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Abstract

In several inital value problems with particularly expensive right hand side com-
putation, there is a trade-off between accuracy and computational effort in evaluating
the right hand sides. We consider inexact spectral deferred correction (SDC) meth-
ods for solving such non-stiff initial value problems. SDC methods are interpreted as
fixed point iterations and, due to their corrective iterative nature, allow to exploit the
accuracy-work-tradeoff for a reduction of the total computational effort. On one hand
we derive an error model bounding the total error in terms of the right hand side eval-
uation errors. On the other hand, we define work models describing the computational
effort in terms of the evaluation accuracy. Combining both, a theoretically optimal
tolerance selection is worked out by minimizing the total work subject to achieving
the requested tolerance.

1 Introduction

In several initial value problems of the form

y'(t) = fy®), v0) =y,

the evaluation of the right hand side f involves a significant amount of computation, and
approximate results can be obtained much faster than exact ones. Examples are reaction-
diffusion equations, where implicit time stepping schemes rely on iterative solvers [22, 206],
molecular and stellar dynamics, where the exact evaluation of long range interactions is
O(N?) but can be approximated by clustering or fast multipole methods in O(N log N)
or O(N) time [4, 0], or cycle jump techniques for highly oscillatory problems of wear or
fatigue [10, 13].

While the possibilities to exploit the trade-off between accuracy and computational cost
in right hand side evaluation for improved simulation performance is rather limited in usual
time stepping schemes such as explicit Runge-Kutta, extrapolation, or multistep schemes,
iterative methods for solving implicit Runge-Kutta equations [3, 12, 24] can in principle
correct inexact right hand side evaluations in subsequent iterations. Spectral deferred cor-
rection methods (SDC) [11] as iterative solvers for collocation systems have a particularly
simple structure and are therefore considered here. Inexact implicit SDC methods with
errors due to truncation of multigrid iterations have been investigated numerically in [22],
where a small fixed number of V-cycles has been found to be sufficient. In this paper we
will analyze the right hand side error propagation through the SDC iteration and, following
the approach of Alfeld [1] for inexact fixed point iterations, derive an a priori selection of
tolerances for the right hand side evaluation that leads to theoretically optimal efficiency
of the overall integration scheme.



The remainder of the paper is organized as follows. Section 2 states the precise problem
setting before briefly recalling spectral deferred correction methods and discussing the im-
pact of inexact right hand side evaluations. The main Section 3 introduces an error model
for quantifying the error propagation, work models for quantifying the computational cost,
and the optimization of the accuracy per work to derive an optimal selection of tolerances.
Effectivity and efficiency of the resulting methods are illustrated in Section 4 with some
numerical examples.

2 Inexactness in spectral deferred correction methods

The autonomous initial value problem (IVP) to be solved is given by

{ y'(t) = fy(t)), t€ 0,7 @)

where the right hand side f is a mapping f : ¥ — Y on a Banach space Y, and t €
[0,T] denotes the time variable. It is assumed that f is continuous and locally Lipschitz
continuous. Under these assumptions, a unique solution y(t) exists, see, e.g., [9,23]. An
approximate numerical solution can be determined with time stepping schemes. We consider
single step methods, where the time interval [0, 7] is subdivided into individual steps and
the connection between the subintervals consists just of transferring the value of y at the
end point of one subinterval as the initial value for the following subinterval. Without loss
of generality, we can therefore restrict the presentation to a single time step [0,7]. Also
without loss of generality, we assume (2.1) to be autonomous.

2.1 Collocation conditions

Given the IVP (2.1), a collocation method approximates the exact solution y over the
interval [0,7] by a polynomial y. satisfying (2.1) at N discrete collocation points ¢;, i =
1,..., N within the interval [0, T]:

(2.2)

Ye(0) = wo,
For simplicity of indexing, we define ¢ty = 0. Popular choices for collocation points are
equidistant nodes or Gauss-Legendre, Lobatto and Radau points. For a detailed discussion

of collocation methods we refer to [9, 16].
The inital value problem (2.1) can be written equivalently as the Picard integral equation

y(t) = yo + / Fy(r) dr,

which leads to corresponding Picard collocation conditions, as described in [17]:

N
yc(ti) = yc(ti—l) + Z Sikf(yc(tk))’ 1=1,...,N

k=1
yC(O) = Yo,



where the entries of the spectral quadrature matrix S € RV*Y are defined in terms of the

Lagrange polynomials Ly, € Py_1[R] satisfying Ly (t;) = §;x for i =1,..., N as

t;
Sik:/ Ly(t)dr, i,k=1,...,N.
T=t;_1

2.2 Spectral Deferred Correction Method

The direct solution of the collocation system (2.2) or (2.3) can be quite involved if N
is larger than one or two. As the time discretization error of the collocation method is
anyway present, an exact solution of (2.2) is not required. Thus, iterative methods form an
interesting class of solvers, see, e.g., [7,8,18]. Here we consider Spectral Deferred Correction
Methods (SDC). They were introduced by Dutt, Greengard and Rokhlin [11] for fixed
iteration number as time stepping schemes in their own right, and only later on have
been interpreted as fixed point iterations for collocation systems [17,25]. In SDC, the
Picard collocation conditions (2.3) are solved iteratively by a defect correction procedure.
Using the Picard formulation has the advantage of faster convergence for nonstiff problems,
see [25].

Approximate solutions are polynomials yb! € Py[Y], identified with vectors in YV +! by
interpolation of their values y[j = = yll(t;) at the N+1 grid points ;. Given an approximate
solution yU!, the error y, — y[ 7] satisfies the Picard collocation conditions

N
velts) = 0 = (e =y (k1) + 3 S (Flweltn)) =y (1)

k=1
— (yo — Y (t11 +Zsm( ve(tn)) — Fu7) )+Zszk< =y (k)

for i =1,..., N with initial condition (y. — y¥!)(0) = 0. As y. is computationally unavail-
able, a correction 6V & y. — yl/! can be defined and computed explicitly as

N
00 = oL+ (ti—tion) (PO, + 08 = £ D )+ S f ) -l =), =10
k=1

(2.4)
by replacing the spectral quadrature of the first sum by a simple left-looking rectangular rule
corresponding to the explicit Euler time stepping scheme suitable for non-stiff problems. Of
course, the initial value is (5([)J] = 0. Here 6V is the polynomial approximation of the exact
error function y, — ybl.

An improved approximation yt1 is then obtained as yU+1 = yUl 4+ §Ul. Note that
the value f (yzb_] 1+ 61[J_]1) appears again as f (yf +11]) in the next iteration, such that for each
iteration only N right hand side evaluations are required. The computation of the correction
6191 realizes a fixed point iteration for the operator F : YN — YN+ with F(yll) = 4l+1],
For convergence analysis, we equip YV*! with a norm ||yl = |[[|lwolly,-- -, lunlly]l, in
terms of the usual p-norm on RY*1 with p to be specified later. If F' is Lipschitz continuous
with constant p < 1, i.e.

IF(z) = F) < pllz —yl,  Vo,ye YN,

(which we will assume throughout the paper), Banach’s fixed point theorem yields g-linear
convergence of the iteration to the unique collocation solution y. independently of the initial



iterate 3. Note that the contraction property of F' and hence the convergence of SDC
depends on f, the collocation points ¢;, and the time step size T'. For sufficiently small time
steps, convergence is guaranteed.

Termination of the fixed point iteration at iterate J can be based on either a fixed
iteration count, resulting in a particular Runge-Kutta time stepping scheme, or on an
accuracy request of the form |y —!’1|| < TOL. Given the contraction rate p, and assuming
that |ly. — »[”|| > TOL, the number of iterations is then bounded by

TOL
J< Fog lyc_y[o}l-‘ .
- log p
The choice of the initial iterate y[% can have not only a significant impact on the number
J of iterations needed to achieve the requested accuracy, but also on the properties of
intermediate solutions. In particular for stiff problems, L-stability of intermediate solutions
is obtained only if y[% is computed by an L-stable basic scheme, e.g., implicit Euler, or
special DIRK sweeps are used as proposed in [25]. Focusing on non-stiff problems, we

[0] _

simply choose y,* = yo in this paper.

2.3 Perturbations of the right hand side

As mentioned above, an exact evaluation of the right hand side f (yl[j]) is not necessary,
because SDC iteration errors are already present due to replacing the implicit spectral
quadrature term by the explicit rectangular rule. If approximate values fi[j l ~ f (ylb ]) can
be computed faster, we can exploit the allowed inaccuracy for a reduction of the total
computation effort.

It is clear that the evaluation error fi[j] —f (yz[] ]) must be controlled in an appropriate
way such as not to destroy convergence of the fixed point scheme. We assume that for
evaluation of f (yl[] ]) we can prescribe a local absolute tolerance egj ]
value fi[j] satisfies Hfi[j] - f(yl[j])Hy < egj].

Thus the SDC correction 61! for inexact right hand sides f}j } is obtained as

such that the computed

N
6 =80 (=t (S 1) o sas - o =), 28)
k=1

for j=0,...,J—1,i=1,...,N with 6y = 0.
Given the requirement of computing a final iterate yl/! satisfying the requested accuracy
|ye —y1|| < TOL, the immediate questions that arise are how to select the local tolerances

(4]

¢; ", and how many iterations to perform, in order to obtain the most efficient method. This

question will be addressed in the following section.

3 A priori tolerance selection

Following the approach taken by Alfeld [1], an attractive choice of local tolerances egj }and
iteration count J is to minimize the overall computational effort W (e, J) while bounding
the final error ||yl’! — y.|| < ®(e, J):

min W(e,J) subject to (e, J) < TOL (3.1)
JEN,e€ECRN X J+1



Here, € denotes the N x J + 1 matrix of local tolerances e[j ) , restricted to an admissible set
£. We will consider different admissible sets in sections 3.3 to 3.5 below.

For this abstract framework to be useful, a work model W and an error model ® are
needed. These two building blocks will be established in the following two subsections.

3.1 Error model

The error model bounds the final iteration error by ®(e, J) in terms of the local tolerances
eEJ J and the iteration count .J. Focusing on SDC as a fixed point iteration, we estimate ®

in terms of inexact fixed point iterations, see [1,20]. Using the inexact right hand sides fi[j ]
realizes a perturbed fixed point operator F': YN+ x (Rf U0) x (R_IX U0) — YN+ with
the exact limit case F'(y,0,0) = F(y). The (j 4+ 1)-th iterate is given by

y[j+1] - F(y[j], G[j]7€[j+1]), j=0,...,J—1, (3.2)
where €l € Rf denotes the right hand side evaluation tolerances (e[lj], ceey e[gf])T. Below
we consider the convergence of (3.2) to the fixed point y. of F, and derive a bound on
|y7] = ye|| for given %[0, J, and e.

First we establish an estimate how the right hand side errors bounded by egj I'are trans-
ported through the SDC sweep.

Definition 3.1. Let us assume there is a nonnegative function Ly : Ry — R such that
the right hand side f satisfies the Lipschitz condition

10+ 7(fly+06)— fw)lly <Ls(n)|d|ly forall7>0anddyecY. (3.3)

Then we define the invertible lower triangular matrix L € RVXV as

Lo — o Lyt —t), m<i
m .
0, otherwise

and introduce |e||, = ||Le||, for e € RY and |s||; := ‘rr‘llax kel = |LkL7Y|, for
Kk € RNXN,

Theorem 3.2. Assume that the ODE’s right hand side satisfies condition (3.3). Then, for
bl elitll ¢ RY,

1E (y, €, 071 — F(y)|| < (el + e +1) + |5 (3.4)

holds with k € RN*N | ko := 81k (tm — tm—1), where 6,1 denotes the Kronecker-§.
|S| € RNXN denotes the entry-wise absolute value of the integration matriz S.

Proof. From (2.4) and (2.5) we obtain for the SDC corrections 4; the estimate
1By O, ) = Fy)illy = 167 — 7l
SH@]*Qﬂ&%ufMAXﬂml+ﬁﬂ) Fimr + 6 )lly
+ (ti —ti-1) < bt 6@1) + Z |Sik e

k=1
< Lyt — tim )18, — 690 |1y + (s(eV) + 1)), (5],



with (5 (5 il — . By induction we obtain the discrete Gronwall result

i o1—1
187 =52y < 37 TT Lyltin =) ([s( + )+ (15160 )

m=1l=m

= Z Lim < (el 4 ity + (‘5|e[j])m)

m=1
= [L(r(eV) + U1y |5l
Taking the norm over ¢ = 1,..., N yields the claim (3.4).
With (3.4) at hand, we are in the position to bound the final time error.
Theorem 3.3. Let yl% € YV be given and let yi+t1 be defined by
Y+l = ﬁ’(y[j]’ e[j]7e[j+1]), j=0,....,J—1

for some J € N and some local tolerance matriz e € RN*/+1. Then

J—1

7 = yell < @ p" N+ vz + o7 NIy = yell = @(e, )
§=0

holds with a = ||k + |S|||z + pll&| L

Proof. First we show the (slightly stronger) result

<

Iy =yl < Z k(N €1y 4181 4+ [y — e

by induction over J. The claim holds trivially for J = 0. Otherwise we obtain
[yt = yell = | F (1, e/ D) — Fy,)|
< |1 ) — Py |+ | FY ) = Py
< [l 4 1) 4 18]l 4 plly = el
< [l 4 ) 4 |51

+p ZpJ k(€0 4 ) (81 L+ p7 Iy — e

(3.5)

which is just (3.6). Applying the triangle inequality and rearranging terms in the sum yields

J—1

It = gell < o7 M0+ DL + D7 o7 (I + IS + pliel?] )

j=1
+ Hf%m L+ o7 [y =yl

Z (s 1S+ pllsll) €Nl + et + o7 1y = yell

7=0

=«

and thus the claim (3.5).



The error model ® as defined in (3.5) is an upper bound of the inexact SDC iteration

for arbitrary errors bounded by the local tolerances eEj ], and hence also an upper bound

for the error p”||yl% — .|| of the exact SDC iteration. Consequently, meeting the accuracy
requirement ® (e, J) < TOL implies p” ||yl — .|| < TOL and

_ [0 _
S . log TOL — log ||y yc||'
log p

3.2 Work models

Let us assume that the computational effort of evaluating fi[j lis given in terms of the work
WP R, - Ry as WY (). The total work to spend for J SDC iterations,

J
Wiotal(€) = 3 > wWH(elh), (3.7)
)=0

J 1=1

is just the sum of all right hand side evaluation efforts. Hence, common positive factors can
be neglected, as they will not affect the minimizer of (3.1) at all. Note that for optimizing
just € with fixed J, additive terms in the work model can also be neglected.

First we will discuss a few prototypical work models that cover common sources of
controlled inaccuracy.

Finite element discretization. If the right hand side evaluation involves a PDE so-
lution realized by adaptive finite elements, the discretization error can be expected to be
proportional to n='/¢, where n is the number of grid points and d is the spatial dimension.
Assuming the work to be proportional to the number of grid points, we obtain

1

(4] ¢ L]
W - :
A (61 ) d

(e?h. (3.8)
The aribtrary factor d~! has been introduced for notational convenience only.
Of course, the asymptotic behavior W' — 0 for €l — 0 is not realistic, as there is a

fixed amount Whin of work necessary on the coarse grid. Thus, the work model is valid
only for ey] < €max = (dWmin)_l/d. ‘We will address this in Section 3.6.

Truncation errors. First we assume the evaluation of the right hand side f (yz[] ]) involves

the solution of a large sparse linear equation system that is solved approximately by a

linearly convergent iterative solver with contraction rate p;; < 1. In general, a good initial

v[a]lue can be derived from the previous SDC iteration, such that we assume the error bound
J

€, 1s glven as

28 = f I < o1 = 1y

where m > 0 denotes the iteration count. Assuming ||f1.[j_” — f(yz[j])HY ~ Hf(yl[j_l]) -

f(ylm)Hy and linear convergence ||yl[j_l] fyl[j] | < (1+p)p7 |y —ye| (which will be justified
in (3.20)), this can be approximated as
]

e o L (14 p)p 91 =y



where L, = lim,_,o, Lf(7)/7 is the usual Lipschitz constant of f. As the work is propor-
tional to the number m of solver iterations, we can define the work model

WP (el) := —log e + log (L. (1 + p)p? |41 — yel)), (3.9)

where the common positive factor — log p;; has been dropped. ‘ ‘
Again, the validity of this work model is limited to local tolerances EEJ] < eEﬂLX =
L.(1+ p)p? |yl — y.||, as at least one iteration has to be performed in each solver call,

corresponding to Wi, = 1.

Remark 3.4. We have formulated this work model for explicit SDC methods, but it ap-
plies to implicit schemes as well. In diffusive processes such as reaction-diffusion equations
spatially discretized by the method of lines, implicit time stepping schemes are usually
necessary to ensure stability with reasonably large step sizes. However, a highly accurate
solution of the arising systems is often not necessary to guarantee stability, e.g., in cardiac
simulations [26]. In that case, iterative solvers can be terminated early, and the truncation
error corresponds directly to some iteration residual.

Stochastic sampling. In case the right hand side contains a high-dimensional integral
to be evaluated by Monte Carlo sampling, the accuracy can be expected to be proportional
to the inverse square root of the number of samples. The work proportional to the number
of samples is then
1
2
just a special case of (3.8). Of course, as the error bound of Monte Carlo sampling is not
strict, the error model from the previous section gives no guarantee in this case.

The prototypical work models worked out above exhibit some qualitative properties,
which we conjecture to be general properties of plausible work models.

(6[3'])—2

W(em) =

?

Definition 3.5. A work model is a family of strictly convex, positive, and monotonically
decreasing function Wi[] 1110, (emax)

;'] = Ry mapping requested tolerances to the associ-
ated computational effort. The functions Wi[J I exhibit the barrier property Wi[] ](e) — 00

for e — 0.

The properties of Wi[j ] are inherited by Wiotal, which is strictly convex and monotone.

3.3 Fixed local tolerance

To begin with, we consider heuristic choices of the admissible set £ of local tolerances. The
(4]
i

simplest possibility is to take the same value €
this case, (3.5) reduces to

= ¢ for all right hand side evaluations. In

*PJ Jil. [0
_p-wmuL)+pn¢]—%m

19 = el < o (alt]

where 1 € RY with 1; = 1. Consequently,

(3.10)

TOL—prm—yc>

SEAR 319

€9 = min <6max,
a|1fL 5

—p



provides the largest admissible choice, and hence the one that incurs the least computational
effort, for given J. With ¢y(J) fixed, what remains is to choose the number J of SDC
sweeps such that the overall work is minimized. To this extent, we consider the slightly
more restrictive but easier to analyze variant

TOL — ||y — yc| )
alltflz/(=p) + k1))

€p = min <6maxv

For the finite element work model (3.8), the total work is just W = N (J + 1)eo(J)~¢/d.
Assuming €y < €max and eliminating constant factors, we need to minimize W (J) ~ (J +
1)/(TOL — p? ||yl — y.|)¢. A simple analysis reveals that W (J) is quasi-convex, such
that there is exactly one minimizer in ]Jpyin, 00|, see Appendix A. Unfortunately, no closed
expression seems to exist, but a numerical computation is straightforward. Due to the
quasi-convexity, the optimal J € N is one of the neighboring integer values.

The local tolerance is bounded by ey < ¢TOL for some generic constant ¢ independent
of J and TOL. Consequently, the total work is at least

log(TOL/|[y'” — y.|])
log p

W > ¢(Jmin + 1)TOL ™% = ¢ ( + 1) TOL™% (3.11)

Apparently, a complexity of O(TOLfd) is unavoidable, as this is already required for a sin-
gle right hand side evaluation to the requested accuracy. The logarithmic factor in (3.11),
however, appears to be suboptimal. As this corresponds to the number J of SDC sweeps,
which, depending on the concrete problem, can easily exceed a factor of ten, the subop-
timality may induce a significant inefficiency in actual computation. We will address this
shortcoming in the following Sections 3.4 and 3.5 and investigate it numerically in Section 4.

For completeness we note that in the less interesting case €y = €max, J is determined by
minimizing W = N(J + 1)e,2, /d subject to

TOL > €max (| 1]|/(1 = p) + [[£1]|2) + o7 [y = vell = P(emaxs J) > [y — vell,
ie.
TOL — émax (e]|1]|£/(1 — p) + [|£1]|1)
[yl — el

J > (log p)~"log

3.4 Geometrically decreasing local tolerances

The next step is to exploit that due to the linear convergence of the SDC iteration, larger
evaluation errors are acceptable in the early iterations, and to make the heuristic choice
eEJ] = min(émax, Bp??) for some B,7 > 0. This has been considered in [5] for v = 1 as
“adaptive strategy” and is closely related to evaluating implicit Euler steps up to a fixed
relative precision in implicit SDC methods, as suggested in [15] or realized in [22] by a fixed
number of multigrid V-cycles.

We will assume that -~y is given and optimize 3 as we have done before with €y. Ignoring

the impact of €nax, (3.5) results in the slightly stronger accuracy requirement

J—1 .
Iy = el < B { alltll D> p” 9 4+ p7 |kl | + o7y — |l < TOL.
§=0
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Note that this implies a convergence rate of |[yl/l — y.| = O(p™ 7). For v # 1 (there
is a continuous extension to y = 1, though) we obtain

TOL — p”[jy1° — y.||

= (J-1) 1—pt-m7J
P (el 1| L= + 7|1 L)

. (3.12)

The total work W(e) is monotonely decreasing in S, such that (3.1) is solved by equality
in (3.12). Of course, €y = lim,_,¢ 8 is recovered in the limit.
Optimizing the iteration count J for the finite element work model, we minimize

J —dvy(J+1)
) 1—p (
— —d Vi /d ~ B3¢
W=NB*Y pi/d~p e
=0
We distinguish between v < 1 and v > 1. In the first case, we neglect constant factors
independent of J and derive the upper bound

—d
i < (TOL— p” Iy — .| oI+
~ p’Y(Jﬁl)

decreasing monotonically with J towards limy_ ., W < TOL ™% Compared to (3.11),
the complexity to reach the requested tolerance is improved from O(TOL™“|log TOL|)
to O(TOL™%) independently of 4. In the next section we will see that this complexity is in-
deed optimal, but the constants can be improved further by considering a larger admissible
set .

In the second case v > 1, we obtain the upper bound

—d _
w < ((TOL—p Iy — ue| ) cp T + b
~ cp! + prI=1) TOL — p/ |yl — .||

d

for some generic constants b, ¢ independent of .J and TOL. Inserting J > log(TOL/|[yl% —
Y|}/ log p reveals a complexity of O(TOL™%), indeed worse than the fixed choice ey] =¢
before. As a certain number of SDC iterations have to be performed with sufficient accuracy,
increasing the accuracy too quickly is a waste of resources. Fortunately, a fixed relative

accuracy will always lead to v < 1.

3.5 Variable local tolerances

Finally, let us consider the most general admissible set & = {e¢ € RY*7 | P < emax} in
greater detail than we have treated the heuristic choices. Again, we will proceed in two
steps, first assuming J to be given, optimizing only the local tolerances ¢, and consider the
integer variable J of the mixed integer program later on.

We obtain the nonlinear program

min = Wietai(€) subject to ®(e,J) < TOL, € < emax. (3.13)

eeRf X J+1

From the properties of Wit and ®, we immediately obtain the following result.
Theorem 3.6. If p” ||y —y.|| < TOL, i.e. the exact SDC iteration converges to the given
tolerance, the optimization problem (3.13) has a unique solution e(y%!,.J). In the generic

case eg-j] < (emax)gj] for some i and j, i.e. if not all of the local tolerance constraints are
active, the accuracy constraint is active, i.e. ®(e(yl%,.J), J) = TOL.
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Proof. From (3.5) it is apparent that sufficiently small values egj 1> 0 lead to

J—1

ad M+ |wel| L < TOL = p? |1yl =y,

j=0
such that the admissible set is nonempty. Strict convexity of Wiota1 and convexity of &
imply uniqueness of a solution. Strict convexity and monotonicity of Wiota) imply its strict
monotonicity, and hence the constraint must be active unless all local tolerances are actively
bound by € < €pax- O

The activity of the accuracy constraint in the generic case means, that, as expected, no
effort is wasted on reducing the error below the requested tolerance.
Next we prove that the optimal sequence of local tolerances is monotonically decreasing.

Theorem 3.7. Assume that p € (0,1), J € N and TOL € R, are given constants. Let the
local tolerance matriz € be the minimizer of (3.13). Then ||e¥l||L < ||F=Y|; holds for all
j=1,...,J—1.

For p =1, componentwise monotonicity holds as well, i.e. ey] < e?_l] holds for all i
and j.
Proof. Let € be an admissible point for (3.13) with ||é*]|, < ||€l*2]||, for some 1 < & <
ks < J. Then we consider e with ell = €Ul except for elb2l = ¢kl and ekl =
Obviously, Wiota1(€) = Wiotal (€).

The error bound (3.5), however, is reduced,

B(EJ) — Ble, J) = a (p? (g — [l ) + p? T (g — el )

= a (p (e — () ) 4 o7 R e — e )
= (p R = R (el — ) > o,

as a > 0 and rest of the two factors on the last line are negative. Since ®(e,J) < ®(€, J) <
TOL, € is feasible. The constraint, however, is inactive, such that € cannot be the minimizer
e(yll, .J). We conclude that

Wtotal(e(y[o]v J)) < Wtotal(e) = Wtotal(€)7

such that € # €(y[%, J). The same line of argument holds for p = 1 and componentwise
(k1] [k2]

monotonicity, where however € is constructed such that only ¢;" ' and €; - are swapped. [0

Below the necessary and, due to convexitx, also sufficient conditions for the solution of
the constrained optimization problem are derived for p < oco.

Theorem 3.8. Assume p”||y*) — y.| < TOL and Wi[j] € C1(0,00). Then ¢ € RY*/H1
solves (3.13), if and only if there exist multipliers ;i € R and n € RN*/+1 sych that

N
(Wi[j])’(egj]) + uapJflfj”e[j] ||ifp Z(Le[j])iflLki + Uz[j] -0, J=0,1,...,J—1,
k=1
N
Wi () + pllwe M Y (LreP = (Lw) + ;" =0,
k=1

(TOL — ®(e, J))u =0, =0,

(€max —€):n =0, n>0.
(3.14)
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Here, € : n denotes contraction or Frobenius product.

Proof. Necessary and also sufficient conditions for optimality of € is the stationarity of the
Lagrangian

L(67 Ky 77) = Wtota1(€7 J) + ‘[L((I)(G, J) - TOL) + n: (emax - 6)

for some multiplier 4 € R and 7 € RVX7+1 see, e.g., [19]. According to (3.5) and (3.7), its
partial derivatives are just the expressions in (3.14). O

At this point, the unique minimizer €(y[!,.J) of the convex program (3.13) can in prin-
ciple be computed numerically. For p = 1, however, explicit analytical expressions can be
derived easily due to (3.5) reducing to

J—1 N N N N
O(e,J)=ad p/ YN L+ 3 S (L)l + o7 [y — e
=0

k=1 i=1 k=11=1
=q:e+p [y -y (3.15)
with .
g Jep! I Ly G < J
4 = N . (3.16)
Zk:l(Lﬁ)kiv j=4J

Then, (3.14) assumes the particularly simple form
WY () + par! + 0 = 0. (3.17)

Below we will derive the analytical structure of solutions for p = 1 and different work
models, which also sheds some more light on the structure of the solution as well as on the
achieved efficiency. The following theorem applies to all work models from Section 3.2, with
d = 0 for iterative solvers and d = 2 for stochastic sampling.

Theorem 3.9. Let p =1 and (Wi[j])’(egj]) = —(egj])*(dﬂ). Then the solution € = e(y[o]7 J)
of (3.13) is given by
& = min((emax)?, (g~ D). (3.18)
(4]

Locally unconstrained tolerances €;° < (emax)gj] decrease linearly up to j = J —1:

. . N —1/(d+1) . s
Proof. From (3.17) we obtain ey] = (,uql[]] +nlm) . For eEJ] < (emax)?], 771[]] =0

holds due to complementarity in (3.14), such that (3.18) is satisfied. For j < J, (3.16)
implies e/ = (pap” =13 SOV L)~V @D pi/(@41) and hence (3.19).

The other case, egj] = (emax)gj], implies (uql[j])_l = (((emax)gj])_(d“‘l)—n)_l > ((emax)gj])d‘*‘l
and hence (3.18). O

The result (3.19) reveals that the heuristic of geometically deceasing local tolerances
is indeed of optimal complexity, at least for v < 1, and now theoretically justified. Be-
yond that, an optimal value of « and different accuracies for the collocation points are
provided. We will see in Section 4 that the last issue can have a non-negligible impact on
the computational effort.
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Let us state two observations. First, it pays off to treat the final local tolerances ey]
separately in Theorem 3.3: now ey] > €£J71] holds instead of ey] = peg‘]*l]. Thus, the
effort for the otherwise most expensive since most accurate right hand side evaluations is
reduced, as illustrated in Fig. 1. Second, (3.18) is monotone in p, such that the actual value
of p is easily computed numerically by solving ®(e, J) = TOL.

In case € < €max, the result (3.19) yields

-1
99— vell < @3 #1194 e+ ) — el
k=0
i1
<c (Z PR pj/(d“)) + 2 1y = el
k=0
< ¢p?/ (4D (3.20)

with some generic constant ¢ independent of j (though it depends on J). As expected,
the geometric decrease (3.19) translates directly into linear convergence of the inexact SDC
iteration. For d = 0, this justifies the contraction rate assumed in defining the work
model (3.9). Note that Theorem 3.9 does not depend on that assumption.

Moreover, the results (3.19) and (3.20) show that the contraction rate of optimal inexact
SDC iterations depends on the work model: p for the truncation of linearly convergent
iterations and p'/(@+1) for linear finite element solutions. The latter convergence is actually
slower than the exact SDC iteration. This is a consequence of the different work required to
reduce the error: While a reduction of the SDC iteration error is relatively cheap, reducing
the FE discretization error is rather expensive. An optimal tolerance selection therefore
assigns a larger portion of the total error to the FE discretization and has to ensure that
the SDC iteration error is by a certain factor smaller than the discretization error.

3.6 Iteration count optimization

As in the case of uniform local tolerances, the number J of inexact SDC iterations has to be
selected in order to minimize the total work. For the finite element work model, we obtain
J N J N o
UCEDIDUCORED DL

=0

=0 i=1 j=0 i=1

as long as egj] < (emax)y] for all 7,7. Inserting (3.16) and neglecting constant factors

independent of J yields

J N N T J )
W< Z Z (uapJ_l_j Z Lki) ~ T Zpﬁ(‘]flfj) ~ T pid (3.21)

1—pa+t
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The multiplier x is obtained from ®(e, J) = TOL with egj] = (uql[j])_l/(d“). We obtain

J—1
TOL=a) o’ ') + llxe |+ p7lly° = yel
j=0

J—-1
Tl R DY el (O Rl PR U il P IR AR

=0
J—-1 .
1 —d_(J—1—7
T a0 eI b | 7y -
0

1
qu d+1

Jj=
1 — pdd/(d+D)
(al_pd/(dﬂ) +0 )+ 07y = vl

with constants a = o|(« Z;CV:I L)~/ and b = ||kel”l||, independent of .J. Conse-

quently,

d
1—p@J/(d+1)
T a0

TOL — p”lly° — yell

a

_d_
Md+1 —

holds. Entering this into (3.21) yields

1—pdJ/(d+1) d d(J+1)
W< a 17p,,d/<d+1> b 1—p s
~ A\ TOL = p/[ly® —well | 1 patx

Replacing 1 — p@//(@+1) by 1 and neglecting constant factors independent of J provides the

upper bound
W S (TOL = p”[ly” — yel)~*. (3.22)

The upper bound (3.22) is monotonically decreasing and suggests choosing J as large as
possible. In the limit J — oo, the total work is bounded by

W < TOL™.

Compared to the result (3.11) for uniform local tolerances, the logarithmic factor log TOL is
missing, which yields the optimal complexity of evaluating a single right hand side evaluation
up to the requested tolerance.

Choosing .J very large, however, violates the above assumption of € < €pax, as eVl - o
for J — 00. Due to € < €max and hence W7 > Wy, the total work W (J) grows linearly
with J. As closed expressions for a global minimizer of W (.J) when taking the local tolerance
constraint into account are hard to get, a heuristic selection of J appears to be most
promising in practice. The convexity of (3.22) and linear growth of W for large J suggest
that the first local minimizer encountered when evaluating W (J) starting at J,i, should
be a good candidate for the global minimizer.

4 Numerical examples

Here we will illustrate and compare the effectivity of the inexact SDC strategies worked out
above. First, the properties of the strategies will be explored using a simple academic test
problem. Second, an example from molecular dynamics is considered.
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Figure 1: Left: Exemplary local tolerances versus iteration number j for the different ad-
missible design sets: fixed (stars), geometrically decreasing (squares, v = 0.5), and variable
(circles). m = 2 steps have been used to define the problem data p = 0.35, TOL = 0.05.
Right: Relative work for geometrically decreasing local tolerances versus the exponent ~.
For larger v, the work grows exponentially. The horizontal line denotes the relative work
for fixed local tolerances.

4.1 An illustrative example

As a particularly simple example we consider the harmonic oscillator

v = —u,

with initial value ug = 0, vy = 1, on the time interval [0, 7] subdivided into n equidistant
time steps. The Lipschitz constant of the right hand side is L, = 1, and we estimate
L;(7) = 1+ 7 using the triangle inequality. We use N Gauss-Legendre collocation points in
each of the n time steps. The collocation error e, at final time 7 can easily be obtained by
comparing the result with the exact solution w(t) = sin(t), v(t) = cos(t). The contraction
rate p of the exact SDC iteration is estimated numerically, and is virtually independent of
the actual time .

Aiming at a final time error comparable to the collocation error, we choose a tolerance
TOL = e./+/n for each time step, based on the assumption that the random errors of each
time step simply add up, and yield a standard deviation of the final result of /nTOL.
We use the finite element work model (3.8) with spatial dimension d. With this setting,
the quantities entering into the computation of the local tolerances € are the same for all
time steps. Unless otherwise stated, d = 2 and N = 3 are used throughout, such that the
collocation scheme is of order 6.

Let us first turn to the local tolerances € prescribed due to (3.10), (3.12), and (3.18),
respectively. Exemplary values are shown in Fig. 1, left, versus the iteration number j.
Clearly visible is the slow geometric decrease of the variable local tolerances eVl with an
order pi/3, slower than the explicitly chosen geometrical decrease p??/ with v = 1 /2. The
normalized predicted work is 2.06, 2.67, and 1, respectively. Somewhat surprisingly, ex-
ploiting the linear convergence of the SDC iteration does not necessarily pay off compared
to a fixed accuracy, depending on the chosen parameter y. The variable local tolerances
approach achieves its low work by (i) choosing the appropriate decrease rate v = 1/(d+ 1),
(ii) allowing for larger errors in later collocation points with less global impact, and (iii)



16

1e+0 w 25 =
€ J

le-2¢ E\E_E\E\E\ﬂ |

Te-4t 120 ]
1e-6¢ E

151 1

1e-8¢ E
1e-10¢ ooy \\9—9—/ ]
1e-12F 4
1e-14 : 5 :

1e+0 1e+1 n 1e+2 1e+0 1e+1 n 1e+2

Figure 2: Left: Local tolerances e for the inexact SDC iterations versus number n of time
steps. For variable local tolerances (squares), the range between minimal and maximal
local tolerance is shown. The requested tolerance TOL is shown with stars, the fixed local
tolerance with circles. Right: Optimal number J of inexact SDC iterations versus number
n of time steps for variable (squares) and fixed (circles) local tolerances.

by imposing less restrictive requirements on the final sweep. The latter two aspects make
up a reduction of work by a factor of 1.67 compared to the geometrically decreasing local
tolerances with v = 1/(d 4+ 1). The relative work for different values of 7 is shown in
Fig. 1, right, where the predicted total work induced by geometrically decreasing tolerances
is plotted over the exponent v. The optimum with a relative work of 1.48 is attained around
~v = 0.21, even less than 1/(d+1). This can be attributed to avoiding high costs in the very
last sweep, where high accuracy is actually not necessary, while ensuring sufficient accuracy
in the next to last sweep.

Now let us consider varying step tolerances TOL. As shown in Fig. 2, left, they decrease
as n~2N=1/2 according to the sixth order collocation error and the error accumulation of
order 1/2. As expected, the fixed local tolerance €g and the minimal variable local tolerance
min; ; eg»j ) stay very close to each other and also close to TOL, but decrease roughly one
order slower. This is due to a,k = O(ty) = O(n~!), and leads to the surprising fact that
for small time steps the allowed evaluation error can be larger than the requested tolerance.
Obviously, the heuristic choice ¢g = ¢ TOL for some fixed ¢ < 1 is suboptimal for small time
steps.

As intended, the maximal local tolerance, encountered in the very first inexact SDC
sweep, is much larger than the minimal one, which is the basis for the envisioned perfor-
mance gain. It also decreases much slower than the step tolerance TOL due to the fact that
p— 0 forty — 0.

The optimal number of sweeps shown in Fig. 2, right, is rather different for fixed and
variable local tolerances, with a factor of two in between. This is due to the intended slower
contraction rate in (3.18) compared to (3.10). As each sweep increases the order of the SDC
integrator by one, and the step tolerance is of order 6.5, we expect at least seven sweeps
to be necessary. This is nicely reflected by the fixed local tolerance scheme resorting to an
optimal value of eight sweeps over a range of step sizes. For larger step sizes, the growth in
the contraction rate p destroys this asymptotic property.

The total work per step induced by the choices of local tolerances is shown in Fig. 3. The
ratio of more than 10! of computational effort between n = 2 and n = 64 is due to the high
accuracy of the Gauss collocation and the slow convergence of linear finite elements assumed
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Figure 3: Left: Total work per time step for fixed (circles) and variable (squares) local
tolerances versus the number of time steps. Right: Ratio of total work of fixed and variable
local tolerances versus the requestd step tolerance TOL, for spatial dimensions d = 2 (solid
lines) and d = 3 (dotted lines), number of collocation points N € {1,2,3,4} (circles, stars,
crosses, triangles), and different number n of time steps.
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Figure 4: Left: Observed contraction factors p for exact SDC (crosses), fixed local toler-
ances (circles), and variable local tolerances (squares) versus number n of time steps. The
theoretical contraction rate of p!/(*+1) for variable local tolerances is plotted for reference.
Right: Final time difference between inexact SDC methods and collocation solution, rela-
tive to the collocation error. Solid lines are sample means, dotted lines show the standard
deviation.

in the work model. According to (3.8), the work is of order O(e~%) = O(n?2N=1/2)) which
amounts here to a growth of n''. Obviously, the high accuracies reached in the model
problem are unrealistic in practical finite element computation. The ratio between the
work for fixed and local tolerances shown in detail in Fig. 3, right, adheres to the theoretical
order — log TOL, with minor differences due to different collocation order N. A small but
consistent impact of spatial dimension d can be observed, with slightly larger efficiency gain
for higher dimension.

Up to here, the results were just predictions, theoretical values obtained from the work
and error models derived in Section 3. Of particular interest is, whether these model
predictions coincide with actual computation.
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In Fig. 4, contraction rate and final time error of inexact SDC computations are shown.
Inexact evaluation of the right hand side is imitated by adding a random perturbation of
size egj } and uniformly distributed direction. On the left, estimated contraction rates are
shown, obtained by regression over the complete SDC iteration. As expected, the exact
SDC contraction factor p decreases roughly linearly with the time step size. The fixed
local tolerance iteration converges with a very similar rate, since the rather small allowed
errors can only affect the last sweeps. The optimal rate for variable local tolerances is
larger: from (3.18) we expect a rate of p'/(@*1) which is indeed achieved. The slightly
faster convergence can be attributed to the errors in actual computation not realizing the
theoretical worst case.

In Fig. 4, right, the final time deviation of the inexact SDC iterations from the limit
point, the collocation solution, is shown, relative to the error of the collocation solution
itself. The sample mean of 20 realizations is plotted together with the standard devia-
tion, since, in contrast to all other figures, the actual errors depend significantly on the
random inexactness realizations. We observe that the error model used in defining local
tolerances works reasonably well, with comparable results for fixed and variable local toler-
ances. Again, numerical computations are more accurate than predicted by the worst case
estimates. The slow but steady increase with the number n of time steps suggests that the
normally distributed local errors do not simply add up, as has been assumed when choosing
the tolerance TOL ~ n~1/2.

4.2 Smoothed molecular dynamics

Classical molecular dynamics [2] is generally described by Newtonian mechanics of the
positions z € R™ of n atoms in R? with mass M influenced by a potential V:
Mi=-VV(x) (4.1)

One interesting quantity is the time it takes to exit a given potential well or to move between
two wells. The computation of these times is expensive as the transitions are rare events,
and long trajectories need to be computed before such an event is observed. Statistic
reweighting techniques [21] allow to compute the exit times of interest from exit times
induced by a modified potential V with shorter exit times. One of the modifications in use
is potential smoothing by diffusion, i.e. V := V()\) with 9V/0X = AV. As the number n of
involved atoms is usually large, computing V' by finite element or finite difference methods
is out of question. Instead, pointwise evaluation by convolution with the Green’s function
is performed [14] using importance sampling

VV(x) = ()\\/ﬂ) o VV(x + s)exp(—s?/(2)\?)) ds

Rnd

()\\/ﬂ) o /Rnd (VV(x +s) — Hs)exp(—s2/(2)?)) ds

% D (VV(&) ~ H(& — ) = V().

Q

where the random variable € is normally distributed with mean = and covariance AI, and
H € R™ is arbitrary. The expected error is proportional to m~/2 and can be estimated
in terms of the sample covariance

b=t > sl = VV(E) - H(E — o) - V(@)
i=1
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Figure 5: Potential and considered trajectory. Left: Original potential V from (4.2). Right:
The smoothed potential V' for A = 0.316. The equipotential lines are at the same levels in
both pictures.

as
_ ~ o
B9V @) - V(@) ~ 221,
Obviously, s; and consequently o, are particularly small if H is the Hessian of V.

When evaluating V with a requested local tolerance e, the number of sampling points
is doubled until ||o,,|| < v/me. This defines a realization of V,(z). Note that this does
not give an actual error bound, such that the error analysis and tolerance selection from
Section 3 only hold in a probabilistic sense.

As a simple test problem of this type we consider n = 1 and d = 2 with M = I,

V() =3exp(—|lz — e2||*) — Bexp(—|lz — 5ez]|*) — Sexp(—[la — e1]*)
= 5exp(—|lz +e1l*) + (21 + (22 — 1/3)*) /5,  where (e;); = 6y, (4.2)

initial value z(0) = [-1,0.4]7, £(0) = [2.1,0]” in the vicinity of one of the three local
energy minimizers, final time te.nq = 6, and variance A = 0.316. Despite its simplicity, the
potential (4.2) as shown in Fig. 5 is an interesting test case, as the direct path between
the two deep wells crosses a higher potential barrier than the indirect path via the third,
shallow well.

Fig. 5 shows the original potential V as defined in (4.2) and the considered trajectory
on the left, and the smoothed potential V for A = 0.1 on the right. The shallow well on the
top has almost vanished, and the potential barrier between the two dominant wells is much
lower. Consequently, the trajectory crosses the barrier now easily and alternates between
the two wells.

The ODE (4.1) is transformed into a first order system to fit into the setting (2.1). For
the tests, N = 4 collocation points have been used and n = 15 equidistant time steps. The
numerically observed exact SDC contraction factor varies roughly in a range [0.15,0.24].
For simplicity, a fixed value of 0.2 has been used for computing local tolerances. For the
Lipschitz condition (3.3), we notice that f’ has values with purely imaginary spectrum, and
estimate L (7) = maxyep ||I + 7f'(y)| numerically by evaluating f’(yo) in each step using
Monte-Carlo integration of V”. In each time step, the initial iteration error ||yl® — .|| is
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Figure 6: Numerical result averaged over 15 realizations. Left: Estimated error after the
first time step of length T' (circles) and at final time tenq (crosses) versus the requested step
tolerance TOL. Right: Maximal, average, and minimal observed contraction factors p of
the inexact SDC method in all time steps versus the requested step tolerance.

estimated by substituting a single explicit Euler step for y., which here yields a reasonable
estimation error of usually less than 50% with a minor impact on local tolerances.

The results shown in Fig. 6 indicate that the inexact SDC method works essentially as
expected, even though the obtained errors ||y(T) — y.(T)|| are smaller than the target value
TOL by one to two orders of magnitude. This is probably due to the error propagation
result (3.4) reflecting the worst case rather than the average case. Replacing the generously
used triangle inequality by sharper bounds, however, would require to prescribe not only the
magnitude of the evaluation error, but also restrict its direction. If possible and practicable
at all, this would require the error analysis to be very much specific for particular problems
or right hand side evaluation schemes.

The interpretation that the observed better than desired accuracies are due to average
versus worst case is supported by the observed inexact SDC contraction rates shown in
Fig. 6, right. With an exact SDC contraction rate p ~ 0.2, the targeted inexact contraction
rate is p'/(4+1) & 0.58, very close to the worst cases observed in actual computation. There
is, however, a significant gap between the best and the worst encountered contraction rates
suggesting that the worst case behavior is captured well by the theoretical derivations.

Conclusion

The theoretically optimal choice of local tolerances when evaluating right hand sides in
SDC methods derived here allows significant savings in computational effort compared to
a naive strategy. Effort reduction factors between 2 and 6 have been observed in examples.
Thus, exploiting the inexactness that is possible in SDC methods appears to be attractive
for expensive simulations.

The local tolerances are defined in terms of problem-dependent quantities, in particular
Lipschitz constants Ly, and contraction factor p of exact SDC iterations, which are usually
not directly available a priori. For a practical implementation of the optimal choice, adaptive
methods based on cheap a posteriori estimates of these quantities are needed. We have
considered a particular weak model of error type: independent errors for each evaluation,
which are likely to line up to the worst case. Correspondingly, worst case error bounds
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have been derived and optimized. In concrete computational problems, often more of the
error structure is known, and slightly different approaches would be more appropriate. In
sampling problems such as the smoothed molecular dynamics example, the random errors
tend to cancel out to some extent. Looking at the average behavior instead of the worst case
allows to use larger local tolerances. On the other hand, the errors are highly correlated in
several finite element computations. Consequently, the error in right hand side differences
is small, which leads to different error propagation through the SDC iteration. Extending
the approach to these settings is subject of further research.
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Uniqueness of work minimizer

Here we prove that for fixed local tolerance ¢, the continuous relaxation of the work model
with respect to the iteration count J is quasi-convex and thus has a unique minimizer.

Theorem A.l. Let

J+1

W) = oL = 79y

with § > TOL > 0, d > 0, 0 < p < 1. Then, W has exactly one local minimizer on
] Jmin, 0], where Jpmin = log(TOL/6)/ log p.
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Proof. The derivative of W is

(TOL — p”8)¢ — (J + 1)d(TOL — p”8)4=1(=6)p” log p

W/(J) = (TOL _ pJ(;)zd

We are just interested in the zeros and the sign of the derivative, and multiply with
§~HTOL — p’6)4+! > 0 for simplification, which gives sgn W'(J) = sgn ¢(J) with

TOL
q(J) := 5 p? + (J + 1)dp” log p.

We obtain q(Jmin) = (Jmin + 1)dp”mn logp < 0 and ¢(J) — TOL/§ > 0 for J — oc. Since
q is continuous, it has an odd number of zeros in |Jmin, 00|
Next we consider

q(J) = p”log p((J + 1)dlog p— 1) + p’dlog p
= p”log p((J + 1)dlogp +d —1).

Any zeros of ¢’ have to satisfy (J+ 1)dlogp+d—1 = 0, such that there is at most one zero
of ¢’ and correspondingly at most one extremum of ¢. If ¢ had more than one zero, i.e. at
least three zeros, it would have at least two extrema, which is not the case. Thus, ¢ has
at exactly one zero and consequenctly W exactly one extremum. The sign of W' changes
from negative to positive there, such that W has exactly one local minimizer. O



	Introduction
	Inexactness in spectral deferred correction methods
	Collocation conditions
	Spectral Deferred Correction Method
	Perturbations of the right hand side

	A priori tolerance selection
	Error model
	Work models
	Fixed local tolerance
	Geometrically decreasing local tolerances
	Variable local tolerances
	Iteration count optimization

	Numerical examples
	An illustrative example
	Smoothed molecular dynamics

	Uniqueness of work minimizer

