
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbrunner Str. 10, D-1000 Berlin 31

Andreas Griewank

Sequential Evaluation of

Adjoints and Higher Derivative Vectors

by Overloading and Reverse Accumulation'

sk . . .

Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Illinois 60439

f This work was supported by the Applied Mathematical Sciences
subprogram of the Office of Energy Researbh, U.S. Department of Energy,
under contracts W-31-109-Eng-38.

Preprint SC 91-3 (July 1991)

Contents

1 Introduction -±

2 Reverse Adjoint Evaluation for Composite Functions 3

2.1 The Adjoint Chain Rule 3

2.2 Reverse Accumulation for Sequential Programs 4

2.3 Approaches to Limit the Storage Requirement 5

3 Implementation Questions and Memory Management 7

3.1 Indexing and Taping by Overloading 7

3.2 Replacing Variable Indices by their Locations 8

3.3 Sweeping Back and Forth 10

3.4 Births and Deaths in C + + 11

4 Arithmetic and Analysis in Rings 12

4.1 Differential Calculus on Normed Rings and Modules 12

4.2 The Case of Univariate Taylor Series 14

5 Summary and Conclusion 15

Abstract

Most nonlinear computations require the evaluation of first and higher derivatives of vector func
tions defined by computer programs. It is shown here how vectors of such partial derivatives
can be obtained automatically and efficiently if the computer language allows overloading (as is
or will be the case for C++, PASCAL-XSC, FORTRAN90, and other modern languages). Here,
overloading facilitates the extension of arithmetic operations and univariate functions from real
or complex arguments to truncated Taylor-series (or other user-defined types), and it generates
instructions for the subsequent evaluation of adjoints. Similar effects can be achieved by pre-
compilation of FORTRAN77 programs. The proposed differentiation algorithm yields gradients
and higher derivatives at a small multiple of the run-time and RAM requirement of the original
function evaluation program. ' ; ' . ' • ;

Keywords: Automatic Differentiation, Chain Rule, Overloading, Taylor.Coefficients, Gradi
ents, Hessians, Reverse Accumulation, Adjoint Equations.

Abbreviated title: Automatic Differentiation by Overloading

1 Introduction

The methodology considered here yields numerical values of first and higher derivatives that are
not effected by truncation errors and would thus be exact if the calculations could be carried out in
exact arithmetic. This approach is often referred to as Automatic Differentiation or Differentiation
Arithmetic [16]. In contrast to the fully symbolic differentiation performed by symbolic manipulators
(e.g. MAPLE, Macsyma, Mathematica), the chain rule is applied here to the numerical values
rather than the algebraic expressions of the elementary partial derivatives. This avoids the so-called
expression swell, which often limits the use of the fully symbolic approach. The elementary partials
themselves are derivatives of a finite number of arithmetic operations and library functions and can
therefore be evaluated analytically at any suitable argument. Here we have tacitly assumed that
the vector function to be differentiated is factorable [2], i.e. the composition of such elementary
operations and functions. This is no serious restriction since most functions of practical interest are
defined or approximated by sequential programs in a high level computer language.

The term sequential in the title alludes to three aspects of this paper. First, we consider only
implementations on a single processor machine even though automatic differentiation generates
run-time dependency information that can be used for concurrent scheduling on multiprocessor
architectures. Second, we will ensure that almost all extra data needed for automatic differentiation
are generated and accessed in the same or exactly reversed order. Such Sequential Access Memory
(SAM) can be allocated on external mass storage devices without unduely slowing the execution
speed. Third, we provide for the likely scenario that the user wants to selectively evaluate derivatives
of increasing order at the same point. The classical application for this recursive mode are Taylor
series methods for ordinary differential equations, where the currently highest derivative feed into
the right hand side yields the next higher one by automatic differentiation.

A similar situation arises in constrained optimization, where second derivative information is only
required along the tangent space of the feasible set, which is calculated from the first derivatives of
the active constraints. If the resulting reduced or projected Hessian is (nearly) singular one may
want to examine third derivatives along the null space in order to test for local optimality. In
numerical bifurcation this process of examining higher and higher derivatives on subspaces in which
the lower derivatives are in some sense degenerate may continue in principle indefinitely. However,
in practice such calculations could be performed so far only on simple model problems or based on
increasingly inaccurate higher order differences. It is hoped that the techniques described here will
facilitate the numerical treatment of higher order singularities for problems of a realistic scale. With
regards to the optimization application it should be noted that we obtain the one-sided projection
of the Hessian so that one-step quadratic convergence is achievable.

As indicated in the title we concern ourselves primarily with the evaluation of derivative vectors of
the form

Qd .
" f x + ax (1) + a " V + • • • + a"x^ •2-FL

da* \
G R m , (1)

a=0
and

6 R " • (2) V s * y.F (x + axW + <*V2> + • • • + adx^)

Here F : R n -+ R m is a nonlinear mapping, y € R m is a row vector, and the column vectors
«(*') G R n belong typically to the nullspace of the Jacobian F'(x). By repeated evaluation of
such expressions for varying vectors y and x^ one can compose derivative matrices and tensors
of arbitrary order and size. The salient fact regarding the evaluation of these derivative vectors is
that the increase of run-time and RAM requirement (relative to the cost of evaluating F by itself)
grows like the square of the degree d, but it is completely independent of the numbers n and m of
independent and dependent variables respectively. However, it should be noted that for vectors of

1

the form (2) this favorable complexity bound can only be achieved by reverse; accumulations, which
requires SAM proportional to the original run-time is available. A particularly important application
is nonlinear least squares, where (2) with y = F^^x) yields the gradient of the sum of squares.

Our theory (though not our current implementation [7]) allows for multivariate Taylor series and thus
the direct calculation of Hessians and higher derivative tensors as a whole. However, this aggregate
approach reduces the computational complexity only by a constant, while it causes a significant
increase in the storage requirement. It is conjectured [6] that the problem of finding the optimal
ordering for applying the chain rule to accumulate Jacobian is NP-hard. No such combinatorial
optimization problem arises here because the optimal procedure for the evaluation of derivative
vectors is forward or reverse accumulation in cases (1) and (2) respectively. In Section 2 we will
explain these terms, which are equivalent to the notion of bottom up and top down accumulation
used by IRI [10].

The large SAM requirement of the basic reverse mode is definitely a reason for concern but not
for despondency. In nuclear engineering and weather modeling [18] the mathematically equivalent
method of adjoint sensitivity analysis has been applied to large problems for many years. However,
until recently these adjoint codes were written "by hand" after a careful analysis of the underlying
mathematical models. It is hoped that further progress in automatic differentiation will eliminate
this laborious process and produce adjoint codes of comparable or even better efficency. Moreover,
there has been a recent proposal [8] to reduce the SAM requirement such that it is no longer
proportional to the run-time of the original evaluation program. The large body of quantitative and
qualitative dependency information collected for the purpose of reverse accumulation can also be
utilized for the estimation of evaluation errors [11] and the concurrent scheduling of both function
and derivative evaluations.

The reader may ask why the concept of overloading figures prominently in the title and indeed our
way of looking at automatic differentition. Far from being just a language attribute, overloading
allows one to concentrate on the essential aspects of a particular algorithmic task without freezing
aspects whose variability may be important on another level. In this spirit we will develop in Section
2 an algorithm for the adjoint evaluation of composite functions with minimal restrictions on the
underlying arithmetic in a suitable normed ring with identity. The 'user* may choose between real
or complex arithmetics with various levels of precision or for example introduce his own interval
arithmatic package. All the while one may simply think of the algorithm discussed in Section
2 as an method for computing gradients of real functions with respect to real arguments. For
the evaluation of higher derivatives the reals may be replaced by truncated Taylor series without
effecting the program structure. The required properties and most important examples of the
algebras and their arithmetics are discussed in the final Section 4. In the central Section 3 we
discuss implementation questions and in particular the crucial issue of storage allocation and memory
management. Unfortunatly, these questions depend to some extend on the computer language
because only C + + allows the overloading of variables declarations and deallocations. Nevertheless
we consider these software issues as integral aspects of the algorithmic design, because just specifying
and counting the arithmetic operations involved simply does not adequately describe the structure
and efficiency of automatic differentian methods.

Most algorithmic devices discussed here have been implemented and tested in our C + + package.
ADOL-C. However, we do not view this paper as documantation for a particular piece of software
because many of the ideas have been utilized much earlier in Rail's PASCAL-SC differentiation
package [15] and the FORTRAN precompilers JAKEF [17], GRESS [9], and PADRE2 [13]. It
is hoped that a language independent discussion of the major issues will aid the communication
between active researchers and spurn new implementations in other computer languages.

2

2 Reverse Adjoint Evaluation for Composite Functions r"
. ••• ' • : . < < - ' - ! , • • • • ; . , • • : , . • : • , . • , . ' . • . • . • . . • - / ' 1 2 f r H ,

Mathematically, we may formulate our task as evaluating the adjoint mapping of a continuously
differentiate vector function ' -H'..!

y = F(x) : A- = 7en . - y = ^ m , ' .,- '/ ••'•• (3>--c" K-,

Here n, m are positive integers and the ring of scalars H may at first be thought of as the normed
field of real numbers. However, as we will discuss in Section 4, H can >e replaced by any normed. .\t .,' *
algebra and in particular rings of truncated Taylor series. The required vector calculus can be , '
extended to this more general setting with little difficulty.

The function F need not be globally defined so that x may be implicitly restricted to some open 'a '
domain in X on which F is differentiable. Given any such argument x and a linear functional y in . f
the dual space Y = C(Y,Tl) of Y, there exist a unique functional x in the dual space X = C(X,Tl) " A .̂
of X such that for all v € X

x-v = <x,v> = y-F'(x)v (4) , ; x 'u

where F(x)' denotes the Jacobian of F at x. Throughout most of this section we will consider onlyi' iii -
one particular pair x, y and may thus refer to y and x as the adjoint vectors (or values),of y = F(x), 7 -';
and x respectively. As we will see the extra cost of obtaining x for given y is in terms of arithmetic > <; q
operations only a small multiple of the original effort to calculate y from x. However, to achieve this ;iL. ;• p
low complexity bound the adjoint calculation may need substantially more storage than the original . /
evaluation of y = F(x). .<

Since y is fixed we may interpret x as the gradient .

x = V(y.F(x)) = d(y-F(x)))/dx (5), . "

of the scalar function y-.F(a:) at the current argument x. This interpretation of adjoint vectors as 'x'"]
gradients will be particularly useful for intermediate quantities. It also shows that gradients can
always be evaluated at essentially the same cost as the underlying scalar function.

2.1 The Adjoint Chain Rule ' , '

In order to compute y and x for given x and y we will make the entirely realistic assumption that
F is a composite function and then apply an adjoint form of the chain rule. Let us firstly consider " ,
the case of a diamond where there y is computed from x via two intermediate vetors « and t; such
that for continuously differentiate functions G and H and F of appropriate dimensions

« = G{x)
- v = H(x)

y = F(u,v) .

Then we obtain by the chain rule the total derivative

. . ' ' . . . , ._ d[y-F(u,v)] dG(x) [d[y-F(u,v)] dHjx)
du dx dv dx

= ü-dG(x)/dx + v-8H(x)/dx

where the adjoint values ü and v of u and v are defined by

ü = y-dF(u,v)/du and v = y-dF(u,v)/dv . (9)

(6)

,-,,-: !:=0^

vf'i
(8) ;^';

3

Starting with v = 0, ü = 0, and x = 0 we can thus effect the calculation of x by the sequence of
assignments

v + = y-dF(u,v)/dv

ü + = y-dF(u,v)/du

x + = v-dH(x)/dx (10)

i + = ü-8G(x)/dx

where a + = 6 means increment a by 6 as in the programming language C. One may derive and
execute the adjoint program (10) from the original program (6) by the simple recipe:

• Select the adjoint y of the dependent vector y and initialize the adjoints of all intermediate
and independent values to zero.

• Replace each assignment of the form w = f(z) by z+ = wf(z)' and execute these incremental
assignments in reverse order.

It should be noticed that in order to execute this reverse sweep the current values of all arguments w
must have been saved from the preceding forward sweep, i.e. the execution of the original program. ;

2.2 Reverse Accumulation for Sequential Programs

Obviously this recipe can be applied to "programs" involving an arbitrary number of intermediate
variables. In fact any program can be broken down recursively into smaller and smaller blocks
or procedures until each individual calculation is of suitably elementary nature. From now on we
will assume that the overall vector function y = F(x) is evaluated by a sequence of elementary
assignments

FOR t = l,2,...,T

wt = (vf).-=t,_i+i,>.t»-itt« = ft{vj)jejt (11)

where the variables v,- and Vj belong to R, and the index sets Jt contain no numbers greater than
it-i- In other words we assume that the scalar quantities «,• are numbered consecutively as they
are generated with it being the total number of scalar quantities generated by the first t elementary
function evaluations. Moreover, with i'o = n and J = iy we may assume that the vectors of
independent and dependent vectors are given by

x = (t>,-),-=i,...,n and y = (vi),=/_m+i / . (12)

Usually there are many different ways of breaking F(x) into elementary functions and the sequenc
ing of the elementary assignments can often be altered or even abandoned in favor of concurrent
evaluations. However, we will assume here that the user has provided an evaluation program in a
high level computer language that can be automatically interpreted in the form (11) during the first
evaluation of F at a given argument x. This may be achieved simply by overloading all arithmetic
operations and standard univariate functions. Subprograms are no problem and will in effect be
inlined, except when the user flags them to be treated as elementary functions thus adding them to
the pool of library functions. In the latter case he also has to supply a subprogram for the evaluation
of the corresponding adjoint evaluation, which is called in the following adjoint program

4

FOR ~*=T;T-*1,...,1

VJ += Wfdft/dvj foralljeJt (13)

where initially
(v,),=i,2 i-m = 0 and (t>,),=/-m+i,...,J = V

Since the scalar increments associated with each elementary function can be combined into one
adjoint operation of the form + = wtf't , one finds that on a serial computer

OlF\ - WorH + = y-F'(x),F(x)}
Q{F} = Work{F{x)} * ™*Qift} (14)

where Work{-} may be any reasonable measure of computational effort. Thus we see that the
penalty factor Q{F} for evaluating its adjoint in addition to the composite function F itself is no
greater than the maximum of the penalties Q{ft) for anyone of its constituent elementary functions.
Provided the latter are drawn from a finite library, the penalty factor is therefore uniformly bounded
for all possible compositions, independent of the number of independent and dependent variables.
This complexity result dates back at least to Linnainmaa [14] and was subsequently rediscovered by
several authors (See e.g. [10] and [5] for other references).

We will refer to the first execution of the loop (11) as the original forward sweep. Subsequently one
may want to perform more forward sweeps with the components of the independent vector x either
altered or extended to elements from a larger scalar ring. After each forward sweep (11) one may
perform corresponding reverse sweeps (13) for any adjoint vector y whose components belong to the
appropriate ring. Our only requirement on the elementary functions /« is that the functional on
the right hand side of (13) can be be easily computed during the reverse sweep. To this end one has
to record during the forward sweep for each elementary function the following information

• An operations code and possibly parameters defining the function.

• The names or better addresses of its result and arguments.

• The values of its arguments at the time of evaluation.

As we will discuss in Section 3 there are some variations on this basic storage scheme but none
reduces the total storage requirement by more than a constant, except for linear functions and in
other special cases.

2.3 Approaches to Limit the Storage Requirement

Since practical calculations tend to involve millions of elementary operations the recording of the
execution trace may require a very substantial or even prohibitive amount of storage. To make this'.
problem manageable one may employ the following techniques:

1. Organize the calculation such that most extra data are generated and accessed strictly sequen
tially, i.e. in either the same or exactly reversed order.

2. Combine scalar variables in vectors and define corresponding elementary functions to avoid
storing consecutive addresses and duplicating operations codes.

5

I
3. Allow for recursive adjoint evaluations of procedures by reevaluating them during the (outer)

reverse sweep to avoid storing their internal intermediate values. J

4. Preaccumulate local gradients if only first derivatives are required.

The first point has been fully implemented in our current package, which increases the RAM re
quirement of the original program roughly by a factor of two. All extra information is recorded on a
conceptual tape whose content are buffered to and from a mass storage device, e.g. an optical disk.
Hence one needs a large Sequential Access Memory (SAM). This should not slow the execution
because storage and retrieval are done at the usually higher burst rate. The realization of this very
desirable RAM/SAM ratio is based on a live variable analysis discussed in Section 3

To illustrate the second point let us briefly consider the linear case. The adjoint of any linear
function w = f(z) — Aw is simply the incremental vector operation z + = wA, which is is in fact
independent of the argument z. Irrespective of the number of rows and columns in the matrix A the
penalty factor is here almost exactly Q{f} — 2, and the storage requirement between sweeps should
be small, especially if the components of z have consecutive indices. However, if the matrix vector
product is broken into individual scalar operations each of them will be represented separately on
the tape. Even worse, if the same constant matrix A is used in several matrix-vector products all its
entries Will be copied repeatedly into memory. In principle the inclusion of standard matrix-vector
and dot products into the library of elementary functions should provide no difficulty.

The third points closely related to the second except that we are thinking here of nonstandard
procedures that involve a significant number of local variables and are quite expensive to evaluate.
Purely in terms of arithmetic operations it would then be advantages to store all their internal
intermediates during the forward sweep as part of the overall execution trace. However, especially
if the same procedure is called many times with different arguments (as may happen for example
in a finite element calculation) one can save a lot of memory by storing only the arguments and
then repeating their evaluation and the corresponding adjoint operation during the (outer) reverse
sweep. This idea was already published by sc Volin and is also the basis of the logarithmic method
proposed in [8].

The fourth proposal can be applied to complicated right hand sides or scalar valued subroutines
primarily if only first derivatives are required. Actually, in combination with ring arithmetic it can
also be used to calculate higher derivative vectors of the form (1) and (2) provided the weight vector
y and the directions *W are already known during the forward sweep. The idea is that whenever a
single scalar is calculated as a function of one or more arguments using some unnamed intermediates,
then its gradient with respect to these arguments can be calculated by a locally reversed sweep during
the overall forward sweep. For the purposes of calculating global first derivatives this local function
can be immediately replaced by its linearization, i.e. the gradient. The variables that are eliminated
by this preaccumulation need not be unnamed, provided one can be sure that they do not occur
anywhere else as an argument. This is clearly true for the local variables in a scalar valued function
routine or the temporaries generated during the evaluation of a complicated expression. To the best
of our knowledge the precompiler GRESS is the only implementation that immediately linearizes
the right hand sides of scalar assignments. In terms of arithmetic operations such preaccumulations
are only beneficial if several reverse sweeps follow the original forward evaluation. However, they
always lead to a reduction in the storage requirement. This approach may still be worth while if a
few scalars are computed from a sizable number of arguments using a large number of intermediates.
We will not pursue this idea here because it leads again to a combinatorial optimization problem.

The second point is the reason why we did not simply assume that all elementary functions are
scalar valued, which is of course possible from a theoretical point of view. In fact all current
implementations of automatic differentiation known to us break the calculation down to real valued
elementary functions, and most limit them to binary arithmetic operations and univariate functions

6

with real arguments. Since this is clearly not satisfactory in the long run we have allowed<for >
vector valued elementary functions. By choosing his elementary functions carefully the user may
significantly reduce the storage requirement for his code. If he uses an elementary function / that is !

not contained in a standard library the user must supply subprograms for the evaluation of w = f(z)
and the adjoint operation z+ = wf'(z). ' ' > '•'•• '•

3 Implementation Questions and Memory Management

In the previous Section 1 we have assumed that the scalar quantities «,• € H are consecutively < -
indexed in the order that they are generated. Using overloading this number is in fact quite easy ,.\
to determine and we will continue to refer to it as the (unique) index of the corresponding scalar
variable. If the user wants to overload his original program for the evaluation of derivatives he first
has to identify the set all variables that are to be considered as differentiable quantities. Usually this
set consists of the independent variables and all quantities that are directly or indirectly computed
from them, which can be identified automatically by a precompiler using data flow analysis. Without
such a sophisticated tool one may simply overload the operations such that any attempt to assign a ,,,
differentiable quantity to a constant leads to a compile time error due to type incompatibility.

•).'.t

3.1 Indexing and Taping by Overloading

In a true overloading scheme the user must flag each differentiable variables, say V, by declaring u

it to be of a composite type, say VARING, which contains a field V.INT of type integer and a ' "•'
field V.VAL of type RING. Here RING is the original type of the variable V, which could for
example be equivalent to the single and double precision types FLOAT or DOUBLE in C. The
user may also chose any other other normed ring or even just an inclusion algebra, in which the •-' '"'
basic arithmetic operations and univariate functions are suitably defined. These definitions must
be supplied in the. form of problem independent and possibly precompiled subprograms. Similarly
we must supply VARING valued subroutines that are called wherever the compiler encounters an
elementary operation or function involving one or more arguments of type VARING. For example
the statement W- = U * V in the original evaluation code my generate the following five instructions
if all three variables involved are VARINGs :

Overloaded Multiplication

INDCOUNT + = 1 :

W.INT = INDCOUNT
W.VAL = U.VAL*V.VAL : , •
("MULT", U.INT, V.INT, W.INT) —•TAPE ' ' ' ? '

, , , ; , W.VAL—»BIRTH . ; /_ ' •

Here the first two instructions increment the global index counter INDCOUNT and assigns its ,,, ,-.
current value as index to W... The third instruction actually multiplies the the values U.VAL and ,..,
V.VAL in ring arithmetic. The fourth instruction writes the kind of operation and the indices of
the variables into a file (or in-core array), which we will refer to as the TAPE. Similarly, the last
instruction announces the birth of W by copying its value field onto a file called BIRTH. In addition '*"
one may also write the value of the arguments U.VAL, V.VAL or the values of the corresponding
partial derivatives ÖW.VAL/dU.VAL = V.VAL and ÖW.VAL/dV.VAL = V.VAL. In the latter
case everything is immediately linearized and one need not store the operations code "MULT". The

7

other arithmetic operations and all elementary functions that are well denned for ring arguments
can be overloaded in much the same way.

When the resulting program is run the counter INDCOUNT will grow up to the total number of
scalar quantities generated during the execution, namely I >T. For a fixed library of elementary
functions both I and T are proportional to the run-time as well as the lengths of each file TAPE
and BIRTH. The TAPE represents a complete unroling of the original program and can be used
to evaluate the function at another argument x unless the original program involves conditional
branches that depend on differentiable quantities. In the latter case the resulting vector function is
not continuously differentiable, and automatic differentiation will yield the derivatives of a smooth
piece including the current argument. In any case, the evaluation of the composite function on the
basis of the tape specified above is a bad idea because it would require T storage locations that are
accessed in a random fashion. The same applies for the reverse sweep as one has to provide storage
for each scalar adjoint ü,-.

3.2 Replacing Variable Indices by their Locations

The number of real storage locations, say R, required by the original evaluation program will usually
be much smaller than T, the number of scalar quantities generated. The reason is that many
quantities with distinct indices may successively reside in the same storage location, either because
they get assigned to the same variable name, or because one variable is destructed (deallocated)
and the compiler assigns its address to variables that are constructed (allocated) later. We will
refer to these two possibilities for the demise of an intermediate quantity as death by overwrite and
death by destruction, respectively. The second possibility occurs also for unnamed variables that are
temporarily generated by the compiler during the evaluation of composite expressions. For example
the evaluation of the statement w = u * sin(v) involves a temporary variable that holds the value of
sin(y). These temporaries will have the same type as the arguments u and v whether it be RING -
or VARING. By effectively using the index as an address one forgoes the possibility to reclaim the
storage of an intermediate quantity when it has died.

In order to reduce the RAM requirement for the reverse sweep from 0(T) to O(R) one has to
associate with each index i an address loc(i) such that for all j < i and t

loc(j) = loc(i) and it >i = > j £ Jt (15)

In other words Vj may be replaced by Vi if it appears as an argument only in elementary function
evaluations that precede the computation of u,-. One possible choice for the location loc{i) is the
actual (or virtual) address under which the value t>,- is stored in memory. This seemingly straight
forward approach has been successfully implemented in GRESS, but it is somewhat machine de
pendent and may not be easy to extend from FORTRAN77 to a language with dynamic storage
allocation. Therefore we will discuss various strategies of defining loc(i) as a pseudo address, which
is allocated on the bases of death notices

If at any stage of the original program execution one can for some reason be sure that a particular
intermediate quantity Vj will never again occur as an argument, then one may free up its location
loc(j) and write its value and on a separate file DEATH. To synchronize the two files one must
simultaneously write the index j labeled as a death notice onto TAPE. The freed locations can be
held in a linked list or more sophisticated data structure until they are reassigned to subsequent
indices. Whenever all freed locations have been reclaimed more memory space must be allocated. In
this way the function loc(i) can be inductively constructed during the original program execution,
assuming we have good criteria for the detection of death.

At any given time during the execution of the original program it is generally not possible to say

8

exactly which indices j need to be kept alive because the corresponding quantity «,- occurs* as an • ' >
argument la^er on. As long as this possibility cannot be excluded the location loc(j) may not be
reassigned to another quantity. In languages that allow the overloading of the assignment operator
(e.g. C++ , PASCAL-XSC, and probably FORTRAN90) death by overwrite can be detected, ;"
provided all variables are suitably initiaUzed. Death by destruction can only be recognized in a ',
language Uke C + + that allows for user-defined destructors, i.e. type-specific subprograms that are"
called whenever a variable goes out of scope.

The failure to recognize death by destruction will result in a theoretically unnecessary additional *
growth in the storage requirement for the adjoint evaluation. However, this waste might be of an '
acceptable size if the user avoids recursive calls, local variables, and composite right hand sides r !

as much as possible. The last measure is aimed at reducing the number of unnamed temporary
variables that are constructed and destructed by the compiler. » ;

If want wants to absolutely minimize the storage requirement for the forward and reverse sweep
(without redefining or reordering the sequence of elementary assignments) one may utilize the fol
lowing construction of loc(i). First one completes the original forward sweep without writing any
death notices and simply assigning the increasing index i to each variable. This index may then be
used as a key to a self-balancing binary search tree during the following symbolic reverse sweep.

To begin with allocate arbitrary but distinct locations loc(i) to the largest m indices i and introduce " " '
them into the binary search tree. Then starting from the last elementary assignment reverse through - '"'
the tape and execute for each t the following instructions:

Reverse Allocation Procedure

1. Check for each argument index j € Jt whether the key j has already been entered into the
search tree. If not find a free location loc(j) store it under the key j and announce its death
on the tape.

2. For each result index i = t t_i + 1 it retrieve loc(i) under the key »', delete that node, and
free the location /OC(J').

3. Rewrite the t-th tape entry in'terms of the locations instead of the indices.

When the t-th elementary function involves a vector-argument the corresponding locations loc(i)
may be allocated and represented as a range. Instead of the binary search tree one could also utilize
a hash function or some other dynamic data structure. In any case the determination of such a
storagewise optimal location function loc(i) is likely to be several times more expensive than the
evaluation of F(x) at a single point. Nevertheless, this one time effort may be worthwhile if the same
loc(i) can be used for forward and reverse sweeps at a sequence of points in the domain of F. At the
end of this section we will discuss a cheaper way of constructing a nearly optimal location function
using the advanced constructs of C + + . Even if the integers i do already represent locations the
reverse allocation procedure may be employed to reduce the storage requirement further. However, if '
it has been applied öhce ä second application will leave the allocation function essentially unchanged!

After the reverse allocation procedure has been executed the TAPE contains a sequence of birth r-h
notices representing elementary function calls and interspersed death notices. The corresponding > ••
values of the variables being calculated or "killed" can be found in exactly the right order on the <
BIRTH and DEATH file respectively. Thus TAPE contains only symbolic information reflecting the
program structure, while BIRTH and DEATH store the numerical values at the current arguments.
Since all three files have a length? of 0(T) they must probably be stored onto disks or other external

9

devices. However, since they are always accessed strictly sequentially buffering should avoid any
significant I/O delays.

The sequence of assignments (11) still yields the same results if all subscripts i, j , and it are replaced
by loc(i), loc(j), and loc(it) respectively. Note that the assignment counter t remains unchanged.
The corresponding adjoint assignments (13) remain also correct, provided each is followed up by
the reinitialization wt = 0, which ensures that the adjoint of the next intermediate quantity with
the same location is accumulated from scratch. Thus we see that, once suitable locations have been
assigned, they can completely replace the original indices and we may denote them by the same
subscripts i and j .

3.3 Sweeping Back and Forth

Since the value of each intermediate quantity is stored twice, namely at its birth and death, keeping
both numerical files simultaneously appears to be wasteful. In fact they can be reconstructed from
each other quite easily. In order to obtain the DEATH from the BIRTH file one merely has to
run through the tape forward, loading the value of v, from BIRTH at its birth and writing it later
onto DEATH at the time of its death. Conversely one may construct BIRTH from DEATH by
reversing through TAPE from the end, loading the value of u< from DEATH at the time of its death
during the forward sweep and writing it later onto BIRTH at the time of its birth. In either case the
beginning of one file can overwrite the end of the other so that the memory requirement is essentially
halved. Rather then performing these conversions separately we can usually combine them with the
numerically productive reverse or forward sweeps to be discussed now.

Given the files TAPE and DEATH generated at a particular point x as well as the adjoint vector y
one can calculate the adjoint vector x by performing the following steps.

1. For each number i G {1, R} allocate space for a pair of ring elements (v,-, V{).

2. Seed the adjoints (vi)t'=l-m+i / w»th the components of the adjoint vector y.

3. Reversing through the TAPE do:

• If encountering a death notice for vt move it from DEATH into core.

• If encountering the record of the t-th element function increment

Vj + = Wfdft/dvj for all j G Jt

and set wt = 0. Optionally append the components of wt to BIRTH.

4. Copy the adjoints ü,- associated with the first n variables into adjoint vector x.

As we can see from Step 2 the RAM requirement of this reverse sweep is exactly twice that of
the original forward sweep, which is still adequately described by the sequence of assignments (11).
Thus we have achieved one of our main goals, namely that almost all extra data are generated and
accessed strictly sequentially.

The optional reconstruction of BIRTH is not required if one performs a sequence of reverse sweeps
for varying adjoints y. In order to compute the rectangular Jacobian F'(x) G Tlmxn row by row,
one can perform m reverse sweeps with the adjoint vector y ranging over the Cartesian bases vectors
e,- = (Sij)^ for j = 1...m. In that case one would not need BIRTH at all and simply keep DEATH
from the original program execution. This mode is quite efficient if the Jacobian is fat because
the number m of dependent variables is much smaller than the number n of independent variables.

10

Otherwise one might prefer to perform n forward sweeps in order to obtain the J acobian" column by . v

c o l u m n . ' *» '-I'l'1'-'::

At first successive forward sweeps do not seem to offer any economy since the numerical values stored'' ": ',
on BIRTH depend on the point x and there appears to be nothing else'to vary. What happens in
fact is that each scalar component of x, say t/<, is appended by a higher order term, say V;, such that

where TV is an ideal in the enlarged normed ring ftW. Moreover, all intermediates obtained by •
executing the forward loop at the appended point in the extended ring arithmetic are of the form
Vj + Vj, where the leading term VJ remains unchanged and can thus be found on the file BIRTH
generated by a reverse sweep at the unappended point x. On the other hand the appended parts «'•
depend on the leading terms Vj so that their availability can be used to make the appended forwards
sweep cheaper. The algebraic properties that make this recursive updating possible and the special
case of truncated Taylor series will be briefly discussed in Section 4. We complete this section with; ' \- /
a discussion of some techniques that can so far only be implemented in C++ . '.. _ ii •,

3.4 Births and Deaths in C + + .
• • ' • • ' J - * • - —

Ideally pne would like to define the (pseudo-)locations loc(i) such that the ones corresponding to -^
live variables t;,- always form a contiguous interval of integers, say 1,2, ...LTat "time" t. This can !'
almost be achieved in C++ or another language with explicit constructors and destructors. The ••'<
AT&T translator cfront v 2.0 ensures that named variables are destructed in exactly the reverse
order that they are constructed, so that they form in fact a last in first out stack. Hence one could
write for the new type VARING a the constructor/destructor pair of the form

VARINGQ { VARINGO {
INT = ++LT; —LT; (16)
VAL = 0 } DEATH «VAL)

Here the unary operators + + and - increment or decrement the integer LT by 1, and < < means
output the value on the right to the file on the left. If initialized to zero LT would always represent the
current number of live variables were it not for temporaries that the compiler generates during the
evaluation of expressions and the return from function calls. Unfortunately these unnamed variables
are not necessarily constructed and destructed in a last in first out fashion, which may lead to the
overwriting of variables that are still required as arguments. Our current implementation avoids
this possibility by delaying the actual destruction of VARINGs until the locations of all potential
destructees form a contiguous tail of the integer interval [1,LT]. To this end we characterize the set
of destructees at any stage of the computation by ND, the number of its elements, and M D , the
smallest, location of any one of the potential destructees. Whenever one finds that

•; ' M D + ND = LT + 1 8L';J""

the destructees must occupy exactly the last ND locations, and can therefore be eliminated by ,; '
resetting LT to,MD-i-and N D to 0. For reasons of storage economy, these multiple, deaths are
only carried out if in addition to the above condition N D exceeds a certain lower bound. The clean,,
stack allocation has the advantage that vectors of VARINGs are guaranteed to have contiguous
locations. Thus they can be represented by integer ranges in the argument lists of multivariate
elementary functions, e.g. dot products, » - ,.-.. ;r i

11

4 Arithmetic and Analysis in Rings

While forward and reverse sweeps can be performed with virtually any definition of addition and
multiplication on some set of scalars H, it appears that their results will only relate to each other in a
meaningful way if these arithmetic operations obey the algebraic rules in rings at least approximately.
Since infinite mathematical structures must be mapped onto finite screens, e.g. the floating point
numbers, the exact arithmetic is in practice replaced either by a rounding arithmetic or an inclusion
arithmetic [12]. In the first case the algebraic operations between scalars from the screen are modified
slightly such that their results belong also to the screen. In the second case one propagates intervals
with bounds from the screen such that the final interval is guaranteed to include the hypothetical
result of a calculation in exact arithmetic. In either case the distributive law and some ring axioms
are no longer satisfied exactly.

The numerical results obtained in either rounding or inclusion arithmetic are often useful, even
though the local rounding errors may sometimes build up in a dramatic fashion. Depending on their
stability two mathematically equivalent algorithms for the evaluation of F(x) may yield substantially
different results in inexact arithmetic. During the forward sweep the propagation of error by the t—th
elementary function is largely determined by the size and possibly the spectrum of the elementary
Jacobian f't at the current argument. Since the transposed of these matrices are the Jacobians of the
corresponding adjoint operations it seems reasonable to conclude that the numerical conditioning
of the reverse sweep is about the same as that of the corresponding forward sweep. Thus a stable
algorithm for the evaluation of F will result in a good method for the accumulation of its adjoint and
vice versa. There is continuing research and experimentation on how to best define and implement
rounding or inclusion arithmetics. By overloading any such system can easily be combined with our
method for evaluating adjoints by reverse accumulation.

For simplicity we make from now on the "unrealistic" but even in numerical analysis customary
assumption that exact arithmetic can be performed in a ring 72. containing infinitely many elements.
Somewhat surprisingly, most of differential calculus and analytic function theory can be extended
to Banach algebras, i.e. commutative rings that form Banach spaces over the embedded field of
complex numbers. Less appears to be known about the properties of linear and nonlinear systems
over such "scalars". Nevertheless, the notion of differentiable vector functions and their adjoints
are also easily extended, provided domain and range are free modules of the form 7£p. When these
assumptions apply for all elementary functions the forward and reverse sweeps are meaningfully
related and they can be executed without any modifications. It should be noted in particular that
the transition from the original to the adjoint "code" does not introduce any division but merely
multiplications and additions, which are well defined for arbitrary ring elements. Hence one should
think of the reciprocal v = 1/u as just another univariate function that is, like the natural logarithm,
undefined at several arguments.

4.1 Differential Calculus on Normed Rings and Modules

In order to develop a differential calculus we require that 7£ is endowed with a positive modulus j • |
such that for any two u, v G H :

l« + » l < M + M . |ti * «| < |u | - |v| , (17)

Moreover, we assume that 72 is a real Banach algebra as well as a complete metric space with respect
to the distance d(u, v) = \u — v\. The last condition requires in particular that |u| = 0 if and only if
u — 0. Just like in real or complex analysis a function function / : 72. t~* 72 is said to be differentiable

12

at a point u if there exists a derivative value / ' («) = v such that ' J * "'"'

, . ; ^^f{u + ^)-f{u)-v*Lu\/\Au\ = 0,..., ,. '. , ,,; . . (1 8) . , ; : ,

where A'U ranges over all sufficiently small but nonzero vectors in H: If it exists the derivative value < f" ""
v = f ' (x) must be unique provided the reciprocal 1/Au is well defined for arbitrarily small A u . This -•' •'•'
property will be ensured by the assumptions below. ' •• ~ ,1 • •»

The set of functions for which k derivative exists and are continuous at. all points in some open. :•
domain, M C % will be denoted by C*(Af) as usual. Any / G C 1 ^) ; is also differentiable as a ff",,-..
mapping from 7£ viewed as a Euclidean space into itself, but the converse is not ,true; if ft. properly
contains R. Then the space of linear transformations on H has a higher dimension than It itself, so ; -,•,,,
that not all Jacobian matrices can be represented by a single element from H. Thus we see that that
exploitation of the ring structure promises substantial economies in terms of storage and operations. '

It can be easily checked that differentiation in the ring sense satisfies the usual rules '.'•,;

(/**)'(«) = /(«W(«)+/(«)**(«). , ; ^ ..-, . - , > , . ,
9(f(u)Y = </'(/(«)) * / ' («) , : (19) " ^

provided the functions / and ^ are differentiable at their respective arguments. The only Surprise
is that the identity function f(u) = u is not differentiable unless the ring has an identity element 1, J ;

as we will assume from now on. Excluding furthermore the possibility that an integer multiple of 1 "
equals zero, we may include real multiples of 1 and arrive at the following basic structure.

A s s u m p t i o n 1, The ring 71 contains a homomorphic image TL of the real numbers as a subring such '••>' '
that the multiplication * in 11 makes it a Euclidean.space of dimension r < oo. An element v € 7£ '- '"
is called regular or singular depending upon whether or not there exist a reciprocal w G H such that '•'"•"
v * w =iW,'* w = 1 € ft. i . ;* ' ''• ''

- , / • ' - • • : , . . . ' . • • • • . - ' ' ' • ') ' ' ' - ' v

Because all nonzero reals and in particular the identity element 1 are regular it follows immediately ,....,
that the set of regular elements is open and that it's closure contains zero, which ensures the i(

uniqueness of derivative values. The restriction that the vector space dimension r of V, be finite is
not necessary from an algebraic point of view. For example one could allow H to be the space of all.
polynomials, power series or even Laurent series in a certain number of real or complex variables. - ...
In theoretical terms this added generality would destroy the equivalence of norms and thus raise
questions regarding the convergence of power series. In practical terms it would mean that the data
structures needed to represent the elementary scalars v £H tend to grow larger and more complex
as the evaluation proceeds. In'other words we would be subject to the well known phenomenon
of expression swell in symbolic computations. Instead we prefer to remain in the realm of numeric
computations by trulrc'äting the Taylor or Laurent series after each elementary function evaluation.
Provided the truncation is carried out modulo an ideal of "higher order terms" the required algebraic
properties are inherited by the resulting quotient ring.

In terms of computational complexity we will assume that the product « * v of two ring elements
u, v is considerably more expensive to compute than their sum u + v, unless one of the operands, say
u, is is known to be real, in which case we may ommit the * and simply write u v or u • v instead.
The cost'of evaluating special functions and their derivatives for ring arguments is typically almost
the same as that of a multiplication.

13

The product topology on a free module of the form Z = Hn can be generated by the norm

1/2

ll(*i)?=ill = ENI2

» = 1

(21)

Now suppose that F : R" H* R m is a vector function whose components have jointly continuous
partial derivatives with respect to the components of x. Then it follows as usual that for arbitrary
variations Ax G X

lim \\F(x + Ax)-f(x)-F'(x)Ax\\/\\Ax\\ = 0 , (22)
|Aa:|-cO

where the Jacobian matrix F'(x) € 72.nxn is formed by all first partial derivatives and matrix-
vector multiplication is defined in the customary fashion. Since the differentiation rules (19) are
also easily generalized to compatible pairs of continuously differentiable vector-functions, we see
that Assumption 1 is sufficient to make the reverse accumulation of adjoints described in Section
2 possible and meaningful. Hence the user may define any suitable ring arithmetic via overloading
and reverse accumulation will automatically yield appropriate adjoint vectors.

In order to extend the standard set of transcendental functions from R onto the full ring 72 one may
simply use their power series representations, e.g. set for any v € 72

eXp(v) = £ £ (23)

which converges with respect to the modulus | • | for any argument v. In fact, it follows from
Taylors theorem for vector-valued paths that this is the only way in which the exponential can be
extended to 72. as a C°° function. The same is true for all other real analytic functions. While the
power series representations are of theoretical interest, they do not represent efficient schemes for
actually computing function values, since that would involve a large number of multiplications and
additions in the ring R. Instead one can exploit the fact that all special functions are quadratures
or solutions of linear differential equations, which typically allow their evaluation at ring arguments
with a computational effort comparable to that of one or two multiplications. >

4.2 The Case of Univariate Taylor Series

For simplicity we consider in the remainder of this paper only the case where the ring R consists of
the truncated univariate Taylor series

v = u(°) + av<U + aV 2 > + • • • + cAA- 1) G 72<r> ,

where the coefficients «(') are real numbers. Therefore we can identify 1t^ as a real vector space
with R r . The addition of elements in 72^r) applies componentwise and the multiplication is defined
by the convolution

(«*«)<*> = £><'> •«<*-"> .
«=o

Multiplications are obviously significantly more expensive than additions, even if they are computed
by fast methods (e.g., Fourier transforms [4]). One drawback of the fast methods appears to be that
they do not allow the successive calculation of higher and higher order coefficients, as is required
in ODE applications [3]. Recurrences for evaluating the exponential, logarithm and other special
functions have been given by several authors (e.g., [16]). One can easily check that 72.(r), viewed as a
subspace of 72.(r+1), is invariant with respect t ä the special functionäsö that their values öh-7J(r-+^

14

can be obtained as updates of their values oh %(r) at a cost of order r. For this reason it may make
sense to perform repeated forward sweeps, as mentioned at the end of Subsection 3.3.

Finally, we will demonstrate how real derivative vectors of the form (1) and (2) can be calculated
using the truncated Taylor series arithmetic discussed above. Suppose we have evaluated a vector
function F(x) at some polynomial

r - l ' ' • ' • - • ' ' '

=s]£'*<•"> € f t (p) ' •••'•

i = 0 • • : • : . • : , ;

by executing the loop (11). Then the coefficients yW 6 R m of the result y = F(x) represent the
vectors (1) for d = 0 , . . , , r — 1 scaled by l/d\. Now given a real weight vector y € R m one can
calculate the adjoint vector

r _ l • ' • • : . , . ••

«' = J^a'iW = ; y-F'{x)

by executing the reverse loop (13). In order to interpret the coefficients iW we note that for a real
perturbation Ax G R n and all d < r

y[y(d)(x + A,x)-y(d)(x)] = xd
:Ax + o(Ax)...; ' _ „ " . ' , " •

T h u s we m u s t have
x^ = Vx(yy^(x)) ,

which corresponds to a vector of the form (2), again scaled by l/d\. Thus we have demonstrated
that the derivative vectors (1) and (2) can indeed be calculated by performing forward and reverse
sweeps on rings of truncated series.

5 Summary and Conclusion

In this paper we considered how certain vectors of higher derivatives can be computed automatically
from a user-supplied program for evaluating an underlying vector function. Under the assumption
that the program is written in a language that allows the overloading of arithmetic operations and
elementary functions, we described the generation of a symbolic representation called TAPE, and
two numerical files called BIRTH and DEATH during the execution of the overloaded programs.
These sequential data sets can be used to subsequently calculate derivative vectors of order d at a
cost increase of 0(d2). In order to reduce the RAM requirement, we suggested to generate or rewrite
the tapes in terms of locations rather than indices of the intermediate variables. As a result, the
RAM requirement grows only by a modest amount and all other auxilliary data are accessed strictly
sequentially.

The mathematical basis of the proposed methodology is the (adjoint) chain rule on normedrings
of scalars. By performing the calculation on truncated Taylor series, one can evaluate derivative '
vectors of arbitrary order using the simple program structure designed originally for first derivatives.

References

[1] R. P. Brent and H. T. Kung: Fast algorithms for manipulating power series. ACM Journal,
Vol. 25, pp. 581-595 (1978).

[2] R;H:F; Jackson, and G.P. MqQqjrmick: Second ordeijSensitivijty Analysis in Factorable Program- ,
ming: Theory and Applications, Mathematical Programming, Vol. 41, No. 1,' pp. 1-28 (1988).

15

[3] G. F. Corliss and Y. F. Chang: Solving Ordinary Differential Equations using Taylor series.
ACM TOMS, Vol. 8, pp. 114-144.

[4] R.J. Fateman: Polynomial multiplication, powers and asymptotic analysis. SIAM J. Computing,
Vol. 3, pp. 196-213 (1974).

[5] A. Griewank: On automatic differentiation In: M. Iri and K. Tanabe (eds.), "Mathematical
Programming: Recent Developments and Applications", Kluwer Academic Publishers, pp. 83-
108 (1989).

[6] A. Griewank: Direct Calculation of Newton Steps without Accumulating Jacobians. In: T.
F. Coleman and Yuying Li (eds.), "Large-Scale Numerical Optimization", SIAM, pp. 115-137
(1990) .

[7] A. Griewank, D. Juedes, and J. Srinivasan: ADOL-C, A package for the automatic differentia
tion of algorithms written in C/C++, Preprint MCS-180-1190, Argonne National Laboratory,
Argonne, Illinois 60439 (1990).

[8] A. Griewank: Achieving logarithmic Growth of Temporal and Spatial Complexity in Reverse
Automatic Differentiation Preprint MCS-P228-0491, Argonne National Laboratory (1991).

[9] J.E. Horwedel, B.A. Worley, E.M. Oblow, and F.G. Pin: GRESS Version 0.0 Users Manual,
ORNL/TM 10835, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A. (1988).

[10] M. Iri: Simultaneous Computations of Functions, Partial Derivatives and Estimates of Round
ing Errors - Complexity and Practicality. Japan Journal of Applied Mathematics, Vol. 1, No. 2
pp. 223-252 (1984).

[11] M. Iri, T. Tsuchiya, and M. Hoshi: Automatic computation of partial derivatives and round
ing error estimates with applications to large-scale systems of nonlinear equations. Journal of
Computational and Applied Mathematics, Vol. 24, pp. 365-392 (1988) .

[12] U. Kulisch and W. L. Miranker: Computer Arithmetic in Theory and Practice. Academic Press,
New York (1980).

[13] K. Kubota and Masao Iri: PadreS, version 1— User's Manual, Research Memorandum RMI
90-01, Faculty of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo (1990).

[14] S. Linnainmaa: Taylor expansion of the accumulated rounding error. BIT, Vol. 16, pp. 146-160
(1976).

[15] L.B. Rail: Differentiation in PASCAL-SC: Type GRADIENT, ACM TOMS, Vol. 10, pp. 161-
184 (1984).

[16] L.B. Rail: Differentiation Arithmetics. In: "Computer Arithmetic and Self-validating Numeri
cal Methods", Notes and Reports in Mathematics in Science and Engineering, Vol. 7, pp. 73-90,
Academic Press, Boston (1990).

[17] B. Speelpenning: Compiling fast Partial Derivatives of Functions given by Algorithms. Ph.D.
Dissertation, Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 (1980).

[18] O. Talagrand and P. Courtier: Variational assimilation of meteorological observations with the
adjoint vorticity equation. I: Theory. Q.J.R. Meteorological Society, Vol. 113, pp. 1311-1328
(1987).

16

