

[SS89] K.E. Stecke and R. Suri, editors. Flexible Manufacturing Systems, volume 8 of
Manufacturing Research and Technology. Elsevier, Amsterdam, 1989. Proceed-
ings of the Third ORSA/TIMS Conference on Flexible Manufacturing Systems:
Operations Research Models and Applications.

[SSK93] R. Suri, J.L. Sanders, and M. Kamath. Performance evaluation of production
networks. In S.C. Graves, A.H.G. Rinnooy Kan, and P.H. Zipkin, editors, Logis-
tics of production and inventory, volume 4 of Handbooks in Operations Research
and Management Science, chapter 5. North–Holland, Amsterdam, 1993.

[ST85] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of ACM, 28:202–208, 1985.

[ST91] R. Suri and S. de Treville. Full speed ahead. OR/MS Today, pages 34–42, June
1991.

[SV93] P. Solot and M. van Vliet. Analytic models for FMS design optimization : a
survey. Technical report, EPFL Lausanne, January 1993.

[Swa91] J. Swain. World of choices. OR/MS Today, pages 81–103, October 1991.



208 BIBLIOGRAPHY

[Tet90] U. Tetzlaff. Optimal Design of Flexible Manufacturing Systems. Physica–Verlag,
Heidelberg, 1990.

[Tim89] M. Timlin. Precedence constrained routing. Master’s thesis, Department of
Combinatorics and Optimization, University of Waterloo, 1989.

[TK92] H. Tempelmeier and H. Kuhn. OR–Modelle zur Planung flexibler Fertigungssys-
teme. OR Spektrum, 14(4):177–192, 1992.

[Tre92] S. de Treville. Time is money. OR/MS Today, pages 30–34, October 1992.

[Tsi92] J. Tsitsiklis. Special cases of traveling salesman and repairman problems with
time windows. Networks, 22:263–282, 1992.



Index
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Dk–inequality, 15, 101
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SOP (n, P ), 84
Tk–inequality, 17, 103, 113
π–inequality, 93, 160
σ–inequality, 95, 160
c–competitive, 30
k–server problem, 28, 31
NP–complete, 8
NP–hard, 8
2–matching constraint, 14, 107

affine hull, 7
affine rank, 7
affinely independent, 7
arborescence, 7
articulation node, 7
asymmetric travelling salesman polytope,

13
monotone relaxation, 13

asymmetric travelling salesman problem, 13–
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basic cuts, 164
branch&cut algorithm, 9–12

for AHPPTW, 167–169
for SOP, 115–120

branching, 7

C2–inequality, 17
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chord, 6
CIM, 21
circuit, 6
clique, 7
clique cuts, 166
clique tree inequalities, 14

cloning, 99
closed alternating trail (CAT), 18

bundles, 19
comb–inequalities, 14

competitiveness, 29
components

of a digraph, 7
Computer Integrated Manufacturing, 21
connected

digraph, 7
strongly, 7
two nodes, 7

convex hull, 7
cut, 6
cutting plane algorithm, 9–12

deadline, 131
decision problem, 8
degree, 6
degree constraint, 83
digraph, 5

acyclic, 6
complete, 5
transitively closed, 5

dynamic
travelling repairman problem, 74
travelling salesman problem, 73
vehicle routing, 73

end node, 6
equation system
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facet, 8
flexible manufacturing, 20–21
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control problem, 25–26
design problem, 23–25
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general clique cuts, 166
graph, 5

bipartite, 5

halfspace, 8
Hamiltonian path, 6

feasible, 133
Hamiltonian path problem

with precedence constraints, 81, 81–
128

with time windows, 131, 131–180
hyperplane, 8

incidence vector, 9
indegree, 6
inequality

asymmetric, 14
dominated, 8
equivalent, 8
facet defining, 8
support graph of, 8
supporting, 8
symmetric, 14
valid, 8

infeasible path constraint, 139, 149–157

lifting, 15, 157
V–lifting, 157

node
fixed, 86
free, 85

on–line optimization, 27–32
on–line problem, 28, 27–32

bin packing, 29
graph coloring, 29
matching, 29

on-line-algorithms, 29–32
optimization problem, 8
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path, 6
concatenation of, 154
covering a node, 134
infeasible, 133, 134
length of, 6
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simple, 6
transitive closure of, 134

pcb–inequality, see precedence cycle break-
ing inequality

polyhedron, 8
polytope, 8
precedence cycle breaking inequality, 98,
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precedence digraph, 136
precedence forcing constraints, 83, 93
predecessor, 5, 85
preprocessing, 135
probabilistic travelling salesman problem,
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queueing networks, 23

randomized algorithm, 30
rank, 7
release date, 131

scheduling problem, 25
job shop scheduling, 133

separation problem, 10, 159–161
separation routine, 10, 112–114

exact, 11
heuristic, 11

sequential ordering problem, 81–128
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simulation, 49–61
simulation model, 23
start time, 132
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subpath, 7
subtour, 6
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Miller–Tucker–Zemlin inequality, 162
MillerTuckerZemlin inequality, 137
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time window, 132
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tournament constraint, 150–153
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