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Abstract

Recent years have seen an increased interest in non-equilibrium molecular dynamics

(NEMD) simulations, especially for molecular systems with periodic forcing by exter-

nal fields, e.g., in the context of studying effects of electromagnetic radiation on the

human body tissue. Lately, an NEMD methods with local thermostating has been pro-

posed that allows for studying non-equilibrium processes in a statistically reliable and

thermodynamically consistent way. In this article, we demonstrate how to construct

Markov State Models (MSMs) for such NEMD simulations. MSM building has been

well-established for systems in equilibrium where MSMs with just a few (macro-)states

allow for accurate reproduction of the essential kinetics of the molecular system under

consideration. Non-equilibrium MSMs have been lacking so far. The article presents

how to construct such MSMs and illustrates their validity and usefulness for the case

of conformation dynamics of alanine dipeptide in an external electric field.
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‡Zuse Institute Berlin (ZIB), Germany
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1 Introduction

Biomolecular systems under non-equilibrium conditions caused by external fields, especially

systems under periodic forcing, have attracted increasing interest recently. For example,

the potential effects of electromagnetic radiation on the human body tissue (e.g. DNA, pro-

tein, and membrane) has been extensively investigated in a vast number of articles, with

the following list just representing an incomplete selection.1–14 Molecular dynamics (MD)

simulations have proved particularly useful for understanding the response of biomolecular

conformations to external fields because of their ability to resolve molecular details that

sometimes cannot be resolved in experiments. Only recently, a non-equilibrium MD sim-

ulation (D-NEMD) method with local thermostating has been proposed15 that allows for

studying non-equilibrium processes in a statistically reliable and thermodynamically consis-

tent way. Despite the significance of the non-equilibrium phenomena, the analysis of the

non-equilibrium MD simulations mainly follows standard approaches, and reliable tools for

quantitative description of the essential conformational dynamics of the molecular system

under external forcing are still lacking.

Despite their many advantages, MD simulations have severe limitations. For example,

one has to assume that the underlying force fields are appropriately describing the internal

and external molecular interactions, and the maximal possible simulation length often is

shorter than the timescale of interest. This article is mainly concerned with circumvent-

ing the latter obstacle by introducing non-equilibrium Markov State Models. Markov State

Models (MSM) have been well developed over the past decade in theory16,17 and applica-

tions (see the recent book18 for an overview), and software implementations,19,20 but for

systems under equilibrium conditions only! The principal idea of equilibrium MSMs is to
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approximate the original high-dimensional MD system by a reduced Markovian dynamics

over a finite number of (macro-)states. These (macro-)states have to be identified with the

dominant metastable sets, in the sense that typical MD trajectories stay in the vicinity of a

metastable set substantially longer than the systems needs for a transition to another such

state.16,21 In this case, the metastable sets are the main conformations of the molecular

system under consideration which, often enough, are given by the main wells in the energy

landscape. It has been shown that for molecular systems exhibiting such metastable sets

the Markovian dynamics given by an MSM allows very close approximation of the longest

relaxation processes of the underlying molecular system, at least under equilibrium condi-

tions.22,23 Moreover, it has been demonstrated that in such cases MSM building requires

short MD trajectories only, much shorter than the timescales of interest.24,25 Thus, MSM

building often allows to study the dynamical behavior on long timescales without requiring

MD trajectories of comparable length. Moreover, MSMs are utilized for understanding very

long MD simulations: Extracting the essential structures and dynamical properties from long

MD runs is becoming increasingly difficult as the system size and trajectory length grow;

MSMs have been used to construct kinetic fingerprints from MD simulations26 that help

understanding the essential dynamics and in comparison with experiments.27

To the knowledge of the authors this work is the first attempt of using MSMs for an-

alyzing non-equilibrium systems under periodic external forcing. More precisely, we will

demonstrate how to use MSMs for investigate the conformational dynamics of a peptide

(alanine dipeptide) under an oscillating electric field (EF). To this end, we will show how to

generalize Markov state modeling to periodic non-equilibrium conditions where one cannot

assume reversibility of the dynamics as it is mostly done in the literature on MSM building.

The outline of the article is as follows: In Sec. 2, we discuss the temporal and spatial dis-

cretizations needed to construct an MSM. We consider spatial discretization of the dihedral

angle space in the traditional sense of full partition MSMs.28,29 In the temporal direction,

the non-equilibrium process is discretized utilizing Floquet’s theorem. This results in a time-
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homogeneous, but not necessarily reversible, that is, irreversible Markov process. Since full

spatial partition does not make any sense for high-dimensional systems, we next show how to

construct a few-state MSM based on milestoning21,29 of the discretized irreversible Markov

process in Sec. 3. The validity of the discretizations and the resulting MSM is checked in

Sec. 4 by comparing the kinetic fingerprints given by the MSM to brute force non-equilibrium

MD simulations of alanine dipeptide under oscillating EF. The findings are summarized in

Sec. 5 including a chart presenting the workflow of MSM building for non-equilibrium sys-

tems, and a list of open questions.

2 Non-equilibrium molecular dynamics and its discretiza-

tion

We consider diffusive molecular dynamics in an energy landscape V driven by the time-

dependent external driving force E(t)D(xt) with the T -periodic external field E(t):

dxt =
(
−∇V (xt) + E(t)D(xt)

)
dt+

√
2β−1dwt, (1)

where xt ∈ Ω denotes the state of the molecular system at time t in state space Ω, wt

denotes standard n-dimensional Brownian motion, and β the inverse temperature, i.e. β =

1/(kBT ). Thermostatted Hamiltonain or Langevin dynamics can be treated in the same way

as explained herein, so for sake of simplicity we focus on the discussion of diffusive dynamics.

The propagation of probability densities ρ = ρ(x, t) based on this kind of dynamics in the

sense of ρ(x, t)dx = P[xt ∈ [x, x+ dx)] is governed by Fokker-Planck equation:

∂ρ

∂t
= L†(t)ρ, (2)
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where L†(t) is the adjoint of the generator

L(t) = β−1∆x +
(
−∇xV (x) + E(t)D(x)

)
· ∇x, (3)

where ∆x denotes the Laplacian operator and ∇x the nabla-operator wrt to x. The periodic-

ity of the external driving force induces the periodicity of the generator, i.e. L(t) = L(t+T ).

2.1 Spatial discretization: Master equation

We will now introduce an appropriate spatial discretization of this kind of non-equilibrium

MD – this is done for reasons of simplicity only; we could completely avoid it for the price

of more technical arguments. For achieving this discretization, we introduce a partition

of state space Ω into a finite number of disjoint sets {Ω1, · · · ,ΩN} satisfying Ω = ∪iΩi,

Ωj ∩ Ωj = ∅, ∀i 6= j. Utilizing the procedure described in Ref.30 the original Fokker-Planck

equation (2) is discretized, resulting in a time-inhomogeneous Markov jump process in state

space S = {1, · · · , N} with time-dependent rate matrix L(t) ∈ RN×N satisfying

N∑
j=1

Lij(t) = 0 (4)

Lij(t) ≥ 0, i 6= j (5)

Lij(t) = Lij(t+ T ) (6)

for all real time t ≥ 0. Moreover, the rate matrix L has the form L(t) = L0 +E(t)L1 where

E(t) is periodic with period T > 0. In analogy to (2), the Markov jump process generated

by L(t) transports probability distributions according to the associated Master equation

dp(t)

dt
= L>(t) · p(t) (7)
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where L>(t) denotes the matrix transpose of L(t), p(t) is anN -vector denoting the probability

distribution on S at time t, p(i, t), for example, the probability to be in state i (which

corresponds to set Ωi) at time t. As usual the properties (4) and (5) of L(t) guarantee that

the total probability mass is conserved, i.e., if p(i, 0) ≥ 0 componentwise, then p(i, t) ≥ 0

and
∑

i p(i, t) =
∑

i p(i, 0). The temporal evolution of the probability distribution p(t) can

be formally written

p(t) = Φ(t)p(0) (8)

by using the associated propagator matrix Φ(t) ∈ RN×N that solves

d

dt
Φ(t) = L>(t)Φ(t), Φ(0) = Id. (9)

Since the last equation can be considered column-wise, the propagator matrix inherits

column-wise conservation properties: Φij(t) ≥ 0 and
N∑
i=1

Φij(t) = 1, that is, Φ>(t) is a

stochastic matrix satisfying Φ>(t)e = e with e = (1, . . . , 1)> ∈ RN . Regarding these consid-

erations, we find

Φij(t) = P (Xt = i | X0 = j) , (10)

where Xt denotes the Markov process generated by L(t).

The discretization sets that we used to go from xt and L(t) to Xt and L(t), respectively,

can be assumed to provide an arbitrarily fine partition of the original state space; then the

transport properties of L(t) are almost perfect approximations of the transport properties

of L(t), in particular the approximation p(i, t) ≈ P(xt ∈ Ωi) is almost perfect.
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2.2 Temporal discretization: Floquet theorem

As an effect of the periodicity of L(t) the propagator Φ(t+ T ) satisfies

Φ(t+ T ) = Φ(t)Φ(T ), (11)

for all t ≥ 0. This can be seen by considering Y (t) = Φ(t+ T ). It satisfies

d

dt
Y (t) = L>(t+ T )Y (t) = L>(t)Y (t), Y (0) = Φ(T ).

When we consider this identity column-wise and use the propagator property of Φ(t) we get

Φ(t+T ) = Y (t) = Φ(t)Φ(T ). As a consequence of (11) we get for all integers m = 0, 1, 2, . . .

that

Φ(t+mT ) = Φ(t)Φm(T ). (12)

In combination with Eq. (8), we therefore know the solution p(t) of the Master equation for

all t ≥ 0, if we can compute Φ(t) for t ∈ (0, T ). This is known as the Floquet theorem.31 In

particular we get the long-term evolution of the propagator:

Φ(mT ) = Φm(T ), (13)

where Φm(T ) denotes the mth power of Φ(T ). Thus, for the probability at integral periods

we have

p(mT ) = Φ(mT ) p(0) = Φm(T ) p(0). (14)

Using the Floquet theorem, the time-inhomogeneous Markov jump process Xt is therefore

discretized into a time-homogeneous (not necessarily reversible) Markov jump process X̃m =
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XmT , m ∈ N, which is generated by transition matrix

P = Φ>(T ). (15)

We prefer to consider the discrete-time process X̃m instead of the time-continuous process

Xt because the powerful theories and computational tools for time-homogeneous Markov

processes can be directly applied. It worth noting that many of these tools require the

transition matrix P to satisfy the detailed balance condition. The computations in the

Appendix A show that P will in general not satisfy this condition; in fact the deviation from

reversibility can be estimated from the work of the periodic driving does to the system. There

is no doubt that information within one period is lost by using this temporal discretization,

however, information regarding the long-term behavior of the system on timescales much

longer than the period will be perfectly described because of X̃m = XmT ≈ xmT whenever our

spatial discretization is fine enough. At the same time, the computational cost of generating

X̃m is much less demanding than the brute force simulations of NEMD, which implies lower

statistically uncertainty in calculating the observables of interest.

Since P is a stochastic matrix, its eigenvalues are contained in the unit circle in the com-

plex plane, i.e., each eigenvalue λ (potentially complex-valued) satisfies |λ| ≤ 1. Furthermore

λ = 1 is an eigenvalue with right eigenvector e = (1, . . . , 1)> and a left eigenvector µ satis-

fying µ>P = µ>. From now on, we assume P to be irreducible and aperiodic such that the

Perron-Frobenius theorem holds, so the eigenvector corresponding to the eigenvalue λ = 1

is non-negative componentwise, and unique (up to normalization
∑

i µ(i) = 1). In this case

µ is the stationary measure in the sense that µ>Pm = µ>, m ∈ N, and (more precisely) the

asymptotic evolution of an initial probability distribution p(t = 0) by the process satisfies

p>(0)Pm → µ>, m → ∞, so that µ can be seen as the quasi-stationary distribution of the

non-stationary process.
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3 Markov State Model

If the discretization cells Ωi, i = 1, . . . , N form a fine partition of the molecular state space,

the Markov chain defined via the transition matrix P is discrete in time, but in space it

still is a fine-scale description of the transport properties of the dynamics with a very large

number N of states. Now we want to coarse our description much further by constructing a

Markov State Model (MSM) for P with K � N macrostates that should be the metastable

states of the system: The resulting K×K MSM transition matrix P̂ then defines the coarse

grained long term kinetics that shall approximate the original long term kinetics well. The

idea behind MSM building is that given the molecular system under consideration exhibits

metastable conformations then it is usually possible to construct a relatively small number

of discrete sets –the metastable sets that form the so-called macrostates– that correctly

describe the slow dynamics, and in each set the fast dynamics relaxes on some timescales

significantly shorter than the metastable timescales. Then if the MSM dynamics reproduces

the slow timescales and the corresponding transitions of the original dynamics (1), the former

is considered to be a good approximation of the latter.

MSM building has been attracted a lot of attention recently, and theory16 as well as

algorithms,18 applications (see e.g.24,32 for two of hundreds of articles) and software19,20

have been developed to quite an extend. However, by far most of the literature is related to

building standard MSMs for equilibrium MD. In standard MSM also the transition region

has to be discretized, a feature that often forces the user to incorporate more macrostates

than essentially needed to approximate the long-term kinetics. In Ref.16,21,22,33 it has been

shown how to construct non-standard MSM that avoid this problem for equilibrium MD,

i.e., if P satisfies the detailed balance condition: (1) Identify the cores of the metastable sets

of the dynamics, (2) use them as milestones to construct an MSM in which the macrostates

are the metastable core sets and P̂ is the transition matrix of the milestone process16,21,29

that models the jumping behavior of the original dynamics between the metastable regions.

However, since we cannot assume P to satisfy detailed balance, we instead follow the
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approach to non-standard MSMs recently proposed in Ref.34 which allows to identify the

metastable core sets for the non-reversible transition matrix P . Assume that this approach

leads to the K core sets C1, . . . , CK ⊂ S that are appropriate metastable sets. Following16,21

the process (X̃m) associated with P is coarse grained into the so-called milestone process

(X̂m) in the following way:

• X̂m just has K states associated with the sets Cj, j = 1, . . . , K.

• The sequence of random variables (X̂m) is defined via the sequence (X̃m), i.e., trajec-

tories of (X̃m) induce trajectories of (X̂m): We set X̂m = j if the last core set that the

process (X̃m) entered prior to or at time m has been the core set Cj.

Now consider an arbitrary infinitely long trajectory of (X̃m). Because of ergodicity we know

that the states in this trajectory will be distributed due to the quasi-stationary distribution

µ. Based on such an infinitely long trajectory we can consider the probability q−j (i) that

conditioned on X̃m = i the last core set hit has been Cj. This function is called the backward

committor of (X̃m) associated with the set Cj and is associated with the milestone process

via

q−j (i) = Pµ(X̂m = j | Xm = i), (16)

where the index µ refers to the fact that X̂m is distributed due to µ. From the last equation

we get that the stationary distribution of the milestone process is given by

µ̂j =
∑
i∈S

q−j (i)µ(i), (17)

that is, the probability to find X̂m = j in (infinitely) long trajectories of the milestoning

process is µ̂j.

Following35 one also has to consider the forward committor q+
j (i) identical to the prob-

ability that conditioned on X̃m = i the next core set to be hit will be Cj. The forward and
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backward committors q+
j and q−j for each core set Cj can be computed from P by solving

the linear equations35

(P − Id)q+
j (i) = 0, i ∈ C (18)

q+
j (i) = 1, i ∈ Cj
q+
j (i) = 0, i ∈ Ck, k 6= j

where C = S \ ∪jCj, and

(P b − Id)q−j (i) = 0, i ∈ C (19)

q−j (i) = 1, i ∈ Cj
q−j (i) = 0, i ∈ Ck, k 6= j

where P b denotes the transition matrix of the time-reversed process given by P b
ji = µ(i)Pij/µ(j).

We define the one-step transition matrix P̂ for the milestone process by

P̂jk = Pµ
(
X̂m+1 = k | X̂m = j

)
. (20)

Then Following Ref.,36 Thm. 3.1, P̂ can be computed by matrix multiplication using the

committors:

P̂jk =
1

µ̂j
〈(P b − Id)q−j , q

+
k 〉µ, j 6= k,

P̂jj =1−
∑
k 6=j

P̂jk
(21)

where the inner product is defined by 〈u, v〉µ =
∑

i∈S u(i)v(i)µ(i). In general the milestone

process need not be a Markov process. The results in16,34 show, however, that it is an

approximate Markov process as long as the core sets are proper metastable sets, i.e., if the

typical timescale on which (Xm) leaves C is much smaller than the typical expected hitting
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times between the core sets. Thus, by taking P̂ as our MSM transition matrix, we introduce

an additional modeling error that is the smaller the more metastable the core sets are. With

this MSM transition matrix, we can define the MSM kinetics: If we start from some initial

probability p̂j(0) of being in state j at time t = 0 then its evolution p̂j(t) in time is discrete

in multiples of period T and given by

p̂j(T ) =
∑
k

p̂k(0)P̂kj. (22)

In our approach p̂j(mT ) is a good approximation of P(X̂m = j) (for appropriately chosen

core sets).

Remark 1: Our definition of the milestoning process in terms of the process (X̃m) gen-

erated by P guarantees that we can directly compute P̂ via (20) from trajectories of (X̃m)

without computing the committor functions. This is of importance if the spatial discretiza-

tion underlying (X̃m) is fine enough, because then the kinetics of (X̃m) approximates the

original kinetics of (xmT ) so that we can directly compute P̂ via (20) from NEMD trajecto-

ries without computing P first (which substantially simplified the MSM building if the core

sets are already known).

Remark 2: Following16 we can also define another pair of stochastic MSM matrices:

T̂jk =
〈q−j , P q+

k 〉µ
µ̂j

, (23)

M̂jk =
〈q−j , q+

k 〉µ
µ̂j

, (24)

that are connected to P̂ by the following identity

P̂ = T̂ − M̂ + Id,
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That can be seen by means of direct computation: For the off-diagonal entries we have

T̂jk − M̂jk =
〈q−j , P q+

k 〉µ
µ̂j

− 〈q
−
j , q

+
k 〉µ

µ̂j
=
〈(P b − Id)q−j , q

+
k 〉µ

µ̂j
= P̂jk, j 6= k (25)

Stochasticity yields T̂jj − M̂jj + 1 = P̂jj for the diagonal entries. Furthermore, as shown in

the Appendix B, T̂ as well as M̂ can be computed from trajectories without need to have

the committors. The importance of the pair T̂ and M̂ for MSM building comes from the

following observation: The main NEMD relaxation timescales are given by the dominant

eigenvalues of P .16,18 These dominant eigenvalues can be approximated by discretizing the

related eigenvalue problem Pu = λu by means of a Galerkin approximation with the finite

dimensional ansatz space spanned by the forward committors q+
j , j = 1, . . . , K together

with the finite dimensional test function space spanned by the backward committors q−j ,

j = 1, . . . , K (test functions multiplied from the left by the inner product 〈·, ·〉µ). The thus

discretize eigenproblem takes the form of a generalized eigenproblem

T̂ û = λ̂M̂ û, or, equivalently M̂−1T̂ û = λ̂û, . (26)

For the reversible case it is known that its k eigenvalues λ̂ are very good approximation of

the dominant eigenvalues λ of the original problem if the core sets are proper metastable

sets.23 Whether this is true for the non-reversible case is not known yet, but if the deviation

from reversibility is weak and the dominant eigenvalues of P are real-valued then the results

should hold analogously, see,16 Thm. 4.19.

If all of its entries are positive such that it is a stochastic matrix, M̂−1T̂ thus can also

be taken as MSM transition matrices. In the case of M̂−1T̂ the MSM modeling error results

from Galerkin discretization, while the MSM modeling error of P̂ results from ignoring the

potential non-Markovianity of X̂m.

Remark 3: As a matter of fact, if X̂m were Markovian, the following identity would hold:

P̂ = T̂ M̂−1 (see Appendix C for the proof). In this case, we would have M̂−1T̂ = M̂−1P̂ M̂
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and the eigenvalues of P̂ and M̂−1T̂ would be identical. Therefore, in practice, the deviation

of the eigenvalues of P̂ from those of M̂−1T̂ indicates the deviation from Markovianity

regarding the process X̂m.

4 Numerical example: Alanine dipeptide under oscilla-

tory electric field

We know that –in theory– whenever the spatial discretization is fine enough, the Markov

jump process Xt associated with the Master equation (7) is a good approximation to the

original MD process xt governed by (1). In practice, however, it is difficult to predict how

many discrete sets we need to be fine enough. Moreover, since the total dimension of xt is

3Natom (Natom being the number of atoms), it is prohibitive to do a really fine discretization

over all degrees of freedom for most systems of practical interest.

One possible way to define appropriate discretization sets is firstly to find a few collec-

tive variables, and then to discretize these collective variables as finely as needed either by

uniform or adaptive discretization.17,37 However, it is difficult to give a general answer in

prior regarding how to choose the collect variables and how fine their discretization should

be. For large or high dimensional systems, these questions usually become non-trivial.

φ ψ

Figure 1: A schematic plot of the alanine dipeptide molecule and the dihedral angles φ and
ψ.

To illustrate how the discretization works in practice we take the alanine dipeptide sys-

tem under an oscillatory EF, as an example, the NEMD simulation of which was extensively
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studied in Ref.15 The system was simulated in a 2.7 × 2.7 × 2.7 nm3 periodic simulation

region, with one alanine dipeptide molecules described by the CHARMM27 force field38 dis-

solved in 641 TIP3P water molecules.39 The grid-based energy correction map (CMAP)40

was used to correct the backbone dihedral angle energies. All simulations were performed by

a home-modified Gromacs 4.6.541 with CHARMM27 force field implemented.42 The alanine

dipeptide was put into the local thermostating environment, with a spherical dynamical re-

gion of radius 1.0 nm centered at the alpha-carbon. The Langevin thermostat with target

temperature T = 300 K and timescale τT = 0.1 ps was coupled to the thermostated re-

gion. The whole system was coupled to the Parrinello-Rahman barostat43 (in standard Gro-

macs implementation) with τP = 2.0 ps to keep the system at 1 Bar. The non-equilibrium

trajectories were integrated by the Leap-frog scheme with a time-step of 0.002 ps. The

short-range van der Waals interactions were cut-off at 1.00 nm, and were smoothed from

0.95 nm to 1.00 nm by the “shift” method provide by Gromacs. The energy conserving

Particle Mesh Ewald (PME)44,45 method (“pme-switch”) was used to compute the long-

range electrostatic interaction, with the same real-space cut-off radius as the van der Waals

interactions. The Gromacs default Fourier spacing of 0.12 nm and B-spline interpolation

order of 4 were adopted. The splitting parameter was optimized with respect to the elec-

trostatic force computing accuracy by Gromacs tool g_pme_error.46 The neighbor list

was updated every 5 time-steps with a list-building radius 1.20 nm. All hydrogen involv-

ing covalent bonds were constrained by the LINCS algorithm,47 except the water molecules

that were constrained by the SETTLE algorithm.48 The whole system was driven by a pe-

riodic electric field E(t) = E0 sin(2πt/T ) and D(x) = (1, 0, 0)> with intensity of the field

being E0 = 1.0 V/nm and period being T = 10 ps. The 20,000 branching trajectories were

simulated from 20,000 initial configurations that sample the equilibrium distribution. The

equilibrium configurations were prepared by an equilibrium MD simulation of length 106 ps,

along which snapshots were saved every 50 ps. The branching NEMD trajectories were each

4,000 ps long, and the system reached non-equilibrium quasi-stationary state in roughly
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300 ps.

For this periodically driven molecular system we will first show how to choose an ap-

propriately fine spatial discretization. After validating this discretization we will consider

the time-discretized dynamics generated by the Floquet transition matrix P in comparison

to the original NEMD simulation. Finally we will coarse grain this description further by

construction of a 3 state Markov State Model that is able to describe the long-term kinetics

of the system correctly.

4.1 Spatial discretization

We choose the two dihedral angles φ and ψ as collective variables (see Fig. 1), and the

discretization is a uniform partition of the φ–ψ plane. We denote the number of discretization

intervals on each dihedral by Ndih, then we get N = N2
dih discretization sets {Ωi}, i ∈ S =

{1, · · · , N2
dih}.

Based on a given spatial discretization we can aggregate the transition matrix P = Φ>(T )

just by counting the transition behavior of MD trajectories

Pij = P (XT = j | X0 = i) . (27)

However, P allows to approximate the original dynamics on multiples mT of the period

only. In order to have a time-continuous description we need the generator L(t) of the

Master equation. If the discretization is fine enough one possible approximation to L(t) is

via the following forward finite difference scheme:

Lij(t) ≈ 1

τ
[P(Xt+τ = j | Xt = i)− δji ], i, j ∈ S (28)

and τ is an appropriate small enough lag-time. Since the dimensionality is reduced by

using only a few collective variables, the lag-time should be chosen large enough so that the

original dynamics xt is properly relaxed with regard to the unresolved degrees of freedoms
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on timescales shorter than the lag-time (assuming that the collective variables capture the

slow dynamics). In the following we investigate the discretization quality with respect to the

choice of Ndih and lag-time τ .
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Figure 2: Time-dependent probability P
(
φt ∈ [0, 180), ψt ∈ [0, 180)

)
. The brute force NEMD

simulation is compared with different spatial discretization methods. The red shadow region
indicates the statistical uncertainty of the NEMD simulation.

We estimate the discretized generator L(t), t ∈ [0, T ) from NEMD trajectories generated

by L(t) in different time intervals [t1, t2]. As discussed above, whenever the discretized

dynamics approximates the original dynamics well, the time-periodic generator L(t) should

not depend on the choice of the interval [t1, t2] in the estimation procedure (28), provided

that the initial state of the system is not very far from the stationary state at long-time limit.

Therefore, this is an indicator for calibrating the discretization quality. We compute L(t) by

two discretizations Ndih = 2 and Ndih = 20, and two choices of time intervals [0, 80] ps and

[320, 400] ps, and then compare the time-dependent probability P
(
φt ∈ [0, 180), ψt ∈ [0, 180)

)
with the (brute force) NEMD result in Fig. 2 using a lag-time τ = 0.5 ps. Using Ndih = 2 the

dynamics depends on the time interval used for calculating the generator: using time interval

[0, 80] ps the discretized dynamics deviates from the NEMD result, while using time interval

[320, 400] ps the discretized dynamics can only reproduces the NEMD result after 300 ps.

This therefore indicates poor approximations to the original dynamics with Ndih = 2. The

reason is that the discretization with Ndih = 2 is too coarse so that the dynamics cannot be

fully equilibriated within the lag-time τ in each discretized set, therefore, the discretization

17



presents state dependency. For Ndih = 20, the discretized dynamics does not depend on

the time interval of calculating the generator, and is consistent with the NEMD simulation

within the error bar. Therefore, throughout this paper we use Ndih = 20 to discretize the

dihedral angle space of alanine dipeptide.
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Figure 3: Time-dependent probability P
(
φ ∈ [0, 180), ψ ∈ [0, 180)

)
. The NEMD simulation

is compared with the Master equation using generators discretized with Ndih = 20 and
different lag time τ . The red shadow region indicates the statistical uncertainty of the
NEMD simulation.

Next we discuss the effect of the lag time τ on the estimation of the generator. Therefore,

we consider different choices of τ (0.5, 1.0, 2.0 and 5.0 ps) (see Fig. 3), all based on the

identical dihedral angle discretization using Ndih = 20. It is clear that when the lag-time is

close to the period (10 ps), the discretized dynamics cannot resolve the probability change

within a period. However, it is surprising that even quite large lag-times are able to capture

the the overall long time behavior of the original dynamics. We observe no significant

difference between τ = 0.5 and τ = 1.0 ps, which means the discretized dynamics is not very

sensitive to the choice of τ . Therefore, throughout this paper τ = 0.5 ps will be used.

4.2 Quasi-stationary distribution µ

After having validated the fine-scale spatial discretization we will now consider the time-

homogeneous process X̃m generated by the Floquet transition matrix P = Φ>(T ), and

investigate whether it reproduces the properties of the original non-equilibrium process xt.
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Figure 4: The color-scale plot of the logarithmic quasi-stationary distribution µ of (a) the
NEMD and (b) the discretized dynamics governed by Floquet transition matrix P = Φ>(T ).
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In this context, only the configurations at the integral periods mT along the original process

are taken into consider.

An important check is the consistency between the stationary probability density of Φ(T )

(i.e. the leading eigenvector µ) and that estimated form the original NEMD simulation,

ρst(φ, ψ) = lim
m→∞

ρ(φ, ψ,mT ), (29)

On each NEMD branching trajectory the initial 320 ps are discarded and the rest of the tra-

jectory in time interval [320, 4000] ps is averaged to estimate the quasi-stationary probability

distribution ρst. P is computed as described above, and then µ is computed as its leading

eigenvector. In order to make it comparable to the free energy in the equilibrium case, we

take the logarithm of the distributions, i.e. Fst(φ, ψ) = −kBT log ρst(φ, ψ) for NEMD and

Fst(φ, ψ) = −kBT log µ(φ, ψ) for P , where kB is the Boltzmann constant and T is the tem-

perature of the system. The results are compared in Fig. 4. A good consistency between the

NEMD simulation and P is observed.

4.3 Core set identification

Core sets
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Figure 5: The core set identification. Different colors indicate different core sets: CαR (green),
Cβ (yellow) and CαL (red). The blue color indicates the transition region C that does not
belong to one of the core sets.
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The procedure for identifying good metastable core sets of the irreversible Markov process

associated with P is described in detail in Ref.;34 here we just provide the fundamental idea

behind it: If strong metastable sets Cj, j = 1, . . . , K exist they should have one main

property: When starting from a state in Ci the expected hitting time of a state in Ci should

be much shorter than that of any state in one of the other sets Cj, j 6= i; in fact, the hitting

time distribution should exhibit roughly constant levels in each set Cj and should vary

significantly in the transition region C = Ω \ ∪jCj between the metastable sets. If starting

from some randomly chosen initial states, one thus can identify the metastable core sets and

the transition region by analyzing the hitting time distributions. This procedure is similar

to the procedures used for reversible processes17,18,49 but utilizes hitting time distributions

instead of any eigenvector information.

The metastable core sets identified by this procedure based on the estimate of P are

illustrated in Fig. 5 and denoted by CαR (green), Cβ (yellow) and CαL (red). They correspond

to the centers of the wells in the free energy landscapes shown in Fig. 4 and to the right-

handed alpha-helix, beta-sheet and left-handed alpha-helix conformations of the peptide,

respectively.

4.4 First mean hitting times

The first mean hitting time as a function of the dihedral angles (φ, ψ), is defined by the

expected first time needed for hitting a certain core set Cj, j ∈ {αR, β, αL} conditioned on

starting from the conformation (φ, ψ), more exactly from equilibrium conformations (φ, ψ) ∈
Ωi. Since the largest first mean hitting time (starting from states in core set αR and hitting

αL) is longer than 600 ps the results will be biased if we use the NEMD trajectories of length

4000 ps for brute force Monte Carlo estimation of the hitting time. Therefore, we base our

Monte Carlo estimate on 100 NEMD trajectories of 2× 105 ps instead. For comparison we

compute the first mean hitting time of the discretized dynamics via its transition matrix P :

the first mean hitting time hCj
(i) of core set Cj starting in Ωi can be computed by means of
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Figure 6: Comparisons of the first mean hitting time (FMHT) based on NEMD simulation
(left column) and discretized dynamics (right column). From top to bottom the first mean
hitting times to the core sets CαR , Cβ, and CαL are shown, respectively
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solving the linear problem16

(P − Id)hCj
(i) = −1, if Cj ∩ Ωi = ∅.

The resulting first mean hitting times are presented in Fig. 6. The good consistency between

the NEMD estimate and the discretized Markov process X̃m indicates a good approximation

quality. One should note that the NEMD estimate of the first mean hitting time is subject to

statistical sampling errors while the first mean hitting times hCj
only contain the statistical

errors coming from the estimation of P . Thus, using P helps in calculating the observables

in a smoother manner (less statistical error, no additional sampling). Additionally, the

computational cost of the discretized process, if the cost for estimating Φ(T ) is not included,

is essentially smaller than NEMD: the computation of hCj
is an issue of milliseconds on a

laptop, while the NEMD trajectories took 1.6×104 core hours for Intel Xeon E5-4650 CPUs.

4.5 Forward and backward committors

Committors are very important statistical properties of Markov processes,24,50 and play an

important role in MSM building16,29,36 (see below). Therefore, it is worth checking if the

discretized process X̃m reproduces the NEMD committors. The forward committor q+
j (i)

of a core set Cj, j ∈ {αR, β, αL} is defined as the probability of visiting core set Cj next

conditioned on starting at conformation (φ, ψ) ∈ Ωi. The backward committor q−j (i) of a

core set Cj, j ∈ {αR, β, αL} is defined as the probability of last coming from Cj conditioned

on having arrived presently at configuration (φ, ψ) ∈ Ωi. For reversible Markov processes,

the forward and backward committors are identical, however, this is in general not the

case for irreversible processes. The committors estimated from NEMD simulations (20000

trajectories, 4000 ps each) are compared with those computed from P by means of solving

the linear equations (18) and (19). Fig. 7–9 presents both committors as well as their

difference corresponding to different core sets. The committors of the discretized process
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Figure 7: Forward q+
αR

and backward q−αR
committors and their difference q+

αR
−q−αR

computed
from the NEMD trajectories (left column) and the discretized dynamics (right column).
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Figure 8: Forward q+
β and backward q−β committors and their difference q+

β − q−β computed
from NEMD trajectories (left column) and the discretized dynamics (right column).
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Figure 9: Forward q+
αL

and backward q−αL
committors and their difference q+

αL
−q−αL

computed
from NEMD trajectories (left column) and the discretized dynamics (right column).

are in good consistency with those of the NEMD simulations. The non-zero values in the

committor differences indicate that the NEMD process, projected on the discretized dihedral

angle space, is irreversible, and the discretized process is able to correctly describe this

irreversiblity. In addition, and subsequently of central importance, the accurate reproduction

of the committors indicates it is reasonable to build the MSM out of the committors of the

discretized process.

4.6 MSM building and validation

Following the process described in Sec. 3, we are able to build a three state MSM for the ex-

ternally driven alanine dipeptide system, where the quasi-stationary probability distribution

µ, the three core sets, and the forward and backward committors are estimated as described

above, and the MSM transition matrices P̂ , M̂ , and T̂ are then evaluated using Eq. (21), (23)

and (24), correspondingly. Alternatively, the MSM transition matrix P̂ is calculated directly
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from the NEMD trajectories using Eq. (20) (very good agreement with the one computed

from the committors). The leading eigenvalues of P = Φ>(T ) are compared with those of

P̂ and M̂−1T̂ in Tab. 1. Without surprising, the two approaches for MSM building are con-

sistent. The MSM is able to accurately reproduce the largest non-trivial eigenvalue, which

means a precise reproduction of the longest non-trivial implied timescale. The accuracy of

the second non-trivial timescale is not as good as the first, but is still acceptable. The reason

for the lower accuracy may also be that the corresponding time scale is 26.5 ps (calculated

by −T/ log(λ2)), which is NOT significantly longer than the temporal resolution given by

the period T = 10 ps of the external driving force. The difference between the eigenvalues

of P̂ and M̂−1T̂ can be taken as an indication for the non-Markovianity of the milestone

process X̂m. This non-Markovianity seems to have stronger influence on the second non-

trivial timescale in comparison to the first one; this may be caused by shorter decorrelation

timescales due to weaker metastability of the core sets involved. Numerically the two MSM

transition matrices are:

M̂−1T̂ =


0.860 0.133 0.008

0.192 0.775 0.033

0.019 0.066 0.915

 , P̂ =


0.882 0.110 0.008

0.158 0.815 0.028

0.023 0.055 0.922

 ,

from which we see that the left-handed alpha-helix conformations of the peptide exhibits the

strongest metastability.

It is worth noting that although the discretized process X̃m is irreversible, the MSM

built out of it is almost reversible: The magnitude of the anti-symmetric part of the matrix

diag(µ̂) · P̂ is only of order 10−4.

In fact, P̂ can be considered as the fingerprint of the long-term kinetics (cf.26,27) of

alanine dipeptide in an oscillatory electric field. In order to provide further validation of this
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Table 1: Comparison of second and third eigenvalues of P and 3×3 MSM transition matrices
P̂ and M̂−1T̂ , respectively, from the two different MSM approaches.

λ2 λ3 λ4

P 0.905 0.668 0.551
P̂ 0.909 0.710 –

M̂−1T̂ 0.901 0.649 –
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Figure 10: Comparison of NEMD and MSM long-term kinetics of alanine dipeptide in an
oscillatory electric field. The plots show the time-dependent probability p̂j(t) to be assigned
to core set Cj (corresponding to the observable A given in (31) with αj = 1 and αk = 0 for
k 6= j). Solid lines are from brute force NEMD simulations, while the dashed lines are from
our MSM.
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statement, we study time-dependent expectation values of the form

A(t) = 〈A(i)〉t =
∑
i∈S

A(i)p(i, t), (30)

where p(i, t) = P(Xt = i) is the probability to be in set Ωi at time t as governed by the

Master equation, and the observable A is spanned by the backward committors, i.e.,

A(i) =
K∑
j=1

αjq
−
j (i). (31)

Then

A(t) =
∑
i∈S

K∑
j=1

αjq
−
j (i)p(i, t) =

∑
i∈S

K∑
j=1

αjP(X̂t = j|Xt = i)P(Xt = i)

=
∑
i∈S

K∑
j=1

αjP(X̂t = j,Xt = i) =
K∑
j=1

αjP(X̂t = j) =
K∑
j=1

αj p̂j(t), (32)

where the time-dependent probability p̂j(t) of being assigned to MSM macrostate j at time

t can be computed by means of the MSM via simple matrix multiplications using (22).

In Fig. 10 we compare the numerical calculation of p̂j(mT ), m ∈ N from NEMD and

MSM calculations. In the NEMD case, the identity p̂j(mT ) =
∑

i∈S q
−
j (i)p(i,mT ) is used,

and the backward committor and the probability density on the R.H.S. are estimated directly

from the NEMD trajectories. For the MSM, the projection of the initial probability is

applied, p̂j(0) =
∑

i∈S q
−
j (i)p(i, 0), then the time-dependent probability at mT is generated

by Eq. (22), i.e., by simple matrix multiplication. The agreement is almost perfect.

5 Concluding remarks and discussion

In this paper we proposed methods of MSM building for a periodically driven non-equilibrium

system. We demonstrated their validity and performance by application to alanine dipeptide
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Figure 11: Flowchart showing optional procedures for MSM building based on NEMD trajec-
tories. A lighter color indicates a "coarser” approximation to the original NEMD dynamics.
Please note that "equivalence" only means that the respective procedures result in the same
matrix/MSM if one assumes perfect sampling.

under an oscillatory electric field. We showed that the proposed methods allow for capturing

the long-time behavior of the original non-equilibrium dynamics.

We provided effective methods for discretizing the original NEMD dynamics both tem-

porally and spatially; the end-product is a time-homogeneous, in general irreversible Markov

jump process. Discretization was done via two equivalent approaches: either by a two-step

version, i.e. first spatial and then temporal discretization, or a one-step version that involves

both discretizations simultaneously. These two version are shown by the left-most and middle

branches of the diagram in Fig. 11.

Although the end-product of the two-step and one-step discretization procedures are

formally equivalent, it is clear that the one-step discretization does not preserve any infor-

mation within one period, because only the states at integral multiples of the period of the

external forcing are considered. This is no serious problem whenever the long-time behavior

of the system is of interest, and the corresponding timescales are significantly longer than

one period. However, if the timescale of interest is comparable to the period, the two-step

discretization is preferable because it allows to recover the dynamics between multiples of

the period.

Building the final MSM based on the time-homogeneous discretized dynamics is straight-
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forward by using Eq. (21) and a set of core sets that are derived from the discretized dy-

namics. In application to alanine dipeptide numerical results show that a three-state MSM

can reproduce the leading non-trivial eigenvalue with very good accuracy, and the second

non-trivial eigenvalue with acceptable accuracy. The lower accuracy regarding the second

non-trivial eigenvalue may result from the fact that the second slowest timescale is not sig-

nificantly longer than the period. By means of this three-state MSM we can reproduce, with

almost perfect accuracy, the time-evolution of the population of the main conformations in-

duced by the periodic forcing when starting from the equilibrium distribution of the unforced

molecular system.

The right-most branch in Fig. 11 presents an equivalent, and seemingly much simpler

alternative to the middle branch: MSM building directly from NEMD trajectories. In prac-

tice, however, this method may not be applicable, because it requires pre-defined core sets,

and the identification of core sets usually is no trivial task, especially for molecular dynam-

ics under non-equilibrium conditions. This task is substantially simplified when an accurate

time-homogeneous discretization to the original NEMD process is available (that is, has been

constructed in advance). In the present work, we computed the core sets by finding almost

constant levels of the hitting time distribution for the discretized dynamics. This procedures

is itself a novelty since it does not require any spectral information like eigenvectors as in

standard approaches, cf.17,18

In this paper, we mainly focus on the development of the first available methods for

MSM building in non-equilibrium systems. However, the application of these methods to the

conformation dynamics of alanine dipeptide results in some observations that are interesting

in itself: Under an oscillatory EF, the population of the left-handed α-helical conformation

significantly increases relative to the equilibrium population (see also the discussions in

Ref.15), and the leading relaxation timescale of the system is much shorter than in the

equilibrium case.

A final remark concerning the utilization of the proposed methodology may be in order.
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Based on an MSM for a given periodic forcing optimal control problems may come into

reach: Using available methods like non-equilibrium linear response theory51 or computa-

tional alchemy for MSMs 52 one can construct the MSM for slightly changed parameters

(e.g., period and amplitude) of the external forcing by appropriate reweighting of the MSM

for the given forcing. This in principle allows for answering questions like the following:

For which parameters of the external forcing does one achieve maximal population of the

left-handed α-helix? Such questions, however, will be treated in the future studies.

A Reversibility of the original dynamics

We consider the governing dynamics Eq. (1). For simplicity we denote the force by F (xt, t) =

−∇xV (xt) + E(t)D(xt). We denote σ =
√

2β−1. According to Girsanov, we have

dp[xt]

dw[xt]
= exp

{
1

σ2

∫ T

0

F (xt, t)dxt − 1

2σ2

∫ T

0

F 2(xt, t)dt

}
(33)

where dp is the probability measure of trajectory xt, while dw is the probability measure of

the standard Wiener process dxt = σdwt. Assuming a discretization of the stochastic process

at time 0 < t1 < t2 < · · · < tN = T , where ti = iT/N . We denote xi = xti , and wi = wti ,

then we have, in the sense of Ito,

dp[xt]

dw[xt]
≈ exp

{
1

σ2

N−1∑
i=0

F (xi, ti)(xi+1 − xi)− 1

2σ2

N−1∑
i=0

F 2(xi, ti)∆t

}
(34)

Now, consider a conjugate trajectory x†t = xT−t that starts at xT , ends at x0. The conjugate

dynamics is driven by F †(x†t , t) = F (x†t , T − t). Writing the Girsanov for the conjugate
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dynamics

dp†[x†t ]

dw[x†t ]
≈ exp

{
1

σ2

N−1∑
i=0

F †(x†i , ti)(x
†
i+1 − x†i )−

1

2σ2

N−1∑
i=0

[F †(x†i , ti)]
2∆t

}
(35)

= exp

{
1

σ2

N−1∑
i=0

F (x†i , T − ti)(x†i+1 − x†i )−
1

2σ2

N−1∑
i=0

[F (x†i , T − ti)]2∆t
}

= exp

{
1

σ2

N−1∑
i=0

F (xN−i, tN−i)(xN−i−1 − xN−i)− 1

2σ2

N−1∑
i=0

[F (xN−i, tN−i)]2∆t
}

= exp

{
1

σ2

1∑
i=N

F (xi, ti)(xi−1 − xi)− 1

2σ2

1∑
i=N

F 2(xi, ti)∆t

}
(36)

Since it is obvious that dw[x†t ]/dw[xt] = 1,

dp†[x†t ]
dw[xt]

≈ exp

{
1

σ2

N∑
i=1

F (xi, ti)(xi−1 − xi)− 1

2σ2

N∑
i=1

F 2(xi, ti)∆t

}
(37)

The difference between the single trajectory probabilities is

dp†[x†t ]
dp[xt]

≈ exp

{
− 1

σ2

N−1∑
i=1

[
F (xi, ti)(xi+1 − xi) + F (xi, ti)(xi − xi−1)

]}
(38)

Assuming the smoothness of the external perturbation, consider the differentiation:

F (xi, ti)− F (xi−1, ti−1) =F (xi, ti)− F (xi−1, ti) + F (xi−1, ti)− F (xi−1, ti−1)

=∇xF (xi−1, ti)(xi − xi−1) +O(∆t)

=∇xF (xi−1, ti−1)(xi − xi−1) +O(∆t) (39)

The second order expansion w.r.t. xi − xi−1 is of order ∆t, so it is absorbed into O(∆t).

Then the (38) becomes

dp†[x†t ]
dp[xt]

≈ exp

{
− 2

σ2

N−1∑
i=0

F (xi, ti)(xi+1 − xi)− 1

σ2

N−1∑
i=0

∇xF (xi, ti)(xi+1 − xi)2

}
(40)
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Using the identity dt = (dwt)
2 = σ−2dx2

t , Eq. (40) is written in the integral form

dp†[x†t ]
dp[xt]

≈ exp

{
− 2

σ2

∫ T

0

F (xt, t)dxt −
∫ T

0

∇xF (xt, t)dt

}
(41)

One would not have the second integral on the exponent if the first integral of the exponent

were defined in the sense of Stratonovich.

We notice that

dV (x, t) =
∂V

∂x
dx+

∂V

∂t
dt

=
1

2
σ2∇2

xV dt+∇V dxt +
∂V

∂t
dt

= − 1

2
σ2∇xFdt− Fdxt +

∂V

∂t
dt (42)

Eq. (41) becomes

dp†[x†t ]
dp[xt]

= exp

{
2

σ2

[
V (xT , T )− V (x0, t0)−

∫ T

0

∂tV (xt, t)dt

]}
(43)

Take the limit of infinite small time interval, notice the equilibrium invariant probability

density with respect to potential V (x, 0) satisfies µ(x) ∝ e−βV (x,0), and replace σ2 by 2β−1,

dp†[x†t ]
dp[xt]

=
µ(x0)

µ(xT )
× exp

{
− β

∫ T

0

∂tV (xt, t)dt

}
(44)

A.1 Irreversibility of the periodic time-symmetric dynamics

In Eq. (35), we assume the periodicity of the perturbation F (x, t) = F (x, t + T ), and the

symmetry of the external perturbation, i.e. F (x,−t) = F (x, t), we have

dp†[x†t ]

dw[x†t ]
≈ exp

{
1

σ2

N−1∑
i=0

F (x†i , ti)(x
†
i+1 − x†i )−

1

2σ2

N−1∑
i=0

[F (x†i , ti)]
2∆t

}
(45)
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By changing notation x† back to x, and comparing with (34), the reversed dynamics is

subject to the Eq. (1), i.e. dp† = dp. Therefore

p(x0, T |xT , 0) =

∫
C{xT ,0;x0,T}

dp[x†t ]

=

∫
C{x0,0;xT ,T}

dp[x†t ]
dp[xt]

· dp[xt]

=

∫
C{x0,0;xT ,T}

dp†[x†t ]
dp[xt]

· dp[xt]

=
µ(x0)

µ(xT )

∫
C{x0,0;xT ,T}

exp

{
− β

∫ T

0

∂tV (xt, t)dt

}
· dp[xt] (46)

where C{x0, 0;xT , T} denotes all continuous trajectories starting at x0 and ending at xT . If

∂tV = 0, i.e. equilibrium, we have

p(x0, T |xT , 0)e−βV (xT ,T ) = p(xT , T |x0, 0)e−βV (x0,0), (47)

which proves the reversibility of the equilibrium dynamics. The term

W [xt] =

∫ T

0

∂tV (xt, t)dt (48)

is the non-equilibrium work associated to all possible the dynamics xt starting at x0 and

ending at xT (see e.g. Ref.53). Therefore Eq. (46) is the detailed Jarzynski relation. Noticing

that

p(xT , T |x0, 0) =

∫
C{x0,0;xT ,T}

dp[xt], (49)

From Eq. (46) we have

p(x0, T |xT , 0)

p(xT , T |x0, 0)
=
µ(x0)

µ(xT )
Ex0→xT

[e−βW ] (50)

34



B Computation of T̂ and M̂ directly from trajectories

In order to show how to compute T̂ and M̂ directly from trajectories let us start by denoting

the first hitting time of set A starting at time t by ht(A). In addition we define q̂−j (i) =

P(Xt = i|X̂t = j), and always assume t = mT . Then due to the Bayes’ Theorem we have

q̂−j (i) =
P(X̂t = j|Xt = i)P(Xt = i)

P(X̂t = j)
=
q−j (i)µ(i)

µ̂j
(51)

Then

P[ht(Ck) < ht(∪l 6=kCl) | X̂t = j ]

=
N∑
i=1

P[ht(Ck) < ht(∪l 6=kCl), Xt = i, X̂t = j ]

P(X̂t = j)

=
N∑
i=1

P[ht(Ck) < ht(∪l 6=kCl) |Xt = i, X̂t = j ] q̂−j (i)

=
N∑
i=1

P[ht(Ck) < ht(∪l 6=kCl) |Xt = i ] q̂−j (i)

=
N∑
i=1

q+
k (i)

q−j (i)µ(i)

µ̂j
=
〈q−j , q+

k 〉µ
µ̂j

= M̂jk (52)

where the third equation holds because of the Markovianity of the process Xt, and the fourth

equation is due to the definition of the forward committor. The interpretation of the result

is that when starting with the milestone process in state j we have to determine the fraction

of all trajectories that hit core set Ck first of all core sets to estimate M̂jk.
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To see the same for T̂ , we first need

P[ht+T (Ck) < ht+T (∪l 6=kCl) |Xt = i ]

=
N∑
l=1

P[ht+T (Ck) < ht+T (∪l 6=kCl), Xt+T = l, Xt = i ]

P(Xt = i)

=
N∑
l=1

P[ht+T (Ck) < ht+T (∪l 6=kCl)|Xt+T = l, Xt = i ]P(Xt+T = l|Xt = i)

=
N∑
l=1

P[ht+T (Ck) < ht+T (∪l 6=kCl)|Xt+T = l ]P(Xt+T = l|Xt = i) =
N∑
l=1

q+
k (l)Pil

We used the Markovianity of XT at the third equation, and the time-homogeneity in the

fourth equation. Therefore, following the same procedure as before we have

P[ht+T (Ck) < ht+T (∪l 6=kCl) | X̂t = j ] =
N∑
i=1

N∑
l=1

q+
k (l)Pil

q−j (i)µ(i)

µ̂j
=
〈q−j , P q+

k 〉µ
µ̂j

= T̂jk (53)

Thus, when starting with the milestone process in state j at some time t we have to determine

the fraction of all trajectories of length at least T that hit core set Ck first of all core sets to

estimate T̂jk.
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C Prove of the identity P̂ = T̂ M̂−1

In this section we prove the identity P̂ = T̂ M̂−1. Starting from the result Eq. (53),

T̂jk = P[ht+T (Ck) < ht+T (∪l 6=kCl) | X̂t = j ]

=
P[ht+T (Ck) < ht+T (∪l 6=kCl), X̂t = j ]

P(X̂t = j)

=
∑
l

P[ht+T (Ck) < ht+T (∪l 6=kCl), X̂t+T = l, X̂t = j ]

P(X̂t = j)

=
∑
l

P[ht+T (Ck) < ht+T (∪l 6=kCl)|X̂t+T = l, X̂t = j ]P̂jl

=
∑
l

P[ht+T (Ck) < ht+T (∪l 6=kCl)|X̂t+T = l ]P̂jl

=
∑
l

P̂jlM̂lk.

This proves the identity P̂ = T̂ M̂−1. Notice that in the fifth equation we assumes the

Markovianity of the milestone process X̂m. In the sixth equation we use the result Eq. (52),

and the time-homogeneity of the milestone process.
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