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Abstract

Sensory-evoked signal flow, at cellular and network levels, is primarily
determined by the synaptic wiring of the underlying neuronal circuitry.
Measurements of synaptic innervation, connection probabilities and sub-
cellular organization of synaptic inputs are thus among the most active
fields of research in contemporary neuroscience. Methods to measure these
quantities range from electrophysiological recordings over reconstructions
of dendrite-axon overlap at light-microscopic levels to dense circuit recon-
structions of small volumes at electron-microscopic resolution. However,
quantitative and complete measurements at subcellular resolution and
mesoscopic scales to obtain all local and long- range synaptic in/outputs
for any neuron within an entire brain region are beyond present method-
ological limits. Here, we present a novel concept, implemented within
an interactive software environment called NeuroNet, which allows (i) in-
tegration of sparsely sampled (sub)cellular morphological data into an
accurate anatomical reference frame of the brain region(s) of interest, (ii)
up-scaling to generate an average dense model of the neuronal circuitry
within the respective brain region(s) and (iii) statistical measurements
of synaptic innervation between all neurons within the model. We illus-
trate our approach by generating a dense average model of the entire rat
vibrissal cortex, providing the required anatomical data, and illustrate
how to measure synaptic innervation statistically. Comparing our results
with data from paired recordings in vitro and in vivo, as well as with re-
constructions of synaptic contact sites at light- and electron-microscopic
levels, we find that our in silico measurements are in line with previous
results.
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1 Introduction

One of the major challenges in neuroscience is to relate results from structural
and functional measurements across multiple spatial scales. Current anatomical
approaches either provide information of synaptic connectivity at macroscopic,
i.e. between brain regions (e.g. using bulk injections of retro/anterograde agents
(Oh et al., 2014)), mesoscopic, i.e. between cell types (e.g. using transgenic ani-
mal models (Wickersham et al., 2007)), microscopic, i.e. between small numbers
of individual neurons (e.g. using multi-electrode recordings in acute brain slices
in vitro (Feldmeyer, V Egger, et al., 1999; Perin et al., 2011)) or nanoscopic
scales, i.e. reconstructing synaptic contact sites within small volumes (e.g. us-
ing electron microscopy in dense (Briggman et al., 2011) or sparsely labeled
tissue (Schoonover et al., 2014)). While all of these approaches provided im-
portant structural information about the neuronal circuitry, results obtained at
different scales (and often even at the same scale when obtained by different
methods) are largely incompatible. This prevents from generating wiring dia-
grams that provide quantitative and complete information of the number and
subcellular location of all synaptic in/outputs for any neuron within and across
brain areas (commonly referred to as ‘dense connectome’).

At present, methods that allow for measurements of synaptic connectivity at
sufficiently high resolution (i.e. (sub)cellular levels) can be grouped into three
main categories: First, electrophysiological approaches determine connectivity
between pairs (or small numbers) of neurons using simultaneous patch-clamp
recordings (e.g. (Feldmeyer, V Egger, et al., 1999; Lefort et al., 2009)), or com-
binations of single neuron recordings with optical stimulation, such as glutamate
uncaging (Callaway and Katz, 1993; Schubert et al., 2007) or channelrhodopsin-
assisted circuit mapping (Petreanu et al., 2009). Often, these approaches are
combined with labeling the recorded neurons, allowing for reconstruction of the
respective soma locations, dendrite morphologies and putative contact sites at
light-microscopic levels (Da Costa and Martin, 2011; Feldmeyer, V Egger, et al.,
1999; Feldmeyer, Liibke, et al., 2002; Frick et al., 2008; Sun et al., 2006). Paired
recording /reconstruction approaches are however limited to acute brain slices in
vitro, where slice thicknesses of 300 um result in substantial cutting of dendrites
(Oberlaender, De Kock, et al., 2012) and axons (Oberlaender, Boudewijns, et
al., 2011), limiting these measurements to close-by neurons.

Second, electron-microscopic approaches, such as serial block face scanning
(SBFSEM (Denk and Horstmann, 2004)) or ion-beam techniques (Merchan-
Pérez, Rodriguez, Alonso-Nanclares, et al., 2009), allow for automated imaging
of small tissue volumes containing sparse (Lang et al., 2011) or densely labeled
(Briggman et al., 2011) neuronal structures. Whereas technical issues of these
microscope systems, which currently prevent from imaging larger volumes (e.g.
an entire cortical column), may be overcome in the near future (Mikula et al.,
2012), annotation and reconstruction of the rapidly increasing image data ren-
ders as the major bottleneck, limiting these approaches to tissue samples of
at most 0.5 x 0.5 x 0.5mm? (Helmstaedter, 2013). Despite great progress in
automated tracing (Kim et al., 2014), crowd sourcing of manual annotation
(Helmstaedter, Briggman, et al., 2011) and combinations of manual and auto-
mated tools (Takemura et al., 2013), generation of complete dense connectomes
(i.e. wiring diagrams that specify all in/outputs to a neuron) will require recon-
structions of entire brain areas, spanning volumes of several cubic millimeters



to centimeters, spatial scales that are multiple orders of magnitude beyond the
present limits of these techniques.

Third, statistical approaches allow to determine cell type- and/or location-
specific connectivity patterns by measuring structural overlap between recon-
structed axons and dendrites of individual (Liibke et al., 2003) or bulk-labeled
neurons (Meyer, Wimmer, et al., 2010). Such approaches are commonly re-
ferred to as application of Peters’ rule (White, 1979), but the validity of pre-
dicting synaptic connectivity by axo-dendritic overlap remains controversial
(Mishchenko et al., 2010). The primary reason for this controversy arises from
the fact that to date a quantitative and coherent framework to measure struc-
tural overlap is missing. Specifically, Peters’ rule is often misinterpreted in a
binary fashion, namely if dendrites and axons of two neurons overlap within a
certain volume, it is assumed they are connected (Brown and Hestrin, 2009).
In contrast, if dendrites and axons do not overlap, there will be no contact, the
strongest implication from this approach. However, independent of the spatial
scale at which the overlap is measured, within the respective overlap volume,
dendrites and axons from other (unstained) neurons will be present and are
equally likely to be connected to the stained neurons. Thus, overlap can never
be assumed as evidence for a connection, but has to be interpreted as a proba-
bility for a connection with respect to all present neurons instead.

Here, we present a novel approach, implemented within an interactive soft-
ware environment called NeuroNet (NN), which formulates a coherent frame-
work to measure structural overlap between two neurons, yielding connection
probabilities with respect to all neurons present in the overlapping volume.
This quantitative version of Peters’ rule requires generation of an average dense
model of the neuronal circuitry; dense referring to the fact that every neuron
within the model of the brain structure of interest (i) has to be distributed ac-
cording to measured 3D soma distributions, (ii) is represented by a complete
3D reconstruction of soma/dendrites/axon found at the respective location and
(iii) contains information of cell type, as well as subcellular distributions of den-
dritic spines, diameters and axonal boutons (Figure 1A). NN allows integrating
such anatomical data into a common reference frame that describes the aver-
age geometry, as well as its variability across animals, of the brain region(s) of
interest (Figure 1B). Within the resolution of the reference frame, NN further
allows to calculate synaptic innervation between any two neurons in the model,
always taking all other neurons within the respective overlap volumes into ac-
count (Figure 1C). The resultant dense ‘statistical’ connectome yields pairwise
connection probabilities, numbers of putative synaptic contacts and subcellular
synapse distributions for all neurons within an entire brain region, allowing for
comparison of these in silico measurements with electrophysiological, light- and
electron-microscopic data.

We illustrate our approach using the vibrissal part of rat primary somatosen-
sory cortex (i.e. barrel cortex, vS1), present the required anatomical data and
compare our in silico measurements of cell type-specific local (i.e. within a
layer 4 (L4) barrel) and long-range (i.e. between thalamus and L4, L5 and L6
in vS1) innervation with previous results. Because our in silico measurements
match previous in vitro/in vivo data, we conclude that our concept of gener-
ating an average dense network model and providing a coherent framework to
calculate Peters’ rule in terms of innervation probabilities is an accurate alter-
native to any currently available connectivity mapping method. In addition,
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Figure 1: Generating dense statistical connectomes. (A) Generating a dense
statistical connectome of a brain or brain region requires a standardized 3D
reference frame of this brain region. The reference frame is used to register
all anatomical data obtained from different experiments to a common coordi-
nate system. Anatomical data to be collected from the brain region of interest:
Number and 3D distribution of excitatory and inhibitory neuron somata; 3D
reconstructions of representative samples of dendrites and azons of excitatory
and inhibitory neuron cell types; determination of postsynaptic target densities,
e.g. spine densities and dendrite surfaces, and presynaptic bouton densities for
excitatory and inhibitory neuron cell types. (B) Anatomical data are assembled
into a complete 3D network model. First, based on their 3D location, excitatory
and inhibitory neuron somata are assigned to different anatomical substructures
of the brain regions and to cell types. Next, somata of all cell types are replaced
with dendrite and azon morphologies of the respective cell types. (C) Innerva-
tion from neuron i to neuron j is computed in 3D at a resolution determined by
the anatomical variability of the 8D reference frame. This computation takes all
possible postsynaptic targets of neuron i in addition to neuron j into account.
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our approach now opens the possibility to investigate location-specific differ-
ences of connectivity within a population, as well as presence of higher-order
connectivity patterns within and across cell types.

2 Methods

2.1 Design of NeuroNet software

The interactive software environment NeuroNet (NN) is implemented as an
extension package for the Amira visualization software (FEI-Visualization Sci-
ences Group, 2014), allowing for 3D visualization of anatomical input data,
dense neuronal networks and synaptic connectivity measurements (Dercksen,
R Egger, et al., 2012). NN comprises three major building blocks. First, the
interface between NN and the anatomical input data is implemented as a Neu-
ralNetworkSpecification data object. The user creates such a data object as a
first step (initialized as an empty network) and loads all required input data (see
specifications of data and format below). The NeuralNetworkSpecification ob-
ject encapsulates all required anatomical data and can be saved to disk. Second,
a network assembly module called NeuronDistributor takes the NeuralNetwork-
Specification object as its input, integrates all anatomical data and performs
an up-scaling operation to generate an average dense model of the network.
The output of the NeuronDistributor module is a SpatialGraphSet data ob-
ject, containing a list of transformed morphologies with an associated cell type.
This SpatialGraphSet can be saved to disk. Third, a connectivity computation
module called NeuralNetworkAnalyzer takes as input the NeuralNetworkSpec-
ification and the SpatialGraphSet to calculate axo-dendritic overlaps between
individual neurons. This compute module offers a query interface and selection/
visualization options. The output generated by the NeuralNetworkAnalyzer in-
cludes a dense statistical connectome as represented by an innervation matrix
I;; (for all selected neuron pairs 7 and j), as well as aggregate statistics about
cell type- and location-specific connectivity, such as the convergence, divergence,
connection probabilities, average number of synapses per cell or per cell type,
and information about the number of neurons per cell type. These data can be
saved as AmiraMesh tables or text files.

All routines of NN are implemented in C4++ and the software is available
for download online at http://www.zib.de/software/neuronet, including a
manual for installation/usage and an exemplary dataset for testing the software.
Downloads are available for Windows and Linux operating systems. NN sup-
ports multi-threaded computation using the OpenMP libraries. Computations
presented in the Results section were performed on a desktop computer with
8 CPUs and 48GB RAM. Hardware requirements depend on the size (number
of neurons, dendritic/axonal lengths) of the neuronal network. For example,
calculating connectivity between thalamus and all excitatory neurons within a
single cortical column required memory of ~12GB RAM. Instead, for networks
containing several hundreds of thousands of neurons (e.g. for entire vS1), we
recommend a compute-server with at least 64 CPUs and 500GB RAM.


http://www.zib.de/software/neuronet

2.2 Anatomical input data

Mandatory anatomical input data to NN comprise: 1. a standardized 3D ref-
erence frame, 2. 3D distributions of excitatory and inhibitory neuron somata,
3. representative samples of cell type-specific complete 3D morphological recon-
structions and 4. measurements of cell type-specific subcellular distributions
of soma/dendrite surface areas, dendritic spines and axonal boutons. In the
following we introduce the formats for presenting the respective data to NN,
provide example datasets for rat vS1 and review methodological approaches
that allowed generating these example datasets (all anatomical data used in
the Results section were acquired using experimental procedures carried out in
accordance with the animal welfare guidelines of the Max Planck Society).

1. Standardized 3D reference frame. The most important prerequisite
to assemble average dense models of the neuronal circuitry is the definition of
a standardized 3D reference frame that allows integration of anatomical data
obtained from many animals. In general, the reference frame describes the 3D
geometry of the brain region(s) of interest in terms of anatomical landmarks.
Further, it specifies the variability of these landmarks across animals, which
serves as a resolution limit of the average circuit model. More specifically, the
3D reference frame has to describe (i) the boundaries of the brain region(s)
of interest, (ii) anatomical substructures within these regions, and (iii) a global
and /or multiple local coordinate systems. The latter reflects the general scenario
that brain areas have irregular and/or curved boundaries and sub-structures.
In case of rat vS1, the 3D reference frame has been generated by reconstruct-
ing the pial surface of entire rat cortex, the white matter tract (WM) and the
circumferences of 24 cortical barrel columns (i.e. each representing one of the
large facial whiskers on the animal’s snout (Woolsey and Van Der Loos, 1970)),
using high-resolution 3D images of the left hemisphere of Wistar rats at an age
of 28 days (R Egger et al., 2012). Repeating these reconstructions for 12 animals
of the same strain and age, we superimposed all geometries using rigid transfor-
mations, minimized the distances between the respective center locations of the
24 barrel columns and calculated the average column center locations, column
diameters and orientations, as well as the average 3D surfaces of the pia and
WM above and below vS1, respectively (Figure 2A). The column centers are
given with respect to a global coordinate system, where the z-axis is defined as
the shortest perpendicular axis between the center of the barrel column repre-
senting the D2 whisker and the pial surface above the column. The z-axis points
from the D2 center towards the center of the first adjacent rostral column (i.e.
along the whisker row towards D3). The y-axis points approximately towards
the first adjacent caudal column (i.e. along the whisker arc towards C2).
Because the pial and WM surfaces are curved, the orientation of each barrel
column is tilted with respect to the (D2) z-axis. Therefore, we determined
23 additional local coordinate systems (i.e. for each barrel column), using the
same approach used to determine the global D2 coordinate system. The final
standardized reference frame of rat vS1 thus comprises the average pial and WM
surfaces, 24 column center coordinates and diameters with respect to the global
D2 coordinate system and 24 z-axes, representing local coordinate systems that
define the orientation of each barrel column within the curved cortex. We
further determined the variability of these anatomical landmarks across animals.
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Figure 2: Anatomical data used for generating demse statistical connectomes
of rat vibrissal cortex (vS1). (A) Left: Rat vS1 contains segregated anatomical
structures, called barrels, which are arranged somatotopically to the pattern of
the large facial whiskers. Right top: Tangential view of barrels in the standard-
ized rat vS1 cortex (see inset on left). These barrels provide natural landmarks
for registration of anatomical data into the standardized reference frame. Bot-
tom: Semi-coronal view of barrel columns in 3D. Pial and white matter (WM)
surfaces delineate the vertical cortical boundaries in 3D. (B) 3D distribution of
excitatory (left) and inhibitory (right) neuron somata with respect to cortical
barrel columns in rat vS1. Center: Close-up view of neuron somata in insets
in left and right panels. (C) Left: 3D dendrite reconstructions of 10 excitatory
(black) and 5 inhibitory (green) cell types. Right: 3D dendrite (black) and azon
(blue) reconstruction of an excitatory L5 slender-tufted pyramidal neuron. (D)
Close-up views of the soma and dendrite surface reconstructions of an excita-
tory (black, top) and an inhibitory (green, bottom) neuron, corresponding to the
dendrite morphologies marked with an asterisk (*) in (C). (E) Determination
of dendritic spines, dendrite surface and axonal boutons of a Lj spiny stellate
neuron. Top: z-projection of a 50 um thick section containing the soma, den-
drites and axon branches. Center: From left to right: Close-up view of dendrite
branch in left inset in top panel; close-up view of dendrite segment in inset in
panel to the left; digital reconstruction of dendrite surface and spine locations of
dendrite segment in panel to the left. Bottom left: Close- up view of axon branch
in right inset in top panel. Bottom right: Close-up view of axon segment in in-
set in bottom left panel, with digital reconstruction of axon and bouton locations
along the axon (shifted for visualization).



The standard deviations (SDs) of the column center locations were on average
~90 pm, of the pia-WM distances ~100 um and of the column orientations ~4.5
degrees (R Egger et al., 2012). Thus, the geometry was remarkably preserved
across animals and we defined the resolution limit of our average network model
accordingly as ~50 um. Consequently, the volume comprising the standardized
reference frame of rat vS1 was superimposed with a grid of 50 x 50 x 50 um3
voxels and a local z-axis was calculated for each voxel by interpolating from the
respective nearest barrel column axes.

The 3D reference frame of rat vS1 is presented to NN as follows: (1) A
spreadsheet (csv file) contains information about the barrel column geometries
with respect to the global coordinate system, i.e. the 3D center locations, col-
umn radii and a unit vector pointing along the respective orientation. Each
column is further assigned a unique identifier (substructure) label. (2) A 3D
vector field (AmiraMesh vector field) containing unit vectors at 50 pm resolution
pointing towards the curved pial surface. In general, such vector fields should be
sampled at the resolution of the 3D reference frame. (3) 3D boundary surfaces
(AmiraSurface format) describing the 3D volume of the brain region (here: pial
and WM surfaces). Additional boundary surfaces of anatomical substructures
can be provided, e.g. borders of cytoarchitectonic cortical layers. NN currently
supports the reference frame of vS1, but can be easily extended to other brain
areas that can be described by 3D boundary surfaces and global and/or local
coordinate systems. The resolution (i.e. voxel grid used for computations in
NN, see below) can be adjusted to any value as determined by the inter-animal
variability of the respective reference frame.

2. 3D soma distributions. The second anatomical prerequisite to gener-
ate an average dense model of the neuronal circuitry are measurements of the
number and 3D distribution of excitatory and inhibitory neuron somata for
the entire brain region(s) of interest. These distributions have to be obtained
with respect to, and at the resolution of, the anatomical reference frame. In
case of rat vS1, we stained 50 um thick histological sections, cut tangentially
to the D2 barrel column axis from the pia towards the WM, for NeuN (Mullen
et al., 1992) and GADG67 (Julien et al., 1990; Kaufman et al., 1986; Kobayashi
et al., 1987) to reveal all excitatory and inhibitory neurons, respectively. Using
automated soma detection software (Oberlaender, Dercksen, et al., 2009), we
determined the 3D center locations of all excitatory/inhibitory neuron somata
for entire rat vS1 of four Wistar rats (age 28-29 days, (Meyer, R Egger, et al.,
2013), Figure 2B). For each counting dataset, we superimposed a 50 um voxel
grid and generated two 3D somata distributions for excitatory and inhibitory
neurons, respectively (i.e. number of somata in 10% per mm3). The two average
soma density fields are provided to NN as 3D images (AmiraMesh format). We
further determined the number of neurons per thalamic barreloid (Land et al.,
1995; Meyer, R Egger, et al., 2013), which provide whisker-specific input to the
respective barrel column (Brecht and Sakmann, 2002).

3. Cell type-specific 3D morphologies. The third prerequisite to gen-
erate an average dense model of the neuronal circuitry are reconstructions of
complete 3D soma/dendrite/axon morphologies. The morphological dataset has
to be representative for the brain region, fulfilling two criteria: (1) objective clas-



sification approaches should reveal all axo-dendritic cell types (i.e. dendrite as
well as axon projection patterns are similar within, but significantly different
between cell types) reported for the brain region(s) of interest (see (Narayanan,
R Egger, et al., n.d.) for excitatory cell types in rat vS1)), and (2) spatial
sampling of neurons should be performed at the resolution of the anatomical
reference frame (i.e. revealing location-dependent differences in morphology,
spatial distribution and overlap of different cell types). For each cell type, a
number of properties is defined using a spreadsheet (csv file) with predefined
format: (1) whether the cell type is excitatory or inhibitory, (2) whether the
morphology should be rotated during network assembly, i.e. if dendrites display
asymmetric projections, such as polar dendrites pointing towards the center of
a substructure (e.g. Ldss (V Egger et al., 2008)), (3) whether the reconstruc-
tions contain only axon or dendrites/axon, (4) whether the cell type has somata
within and/or outside sub-structures (e.g. L4ss are only located inside the col-
umn, but not in septa between columns (Bruno and Sakmann, 2006; V Egger
et al., 2008; Staiger, Flagmeyer, et al., 2004)), and (5) the density of presynaptic
contact sites (i.e. boutons) per um axon, differentiated by sub-structures, in
particular one value for boutons in infragranular, granular and supragranular
layers of vS1, respectively. Finally, the spatial distribution of each cell type is
determined by 3D boundary surfaces that describe the (sub)regions(s) where
the cell type is found. If more than one cell type is present within such a 3D
region, the relative frequency of morphologies from each cell type within the
overlap region is specified using spreadsheets (csv files) with predefined format.

In case of rat vS1, we labeled individual neurons with Biocytin using cell-
attached recordings in vivo (Narayanan, Mohan, et al., 2014; Pinault, 1996).
After cutting the brain into 100 um thick vibratome sections (i.e. tangential
to the D2 barrel column axis, from the pia towards the WM), manual trac-
ing software (e.g. NeuroLucida) or custom-designed semi-automated imaging
and tracing systems (Dercksen, Hege, et al., 2014; Oberlaender, Broser, et al.,
2009; Oberlaender, Bruno, et al., 2007) allow reconstruction of complete 3D
morphologies with respect to the anatomical reference frame of rat vS1. Do-
ing so, we reconstructed 153 excitatory neurons across the entire cortical depth
(i.e. from L2 to L6) and used objective classification approaches to subdivide
our sample into ten axo-dendritic excitatory cell types (Figure 2C, (Narayanan,
R Egger, et al., n.d.)). Because we obtained morphologies for every 50 um of
cortical depth, our spatial sampling is regarded as representative for rat vS1.
Further, the ten excitatory cell types represent all morphological classes that
have been reported to date for rat vS1: L2 pyramids (L2, n = 16) and L3
pyramids (L3, n = 30) (Brecht, Roth, et al., 2003; Staiger, Bojak, et al., 2014);
L4 star pyramids (Ldsp, n = 15), L4 spiny- stellates (L4ss, n = 22) and L4
pyramids (L4py, n = 7) (Staiger, Flagmeyer, et al., 2004); L5 slender-tufted
pyramids (L5st, n = 18) and L5 thick-tufted pyramids (L5tt, n = 16) (Hallman
et al., 1988; Larkman and Mason, 1990); L6 corticocortical pyramids (L6cc,
n = 11), L6 corticothalamic pyramids (L6ct, n = 13) and L6 inverted pyramids
(L6inv, n = 5) (Kumar and Ohana, 2008). Consequently, sampling ~1% of all
excitatory neurons located within a barrel column of rat vS1 is regarded as rep-
resentative for all cell type-specific soma/dendrite/axon morphologies. Further,
we reconstructed the cortical parts of thalamocortical axons (with respect to
the reference structures of vS1, n = 14), labeled in vivo in the ventral posterior
medial nucleus (VPM) of rat vibrissal thalamus (Oberlaender, Ramirez, et al.,



2012). Similarly, axo-dendritic cell types of inhibitory interneurons (INH) need
to be defined. Figure 2C illustrates five axo-dendritic INH types, as previously
reported (Helmstaedter, Sakmann, et al., 2009; Koelbl et al., 2013) and kindly
provided by Moritz Helmstaedter, Dirk Feldmeyer and Hanno S. Meyer. At this
point, it remains to be investigated whether these classes can be regarded as
representative of rat vS1 in terms of the above stated criteria. INH morpholo-
gies are thus used purely for illustration of our approach throughout the present
article. Further, in contrast to the excitatory dataset, INH morphologies were
obtained by recording/labeling in acute brain slices in vitro. The total number
of morphologies used in the subsequent application examples is 371 (153 excita-
tory and 204 inhibitory neurons from vS1 and 14 thalamocortical neurons from
VPM).

NN expects these morphologies to be organized into folders according to
[sub-structure label (e.g. barrel column ID)]/[cell type folder name|. The mor-
phologies are specified either as Amira SpatialGraphs (Dercksen, Hege, et al.,
2014) or in the NEURON hoc language (Hines and Carnevale, 1997). If pre-
sented as SpatialGraphs, the branches comprising the morphologies have to be
labeled as Soma, ApicalDendrite, BasalDendrite, or Azon, respectively. If spec-
ified in the hoc language, branches have to be labeled soma, apical for apical
dendrites, dendrite for basal dendrites, or azon, respectively. Each cell type
is represented twice, both as an axon cell type and a dendrite cell type. This
implementation allows including long-range connections from cell types located
in other brain regions (e.g. VPM axons, where soma/dendrites are located in
the thalamus). The number of these long-range axon morphologies is speci-
fied in NN using a spreadsheet (csv file) with predefined format. In case of
VPM axons, the number of morphologies innervating a respective barrel col-
umn is determined from cell counts in thalamus (i.e. the number of neurons per
whisker-specific barreloid (Meyer, R Egger, et al., 2013)).

4. Subcellular morphological statistics. The final anatomical prerequisite
to generate an average dense model of the neuronal circuitry is measurements
of the density of postsynaptic target sites (PSTs), i.e. spines along dendrites
of excitatory neurons and surface areas of somata and dendrites of excitatory/
inhibitory neurons for all cell types present within the brain region(s) of in-
terest. 3D reconstruction of soma and dendrite diameters of excitatory and
inhibitory neurons was performed manually using NeuroLucida software (Fig-
ure 2D). Dendritic spine densities and axonal bouton densities were determined
manually from high-resolution 3D image stacks (92 x 92 x 200 nm? voxel size)
along skeleton tracings of in vivo labeled neurons of all cell types (Figure 2E).
These data are grouped by morphological cell type. Connections between cell
types are specified in NN using a spreadsheet (csv file) with predefined for-
mat. For each possible connection between two cell types, the presynaptic cell
type, postsynaptic cell type, as well as the normalized number of PSTs per
um? area, and/or per um branch length is defined, based on measured values
(using the methods stated above) for each cell type and substructure (soma,
apical dendrite, or basal dendrite). This meta-connectivity list thus specifies
general knowledge of whether two cell types can in principle connect to each
other and at which substructures. For example, inhibitory interneurons may
specifically innervate somata and dendritic shafts of excitatory neurons. Thus,
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Figure 3: Network assembly process. (A) Standardized 3D reference frame
of rat vibrissal cortex, with 3D organization of horizontal (i.e. barrel columns)
and vertical (i.e. layers) structures. FEvery point in this brain region can be
assigned to a barrel column and a cortical layer with 50 um precision. (B) 3D
distribution of 530000 somata of 10 excitatory and 5 inhibitory cell types. (C)
Replacement of somata with cell type-specific 3D dendrite morphologies. (D)
Replacement of somata with cell type-specific 3D azon morphologies. Shown
here: Thalamocortical azons from VPM (black), intracortical azons of inhibitory
interneurons (green). (E) Top: Close-up view of inset in (B). Center: Close-up
view of inset in (C), showing the dendrites of a single Lj spiny stellate (L4ss)
neuron (red) next to all dendrites from all cell types in the neighboring barrel
column. Bottom: Close-up view of inset in (D), showing a single thalamocortical
VPM azxon (blue) next to all azons from two cell types in the neighboring barrel
column.

connections from interneuron to excitatory cell types can be specified in the
meta-connectivity list such that PSTs are exclusively calculated by the surface
areas of the excitatory somata and dendrites (i.e. soma/dendrite surface- spe-
cific PSTs). In contrast, connections from excitatory to excitatory cell types
may be specified in the meta-connectivity list such that PSTs are calculated
exclusively by the spine densities (i.e. dendrite length-specific PSTs).

2.3 Data integration and up-scaling to generate average
dense circuit models

Upon availability of the above described anatomical data in appropriate formats,
NN automatically generates an average dense representation of the neuronal
circuitry of the brain region defined by the reference frame (Figure 3).

First, the cell type-specific boundary surfaces are integrated (Figure 3A
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shows a subsample of the cell type-boundaries) into the 3D reference frame.

Next, the excitatory and inhibitory somata distributions are registered into
the 3D reference frame. Excitatory and inhibitory soma positions are generated
for all voxels in the soma density grid by multiplying the respective density
values with the voxel volume (e.g. 50° um?) and rounding to the nearest inte-
ger. 3D soma locations within a voxel are drawn from a uniform distribution.
Based on the 3D location, each soma is further assigned to a unique substruc-
ture (barrel column) and cell type (Figure 3B). Each soma is assigned to the
barrel column (modeled as a cylinder) that is closest to the 3D soma position.
To determine the cell type, first the region containing the soma is determined
by identifying its location with respect to the cell type boundary surfaces. The
cell type is then selected randomly based on the relative frequency of cell types
within this region (as specified by the respective csv file). Soma/dendrite mor-
phologies are then placed at all computed soma positions (Figure 3C). For each
soma, a dendrite morphology is chosen at random from all morphologies fulfilling
the following criteria: (1) the cell type of the morphology is the same as the cell
type assigned to the soma, (2) the morphology is registered to the sub-structure
(e.g. column) that is closest to the new soma location, and (3) the soma loca-
tion of the morphology is not further away from the new soma location than
one voxel of the reference frame resolution (i.e. in case of rat vS1, the original
soma location of the morphology and its location within the model are within
£50 pwm along the z-axis of the respective column). The latter step guarantees
that potential location-specific morphological properties are preserved within
the resolution limit of the reference frame. Lastly, the morphologies are trans-
formed as follows: (i) translation of the morphology to the new soma location;
(ii) rotation around the soma, such that the vertical orientation is preserved and
optionally (iii) cells with asymmetric projection patterns (e.g. polar dendrites)
are rotated such that their orientation is retained (e.g. L4ss are rotated around
the column axis to preserve projections towards the barrel column center).

Third, axon morphologies of each cell type are inserted to match the num-
ber of somata/dendrites for each cell type (Figure 3D). For each soma, an axon
morphology is chosen at random from all morphologies fulfilling the following
criteria: (1) the cell type of the morphology is the same as the cell type assigned
to the soma, and (2) the morphology is registered to the substructure (e.g. col-
umn) that is closest to the soma location. In contrast to dendrite morphologies,
axon morphologies are not transformed to new soma locations to prevent that
rotation/translation results in loss of location-specific projection patterns (e.g.
L4ss neuron in vS1 display axons confined to the respective barrel column con-
taining the soma (V Egger et al., 2008) and hence translations would result in
inappropriate innervation of septal areas). Long-range axons innervating the
modeled brain region (i.e. their somata are located elsewhere) are registered
in the same way as cell types with somata inside the brain region of interest,
preserving their vertical and horizontal projection patterns with respect to the
reference frame at 50 um resolution. Then, long-range axons are up-scaled (i.e.
duplicated) until the number of morphologies specified for this cell type (i.e. in
the input csv file) is reached (e.g. VPM axons are up-scaled to meet the average
number of somata per thalamic barreloid, e.g. 311 for the D2 whisker (Meyer,
R Egger, et al., 2013)).

The result of the network assembly step is a dense representation of the neu-
ronal circuitry of an entire brain region, where each neuron of a measured 3D
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soma distribution is represented by dendrite/axon morphologies of the appro-
priate cell type and location/orientation within the resolution of the geometrical
reference frame (Figure 3E).

2.4 Calculation of statistical synaptic innervation at sub-
cellular levels

The dense statistical connectome I;; is computed as follows: First, for each
presynaptic neuron i its axon is converted into a 3D bouton density at the
resolution of the reference frame by clipping the axon of neuron ¢ with all six
faces of each voxel, summing up the length of the respective axon branches
within the voxel and multiplying this value by the cell type- and substructure-
specific bouton length density. Second, each postsynaptic neuron j is converted
into a 3D PST density at the resolution of the reference frame by clipping the
soma and dendrites of neuron j with all six faces of each voxel, summing up
the length and the surface area of the respective dendrite branches and the
soma and multiplying these values by the connection-specific PST length or
area density. Dendrite and soma surface area are computed from the diameter
values along the branches using trapezoidal integration. 3D PST densities of
each postsynaptic neuron j for connections with neurons of cell type T'(7) of the
presynaptic neuron i in the voxel centered on x are determined as the sum of
two terms (PSTspines + PSTsurface):

PST;(x,T(i)) = > Lio(x) Ay rp) (D) + Y a;0(x)-arerg(L) (1)
labelsL labelsL
Here, labelL refers to a subcellular structure of the postsynaptic neuron,
i.e. soma, basal dendrite or apical dendrite. ;1 (x) is the total length of all
compartments of label L of neuron j inside the voxel centered on x (in pm).
A1y 1) (L) is the length PST density (e.g. 1 spine per um basal dendrite)
for connections from neurons of type T'(z) to neurons of type T'(j) onto target
structures with label L (in um™!), as provided by spine density measurements
and specified in the meta-connectivity spreadsheet. a; 1,(x) is the total surface
area of all compartments of label L of neuron j inside the voxel centered on
x (in pm?). ap@) i) (L) is the surface PST density (e.g. 0.4 PSTs per pum?
soma surface) for connections from neurons of type T'(i) to neurons of type
T(j) onto target structures with label L (in pm~2). Whereas spine and bouton
distributions can be measured (e.g. using the methods stated above), we derived
surface PST densities by assuming that the total number of boutons Bg;(x)
from all presynaptic cell types T'(¢) should match the number of total PSTs
from all cell types T'(j):

Z PSTsu'rface,j (X7 T(Z)) = Ball(x) - PSTspines(X) (2)

i,J
Reducing this equation to 1 dimension (i.e. collapsing the 3D densities to the
z-axis), we fit the respective surface PST density values ap(;y r(;) using standard
least squares algorithms (see fitting result in the online meta-connectivity list)
Third, the precision (across animal variability) of the geometrical reference
frame determines the voxel resolution, i.e. the smallest scale at which axo-
dendritic overlap can be calculated between morphologies obtained in different
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animals. Thus, locations of somata/dendrites/axons within a voxel cannot be
further resolved and proximity of boutons and PSTs within a voxel cannot
be used to estimate synaptic innervation. Instead, we assume that all PSTs
within a voxel are equally likely to receive any bouton in the same voxel (i.e.
independent synapse formation at resolutions smaller than the accuracy of the
reference frame). The probability that neuron j is targeted by a bouton within
the voxel centered on x is then given by:

N PST;(x,T(i))
pi(x,T(i)) = m (3)

Here, PSTy(x,T (7)) refers to the total number of potential postsynaptic
contact sites for connections with presynaptic cell of type T'(i) in the voxel
centered on x, i.e.

PSTu(x, T(i)) = PST;(x,T(i)) (4)

J
If B; boutons from neuron i are present in the voxel at x, the probability that
neuron j is targeted by n of these boutons is given by the binomial distribution:

Plupy ) = (7)o - p)P )

Average values for B; and p; in our networks are O(10')-0(10%) and O(1073),
respectively. Given the ~5 orders of magnitude differences between B; and p;,
we can approximate the binomial distribution by a Poisson distribution (i.e.
B; — oo and p; — 0):

. _ i)

P(n; I;j(x)) = e~ Tia®) (6)

n!
Here, we defined the average innervation I;;(x) from neuron i to neuron j
in the voxel at x:

1ij(x) = Bi(x) - p;(x) (7)

The connectivity statistics between any two neurons (7, j) can thus be de-

scribed by the 3D scalar field I;;(x). The probability of finding a connection

between any two neurons i and j within a specific voxel located at x is further
given by:

pij(x) =1-P(n=0; iij(x)) =1- e_fij(x) (8)

Because we assume that synapses in different voxels are formed indepen-
dently of another, the total probability of finding a connection between two
neurons 4 and j is:

piy =1 [[Pln=0:1;() =1 —eap(= Y I(x)) =1—e""0 (9)

Here, I;; = 3. I;j(x) is the total (i.e. summed over all voxels) average
innervation from neuron ¢ to neuron j. Intuitively, I;; is the expected number
of synapses connecting neuron i to neuron j.
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2.5 Calculation of statistical synaptic innervation at cell
type levels

Using the innervation matrix I;; for all pairs of neurons in the network, analy-
ses can be extended to the population level, allowing comparison with pairwise
connectivity measurements performed in vitro/in vivo. In silico, pairwise con-
nectivity between two populations (pre: A and post: B) can be described by
three experimentally accessible parameters: the convergence Cy, i.e. the fraction
of the presynaptic population connected to a single postsynaptic neuron b € B,
the divergence D,, i.e. the fraction of the postsynaptic population targeted by
a single presynaptic neuron a € A, and the connection probability Papg, i.e.
the probability that any two neurons a € A, b € B are connected. We can
now define these three quantities in terms of the neuron-to-neuron connection
probability p;; = 1 — exp(—1;;) introduced above:

Cy = (Pab)acA
Da = <pab>b€B (10)
PaB = (Pab)acAbeB

Here, (...)aca is the ensemble average across all neurons a in population A
etc. Additionally, we can compute the distribution of the number of synapses
per connection n4p between these two populations by averaging across the
individual synapse number distributions n;; = P(n; I;;):

naB = (Nab)acabe = (Poisson(Iu))ac A beB (11)

3 Results

3.1 Application example 1: Dense 3D model of rat vS1

Based on the anatomical input data (Figure 2) specified in the Methods section,
we used NN to generate an average dense model of entire rat vS1 (Figure 3). The
model consists of 10 excitatory and 5 inhibitory axo-dendritic cell types, in 24
barrel columns. The total volume of the vS1 model was 6.4 mm? (R Egger et al.,
2012). First, the average 3D distributions of excitatory and inhibitory somata
were registered to the reference frame and somata were placed and assigned
to cell types (Figure 3B) and anatomical substructures as described above (i.e.
each soma contains four labels: the nearest barrel column, whether the soma is
inside the column or within the septum, the cell type, excitatory or inhibitory).
The total number of neurons within the model was 529926, with 462436 being
excitatory and 67490 being inhibitory. Neuron numbers and their 3D distribu-
tions are within the mean + SD (529715 £ 39104) of the measured soma distri-
butions at 50 um resolution (Meyer, R Egger, et al., 2013). Next, NN replaced
each soma by appropriate 3D soma/dendrite/axon morphologies, using the up-
scaling routines specified in the Method section (Figure 3C-E). The somata
and dendrites of each neuron were converted into 3D PST surface densities,
reflecting the respective surface areas multiplied with connection-specific PST
distributions. Likewise, dendrites of excitatory neurons and axons of all neurons
were converted into 3D PST spine and bouton distributions, respectively (see
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meta-connectivity list online for all values). The resultant total soma/dendrite
surface area (i.e. of all neurons in rat vS1) was 1.9x 10*° zm?. The total number
of spines was 5.2 x 10° , and the total number of boutons was 6.4 x 10°.

The average bouton (synapse) density across entire rat vS1 was 1 bouton
per pum?, which matches previous measurements (0.94 + 0.12 synapses per
um?) of synapse densities using electron-microscopic tomography on small tis-
sue (~200 um?) volumes of rat vS1 (Merchan-Pérez, Rodriguez, Gonzales, et al.,
2014). Hence, the up-scaled model of entire rat vS1 resembles the average struc-
tural organization of this brain region at mesoscopic (geometry within 50 ym
inter-animal variability), microscopic (cellular distributions within 7% inter-
animal variability) and nanoscopic (bouton densities) scales. Consequently,
within the margins specified by the respective inter-animal variability (SDs of
geometry, soma distribution, cell type-specific dendrite/axon projections, and
spine/bouton densities), we consider the dense 3D model of rat vS1 as a precise
average representation of this particular piece of neuronal tissue.

3.2 Application example 2: Statistical connectome of rat
vS1

Within the dense model of rat vS1, we used NN to determine structural overlap
of PSTs and presynaptic boutons between all pairs of neurons, always taking
all neurons present in the respective overlap volumes into account. Figure 4
illustrates this process on the example of one L4ss neuron (j) being innervated
by one thalamocortical axon (i) originating in VPM (Figure 3C-E). First, NN
determines the bounding box (BB) around the dendrites of the postsynaptic
neuron (Figure 4A left) and calculates the number of PSTs for each 50 um
voxel within the BB. In case of VPM neurons innervating Ldss (i.e. excitatory
cell types), PSTs are limited to spines (Schoonover et al., 2014) as specified
in the meta-connectivity input file (see Methods). The exemplary Ldss neu-
ron comprises a total of 4640 spines, with a maximum of 523 spines per voxel
(Figure 4A right). Second, NN determines the number of presynaptic boutons
present in any voxel where dendrites and axons of the two neurons overlap. For
the present example, the particular VPM axon has a total of 2964 boutons in
the overlap volume, with up to 94 boutons per voxel.

However, within the overlap volume, dendritic spines originating from other
excitatory neurons are present, rendering as equally likely contact sites for the
VPM boutons as the spines of the exemplary L4ss neuron. The total number
of spines within the BB of the overlap volume was 2.1 x 107, with a maximum
of 130000 spines per voxel. Furthermore, VPM axons could also target somata
and/or dendritic shafts of inhibitory interneurons ((Staiger, Zilles, et al., 1996),
as specified in the meta-connectivity input file), where a total of 1.8 x 106 PSTs
on inhibitory surfaces are present within the BB of the overlap volume, with a
maximum of 13500 surface PSTs per voxel. Consequently, the 3D innervation
field I;;(x) between the dendrites of the Ldss neuron (j) and the axon of the
VPM neuron (i), was determined with respect to all other potential PSTs (i.e.
excitatory and inhibitory) present in the overlap volume. In addition, the num-
ber of all available target sites (2.3 x 107) was four orders of magnitude larger
than the number of spines/boutons from the individual neurons, justifying the
approximation of the binomial connection probability by a Poisson distribution.

The resultant 3D innervation field I; ;(x) between the two exemplary neurons
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Figure 4: Computation of statistical innervation between neurons in dense
networks. (A) Left: VPM azon (blue) and L4ss dendrite (red) from Figure 3
C-E. The grid used for computing bouton, spine and dendrite surface densities
is shown for scale. Right: Calculation of the 3D innervation density fij(x)
from the VPM azxon to the Ljss dendrite. The gray-colored squares in the grid
represent the mazimum projection of the respective pre/postsynaptic quantity.
Scale bar shows mazimum value of the respective pre/postsynaptic quantity in
the grid. Above each scale bar, the total number of pre/postsynaptic elements
in the grid is shown. (B) Resulting subcellular 3D innervation density I;;(x).
(C) Left top: Connection probability from neuron i to neuron j as a function
of the total innervation I;;. Bottom: Possible range of the number of synapses
from neuron i to neuron j, n;; (95th percentile for n > 0) as a function of
the total innervation I;;. Right: Four possible synapse distributions and their
probability of occurrence for the innervation from the VPM axon to the L4ss
dendrite, computed from the 3D innervation density in (B).
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is shown in Figure 4B. Summing across all voxels results in the total innervation
I;; = 0.66, with a maximal innervation of 0.11 per voxel. This innervation
number corresponds to a pairwise connection probability of p;; = 0.48, and
to a range of putative synapses between ¢ and j of n;; = 0 — 3 (Figure 4C
left). Thus, even though the axonal arbor of the example VPM neuron displays
substantial overlap with the dendritic arbor of the example L4ss neuron, the
probability of these two neurons being connected according to our quantitative
implementation of Peters’ rule is less than 50%. Because there are on the order
of 1000 other potential postsynaptic target neurons projecting dendrites into the
overlap region, approaches that calculate connectivity from structural overlap
without normalization by the total number of PSTs (e.g., (Brown and Hestrin,
2009)) will result in gross overestimation of connection probabilities.

In consequence, we argue that structural axo-dendritic overlap should never
be calculated from sparse morphological data alone and that connectivity mea-
surements by Peters’ rule should not be presented in a binary fashion (i.e. over-
lap equals connectivity, no overlap equals no connectivity). Instead, structural
overlap in the present form results in innervation measurements at subcellular
(reference frame) resolution, which can be converted into pairwise connection
probabilities and a range of putative synapse numbers. In case of the present
example, the overlap between 2964 VPM boutons with 4640 L4ss spines did thus
not result in a connection probability of 1, but instead, the probability that the
two neurons were unconnected was 52%, that they were connected by a single
synapse was 34%, and by two or three synapses was 12% and 2%, respectively
(Figure 4C right).

3.3 Application example 3: Comparison of in silico with
in vitro/in vivo connectivity

In the following, we compare our in silico measurements of pairwise connection
probabilities and putative synaptic contact sites with previously reported mea-
surements in rat vS1 using (i) paired recording/reconstruction between L4ss
neurons in vitro (Feldmeyer, V Egger, et al., 1999; Petersen and Sakmann,
2000), (ii) dual recordings and correlation analysis between VPM and L4, L5A,
L5B and L6 neurons in vivo (Bruno and Sakmann, 2006; Constantinople and
Bruno, 2013), and (iii) electron-microscopic reconstructions of synaptic con-
tact sites between VPM and individual L4ss neurons (Schoonover et al., 2014).
For comparison, we restricted in silico connectivity measurements between the
respective cell types to neurons located within a single barrel column (D2, (Fig-
ure 5A-C)) and averaged connectivity measurements across all neurons of the
respective D2 populations.

The D2 column comprised 17810 excitatory neurons including 4657 neurons
of L4 cell types (2480 Ld4ss; 1707 L4sp; 470 L4py), 1386 L5st, 1103 L5tt, 1391
L6cc, 767 L6inv and 4048 L6ct neurons. Further, the D2 column model con-
tained 2545 inhibitory neurons and 311 thalamocortical axons originating in the
D2 barreloid (Meyer, R Egger, et al., 2013) of the VPM. Computing the innerva-
tion I;; for all pairs of VPM and L4, Lbst, L5tt and L6 neurons, respectively, as
well as for all pairs of L.4ss neurons, allowed calculating the respective neuron-to-
neuron connection probabilities p;; and the average distribution of the number
of synapses per connection nap (Figure 5D). Further, we computed the cell
type averages of (i) convergence between L4ss neurons, as well as between VPM
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Figure 5: Validation of the rat vibrissal cortex statistical connectome. (A) Cell
type-specific distribution of neuron somata in the model D2 column. (B) Cell
type-specific distribution of dendrites in the model D2 column from (A). Note
that large basal dendrites of L3 pyramidal neurons located in the septum around
the Lj barrel obscure dendrites of L4ss located inside the barrel. (C) Distri-
bution of Ljss azons (blue) and VPM azxons (black) in the model D2 column
from (A). (D) Distribution of neuron-to-neuron innervation I;;, the neuron-
to-neuron connection probability p;; and the average distribution of the number
of synapses per connection n;; for the four postsynaptic cell types in (B) and
the two presynaptic cell types in (C). (E) Comparison of pair-wise connectivity
statistics in the model D2 column (in silico) and experimental results from phys-
iological and anatomical measurements in vitro and in vivo. Top: convergence
of intra-barrel connectivity and thalamocortical connectivity from VPM. Bottom:
Observed and calculated range of number of synapses per connection (in silico:
99% cumulative range of the average distribution of ni;). (F) Effect of the size
of the sparse morphological sample on connectivity measurements. Top: Mean
convergence of thalamocortical input from VPM to four cell types in the model
D2 column (see (E) for color-code) as a function of the VPM azon sample size.
Bottom: Standard deviation of the convergence of thalamocortical input to these
four cell types as a function of the VPM azxon sample size.
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and L4, Lbst, L5tt and L6 neurons in our D2 column model, and (ii) the 99th
percentile of the number of putative synapses, and compared these numbers to
experimental results (Figure 5E). The in silico Ldss-to-L4ss convergence mea-
surements yielded a value of 0.31 £0.10, compared to 0.31-0.36 as measured in
vitro (Feldmeyer, V Egger, et al., 1999; Petersen and Sakmann, 2000). VPM-
to-L4 convergence was 0.40 +0.13 (in silico), compared to 0.43 +0.08 (in vivo).
VPM-to-L5st convergence was 0.29 £0.10 (in silico), compared to 0.17 £0.12
(in vivo). VPM-to-L5tt convergence was 0.38 +£0.10 (in silico), compared to
0.4440.17 (in vivo) and VPM-to-L6 convergence was 0.19+0.09 (in silico),
compared to 0.09+0.14 (in vivo) (Bruno and Sakmann, 2006; Constantinople
and Bruno, 2013). The in silico measurements of pair-wise connection proba-
bilities matched the previously reported cell type-specific values within one SD.
Interestingly, even though somata of the different cell types intermingled within
and across cortical layers, our model predicted cell type-specific differences in
synaptic connectivity within layers (e.g. VPM to L5st vs. L5tt). These findings
are in line with previous reports that revealed that synaptic connectivity is in
general cell type- and not layer-specific (Brown and Hestrin, 2009; Shepherd
et al., 2005).

To further evaluate how the sample size of morphological reconstructions
affects our connectivity estimates, we repeated these measurements and pro-
gressively increased the number of VPM axons used for up-scaling from 1 to 14.
We found that increasing the sample size beyond ~5 VPM axons did not change
our results (Figure 5F), indicating that at least 5 axon reconstructions are re-
quired to capture the variability of projection patterns (at 50 um resolution)
within a cell type.

Finally, the range of putative synapses per connection for L4ss-to-L4ss con-
nections was 1-5 (in silico), compared to 2-5 (in vitro, (Feldmeyer, V Egger, et
al., 1999)). For VPM-to-L4 connections, the range was 1-6 (in silico), compared
to 1-6 (in vivo, (Schoonover et al., 2014)). Whereas the in silico ranges of puta-
tive synapses per connection matched the previous in wvitro/in vivo results, our
predictions showed that the most likely scenario for interconnected L4ss should
be that they share only a single synaptic connection. However, reconstructions
from paired-recordings revealed a more bimodal distribution, i.e. pairs of L4ss
share either no contacts, or if they are connected, they share more than one
contact (Feldmeyer, V Egger, et al., 1999). This potential discrepancy could
arise from limitations to identify weakly connected Ldss (i.e. just one synap-
tic contact) using paired-recordings, or could indicate that our assumption of
independent synapse formation is not justified for L4ss.

3.4 Application example 4: Analysis of higher-order con-
nectivity patterns

Because the average dense model of rat vS1 resembles the structural organi-
zation of this neuronal tissue at meso-, micro- and nanoscopic scales (see Ap-
plication example 1) and structural overlap measurements within the model re-
produced cell type-specific pairwise connectivity measurements (see Application
example 3), we investigated whether the resultant dense statistical connectome
can be used to investigate higher-order connectivity patterns beyond pairwise
measurements.

The simplest higher-order pattern to be investigated is connectivity between
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Figure 6: Higher-order connectivity in dense statistical connectomes. (A) The
connection matriz between L4ss neurons of the D2 barrel in rat vibrissal cortex.
Fach entry represents the innervation I;; between pre- and postsynaptic neurons
i and j. Connections between three neurons are highlighted. (B) Zoom into the
connection matriz (see box in (A)) around the matriz entry representing the
connection from neuron 1 to neuron 2. (C) Left: Innervation between three
example L4ss neurons (highlighted in (A)), and the respective connection prob-
abilities and strengths (see also Figure 4C). Right: One possible configuration
of a three-neuron motif between these three neurons. Bottom: Summation over
all configurations resulting in this motif (motif ID 7) gives the total probabil-
ity of occurrence of this motif for these three neurons and the L4ss network,
respectively. (D) Probability of finding each non-redundant three-neuron motif,
calculated from the pairwise innervation. All 16 non-redundant motifs are listed
at the bottom. Top: Motif distribution for the three neurons from (C). Bottom:
Motif distribution for the Liss network from (A). (E) Deviation of motif occur-
rence probability from expected value based on the average connection probability
of L4ss neurons. Top: Three neurons from (C). Bottom: Ljss network from

(A)-
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three neurons (Song et al., 2005; Sporns and Kotter, 2004), in the following
referred to as triplet motifs. To do so, we calculated the innervation matrix I;;
(i.e. dense statistical connectome) for the population of L4ss neurons within the
D2 barrel column and randomly selected three neurons from the matrix (Fig-
ure 6A-B). The six entries specifying innervation between the three neurons
in the I;; matrix yield connectivity statistics about each possible connection in
terms of triplet motifs. Triplet motifs are illustrated as triangles of nodes (i.e.
each node representing one of the three respective neurons, (Figure 6C)), con-
nected by uni- and/or bidirectional edges (i.e. each edge representing synaptic
connections between two neurons, and the direction specifies pre- and postsy-
naptic partners, respectively). For example, the innervation from neuron 1 to
neuron 2 is determined by the matrix entry [12 = 0.68, which corresponds to
a pairwise connection probability of p12 = 0.49. This can be interpreted as
the probability that the triplet motif contains an edge from node 1 to node 2.
Conversely, the probability that this particular edge is missing is 1 — p12 = 0.51.
In general, three nodes can be connected by 64 different motifs of bidirec-
tional edges. However, multiple motifs are redundant (e.g. 1 connected to 2 and
no other edge present is the same motif as 2 connected to 3 and no other edge
is present). Thus, the 64 triplet motifs can be reduced to 16, of which 7 contain
three edges (three-connected), 6 contain two edges (two-connected, 2 contain
one edge (one-connected) and 1 motif (no edges) represents the absence of any
connections between the three neurons (Figure 6D-E). Using the pairwise con-
nection probabilities for the three example neurons (i.e. pi2, pa1, P13, P31, P23,
p32) allows computing the probability of finding each triplet motif by multiply-
ing the probability of finding/not finding all six possible edges. For example,
the probability that the three neurons are connected according to motif 7 (i.e.
three-connected by unidirectional edges) is computed as follows:

p=(1—pi2)-po1- (1 —pi3) - ps1- (1 — pa3) - p32 = 0.092

There are five other possibilities of arranging connections between these
three neurons that result in the same triplet motif. Thus, the total probability
of finding this triplet motif among these three neurons is the sum over these six
individual connection arrangements, resulting in a total probability of pijo3 =
0.146 (Figure 6C).

In the same way, we calculated the probability of occurrence for each of
the 16 possible non-redundant triplet motifs, illustrated as a motif spectrum
((Sporns and Kotter, 2004), Figure 6D top). Further, we extended the motif
analysis to the entire population of L4ss neurons in the D2 model, by repeating
the motif probability calculations ten times for 2000 randomly selected neuron
triplets. Each triplet was allowed to share at most one neuron with any other
triplet. For each triplet, we computed the motif spectrum as described for the
example neurons, and averaged these spectra to obtain the distribution of triplet
motifs within the Ldss network (Figure 6D bottom). Finally, we compared
the triplet motif spectrum of the L4ss network in a D2 barrel column with
the distribution expected when assuming uniform connectivity. This scenario
represents the case where average pairwise connection probabilities are known
(e.g. p = 0.31 between Ld4ss neurons, as determined statistically or by paired
recordings) and connectivity within the population is assumed to be homogenous
(i.e. lack of variability within a population caused by cell- and/or location-
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specific morphological variations).

The deviations between the ‘uniform’ spectra of triplet motifs from those
predicted by the dense statistical connectome were substantial (Figure 6E). For
example, motif 2 (unidirectional loop) is much less likely (~30%) compared to
assuming uniform connectivity, whereas the remaining three-connected motifs
are in general more likely. In contrast, two-connected motifs are in general less
likely. Thus, the average dense model of the L4ss network yields high-order
connectivity patterns that are significantly (p < 0.0001, z-score > 5 for all
motifs except for motifs 8 and 15) different from a uniformly connected random
network with equal pairwise connection probability.

4 Discussion

In the present study, we introduced a novel quantitative approach for measur-
ing synaptic connectivity at subcellular resolution and mesoscopic scales. The
measurements are based on sparse morphological datasets, integrated into a
common anatomical reference frame that allows up-scaling to an average dense
model of the neuronal circuitry and determining axo-dendritic overlap between
any two neurons in the model. Illustrating our approach for excitatory thalamo-
and intracortical circuits in rat vS1, we (i) defined the mandatory anatomical in-
formation required to generate average dense circuit models, (ii) introduced the
interactive software environment NeuroNet (NN) to calculate Peters’ rule with
respect to all neurons present in axo-dendritic overlap volumes, and (iii) found
that our cell type-specific in silico measurements are in line with previously
reported in vitro/in vivo data.

4.1 Previous approaches to generate average neuronal net-
work models

In recent years, multiple approaches began integrating morphological data to
generate anatomically well-constrained neuronal network models. However,
compared to NN, where synaptic connectivity is measured within the circuit
model itself, previous approaches require synaptic connectivity data as input.
For example, neuroConstruct (Gleeson et al., 2007) connects randomly dis-
tributed neurons to networks using average pairwise connection probabilities,
thereby neglecting for example location-specific differences in connectivity. Blue-
Builder (Kozloski et al., 2008), developed within the BlueBrainProject (Markram,
2006), generates neuronal networks, where in vitro labeled dendrite and axon
morphologies are integrated into an idealized cortical column (i.e. neglecting
column-specific geometry and soma distributions) and putative dendrite-axon
contacts (at a predefined distance) are pruned until they match predefined con-
nectivity statistics (originating from paired-recordings in vitro (Ramaswamy et
al., 2012)).

Therefore, we argue that our approach can be regarded as more general for
investigating structural organization principles of the neuronal circuitry. First,
the present concept relies on definition of a standardized 3D reference frame
that describes the average geometry of the brain structure (and substructures)
of interest. Consequently, no assumptions about the mesoscopic organization of
neuronal circuits are required. For example, in case of rat vS1, we previously
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reported that each cortical barrel column has a specific diameter, height and
orientation, and barrel columns representing whiskers located within different
rows along the animal’s snout have substantially deviating volumes (R Egger
et al., 2012). Such whisker row-specific organization patterns may substantially
influence connectivity, e.g. increased connectivity between columns in the same
row compared to across whisker rows, an effect that would be missed by assum-
ing that cortical columns are elementary and uniform structural building blocks
(Markram, 2006).

Second, the up-scaling to a dense average circuit model is based on measured
3D distributions of excitatory and inhibitory neurons. Consequently, no assump-
tions about the microscopic (i.e. cellular) organization of the neuronal circuits
are required. For example, in case of rat vS1, we previously reported that sepa-
ration between individual barrel columns is only present within the distribution
of excitatory neurons in L4, where neuron densities are significantly lower in the
septum, compared to densities in barrel columns (Meyer, R Egger, et al., 2013).
In contrast, neither excitatory distributions in superficial and infragranular lay-
ers, nor densities of inhibitory somata throughout the cortical sheet displayed
differences between columns and septa. Such excitatory/inhibitory location-
specific cellular organization patterns may substantially influence connectivity,
e.g. the relative fraction of excitatory to inhibitory connections may be higher
within the L4 barrel compared to septa and/or other layers (Van Vreeswijk and
Sompolinsky, 1996), effects that would be missed by assuming uniform and/or
randomly distributed neuron somata (Carlo and Stevens, 2013; Rockel et al.,
1980).

Finally, connectivity measurements are based upon complete 3D reconstruc-
tions of in vivo labeled neurons. Consequently, no assumptions about (sub)cellular
organization of the neuronal circuits are required. For example, in case of rat
vS1, we previously reported that axons of excitatory neurons are in general not
confined to the dimensions of a single cortical column (Oberlaender, Boudewijns,
et al., 2011). Thus, extrapolation of dendrite/axon morphologies from in wvitro
labeling/reconstruction (Hill et al., 2012; Ramaswamy et al., 2012) will miss
cell type and/or location-specific horizontal axonal projection patterns, result-
ing in assessments of connectivity by structural overlap that are biased towards
close-by neurons (e.g. within columns compared to across columns). Further,
substantial cutting of dendrites/axons during multi-electrode recordings in vitro
will result in unsystematically hampered measurements of pairwise connection
probabilities (i.e. depending on cell type, location and distance of the recorded
neurons), questioning whether constraining connectivity within neuronal net-
work models by such data (Lefort et al., 2009; Perin et al., 2011) will result in
anatomically realistic representations of the neuronal circuitry.

In summary, because organizational principles of the neuronal circuitry are
generally influenced by brain region- and species-specific mesoscopic, cellular
and subcellular quantities, generation of well-constrained network models should
not be based on assumptions, but on measurements of these quantities instead.
Assessments of these quantities provide information about the respective vari-
ability across animals, allowing to determine (i) the appropriate resolution for
connectivity measurements within an average representation of the neuronal cir-
cuitry and (ii) how representative the average model is (i.e. in terms of SDs of
(sub)cellular properties).
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4.2 Validity of Peters’ rule

The validity of measuring synaptic innervation by structural overlap between
dendrites and axons has been discussed controversially (Briggman et al., 2011;
Mishchenko et al., 2010; Shepherd et al., 2005; Stepanyants and Chklovskii,
2005). Specifically, reconstructions at electron-microscopic resolution provided
evidence that proximity of axons and dendrites at submicron resolution in gen-
eral does not imply that the two neurons form synaptic contacts (Mishchenko
et al., 2010). Further, pairwise connection probabilities obtained by paired-
recordings in vitro were considered to contradict measurements of structural
overlap after reconstructing morphologies of the respective neuron pairs (Brown
and Hestrin, 2009; Shepherd et al., 2005).

However, to date, neither the appropriate spatial resolution to apply Peters’
rule, nor a coherent framework to obtain structural overlap in terms of con-
nection probabilities with respect to all neurons projecting dendrites into the
overlapping volume existed. We provide both. First, the resolution for deter-
mining structural overlap within an average network model (i.e. integration of
morphological data from different animals) is defined by the inter-animal vari-
ability of the geometrical reference frame used to integrate the data. Increasing
the voxel size will provide less accurate connectivity estimates (i.e. cells or cell
types that do not overlap at 50 um resolution may overlap at 100 um scales).
In contrast, decreasing the voxel size below the precision of the registration
framework would imply inappropriate accuracy. Hence, implications of synap-
tic innervation below the resolution limit, or even at submicron resolution, are
beyond the limits of Peters’ rule. Instead, measurements of subcellular synapse
locations remain exclusive to reconstructions at electron-microscopic levels (but
see (Druckmann et al., 2014; Schoonover et al., 2014)).

Second, we illustrate that in general, millions of potential postsynaptic target
sites (PSTs) from unstained neurons are present within the overlap volume of
two stained neurons. Hence, when normalizing innervation by the total number
of PSTs, the resultant innervation and pairwise connection probabilities are
small. In case of the exemplary calculation between the dendrites of one L4ss
and one thalamocortical VPM axon in rat vS1, overlap between ~4500 spines
and ~3000 boutons did not result in a connection probability of one, but instead
there is a 52% chance that the two neurons are unconnected. Hence, connectivity
measurements by structural overlap have to be performed with respect to all
neurons, for example using the present approach of generating an average dense
model of the brain region of interest. Consequently, the absence of synaptic
contacts at touching dendrites and axons in sparsely labeled tissue should not
be regarded as a violation of Peters’ rule.

4.3 Higher-order connectivity in dense statistical and electron-
microscopic connectomes

In addition to illustrating that pairwise connection probabilities determined
by structural overlap are in line with measurements using conventional record-
ing/reconstruction techniques, we provide a strategy that allows investigation
of higher-order connectivity patterns within dense statistical connectomes. On
the example of the population of L4ss neurons located within a barrel of rat vS1,
we determined the probabilities of obtaining all possible three-neuron (triplet)
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motifs and compared the resultant motif spectra with those to be expected from
randomly connected networks that have the same average pairwise connection
probability. Interestingly, we found that the two spectra displayed significant
deviations. For example, unidirectional triplets (i.e. recurrent loops) are much
less likely to occur within the L4ss population compared to randomly connected
networks. In contrast, other triplet configurations were significantly more likely.
Arguably such deviations can be considered as evidence for specificity in the
organization of the neuronal circuitry, for example caused by inhomogeneous
distributions of somata (e.g. excitatory soma density decreases from the barrel
center towards the borders), dendrites and axons (e.g. polar dendrite morpholo-
gies pointing towards the barrel center).

Hence, we suggest using statistical spectra of higher-order motifs as a defi-
nition of cell type-specific ‘structural fingerprints’ for the respective neuronal
circuits. Comparing these fingerprints with dense connectomes obtained at
electron-microscopic resolution, will indicate whether such cell type-specific
higher-order patterns can be explained by the meso- and microscopic organi-
zation of the network, or whether additional specificity originates at nanoscopic
scales. In consequence, not the absence of synapses between touching den-
drites/axons, but deviations of higher-order connectivity patterns observed in
statistical and electron-microscopic dense connectomes should be considered as
evidence for violations of statistical network organization.

5 Conclusion

We present a novel concept for measuring pairwise and high-order connectivity
patterns at subcellular resolution and mesoscopic scales. We provide the re-
quired software to generate average dense circuit models, to calculate structural
overlap, and to convert these measurements into dense statistical connectomes.
Further, we describe the anatomical data necessary to assess structural orga-
nizational principles of the neuronal circuitry without assumptions about ho-
mogeneity at meso/microscopic and subcellular scales. Given that the required
anatomical data is available, we consider our approach as generalizable to other
brain structures and species. This sets the stage to generate well-constrained
network models that allow simulating sensory-evoked signal flow to provide un-
precedented insight into the interplay between the structural organization and
function of the respective local and long-range neuronal circuits.
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