
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Simultanous h-p Adaptation

in Multilevel Finite Elements

G. W. ZUMBUSCH

Konrad–Zuse–Zentrum für Informationstechnik Berlin (ZIB)
Heilbronner Str. 10, D–10711 Berlin–Wilmersdorf, Germany

zumbusch@zib–berlin.de

TR 95-14 (November 1995)

Contents

Introduction 1

1 Theoretical Derivation of Special Shape Functions 12
1.1 Standard Shape Functions . 13
1.2 Properties of Special Shape Functions 27
1.3 Construction of New Polynomial Spaces 36
1.4 Shape Functions for Iterative Solvers 41

2 Algorithmic Constituents 53
2.1 Error Estimation and h–p–Refinements 53
2.2 Parallelization . 60
2.3 Evaluation of Shape Functions 64
2.4 Post-processing . 65

3 Numerical Experiments 75
3.1 Comparison of Condition Numbers 75
3.2 Comparison of h–, p– and h–p–Versions 90
3.3 Application to Structural Mechanics 102

Conclusion 114

Symbols 116

References 117

Introduction

An important tool in engineering is the finite element method. It’s story
of success can be traced back to the early times of computers, dividing a
problem into smaller computable sub-problems, known as elements. Stan-
dard FEM codes employ a certain number of unknowns and elements to at-
tain the desired precision of the solution. A further reduction of the global
error requests an additional number of unknowns.

A first way to do this is the successive reduction of element sizes h which
gives rise to the so-called h–version of finite elements. For the reduction of
the energy norm of the global error by a factor of two, one has to reduce the
element size h uniformly by about this factor two for the regular case and
linear elements. This means eight times the number of unknowns in three
dimensions, a refinement procedure which is clearly limited by computer
resources.

Adaptive finite elements apply this refinement by h reduction only lo-
cally. They are able to inherit the convergence rates in terms of the num-
ber of unknowns from H2–regular problems with uniform refinement to
less regular problems by adapting grids [BKP79, Osw90]. However, they
are not able to overcome the algebraic (one over polynomial) convergence
of the h–version in general. Hence the reduction of the error by two still
asymptotically means eight times more work (in 3D), assuming an optimal
order algorithm. Nevertheless it has been claimed that this adaptive pro-
cess in conjunction with an optimal order algorithm for the solution of the
linear system of equations is in a certain sense optimal [BD81b].

A second way is to increase the local approximation properties by suc-
cessively raising the polynomial degree of approximation thus exploiting
the behavior of higher order derivatives of the solution. This leads to the
so-called p–version. By this means the convergence rates can be improved
to a superior pre-asymptotic (sub)-exponential decay (in the number of un-
knowns) under some assumptions. The assumptions concern higher order
derivatives of the right hand side, e.g. analytic functions, and adaptation
of the grids to singularities of the solution. In the (unavoidable) presence
of singularities the p–version convergence asymptotically falls back to al-
gebraic convergence like the h–version. Hence it becomes necessary to use
grids locally adapted to singularities considering a maximal degree p.

The combination of both methods, the h–p version, supplies the pre-
asymptotic exponentially convergent p–version continuously with prop-
erly adapted grids. Hence it achieves the superior exponential convergence
asymptotically, too, instead of algebraic convergence of its ingredients the

2 Introduction

h–version and the p–version. Although the first theoretical results claim-
ing these convergence rates are quite classic (e.g. [BD81a]), the number of
codes using the h–p–version of finite elements is still rather limited. Rea-
sons for that are the pure implementational complexity and the details, in
conjunction with the rumor of engineers’ low precision requirements. But
the major reason is the lack of a robust (self-) adaptive control delivering
the desired exponential convergence. For a brief history of finite elements
cf. [Bab93] and [Ode91], and for a review of h–pmethods we refer to [BS94].

In the this thesis we present some steps towards an efficient implemen-
tation of the theoretically known exponential convergence. As it turns
out, an efficient implementation requires additional theoretical considera-
tions, which play a major role there as well. This includes both the fully
automatic h–p–version and as a subset the p–version on suitable grids.
We present some details concerning our approach implementing an adap-
tive h–p–version based on an adaptive multilevel h–version code named
KASKADE. This software package uses unstructured grids of triangles in
two dimensions and tetrahedra in three dimensions.

We will discuss the local polynomial extensions of linear finite elements
on simplices (chapter 1 on page 12). This leads to some considerations on
properties of shape functions and the derivation of new families of shape
functions. We will consider the fast multilevel iterative solution of the lin-
ear systems of equations and its impact on shape functions (chapter 1.4
on page 41). There will be considerations on a posteriori error estimation
(chapter 2.1.1 on page 53), grid refinement procedures and some heuristics
controlling the h–p–adaptive refinement process (chapter 2.1.2 on page 57).
There will be a discussion on parallelization of the adaptive code (chap-
ter 2.2 on page 60) and on post-processing a solution given on an h–p–
adapted grid (chapter 2.4 on page 65). There will be extensive numeri-
cal investigations of convergence histories for different FEM versions and
strategies, actual condition numbers (chapter 3.1 on page 75), quality of er-
ror estimators and performance of iterative solvers. The experiments cover
the different types of singularities of the Laplacian in 3D (chapter 3.2 on
page 90) and some examples from linear elasto mechanics (chapter 3.3 on
page 102).

Introduction 3

Linear Elliptic Problems

We consider a linear second order elliptic symmetrical boundary value
problem of the type

d∑
i,k=1

∂i
(
aik(x)∂ku(x)

)
+ a0(x)u(x) = f(x), ∀x ∈ Ω

on the Lipschitz domain Ω ⊂ R
d with suitable boundary conditions on ∂Ω,

a0 being non-negative. We want to calculate the solution u(x) ∈ R on Ω
with the finite element method. Using the bilinear form

a(u, v) =

∫
Ω

(d∑
i,k=1

aik(x)∂iu(x)∂kv(x) + a0(x)u(x)v(x)
)
dx

and the L2 scalar product

〈v, f〉 =
∫
Ω
v(x)f(x)dx

in the variational formulation, one has to set up and solve the discrete linear
system of equations

Au = b

defined by Aik =
(
a(φi, φk)

)
and bk = 〈φk, f〉. A suitable set of conforming

shape functions φi ∈ H1(Ω) has to be chosen. These shape functions are
formed by local shape functions ψi on each finite element. If the solution is
not accurate enough, one has to choose a better discretization φi and repeat
the computation. In the case of vector valued solutions

u : Ω → R
s

we generalize the whole setting by approximating each component uj, j ∈
1, . . . , s and using a variational form of an elliptic second order differential
operator analogously to the bilinear form a(., .). The general properties
of approximation and solution of the linear systems are preserved dealing
with s ·n number of unknowns. We shall consider this case in the examples
of elasto mechanics in three dimensions with s = d = 3.

Depending on the kind of approximation, one has to distinguish some
versions of finite element methods:

• The h–version is based on element subdivision, using identical (affine
transformed) shape functions on all elements.

4 Introduction

• The p–version keeps the elements, but creates enhanced shape func-
tions on each element [BSK81].

• The h–p–version uses both procedures – subdivision and shape func-
tion enhancement [BS90].

• The r–version moves and distorts the given elements, preserving the
number of unknowns, facing geometric difficulties in more than one
space dimension.

• The more traditional interactive cycle of adaptation creates smaller
elements which are not correlated with the older ones restarting the
whole grid generation procedure with refined grid generation param-
eters.

Each version of finite elements methods can be applied adaptively (af-
fecting only some parts of the domain) or globally (also called uniform re-
finement). The system of linear equations can be solved directly (e.g. by
Cholesky decomposition) or iteratively. Iterative solvers need a solution to
start with which can be supplied by the solution on the previous discretiza-
tion level called nested iteration. Types of iterative solution techniques in-
clude one-grid methods such as conjugate gradients (cg) and Gauß-Seidel
iterations and the family of multi-grid and multilevel solvers which exploit
the history of all (coarser) levels. Here information on the solution process
is transferred between different discretization levels.

A general finite element method consists of the following modules and
operations which can merge into one another:

• Constructing or managing a tessellation of the domain Ω. We will only
consider conforming tessellations of d–dimensional simplices. This
means that two connected simplices have one and only one complete
boundary face in common (a lower dimensional simplex). This pre-
vents us from dealing with slave nodes which are local but not global
degrees of freedom and have to be removed from the global system of
equations by static condensation. Another point to mention is that we
are working with only one element type, thus not mixing e.g. bricks,
pyramids, wedges and tetrahedra.

• Assembling the local element-wise matrices Aloc and right hand sides bloc.
The numerical calculation of the integrals in Aloc

ik =
(
a(ψi, ψk)

)
and

block = 〈ψk, f〉 requires cubature formulas. The evaluation of the shape
functions ψi is necessary only at the points of cubature and can be

Introduction 5

done via tabulated function values. Using different sets of shape
functions like in the p–version, one may have different cubature for-
mulas. Hence for all formulas one needs such a table. The number
is limited by the maximal polynomial degree which is usually lower
than ten. In the case of constant or simple aik’s and a0’s the inte-
grals may be calculated in advance using a transformation formula
and, if necessary, a linear combination of such integrals. Thus it is
not necessary to evaluate the shape functions in the assembling pro-
cedures if one can do some work in advance and does not use more
sophisticated methods of integration. Hence we do not necessarily
have to supply a numerical procedure for evaluation of shape func-
tions which can be difficult or sometimes ill conditioned numerically
in case of higher order polynomials.

• Assembling the local terms into the global matrix A and right hand side
b (coupling of the shape functions). The simplest way of assembling
is summing up the local matrices and vectors, having in mind the
position of the local matrix elements in the global matrix. A more
complicated situation arises in the assembly of slave nodes which
leads to condensing them by solving local linear equations, a pro-
cedure which we excluded previously. General shape functions may
cause the same trouble if they are not symmetrical in the sense of
simple inter-element coupling. This means that for two connected
elements each shape function ψi of one simplex E that is not vanish-
ing on the common boundary E ∩ E∗ there is a corresponding shape
function ψ∗

k on the other simplex E∗ which is identical on the border
ψ∗
k(x) = ψi(x) ∀x ∈ E ∩ E∗. In adaptive p–versions there is the addi-

tional problem of coupling different sets and degrees of polynomials.
In the simplest case, one set Ψ = {ψi} of non-vanishing polynomials
is a subset of the other one Ψ∗ = {ψ∗

i } on the common boundary.
There are two parts: coupling of the common functions Ψ ∩ Ψ∗ as
usual and coupling the hierarchic surplus Ψ∗ \ Ψ by restricting it to
zero. In more generality one has to remove some degrees of freedom
by static condensation.

• Solving the linear system of equations. Using fast iterative multi-grid or
multilevel solvers, one has to transfer functions and updates of solu-
tions between discretization levels. This requires a fast local transfer
from one set of shape functions to another one (p–version) and from
one element to the subdivided elements or vice versa (h–version). Hi-

6 Introduction

erarchic shape functions (p– or h–hierarchical) permit a relative con-
venient transfer by setting some coefficients to zero or by ignoring
them. All solvers appreciate a well-conditioned and sparse global
matrix A.

• Estimating the error of the solution or determining whether the solution is
acceptable. Error estimation often leads to the comparison of different
approximations which are sometimes only local. Hence it reduces
work if one can expand or restrict (project) a calculated solution easily
to another discretization. Following this line it is convenient to use
p– or h–hierarchical shape functions or to allow a simple transfer in
another way.

• Constructing a new tessellation of the domain by considering the estimated
local errors. Apart from the algorithmical problem of constructing a
new conforming tessellation which fulfills the necessary element an-
gle conditions one may want to save the calculated solution. This can
be achieved easily if the transfer operations between discretizations
levels are simple.

• Post-processing the solution. After calculating the solution, we may
want to determine some properties of the solution or simply visualize
it. We may have to manipulate the solution using the shape functions.

H Adaptivity

The term of ‘adaptivity’ has been attractive for a long time in finite ele-
ments. It is used in several different connotations. We already vaguely
have explained the meaning ‘adaptive’ in our context by the term of an
iterative refinement procedure applied to the tessellation. The basic algo-
rithm can be traced back as early as [BSW83]. The refinement procedure
slightly differs from the one introduced by M. Rivara [Riv84a]. There is a
vast number of publications and actual computer codes. To mention but a
few in mathematical research:

• FEARS due to Mesztenyi and Szymczak [MMS82]

• PLTMG due to Bank [Ban82, Ban94]

• EXPDES due to Rivara [Riv84b]

• KASKADE due to Deuflhard, Leinen and Yserentant [DLY89, Lei90,
Roi89a, Roi89b, ERFA91]

Introduction 7

• MGGHAT due to W. Mitchell [Mit89]

• UG due to Bastian [BW93, Bas93]

• GOOFE due to Hiptmair [Hip95]

• and others, Craig, Zhu and Zienkiewicz [CZZ84], Johnson and Hansbo
[JH92] or Nambiar, Valera and Lawrence [NVL93]

With generalization to three space dimensions by Bänsch [Bän91] and
[BEK93a] publication continues. There are different directions of research
concerning this kind of adaptivity, which are approximation with angle
conditions [Zla68, Jam76, BA76, Kri92] and convergence [Dör94], error esti-
mation and refinement control [BR78, BW85, BM87, DLY89, BDR92, BEK93b]
and fast solution of the linear systems [OR70, BD81b, Yse86, BPX90, Bor91,
Deu94, BD95].

Sometimes the refinement procedure is called ‘self-adaptive’ [McC89] to
distinguish it from using the finite element method on grids which are
adapted to the probable solution by other means than the code itself. This
may be an intuition guided or interactive process delivering such adapted
grids. The ‘real’ adaptivity should appear as a black box, doing the right
decision itself. But of course in spite of adaptive control for real problems
the initial coarse grid has to be chosen properly, cf. [BEK93b]. A general
convergence prove for an a posteriori error estimator requires restrictions
on input data, especially the initial grid [Dör94]. Another term used is
‘feedback’ [BM87, SB91] denoting the difference between a control depen-
dent on some computational results and a provable optimal control, which
[SB91] call adaptive. Hence any claims of optimality are today restricted to
structured grids, to mention the key word of asymptotically exact error es-
timators. This means we may have to call all involved procedures feedback
instead of adaptive. Hence we keep the term adaptive.

There is another kind of adaptive algorithms based on rectangular block
structured grids with a refinement by overlay patches of rectangles: Brandt’s
MLAT [Bra76] and McCormick’s FAC and AFAC. The procedure exploits
the local regularity of grids for computer performance and ease of imple-
mentation, but relies heavily on the geometry of rectangles. Hence we do
not consider this farther. There are a lot of finite element codes using rect-
angles and bricks than just simplices. In general there are some difficulties
with geometry. For an arbitrary polyhedral shaped domain one has to cope
with (only a few) heavily distorted elements. So simplices seem to be su-
perior from a geometric point of view. Certainly there are degradations
of convergence with linear functions on simplices compared with bilinear

8 Introduction

or tri-linear functions on rectangles and bricks, but we do propose higher
order finite elements in this text, too.

Convergence

For standard convergence theory on finite elements we also refer to Ciarlet
[Cia80, Cia91]. Convergence of finite elements depends on the regularity of
the problem, the size of the finite elements h and the order of the functions
on the elements (and the error norm involved). It can be majorized by the
properties of interpolation with finite elements. Hence we end up with a
term

‖ε‖a = O(hα), h = c · n−d

for the uniform case. α denotes on the regularity of the solution and the
local order of approximation, h denotes the diameter of the finite elements,
ε is the approximation error (in energy norm) and n is the dimension of
the discretized vector space or simply the number of unknowns (degrees
of freedom). h–adaptivity is able to improve the constant c involved dras-
tically for an effective minimal h and additionally does raise the effective
regularity α to the H2–regular value (e.g. α = 2) . A problem with low reg-
ularity will be solved by an h–adaptive process with lower n and lower
computational expense, although overall convergence remains the alge-
braic (double precision = 2d times the work). The other way round this
means, that for very regular problems adaptivity does not pay off. To im-
prove convergence, one has to use better local approximations, to be able
to further raise α with regularity assumptions, that do not hold in general,
of course.

We briefly want to mention the convergence results known for h–p and
pre-asymptotic p version of finite elements. We now get new quality of
convergence of type

‖ε‖a = O(e−c β
√
n)

with β = 2 in one dimension, β = 3 in two dimensions [BG88, BD81a] and
β = 5 in three dimensions [Guo93], see also [BS94]. This holds under an
assumption on the grid and refinement control being optimal. The (sub)-
exponential convergence is clearly visible in numerical experiments. The
resulting method is at least as fast as usual finite elements being an opti-
mal superposition of existing methods compared to. Now adaptive control
does not only improve constants, but it facilitates this improved exponen-
tial convergence rates.

Introduction 9

Implementations so far

There is a huge amount of finite element codes, both in research and com-
mercially. Only some use refined approximations and only one part of them
adaptivity. h–refinement is common in multi-grid and multilevel context,
hence there are many codes implementing the h–version. At present there
are some codes arising, which use the p method of finite elements like

• PROBE from Noetic

• PEGASYS from ESRD, both based on work of Babuška and B. Szabó
[BSK81, Sza85, Sza86] meanwhile distributed as

• MSC/ PROBE from MacNeal Schwendler including an announced
update of

• MSC/ NASTRAN from MacNeal Schwendler

• the p-adaptive STRIPE from Aeronautical Research Institute of Swe-
den

• MECHANICA from Rasna

• POLY FEM from IBM (Almaden Research Center) [MTC92, CMTT93]

• and others like Zienkiewicz, Zhu, Craig and Ainsworth [ZZCA89]
and the p-adaptive code of Beck [Bec93]

There has been some research towards h–p codes like Gui and Babuška
[GB86a, GB86b, GB86c] and [BR87] and applications like [ZW92, SW92,
Hoh94], After all there is only one commercial h–p finite element code
known

• Computational Mechanics’ PHLEX which meanwhile is

• PDA Engineering’s P3D/ CFD based on the work of Oden, Demkow-
icz et al. [DORH89, ODRW89, ROD89]

One can make a distinction between uniform and adaptive distributions
of the order p on a grid and procedures refining h and p at once or one after
the other, refining h in a feedback / (self)-adaptive manner or by a priori
or semi-automatic criteria. We will see that an adaptive p distribution is
under certain conditions easy implementable, sometimes much easier than
local h refinement. Hence the question whether to adapt p or not depends
on the reduction of number of unknowns by adaptation compared to some
computational overhead triggered by the adaptation. Refinement control
is not as critical and can rely on standard refinement criteria. The decision

10 Introduction

of simultaneous h and p refinement is a question of implementational com-
plexity and even more a question of a robust refinement control. Hence
there is a lack of any available commercial or research finite element code
in more than one space dimension doing this.

We want to characterize the properties of our research finite element code
as follows: It has to implement an h–p version. It is build upon the existing
h–adaptive multilevel finite element code KASKADE [DLY89, Lei90, Roi89a,
Roi89b, ERFA91] and its three dimensional version [BEK93a]. This implies
the usage of unstructured triangle and tetrahedra grids without any slave
nodes. The simplex elements are chosen for a maximum of flexibility in
input geometry and a uniform treatment of elements without transition
elements or elements with different convergence properties.

In the spirit of KASKADE the code should be a (self-) adaptive one in the
broadest sense. We observe that any robust automatic control will super-
sede a semi-automatic or manual control on the long run. Of course an ex-
pert is able to outperform such an automatic control, but once established
it delivers a new freedom to care about things and maybe details which are
really worth it, relying on a sub-optimality of the automatic control. Hence
any step towards such an automatic control is welcome.

To put it to an end: We want to implement a maximum of adaptivity
meaning an adaptive distribution of the polynomial orders p, an adaptive
distribution of the step-sizes h (diameter of the elements) and an auto-
matic refinement procedure able to apply both refinements at once. We will
see that the ‘green closure’ [BSW83] avoiding slave nodes implemented in
KASKADE not only pays off in h–adaptation but in p–adaptation in conjunc-
tion with non-uniform grids, too. But we will also see that usual ideas from
shape functions on bricks enabling easy p adaptation do not always carry
over to tetrahedra. Extending the whole set of constituents of an adaptive
finite element code to an h–p adaptive one, such as error estimation and
refinement and fast linear algebra, we are able to present some numerical
results.

Acknowledgement

I would like to express my deep gratitude to P. Deuflhard whose sup-
port and encouragement made this work possible. He had initiated the
KASKADE project at the Konrad–Zuse–Zentrum Berlin (ZIB) some years
ago, which had been a subject of my diploma thesis in Munich and he pro-
posed the h–p topic, when I joined the KASKADE team at the ZIB. Without
his insistence on the importance of the symmetric polynomial topic I would

Introduction 11

just have skipped it, probably undiscovered further on. He also suggested
the applications area of elasto mechanics leading to some interesting and
challenging industrial cooperation.

I also want to thank I. Babuška for discussion on topics of h–p refinement
control, B. A. Szabó for a brief history and some remarks on p–version and
M. Griebel for discussion on p–version topics and ‘multi-p’. I want to thank
both J. T. Oden and L. Demkowicz for providing some literature on h–p–
methods and P. Carnevali (meanwhile Rasna Corp.) for his paper on IBM’s
p–version FEM. Furthermore I thank E. Rank and V. Shaidurov for some
discussions on h–p procedures, and J. Xu for discussing preconditioners
for high polynomial degrees p during their visits at the ZIB.

Many thanks to the staff at the ZIB who provided a very comfortable and
productive atmosphere, in particular our ‘theorist’ F. A. Bornemann for his
lectures especially the one on FEM and some bibliographic comments, K.
Gatermann for discussion on issues of symmetry and polynomials, A. Hoh-
mann for his thesis’ acknowledgement and some topics of object oriented-
ness and on h–p strategies and R. Beck never failing to point out ‘the whole
absurdity’ of h–pmethods, linear elasto mechanics and so on. I also want to
thank the other members of the KASKADE team for several contributions,
just to mention R. Roitzsch, B. Erdmann, J. Lang and R. Kornhuber. Last
but not least I want to thank our computing center and service staff, espe-
cially the computer graphics team with H.-C. Hege and D. Stalling and the
REDUCE team of H. Melenk and W. Neun.

We have done the symbolic computations including the management
of polynomials and permutation groups with list-oriented features of RE-
DUCE [Hea93] (about 700 lines of code, 14kB), which triggered an opti-
mization procedure written in C++ (also about 700 lines of code, 14kB),
using a matrix library written by A. Hohmann. The final results were com-
puted and drawn by MATLAB [Mat92]. Some illustrations were drawn us-
ing UNIDRAW and IRIS SHOWCASE. The Nurbs pictures were drawn with
the IRIS INVENTOR package.

A first finite element code was based on the C version of KASKADE by R.
Roitzsch and on 3D extensions by B. Erdmann, about 30,000 lines of code
(800kB). The final finite element code was written in C++, about 36,000
lines of code, (1.0MB) based on on an early C++ version of KASKADE writ-
ten by R. Beck. Finite element pre- and post-processing was done with
SDRC’s I-DEAS.

12 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

1 Theoretical Derivation of Special Shape Functions

In this chapter we will discuss the topic of shape functions on simplex
shaped finite elements. Due to linearity of FEM, the solution does not de-
pend on shape functions but on function spaces spanned by them. Hence
we theoretically construct a families of shape functions fitting to some im-
plementational constraints. The final form of the shape functions will be
derived by use for a special iterative solver. Of course any other standard
set of polynomial shape functions can be used instead, causing some trou-
ble in implementation.

A reader not interested in properties of simplexes but in quadrilateral
or hexahedral elements is referred to references like [DORH89, BCMP91]
and may proceed with the next chapter 2 on page 53. There implementa-
tional details such as error estimation, refinement control, parallelization
or graphical representation are discussed, which are widely independent
from a special choice element shapes. The first part of the numerical ex-
periments chapter 3 on page 75 deals with simplex elements and special
shape functions, whereas the second and third parts contain comparisons
of different FEM versions (and the same initial grid) for Poisson equation
and for linear elasto mechanics, certainly valid for other element shapes,
too.

The main purpose of this chapter is the derivation of a special family of
shape functions for simplex elements in d–dimensions. Although the shape
functions in 2D on the triangle are new and combine some nice properties,
they really pay off in higher dimensions. These shape functions in 3D on
the tetrahedron were used in the numerical experiments part’s FEM code.

The derivation of shape functions relies on two properties: The elements
in an arbitrary simplex mesh cannot be oriented, which will be illustrated
later. Focussing on fast linear algebra and iterative solvers, we want to
avoid static condensation of the global stiffness matrix, which is absent
in the case of usual linear and (p–hierarchic) quadratic shape functions
and which contradicts the lightweight iterative solver strategy for exam-
ple with on the fly (implicit) matrix multiplication but appears due to non-
orientedness (compatible shape functions). The second property stems form
variable order (p) approximation leading to p–hierarchy.

However if one decides to implement static matrix condensation (some
costly linear combinations of shape functions), like the description for hex-
ahedral elements by [DORH89], our choice of shape functions is not nec-
essary any longer, but there appear alternatives. Although the orientation

1.1 Standard Shape Functions 13

demand for hexahedral grids may be relaxed for simple structured meshes,
even for hexahedral grids it cannot be avoided in general.

1.1 Standard Shape Functions

We consider the shape functions spanning the discrete vector spaces used
in the Galerkin approach of the finite element method. These shape func-
tions are formed by composition of local shape functions φi on each finite
element.

Figure 1: Composition of shape functions in 1D, a local shape functions, b
shape functions in the global space, c coupled to global continuous func-
tions for Galerkin procedure

In the case of non-scalar partial differential equations one could think of
dedicated systems of coupled shape functions like some elements in struc-
ture and fluid mechanics, whose convergence has to be proven by a kind
of patch test [IR72]. This is especially valid for non conforming finite ele-
ments. There are special shape functions for higher order differential oper-
ators [CT65], non symmetric shape functions for non symmetric differential
operators [BH82, Web88] and variants of the finite element method using
functions with higher continuity like splines [CL90], some kinds of eigen-
functions, trigonometric functions or rational functions [Coo68, Wac75].
We do not consider these variants here, but we just wanted to show al-
ternative ways of shape functions.

We introduce the barycentric coordinates (b0, b1, . . . , bd) in a d dimen-
sional space with respect to a d-simplex, sometimes called area or volume

14 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

coordinates or homogeneous coordinates. They may be characterized by
an affine transform with coordinates (0, . . . , 0, 1, 0, . . . , 0) coresspond to a
vertex of the simplex. Hence coordinate 1

d(1, . . . , 1) is the barycenter of
the simplex. Using multi index notation we define the vector space Pd

p of
polynomials of degree p in d variables by the linear span of

Pd
p = 〈

⋃
|α|≤p

bα〉, α ∈ Nd+1
0

Sometimes shape functions are written in terms of {x, y, 1 − x − y} on a
reference triangle. This is equivalent to a function in {b1, b2, b0}.

1.1.1 Lagrange Polynomials

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

Figure 2: Lagrange polynomials in 1D, degree 5

The Lagrange polynomials (c.f. figures 2 and 3 on the facing page) are inter-
polation polynomials on a set of equidistant points called ‘control points’

1.1 Standard Shape Functions 15

Figure 3: Lagrange polynomials on the triangle, degree 5:
a b
c d
e f

a all together, b point functions, c,d edge functions, e,f inner functions

xi (figure 4 on the next page). The polynomials are defined by the orthogo-
nality relation

fi(xj) = δi,j

The polynomials of degree p are defined on a d–simplex by the equidistant
distribution of

(p+d
d

)
control points on the simplex, spanning the space Pd

p .
The set of Lagrange polynomials implements the interpolation property of

16 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Figure 4: Equidistant control points for the interval, the triangle and the
tetrahedron

the linear shape functions p = 1 often used for conforming finite elements.
Global continuity can be achieved for a uniform polynomial degree p iden-
tifying shape functions of all elements sharing one geometric control point
(coupling of element matrices). Implementation of Dirichlet boundary con-
ditions is easy, too. Shape functions are symmetric/ affine invariant due to
symmetry/ affine invariance of the control points.

Some less convenient properties are: Coupling of different degree ele-
ments or elements in a non-conforming mesh is local quite expensive. Be-
sides the values given at the control points for a function evaluation inside
an element all shape function of the element are involved. The polynomials
are highly oscillatory without connection to the differential operator.

There are some slight modifications, moving the position of the control
points and using points of the numerical integration formula. There is an-
other proposal for un-symmetric modifications of edge shape functions in
the inner of a triangle [DKO92].

1.1.2 Bernstein Polynomials

The Bernstein polynomials are defined by [Far90]:

fα =

(
|α|
α

)
bα, α ∈ Nd+1

0

The Bernstein polynomials of degree |α| = p (c.f. figures 5 on the facing
page and 6 on page 18) generate the vector space Pd

p . They use the equidis-
tant control points α/p. They implement the interpolation property of the
linear shape functions p = 1. Global continuity can be achieved for a uni-
form polynomial degree p identifying shape functions of all elements shar-
ing one geometric control point (coupling of element matrices). This set of
polynomials is symmetric.

1.1 Standard Shape Functions 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Bernstein polynomials in 1D, degree 5

Some less convenient properties are: Coupling of different degree ele-
ments or elements in a non-conforming mesh is quite expensive. Imple-
mentation of non-constant Dirichlet boundary condition is expensive. For
any function evaluation inside an element all shape function of the element
are involved.

1.1.3 Legendre Polynomials

We define the orthogonal Legendre polynomials (c.f. figure 7 on page 19
on the interval [−1, 1] by

fj(x) =
1

2jj!

dj

dxj
(
(x2 − 1)j

)
The Legendre polynomials (c.f. figures 7 on page 19 and 8 on page 20) are
orthogonal with respect to the scalar product 〈., .〉 on [−1, 1]. They are hi-
erarchical in their polynomial degree p and symmetric to the origin. The

18 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Figure 6: Bernstein polynomials on the triangle, degree 5:
a b
c d
e f

a all together, b point functions, c,d edge functions, e,f inner functions

symmetry behavior is alternately odd and even. To exploit the orthogo-
nality in the case of a 1-D problem for the Laplace operator (i.e. a0 ≡ 0
and a11 ≡ 1) one has to use integrated polynomials as shape functions:∫ x
−1 fj(t)dt [SB91]. Now the bilinear form a(u, v) = 〈u′, v′〉 operates on the

same terms as the scalar product in the previous case. The integrated poly-

1.1 Standard Shape Functions 19

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: The integrated Legendre polynomials

nomials are orthogonal with respect to the new bilinear form.
Following B. Szabó and Babuška [SB91] we construct shape functions on

the simplex using the Legendre polynomials:

fpi,j :=
√
8(2p− 1)

bi bj
1− (bi − bj)2

∫ bi−bj

−1
fp−1(x)dx

edge function, point i towards point j.

fp1,p2i,j,k := bibjbkfp1(bj − bi)fp2(2bk − 1)

triangle function, points i, j and k.

fpj := (
∏
i≥2

bji)fp1(bj1 − bj0)
∏
i≥2

fpi(2bji − 1)

generalized inner function, points j0, j1, j2,

20 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Figure 8: Using Legendre polynomials on the triangle, pictures and de-

grees:
a b
c d e
f g h
i j k

a=1 (point function), b=2 (edge function), c=3 (edge function), d=3 (inner
function), e=4 (edge function), f,g=4 (inner function), h=5 (edge function),
i,j,k=5 (inner function)

1.1 Standard Shape Functions 21

The Legendre polynomials on the simplex (c.f. figure 8 on the preceding
page) even for Laplace operator are not orthogonal any longer. They are
not fully symmetric any longer (or skew symmetric), but they prefer one
coordinate. They contain the linear shape functions and extend them p–
hierarchically. p–hierarchy maintains easy implementation of varying de-
grees p and coupling of different order elements.

Global continuity in 2D induces coupling of skew-symmetric edge func-
tions, subtraction of local stiffness matrices. Coupling in 3D or higher d
even for conforming grids may be locally expensive, depending on orien-
tation of the elements. Function evaluation in the interior of an element as
usual involves all shape functions an is costly.

The preference of one specific direction can be exploited for directed re-
finement using an anisotropy of polynomial degrees which may be useful
in [KR90, BS94].

1.1.4 Monomials

We present a early version of p–hierarchic finite element shape functions by
A. Peano [Pea76] using monomials. Originally the monomials were defined
on the triangle. We present a recursive version (c.f. figure 10 on page 23):

f02 (b0, b1, b2) := 1

f12,i(b0, b1, b2) := bi, 0 ≤ i < 2, point functions

fp2,i(b0, b1, b2) := bp−1
i bi+1(mod3), 0 ≤ i ≤ 2, edge functions

fp2,i+3(b0, b1, b2) := fp−3
2,i (b0, b1, b2) b0b1b2, 0 ≤ i, inner functions

We generalize the function on the d–simplex by (c.f. figures 9 on the next
page and 10 on page 23) and use a recursion over d and p

M0
d :=

{
f((bj)

d
j=0) = 1

}
M1

d :=
{
f((bj)

d
j=0) = bk | k < d

}
Mp

1 :=
{
f(b0, b1) = bp0

}

Mp
d :=

{
f = g((bπ0,π1,... ,πk

))
k∏

j=0

bπj |

g ∈Mp−k−1
k , 1 ≤ k ≤ d, combination (πj)

k
j=0 ⊆ (j)dj=0

}
,

22 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 9: Monomials on an 1D edge, up to degree 5

The polynomials are p–hierarchic, the first used explicitly in finite ele-
ments, but they are not fully symmetric, some transformations of the poly-
nomials are missing for symmetry (‘rotate only once’ in figure 10 on the
next page). They contain the standard linear shape functions. Monomi-
als were chosen to achieve cheap function evaluations. With proper code
optimization this advantage may not pay off (see section 2.3 on page 64).
Full definition is expanded from original lists for a comparison with other
shape functions.

1.1.5 Hermite Polynomials

We define some special sort of Hermite polynomials in 1D by

fp(x) :=

⎧⎪⎨
⎪⎩

1
2 (1∓ x) p < 2
1
p!(x

p − 1) p even
1
p!x(x

p−1 − 1) p odd

1.1 Standard Shape Functions 23

Figure 10: Monomials on the triangle, pictures and degrees:
a b c
d e f
g h i

a=0 (constant function), b=1 (point function, rotate only once), c=2 (edge
function), d=3 (edge function), e=3 (inner function), f=4 (edge function),
g=4 (inner function, rotate only once), h=5 (edge function), i=5 (inner func-
tion)

on the interval x ∈ [−1, 1]
They contain the linear shape functions on [1, 1]. Additionally they use

derivatives dp

dxp |x=0 at the origin (c.f. figure 11 on the next page). The poly-
nomials are p–hierarchic. Following Zienkiewicz and R.Taylor [ZT89] we
construct higher dimensional shape functions on the triangle by

fpi,j :=

⎧⎨
⎩

1
p!

(
(bi − bj)

p − (bi + bj)
p
)

p even
1
p!(bi − bj)

(
(bi − bj)

p−1 − (bi + bj)
p−1
)

p odd

as edge functions, i to j, p ≥ 2.

24 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Figure 11: Hermite polynomials in 1D, up to degree 5

The edge functions equal the 1D Hermite polynomials on the edge (i, j).
The first inner function, p = 3 is given by

f3k0,k1,k2 := bk0bk1bk2

Fourth order inner functions are given by

{b20b1b2, b0b21b2, b0b1b22}

although higher order shape functions or any systematic approach is miss-
ing. Continuing the construction of inner functions by monomials, we end
up with symmetric, non–p–hierarchic shape functions.

Modifying the cases p ≥ 4 in the way like in section 1.1.4 on page 21 of
[Pea76] (which was cited in [ZT89]), we have p–hierarchic shape functions,
which are not fully symmetric. They are depicted in figure 12 on the next
page. Scaling of the shape function could be improved, depending on the
purpose of use.

1.1 Standard Shape Functions 25

Figure 12: Using Hermite polynomials on the triangle, pictures and de-

grees:
a b c
d e f
g h i

a=1 (point function), b=2 (edge function), c=3 (edge function), d=3 (in-
ner function), e=4 (edge function), f (inner function, rotate only once), g=5
(edge function), h=5 (inner function, rotate only once), i=5 (inner function,
do not rotate)

1.1.6 Other Polynomials

We already have seen orthogonal polynomials in 1D, giving rise to optimal
condition numbers for linear algebra (section 1.1.3 on page 17). One could
think of continuing the property of orthogonality in higher dimensions.

There are such p–hierarchic polynomials on simplexes [Jac36, Mys81,

26 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

GM78, Dub91, SK95] used for construction of integration formulas analo-
gously the 1D Gauß quadrature connected with the Legendre polynomials.

There are some drawbacks: ‘Orthogonality’ has to be interpreted as or-
thogonality of spaces of polynomials, not polynomials itself.

〈fpi , fqj 〉 = 0 if p �= q

Now condition numbers are not optimal for d > 1, but are supposed to be
low. Optimal condition number one can of course be achieved be a orthog-
onalization procedure, while loosing any properties useful for implemen-
tation of finite elements.

Using standard orthogonal polynomials, which maintain some proper-
ties of symmetry, is locally expensive. The coupling of local stiffness ma-
trices involves almost all functions of an element, because the polynomials
do not vanish on the boundary of the simplex. There has to be done some
computational work in finite elements, d > 1, either in linear algebra or in
handling optimal conditioned shape functions.

Turning to some other polynomials, we will present some graphs in chap-
ter 1.4.3 on page 45 depicting a version of symmetric hierarchic polynomials
[Zum93] for comparison. A detailed description will be given in the follow-
ing sections.

1.1.7 Overview

Here we show some properties of different families of shape functions:

polynomials reference simple symm. symm. hierarch.
coupling on the in the in p

faces element
monomials

∏d
i=1 x

αi
i – – – ×

orthogonal [AF26, GM78] – – – ×
mod. Legendre [SB91] × 2-D only – ×
mod. monomials [Pea76] × 2-D only – ×
p–hierarch. mod. [ZT89] × 2-D only∗ –∗ ×∗

original∗ [ZT89] × × × –
Lagrange [MP72, Nic72] × × × –
Bernstein [Far90] × × × –
symm. hierarch. (this thesis) × × × ×

The reader should not be surprised that we can separate two classes of
shape functions: The p–hierarchical and the symmetrical ones. The only ex-
ception are the new symmetric hierarchical polynomials. The asterisk ∗ de-
notes our modification of the polynomials originally proposed by [ZT89].

1.2 Properties of Special Shape Functions 27

The original shape functions on the triangle are not p–hierarchical for the
step from degree 3 to 4. We modified the basis to be hierarchical, loosing
symmetry.

On the interval, say [−1, 1], the classic orthogonal Legendre polynomials
are leading to a kind of optimal set of shape functions for the p– and h–p–
version of finite elements for the Laplace equation. A pure higher-order h–
version may also use interpolation Lagrange polynomials. For the p– and
h–p–version on tensor product structures like quadrilaterals and hexahe-
drals one could generalize these integrated Legendre polynomials [SB91],
loosing some of their good transformation properties and investing more
degrees of freedom than necessary in the approximation sense. But for
the simplex one has to give up some other nice characteristics of the Leg-
endre polynomials and a more complicated approach [Pea76, SB91, ZT89]
has to be used. For a pure h–version one can use Lagrange interpolation
[MP72, Nic72].

1.2 Properties of Special Shape Functions

In the following we analyze the approximation of functions by an adaptive
(multilevel) finite element code. This leads to useful properties of shape-
functions on the simplex. Only some properties are compatible with each
other. Each version of finite elements differs in exploiting these properties
for an efficient implementation. This is the next part of the section. In
a second part we construct vector spaces containing sets of polynomials
well-suited for the p– and the h–p–version of finite elements. In a third part
we finally construct shape functions within these spaces which are optimal
in the sense of an optimal condition number of the preconditioned linear
system.

1.2.1 Hierarchical Polynomials

We introduce the concept of p–hierarchy or p–extension. If we have a ba-
sis Bp of shape functions spanning the function space Vp and we want to
reach the space Vp+1, we simply can add some shape functions to get the
enhanced basis Bp+1 = Bp ∪ Bext

p+1.

Definition 1

Vp+1 = 〈Bp+1〉 = 〈Bp〉 ⊕ 〈Bp+1 \ Bp〉
P–hierarchy is an integral part of an approximation with varying order p

in space. If we choose the order p1 on one finite-element and a different p2

28 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

on a neighboring element, one can achieve global continuity by linear con-
straints like [DORH89] or by handling the p–hierarchic excess in a special
way (setting it to zero).

An example for p–hierarchic polynomials are the previously mentioned
Legendre polynomials. The Legendre polynomials fp(x) are orthogonal
with respect to the scalar product 〈., .〉 on [−1, 1]. They are hierarchical in
their polynomial degree p and symmetrical to the origin. The symmetry be-
havior is alternately odd and even. To exploit the orthogonality in the case
of a one dimensional problem for the Laplace operator one has to use inte-
grated polynomials as shape functions:

∫
fj(t)dt [SB91]. Then the bilinear

form a(u, v) = 〈 d
dxu,

d
dxv〉 operates on the same terms as the scalar product

does in the previous case. The integrated polynomials are orthogonal with
respect to the bilinear form.

Definition 2 Here we associate the term ‘orthogonal’ polynomials with a sequence
of nested sets of polynomials B1 ⊂ B2 ⊂ . . . for a specific bilinear form. The poly-
nomials have to be linearly independent. A polynomial f ∈ Bi is orthogonal with
respect to this bilinear form on the vector space generated by the basis Bi−1 (no
condition for B1). The vector spaces generated by Bi usually are the vector spaces
of polynomials Pd

i+1. The polynomials in Bi \ Bi−1 need not be orthogonal onto
themselves.

Orthogonal polynomials are hierarchical in p by definition. Orthogonal
polynomials do not necessarily lead to local matrices with condition num-
bers equal to one, κj(Aloc) = 1, like the Legendre polynomials do. How-
ever, a basis with this desirable property can be constructed. Although the
optimal shape functions in 1D are in fact orthogonal polynomials, we will
see, that there is no way to use orthogonal polynomials in higher dimen-
sions efficiently. While maintaining p–hierarchy, we do not end up with
orthogonal functions.

1.2.2 Coupling

We call the assembly of local finite-element-matrices into a global one cou-
pling, sometimes called ‘global assembly’. One line of interpretation is the
representation of global FEM ansatz functions, each connected with an de-
gree of freedom, by linear combinations of local shape functions on an el-
ement. Coupling means this linear combination, which ideally is a one-
to-one relation (local permutation matrix, called ‘simple’). This would be
the case for so called compatible shape functions. Many FEM codes use

1.2 Properties of Special Shape Functions 29

this simple form of global matrix assembly, assuming that the local shape
functions are suited for it.

Another bottom-up interpretation is that we have to guarantee we are
dealing with globally continuous shape functions {ψi}, which are formed
by properly connected local shape functions {φi}. We introduce two new
terms: simple and minimal coupling.

Definition 3 We call the coupling of the shape functions of two connected ele-
ments minimal, if the number of shape functions involved is minimal.

This number n(E,E∗) equals twice the dimension of the polynomial vec-
tor space on the intersectionE∩E∗ of both elementsE,E∗. Coupling coeffi-
cients zero corresponding to vanishing shape functions on the intersection
do not contribute to n.

We can express the coupling by an under-determined system of linear
equations. Taking a coupling matrix C and the sets of shape functions {φi}
and {φ∗

i }, we can write the constraints as

C · (φ1, φ2, . . . , φ
∗
1, φ

∗
2, . . .)

T
= 0 on E ∩ E∗.

By eliminating columns containing only zeros, eliminating linearly depen-
dent rows and permuting we arrive at a reduced matrix C ∈ Rn×2n of rank
n.

We introduce a stronger term of coupling by a special kind of minimal
coupling which we call simple. The under-determined system of linear
equations with (reduced) matrixC should facilitate the conversion between
the coefficients of the functions {φi} and {φ∗

i }. We reduce the matrix C to a
smaller matrix C̃ by leaving out columns which are linearly dependent or
zero.

Definition 4 We define a coupling of shape functions {φi} and {φ∗
i } simple, if

there exists a reduced and permuted matrix C̃ of maximal rank which has block-
diagonal form with 1× 2 non-zero blocks.

The reduced matrix looks like this:

C̃ =

⎛
⎜⎜⎜⎝

C̃1

C̃2

. . .
C̃n

⎞
⎟⎟⎟⎠ with C̃i ∈ R1×2.

30 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Example 1 We look at the simple coupling of two elements E and E∗ with 2× 2
local matrices A and B and shape functions {φ1, φ2} and {φ∗

1, φ
∗
2}. Function

φ2 equals function φ∗
1 on E ∩ E∗. No other shape functions of E and E∗ are

correlated. This leads to a matrix C =
(
0 1 −1 0

)
, a reduced matrix C̃ =

C̃1 = (1 − 1) and to (
a11 a12
a12 a22

)

coupled with (
b11 b12
b12 b22

)

adds up to ⎛
⎜⎝ a11 a12 0
a12 a22 + b11 b12
0 b12 b22

⎞
⎟⎠ .

Simple coupling may also appear as blocks of C̃i = (1 1), in general as
C̃i = (1 λ), λ �= 0 or as small blocks simply invertible.

The Lagrange interpolation polynomials for equidistributed interpola-
tion points (as in chapter 1.1.1 on page 14) of degree |α| = p generate the
vector space Pd

p . This set of polynomials is symmetrical. Any affine trans-
form of the simplex onto itself will cause a permutation of the shape func-
tions, but no linear combinations are necessary. The polynomials facilitate a
minimal and simple coupling of blocks C̃i = (1−1) by identifying the proper
functions being identical on the common boundary. The same holds for the
Bernstein polynomials. On the other hand, it is harder to apply Dirichlet-
boundary conditions. One has to interpolate the prescribed values using
the polynomials non-vanishing on the boundary.

Although the efficient implementation of boundary condition is only of
minor interest, because ∂Ω is of lower complexity compared to Ω, we want
to remark, that in general, only Lagrange polynomials permit a simple im-
plementation of (non-homogeneous) Dirichlet boundary conditions. The
situation changes in the case of other boundary conditions like Neumann
conditions. Leaving Lagrange polynomials, one may invest some more
computational effort in calculating interpolation conditions on the bound-
ary for gaining some nicer properties in the inner domain Ω.

Remark 1 We conclude that there are shape functions with minimal and simple
coupling. Some are symmetrical, too.

1.2 Properties of Special Shape Functions 31

1.2.3 Symmetry

Finite Element methods often use a simple set of shape functions defined on
a reference element. In the case of simplexes each shape function is trans-
ferred to a real element using a linear transformation . There are different
possibilities to realize this transformation. The transformation is unique
only modulo permutation of the corner points. Hence one has to be able to
couple any face of one element with any face of another one, where faces
can be points, edges, triangles and so on.

?

Figure 13: Problems in orientating a tessellation in 2D

?
?

?
?

Figure 14: Non-oriented tessellations and mapping to standard elements in
2D

One can think of a completely oriented tessellation where the coupling is
restricted to only some distinguished combinations of faces. But in general
there is no such orientation (figure 1.2.3).

32 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Hence there is no way out of having a deeper look into symmetry and
coupling properties.

Definition 5 We denote the group of permutations of d elements with Sd and the
subset of the alternating group with S+d .

+1

−1

21 2 1

21 2 1

Figure 15: ±S2 reflections of a 1–D function

12

3

Figure 16: A 2–D function f on the triangle

Definition 6 We define the action of a group S ⊂ Sd+1 on a set of polynomials
B in d variables by the set of polynomials resulting from permuting the input
variables (by the permutations of the group) in barycentric representation. This
covers the definition of the action on a single polynomial and on a whole vector
space of polynomials.

SB =
⋃

f∈B,s∈S
f
(
s−1(b0, b1, . . . , bd)

)

1.2 Properties of Special Shape Functions 33

1 1

1

2 2

2

3 3

3

Figure 17: S+3 reflections of a 2–D function f

1 1

1 1

1

1

2 2

2

2

2

2

3

3

3

3

3

3

Figure 18: S3 reflections of a 2–D function f

Definition 7 We call a polynomial f , a set of polynomials B and a vector space V
of polynomials S–symmetrical, if it is invariant with respect to the action of S

f = Sf, B = SB and V = SV .

It immediately follows that

• a set of S–symmetrical polynomials is an S–symmetrical set of poly-
nomials and

• a vector space generated by an S–symmetrical set of polynomials is
S–symmetrical itself.

Additionally we introduce point-symmetry which is not covered by the
previous definitions.

Definition 8 We define a set of polynomials B to be S±
d+1–symmetrical in d vari-

ables by
∀s ∈ Sd+1 and ∀f ∈ B holds sf ∈ B or − (sf) ∈ B.

34 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

1

1 1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

Figure 19: ±S±
3 reflections of a 2–D function f , correlated with S±

3

Remark 2 Defining symmetry by ∀s ∈ Sd+1 and ∀f ∈ B ∃λ ∈ R \ {0} with
λ(sf) ∈ B leads to λ = ±1, too.

Lemma 1 An S±–symmetrical set B of polynomials is S+–symmetrical.

Remark 3 We conclude that there are S±
d – and Sd–symmetrical shape functions.

1.2.4 Symmetry and Coupling

Finite Element methods often use a simple set of shape functions defined on
a reference element. In the case of simplexes each shape function is trans-
ferred to a real element using an affine transformation. There are different
possibilities to realize this transformation. The transformation is unique
only modulo permutation of the corner points. Hence one has to be able to

1.2 Properties of Special Shape Functions 35

couple any face of one element with any face of another one, where faces
can be points, edges, triangles and so on.

One can think of a completely oriented tessellation where the coupling is
restricted to only some distinguished combinations of faces. But in general
there is no such orientation.

Hence there is no way out of having a deeper look into symmetry and
coupling properties.

Theorem 1 A set of shape functions for a general conforming tessellation of d–
simplexes will permit a simple coupling with blocks C̃i = (1 − 1) if and only if
the shape functions permit minimal coupling and are Sj+1–symmetrical on each
j–dimensional face of a simplex.

We can relax this condition a little by requiring only ψi = ±ψk on the
common boundary which leads to addition and subtraction of local matri-
ces.

Corollary 1 A set of shape functions for a general conforming tessellation of d–
simplexes will permit a simple coupling with blocks C̃i = (1±1) if the shape func-
tions permit minimal coupling and are S±

j+1–symmetrical on each j–dimensional
face of a simplex.

Remark 4 Sd+1–symmetry is correlated with simple coupling of (1 − 1) and
S±
d+1–symmetry is correlated with simple coupling of (1 ± 1).

1.2.5 Symmetry and Hierarchy

We now want to derive the correlation of symmetry and p–hierarchy. The
Legendre polynomials for example are p–hierarchic and S±

2 –symmetrical,
which simply means point and axial symmetry in one dimension. For d
dimensions we get the following main result:

Theorem 2 There is no p–hierarchical S+d+1–symmetrical polynomial basis on the
d–simplex for d > 1.

Proof. We look at the p–hierarchical step from polynomial degree j(d+1)
to j(d+ 1) + 1 with j ∈ N0. Note that the dimension of symmetrizations of
the set {b0 − b1, b1 − b2, . . . , bd−1 − bd}(b0 · b1 · · ·bd)j is at least d+ 1, but the
vector space is of dimension d.

Corollary 2 There is no p–hierarchical S±
d+1–symmetrical polynomial basis on

the d–simplex for d > 1.

36 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Theorem 3 There is no p–hierarchical Sd+1–symmetrical polynomial basis on the
d–simplex for d ≥ 1.

Corollary 3 There are no S+d+1–symmetrical orthogonal polynomials on the d–
simplex for d > 1.

Remark 5 Symmetry and simple coupling on the one hand and p–hierarchy for
Pd
p on the other hand exclude each other.

1.3 Construction of New Polynomial Spaces

We want to construct a family of p–hierarchical shape functions for the
d–simplex. It has to facilitate a simple coupling which implies symmetry
(chapter 1.2.4). It should be suitable for a p– and h–p–version of finite ele-
ments with variable order p which means p–hierarchy in some sense. Both
properties are not possible at the same time (chapter 1.2.5).

We have to cope with the limitations of theorem (2). We shall enlarge the
polynomial vector spaces Pd

p slightly and construct new Sd+1–symmetrical
vector spaces which avoid the irreducible subspaces of the proof.

1.3.1 Symmetry Sd

We recursively construct a basis for the new vector space Pd,sym
p by the span

of the vector space Pd,sym
p−1 one degree lower and additional functions. These

functions are internal functions formed by the product of the “bubble”
function

∏d
j=0 bj with functions of degree (p−d−1) and boundary functions

defined on the faces. The boundary functions are Sd+1–permutations (sym-
metrizations) of such (lower-) i–dimensional functions (Bi

p−i−1 · ∏i
j=0 bj),

i < d. The only difference to the standard polynomial spaces Pd
p is the

beginning of the recursion. We start with {b0} for B0
0 which actually has

degree 1. If we want to get the standard polynomial spaces Pd
p , we should

have taken {1}. We have enlarged the vector space. This enlargement
spreads to the higher dimensions and the higher degrees.

Definition 9 We recursively construct a basis for the new vector space in barycen-
tric coordinates based on lower dimensions and lower degrees using the group of
permutations Sd:

◦ B0
0 = {b0}

◦ B0
p = ∅, p > 0

1.3 Construction of New Polynomial Spaces 37

◦ Bd
p =

⋃d
i=0 Sd+1(Bi

p−i−1 · b0 · b1 · · · bi), d ≥ 1.

Sometimes shape functions are written in a form like {x, y, 1− x− y} on
a reference triangle. This is equivalent to {b1, b2, b0}.

Remark 6 In the previous definition we can substitute the action of Sd+1 by the
combinations without repetition of i+ 1 elements of the set {b0, b1, . . . , bd}.

Definition 10 We now define the new polynomial vector spaces as the span of the
basis functions in d dimensions: Pd,sym

p = 〈⋃p
i=0 Bd

i 〉

Remark 7 The vector spaces Pd,sym
p are Sd+1–symmetrical. Their bases Bd,sym

p

are p–hierarchical, facilitate minimal and simple coupling with blocks (1 − 1)
and are enlarged Pd

p ⊆ Pd,sym
p ⊆ Pd

p+1.

These polynomial spaces are well-suited for the coupling (1 − 1), but
they have got a high dimension (= too many shape functions). If we relax
the coupling to (1 ± 1), we can reduce this high dimension, but we have to
consider the group S±

d+1 (chapter 1.2.4).

1.3.2 Symmetry S±
d

Definition 11 We recursively construct a basis for the new S±
d+1–symmetrical

vector space, taking the same 0–dimensional space and the action of the alternating
group S+d otherwise, modifying the one dimensional basis:

◦ B0,±
0 = {b0}, B0,±

p = ∅, p > 0

◦ B1,±
0 = {b0, b1}, B1,±

1 = ∅, B1,±
p = {(b1 − b0)

p}, p > 1

◦ Bd,±
p =

⋃d
i=0 S+d+1(Bi,±

p−i−1 · b0 · b1 · · · bi), d > 1.

Remark 8 In the previous definition we can substitute the action of S+d+1 by the
even combinations without repetition of i + 1 elements of the set {b0, b1, . . . , bd}.
Watch out for a systematic interpretation of “even”!

Definition 12 We now define the new polynomial vector spaces as the span of the
basis functions in d dimensions: Pd,±

p = 〈⋃p
i=0 Bd,±

i 〉

Example 2 In zero dimension we get the following sequence of polynomials, which
are only useful for the construction of higher dimensional ones:

P0,±
0 = P0,±

1 = P0,±
2 = . . .= 〈{b0}〉

38 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Starting with the one dimensional S±
2 –symmetrical polynomials we get the fol-

lowing sequence:
P1,±
0 = P1,±

1 = 〈{b0, b1}〉
P1,±
2 = 〈P1,±

1 ∪ {(b1 − b0)
2}〉

P1,±
3 = 〈P1,±

2 ∪ {(b1 − b0)
3}〉

...
The spaces P1,±

p are equal to the former spaces P1
p for p > 0. Thus they are

smaller than the spaces P1,sym
p . The one dimensional basis is not enlarged any

more. Inserting this into the definition for two dimensions we get a sequence of
S±
3 –symmetrical polynomials:
P2,±
0 = P2,±

1 = 〈{b0, b1, b2}〉
P2,±
2 = 〈P2,±

1 ∪ {(b1 − b0)
2, (b2 − b1)

2,
(b0 − b2)

2}〉
P2,±
3 = 〈P2,±

2 ∪ {(b1 − b0)
3, (b2 − b1)

3,
(b0 − b2)

3} ∪ {b0(b0b1b2),
b1(b0b1b2), b2(b0b1b2)}〉

P2,±
4 = 〈P2,±

3 ∪ {(b1 − b0)
4, (b2 − b1)

4,
(b0 − b2)

4}〉
...

On the triangle the polynomial sets for a degree p which is not divisible by 3
are identical to P2

p , all other vector spaces are generated by P2
p and 2 additional

polynomials.

Remark 9 The usual linear Lagrange polynomials are contained in both Bd
1 and

Bd,±
1 . The associated hierarchical quadratic polynomials are contained in Bd,±

2 , too.

Remark 10 The linear Lagrange polynomials can be interpreted as symmetriza-
tion of the canonical basis of Pd

1 : {1} ∪ {b1, b2, . . . , bd}.

Remark 11 The bases Bd,±
p are S±

d+1–symmetrical, p–hierarchical and facilitate
minimal and simple coupling with blocks (1 ± 1). The spanned vector spaces
Pd,±
p are only slightly enlarged (Pd

p ⊆ Pd,±
p ⊆ Pd,sym

p ⊆ Pd
p+1) and have got an

even lower dimension than Pd,sym
p .

1.3.3 The Enlargement

We saw that the enlarged polynomial spaces fulfill

Pd
p ⊆ Pd,±

p ⊆ Pd
p+1

1.3 Construction of New Polynomial Spaces 39

which limits the enlargement of Pd,±
p (note 11). Actually we can show that

with p→ ∞ this enlargement vanishes in the following sense:

dimPd,±
p − dimPd

p

dimPd
p+1 − dimPd

p

≤ O(p−1) for fixed d

We prove this also giving the dependence on d by

Lemma 2

dimPd,±
p − dimPd

p ≤ d
(p+d−2

p

)
Proof. dimPd

p may also be written by the recursive equation of dimPd,±
p

obtained form definition of Pd,±
p . The difference obeys the same equation.

It can be majorized by a recursion of d · dimPd−2
p .

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

dimension 1

dimension 2

degree

enl
arg

em
ent

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

dimension 3

dimension 4

degree

en
lar

ge
me

nt

dimension 5

dimension 6

Figure 20: Enlargement of Pd,±
p : values of (dimPd,±

p − dimPd
p)/(dimPd

p+1−
dimPd

p)

With dimPd
p =

(p+d
p

)
the proof of formula (1.3.3) is completed. Figure

(20) shows the actual values of the quotient. P1,±
p is not enlarged and P2,±

p

is enlarged by 2 polynomials only for every third p. It indicates in conjunc-
tion with the actual numbers in table I on the facing page that the values
decrease asymptotically with p−1.

40 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Table I: Dimensions of Pd
p and Pd,±

p

d dim Pd
5 dim Pd,±

5 dim Pd
10 dim Pd,±

10

1 6 6 11 11
2 21 21 66 66
3 56 56 286 294
4 126 130 1001 1045
5 252 276 3003 3192
6 462 546 8008 8757

Table II: Dimensions of P3
p in R3, full and serendipity spaces, S-symmetric,

S±-symmetric and S±-symmetric on the boundary only, extensions/ reduc-
tions (serendipity)

serendip original extension
p S S± S± on P3

p S± on S± S
boundary boundary

1 4 4 4 4 4 4 4
2 4 10 10 10 10 10 16
3 16 16 16 20 28 28 28
4 28 34 35 35 35 38 44
5 44 56 56 56 56 56 68
6 68 80 80 84 92 92 104
7 104 116 120 120 120 128 140
8 140 164 165 165 165 168 192

1.4 Shape Functions for Iterative Solvers 41

In table II on the preceding page we have added the dimensions for
full symmetric and (generalized) serendipity polynomial spaces obtained
by the recursion. Serendipity in this context are incomplete polynomial
spaces due to symmetrization analog the previous extension of spaces. The
spaces of polynomials with symmetry on the boundary of the element only
do not differ much from symmetry for all polynomials including the in-
ner functions. The S±-symmetric serendipity polynomials are an attractive
lower dimensional counterpart of the S±-symmetric full polynomials Pd,±

p

and the S-symmetric serendipity polynomials are connected with full S-
symmetric polynomials Pd

p . We also remark the drop-out of full symmetric
serendipity polynomials at degree p = 2 and via recursion inherited minor
drop-outs. In the further we will use the polynomials Pd,±

p only.

1.4 Shape Functions for Iterative Solvers

1.4.1 Condition of the Stiffness Matrix

It is well known that the condition number of the global stiffness matrix for
a fixed set of shape functions depends on the extension of the elements h.
For elements of uniform size h, we get a sharp estimate

κ(A) ≤ C(a, p, γ)h−2.

The constant C depends on the interior angles γ of the elements, on the dif-
ferential operator a, on the set of shape functions and the associated poly-
nomial degree p. In the case of non-uniform h and simplexes we get a lower
estimate J. Xu [Xu89, Xu92] with n denoting the number of simplexes

κ(A) ≤ C(a, p, γ) ·
{
n(1 + log maxh

minh) for d = 2

n2/d for d ≥ 3

Let us consider the p–dependence of the constants C. In the one-dimen-
sional case there are shape functions with C independent from p, namely
the integrated Legendre polynomials (chapter 3.1.1 on page 75). Next we
can conclude from sharp estimates in [BCMP91], that there are shape func-
tions in two dimensions with global condition number

κ(A) ≤ C(a, γ)h−2(1 + log2 p)

for uniform h. The required functions are split into point-, edge- and in-
ternal shape functions in the usual way and the edge-functions have to be
discrete harmonic with respect to the operator a. For dimensions higher

42 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

than two (d > 2) an analogous construction delivers rapidly growing con-
dition numbers in p [BCMP91].

If we now split the local condition numbers κ0(Aloc) and κ1(Aloc) into
maximal and minimal eigenvalue λmax(Aloc) and λmin(Aloc) and look for
the maximal λmax and the minimal λmin on all elements of a tessellation,
we get a connection of local and global condition numbers. We conjecture
an estimate for uniform h of the kind

κ(A) ≤ C(coupling)h−2maxλmax(Aloc)

minλmin(Aloc)

The constant C may also be written as a function of the minimal interior
angle γmin and the family of shape functions. The conjecture is supported
by numerical experiments and the estimates in section 3.1 on page 75.

1.4.2 Preconditioning

+ ++

Figure 21: Domain decomposition preconditioner in 1D, global space of
piecewise linear functions and local spaces of higher order polynomials

In the context of the iterative solution of the linear systems another tool
comes into play. It is the convergence rate of the iteration. It can be esti-
mated for some classic iterations like conjugate gradients and Richardson-
iteration in terms of the condition number. But for sake of efficiency lin-
ear systems are often preconditioned, so we have to consider the condi-
tion number of the preconditioned matrix instead. There are two simi-
lar approaches for preconditioning linear systems of p–version [BCMP91,
Man90a, Man90b] and [Pav92, Pav94b, Pav94a], both leading to estimates
independent from h and with a rather mild increase in log2 p. We also
have to mention an earlier experimental approach by [BGP89] in connec-
tion with the idea of ‘multi-p’ (Griebel) as an analogon to the h–version
multi-grid, a physical domain decomposition method [OPF93] (in contrary

1.4 Shape Functions for Iterative Solvers 43

to decomposing only function spaces) and a more practical implementation
by [FP93] for p = 2 with ‘coarse’ grid p = 1 and SOR iteration (a two-level
multi-p method).

It is well known from domain decomposition, that any construction of a
preconditioner as splitting into a linear or piecewise constant global func-
tion space and several higher order local spaces leads to such an h–in-
dependence under the condition of minimal coupling (see figure 21 on the
facing page). Coupling comes into play localizing the global higher order
function spaces. Hence we construct our preconditioner as the splitting
into the global linear space and additional local spaces. To keep them lo-
cal, we have to separate spaces for each edge, triangle, tetrahedron etc.
Now we can interpret this preconditioner B as a block-diagonal version
of the stiffness-matrix A. Calculating the preconditioned condition num-
ber κ(B−1A) we can see that it is majorized by the maximum of the lo-
cal condition numbers κ̃ (maxλ

minλ �=0) of the generalized eigenvalue problem
Blocx = λAlocx. κ̃ is calculated from the generalized eigenvalues orthogo-
nal to the common eigenfunction of the eigenvalue 0. This means that we
only have to optimize and calculate local condition numbers and the con-
dition number is independent from h with the aid of a good preconditioner
for the linear h–version problem.

1.4.3 Condition of the Preconditioned Stiffness Matrix

We want to construct the final version of our shape functions by using the
polynomial vector spaces Pd,sym

p and Pd,±
p of chapter 1.2.4 on page 34. The

set of functions should maintain the symmetry and coupling properties of
the original basis Bd

p and Bd,±
p . P–hierarchy is guaranteed by the nesting of

the vector spaces. The only missing property is a low condition number of
the preconditioned system.

We make a general approach to optimization of the local condition num-
bers. The optimal polynomials are in a linear vector space V = 〈f1, f2, . . . 〉.
Every optimized polynomial υk has a representation of

υk :=
k∑

i=1

qkifi, k = 1, . . .

We have to determine the coefficients qki that υk has got the desired proper-
ties. We did use some direct procedures for minimization of the condition
numbers.

For example we construct the cubic edge shape function on a triangle.
The raw edge function f9 is b0b1(b1 − b0). We write the optimized edge

44 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Table III: Condition numbers of the preconditioned stiffness matrix for Pd,±
p

d p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

2 6.00 19.2 21.5 28.8 29.0 39.7 54.5 64.3
3 12.3 125. 132. 235. 467. 577.
4 21.1 336. 467. 882.

shape function υ9 as

υ9 = q0b0b1(b1 − b0) + q1b0b1 + q2b
2
0b1b2 + q3b0b

2
1b3 + q4b0b1b

2
2

which implies hierarchy (from degree 2 to degree 3) and coupling (with
triangles with common edges). The condition of S±

3 symmetry reads as

q2 + q3 = 0, q1 = q4 = 0

Normalizing the function υ9, there is only one parameter left, which can
be obtained by an optimization procedure for condition number. The final
result will be

υ9 = b0 b1 (− 16.635193 b0 b2 + 7.277900 b0 + 16.635193 b1 b2 − 7.277900 b1)

All optimization procedures have in common the necessity of a correct
management of the polynomials, their symmetry and their coupling prop-
erties. This includes the construction of the appropriate basis functions for
each optimized shape function set. The optimized shape functions are a
linear combination of the basis functions. The combination itself depends
on the optimization. The actual basis functions f̃i are in some cases (opti-
mized) shape functions υk of previous optimization steps and in some cases
symmetrizations of them.

We now compare the resulting local condition numbers. We choose the
Laplace operator on the equilateral simplex. The condition numbers shown
in table III were evaluated numerically.

We do not prove a special kind of asymptotics in p but we simply present
the actual numbers of interest. We think that a prove would not only be
intricated because of the structure of the function spaces Pd,±

p , but dropping
the constants it also would be of less practical worth for low p.

Nevertheless we obtain low local condition numbers. Hence an addi-
tional acceleration of an iterative solver would be obsolete. But our main

1.4 Shape Functions for Iterative Solvers 45

result still are the new polynomial spaces P sym
p and P±

p including their
properties.

We present the shape functions, optimized for domain decomposition
preconditioned stiffness matrices of chapter 1.4.3 on page 43. We show the
functions belonging to P2,±

p .

Figure 22: Symmetric hierarchic polynomials f0 and f3 of P2,±
1 and P2,±

2

Figure 23: Symmetric hierarchic polynomials f6 and f9 of P2,±
3

1.4.4 Iteration Counts for Iterative Solution

The local condition numbers for the preconditioned system of equations
are depicted in chapter 1.4.3 on page 43. They serve as an upper bound
for the global condition numbers. We now present iteration counts for the
iterative solution of global linear system of equations. We have to keep
in mind the dramatic increase of un-preconditioned condition numbers for
increasing p at high degrees p.

46 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

Figure 24: Symmetric hierarchic polynomials f12 of P2,±
4 and f15 and f18 of

P2,±
5

Figure 25: Symmetric hierarchic polynomials f21, f24 and f27 of P2,±
6

We already have presented an iterative two-level domain decomposi-
tion solver while constructing an optimal set of shape functions similar to
[Man90b, BCMP91]. We now compare this one with another approach due
to [Deu94] only exploiting the history of refined grids called CCG. Optimal

Figure 26: Symmetric hierarchic polynomials f30 and f33 of P2,±
7

1.4 Shape Functions for Iterative Solvers 47

Figure 27: Symmetric hierarchic polynomials f36, f39 and f42 of P2,±
8

edge

molding

valve

lug

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

10
5

1

1.5

2

2.5

3

3.5

4

4.5

5

degrees of freedom

ite

ra
tio

ns

Figure 28: CCG iterations with diagonal scaling for adaptive h–version, es-
timated error .1

complexity O(n) of the solution up to discretization error has been proven
for linear finite elements in [Sha94, BD95]. This of course carries over to
higher order h–version with other (worse) constants. For p–version and
h–p–version with limited pmax, we can obtain constants of the correspond-
ing higher order h–version, which probably are of limited use for practical
considerations and are not fully satisfying theoretically.

The CCG algorithm is originally equipped with a diagonal scaling. Hence
we combine the pure CCG algorithm with the domain decomposition pre-

48 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

edge

molding

valve

lug

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

0

5

10

15

20

25

degrees of freedom

ite

ra
tio

ns

Figure 29: CCG iterations with diagonal scaling for adaptive p–version, es-
timated error .1

conditioner derived. We choose a multi-grid V2,2 cycle with 3×3 block sym-
metric Gauss-Seidel smoother for the approximate solution of the global
system of linear elements arising in domain decomposition and use direct
solvers for the local linear systems connected with the geometric entities
such as edges, triangles and tetrahedra.

We present iteration counts for different solvers, FEM versions and some
examples described in chapters 3.2 on page 90 and 3.3 on page 102. Fig-
ures 28 on the page before for adaptive h–version, figures 29 and 30 for
adaptive p–version and figures 31 and 32 for adaptive h–p–version (h–p ra-
tio at .7maxh− err/p− err). The figures show the number of cg-iterations
per level. Each level is drawn at the number of degrees of freedom in-
volved. Iteration counts start at 1 because of the ‘one’ iteration of the direct
solver used on the initial coarse grid.

Figure 28 on the preceding page shows the iteration counts for adaptive
h–version and CCG solver with diagonal scaling. The number of iteration
is at least 3 for the Poisson equation problems and at least 5 for elasto me-
chanics problems. The elasto mechanics test cases need higher iteration
counts because of the 3 components of the solution vector, the 3× 3 blocks
in the stiffness matrix and the spectral properties at Poisson ratio .29 used.

1.4 Shape Functions for Iterative Solvers 49

edge

molding

valve

lug

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

8

9

degrees of freedom

ite

ra
tio

ns

Figure 30: CCG iterations with domain decomposition preconditioner for
adaptive p–version, estimated error .1

It is interesting to observe that the genuine 2D problem of the attachment
lug (‘lug’) requires lower iteration counts than the full 3D elasto mechanics
problems ‘molding’ and ‘valve’ although all problems are computed with
3D FEM and full 3D refinement. All graphs show the typical behavior of a
short increase of the number of iterations, an high peak at certain number
of unknowns and a slow decay down to a ridiculously low number of itera-
tions, also demonstrated in [BD95]. For h–version we do not apply domain
decomposition preconditioning, because of the lack of higher p–extensions
for space decomposition.

The next two figures show iteration counts for adaptive p–version with
a forced minimum refinement of .3. The graphs for diagonal precondition-
ing, figure 29 on the preceding page show maximal iteration counts about
20 for elasto mechanics examples and below 5 for most of the Poisson equa-
tions. The almost polynomial solution and the analytic solution do not
differ much. The vertex-singularity example requires more iterations than
usual problems while approximation of the singularity remains bad during
p–adaption. Even uniform p–version cannot resolve the singularity prop-
erly, as show in chapter 3.2.5 on page 98. This effect spreads out onto the
behavior of the iterative solution procedure. The edge-vertex-singularity

50 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

edge

molding

valve

lug

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

degrees of freedom

ite

ra
tio

ns

Figure 31: CCG iterations with diagonal scaling for adaptive h–p–version
(ratio .7), estimated error .1

is also affected from the approximation drawback, but its linear algebra in
conjunction with refinement shows an oscillatory behavior. The standard
test examples show the typical peak behavior of CCG, while the pure 3D
elasto mechanics examples seem to be in a pre-asymptotic increase phase
for .1 global energy error. Iteration counts are usually higher than for h–
version because of worse condition numbers of the global stiffness matrix
due to better approximation properties.

Figure 30 on the page before shows the number of iterations for domain
decomposition preconditioned CCG. Iteration counts for elasto mechanics
are generally cut down to 9 by preconditioning. The ‘valve’ problems re-
action to preconditioning is better than for the ‘molding’ example, because
the loads act in all three directions in contrast to the uni-axial loading in
the ‘molding’ case. The vertex-singularity and the edge-vertex-singularity
problems show high iteration counts as in the previous case without pre-
conditioning. The graphs do not show the typical peak behavior of CCG

any longer, but a monotone increase. Preconditioning has the effect of re-
duction of the condition number especially for low p, whereas the condi-
tion numbers increase with p. Hence the usually high iteration counts in
the middle of the refinement history meet low condition numbers, lower-

1.4 Shape Functions for Iterative Solvers 51

edge

molding

valve

lug

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

8

9

degrees of freedom

ite

ra
tio

ns

Figure 32: CCG iterations with domain decomposition preconditioner for
adaptive h–p–version (ratio .7), estimated error .1

ing them and the usually low iteration numbers at the tail are increased by
large increase of condition numbers. The computational grids (h and p dis-
tribution) may differ slightly, because the approximate solution does affect
error estimation and therefore grid refinement.

The last two figure are onh–p–version. We used a .7max ratio strategy. It-
eration counts for diagonal scaling (without preconditioning) for elasto me-
chanics are below 20 and for Poisson problems are below 10. The genuine
2D mechanics example ‘lug’, it actually is mechanics, and the edge-vertex-
singularity examples, challenging approximation problem, show relatively
high numbers of iterations. The other test examples show typical peak-be-
havior of CCG. There is a small oscillation for the ‘valve’ example probably
due to the refinement procedure. Absolute number of iterations are com-
parable or a little bit higher than for adaptive p–version, which is higher
than for adaptive h–version, due to higher p’s bad condition numbers and
the improved approximation properties of the grids.

The domain decomposition preconditioned CCG for adaptive h–p ver-
sion is presented in figure 32. For elasto mechanics examples the number
of iterations is reduced down to a maximum of 9 and the attachment lug
example does benefit, too. The positive effect of preconditioning seems to

52 1 THEORETICAL DERIVATION OF SPECIAL SHAPE FUNCTIONS

be comparable to preconditioning pure adaptive p–version. Graphs show
the monotonic increase pattern already discussed. The different graphs
look very similar, there are no drop outs due to approximation problems
as for the p–version. Preconditioning generally has an effect of smoothing
the graphs and making the graphs of different examples approaching each
other. Iteration history is regularized in this sense.

53

2 Algorithmic Constituents

In this chapter we are going to discuss some components of an adaptive
h–p FEM code which deal with implementation, but which are of general
use beyond simplex shaped finite elements. Issues like a posteriori error
estimation, adaptive control and parallelization address rather general di-
rections of actual research. They are reviewed from the h–p point of view.
There are two more technical topics arising in the use of higher order ele-
ments. They are on the evaluation of polynomials in the code and export of
polynomial solutions from the code, the first related to symbolic computa-
tion and the second one related to computer graphics.

2.1 Error Estimation and h–p–Refinements

2.1.1 Error Estimation

Putting this new shape functions into a framework of an adaptive or feed-
back finite element code, we have to consider some other details. We use an
a posteriori error estimator to indicate those elements and regions to refine
in the next step of the adaptive procedure. Assuming that our initial grid
is fine enough, we can use an a posteriori error estimator. For a theoretic
review of a posteriori error estimators c.f. [BEK93b]. Some famous error
estimators can be considered as an extension of the finite element space by
some shape functions and the approximate solution of the enlarged sys-
tem by localizing domain decomposition preconditioning techniques. This
holds for error estimators of Babuška and Rheinboldt [BR78], Bank and
Weiser [BW85], Babuška and Miller[BM87] and Deuflhard,Leinen and Yse-
rentant (DLY) [DLY89]. Other concepts of a posterior error estimates con-
tain dual methods (c.f. comparison [ODRW89]) or asymptotic exact esti-
mators [BY87].

We consider the edge based error estimators of DLY type. The origi-
nal version is the extension of the space of linear functions by p–hierarchic
quadratic edge functions. The stiffness matrix is splitted into blocks for
linear functions (L) and quadratic functions (Q):

(
ALL ALQ

At
LQ AQQ

)

The linear system of equations is approximately solved by one iteration,

54 2 ALGORITHMIC CONSTITUENTS

using the preconditioner

(
ALL 0
0 diag(AQQ)

)

We want to calculate the coefficients of the quadratic shape functions, hence
we only use the diagonal of AQQ and the actual solution of the linear sys-
tem. The spectral equivalence of the preconditioner and the stiffness matrix
may be obtained by standard domain decomposition analysis techniques.
For each edge we have to solve linear systems with one unknown. The
most expensive part is the assembly of the required parts of the stiffness
matrix and the right hand side terms. For more than one unknown per
node, we either can use a block diagonal of AQQ, or we can use the diago-
nal with less computational work, but less precision.

edge

molding

valve

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

degrees of freedom

ef
fe

ct
iv

ity
 in

de
x

edge

molding

valve

ed−vert

vertex

poly

analyt

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

degrees of freedom

ef
fe

ct
iv

ity
 in

de
x

Figure 33: h–version’s error estimator efficiency index for uniform version
(left) and adaptive version (right), different test cases

The error estimator can be used in any space dimension d, and origi-
nally was proposed for 2D. For 3D there exists a comparison with another
generalization of the error estimator [BEK93b], generalizing the property
of bubble functions being applied to the boundary of the element which
now are triangle faces. Hence that version uses quadratic edge functions in
conjunction with cubic triangle functions. Both functions types have to be
combined in the right manner, because they have different approximation
properties. Numerical experiments show the superior performance and the
higher cost of this estimator. It seems difficult to judge. We do not consider

2.1 Error Estimation and h–p–Refinements 55

this variants further, because we do not use the pure cubic triangle shape
functions needed and we want to have a concept applicable for different p.

+ +

p−error h−error

Figure 34: Edge oriented p– and h–error estimator

edge

molding

valve

ed−vert

vertex

poly

analyt

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−2

10
−1

10
0

10
1

10
2

10
3

degree p

ef
fe

ct
iv

ity
 in

de
x

Figure 35: Error estimator’s efficiency index for p–version (without scal-
ing), different test cases

We have to generalize the concepts of error estimation to higher degrees
p and to variable p. We keep the property of local one dimensional edge ex-
tensions. The existing function space is now called L and the space of edge
functions, each one one degree higher than in L is denoted byQ. The whole
mechanism of construction, proof and implementation is analogous. Al-
though we have to keep in mind the constants for spectral equivalence for

56 2 ALGORITHMIC CONSTITUENTS

high p. We already have mentioned the increase of condition numbers for
high p in the case of preconditioning. The same holds for the constants for
error estimation. Nevertheless error estimates for high p in regular parts of
the domain are quite precise because of the good approximation properties.
The error estimator constructed will be named the p–error, for p–extension.

It has been mentioned in [BY87] that odd p FEM errors are dominated
by jumps of derivatives across element boundaries, whereas even p FEM
errors essentially are interior errors. This means that for odd p the edge ori-
ented error estimators are supposed to work sufficiently well and for even
p they might even underestimate the true error. This effect is numerically
visible for degrees one and two in figure 35 on the page before. We will
scale even order edge error estimates by some factors f(p) > 1 decreasing
in p.

We present error estimators’ efficiency indices (ratio of estimated error to
true energy error) for some examples described in chapters 3.2 on page 90
and 3.3 on page 102. Figures 33 on page 54 present some numbers for uni-
form and adaptive h–version error estimation and figure 35 on the page
before presents some for uniform p–version.

Left figure 33 on page 54 shows indices for uniform h–version. The lines
are quite flat denoting rather constant deviation of the estimation from the
true values. Hence for each test case there is a tuning parameter improving
the error estimator just by scaling. Standard Laplace examples overesti-
mate the error by a factor about 7. The elasto mechanics examples meet
the error quite well. The vertex- and the edge-vertex-singularities deviate
form the general outline. For the vertex-singularity additionally there is a
dangerous underestimation of the error. This is due to bad estimates in the
vicinity of the vertex-singularity, containing a major part of the global error.

Right hand side of figure 33 on page 54 contains analogous graphs for
the adaptive h–version. The lines are smooth and constants are slightly
better (nearer to 1). Generally indices are often lower than for the uniform
refinement counterpart. This is because of the adaptive refinement, which
can be interpreted as an optimization procedure for minimization of er-
ror estimates. The vertex-singularity graphs shows some oscillation due to
arithmetic progression of the number of nodes. Adaptation does improve
the error estimate even in this case, converging to 1. It is interesting to note
that the minimization of error estimates by grid refinement does improve
the quality of error estimates besides the reduction of the true error. A
minimization of a measure totally uncorrelated to the true error would not
cause this effect.

We already have mentioned some difficulties with even order FEM er-

2.1 Error Estimation and h–p–Refinements 57

ror estimation in figure 35 on page 55. This especially holds for quadratic
elements. We generally obtain an oscillatory behavior in p. The trend of
underestimation continues for quartic elements (p = 4) and even solutions
such as the analytic, polynomial and edge-singularity problem. However
in general there is no trend for higher order even p. These figures do not
use any scaling applied to further tests.

Along the same line we construct another error estimator, called the h–
error: We choose the space Q as one dimensional space extension located
at the edges. Now this should be h–refinement which is bisection or the
h–hierarchic hat-function. The constants of spectral equivalence are not as
good as for the p–extensions, but we will use the estimations as indicators
for decisions, whether to refine an element in h– or p–way. For refinement
decision the p–error is used.

2.1.2 Standard Refinement Control

The goal for any adaptive refinement control is the minimization of compu-
tational work while guaranteeing a prescribed global precision. We already
obtained local and global error estimates. We have to decide, whether to re-
fine an element or not. This is sometimes called error indicator ∈ {0, 1} in
contrary to more precise error estimators ∈ R+.

First we consider pure h–version and pure p–version with binary deci-
sions whether to refine an element. Minimum work is often relaxed to a
condition of a low number of degrees of freedom with an estimated global
error ε below a given tolerance tol. More precisely one has to take the num-
ber of estimation-refinement-solution cycles into account, which should be
low, too. The condition of low number of degrees of freedom can be trans-
formed into a low number of elements. Looking at the variation of an op-
timal grid , or introducing local optimality like Pareto optimality [Rhe80]
one ends up with a requirement for an equidistribution of local (estimated)
errors εi:

max
grid i

εi ≤ min
father element i

εi

or more vague for n elements

εi ≈ 1

n
ε = εi

This characterization directly leads to a very effective greedy algorithm,
refining a suitable amount of elements carrying the biggest local errors.

58 2 ALGORITHMIC CONSTITUENTS

The elements are selected by a certain threshold θ,

εi ≥ θ

There are many suggestions for the selection of the threshold θ.

• refine all, θ = 0 is often used for p–version FEM [Sza85], if the global
error ε does not match the required precision.

• fixed percentage c of elements is refined, choose θwith#{εi ≥ θ}/n ≥
c. This guarantees a geometric progression of number of elements
and hence some complexity bounds on the whole FEM algorithm
[Ban94]. The median of the error distribution is c = 1/2.

• a fraction c of the maximum error, θ = c · maxi εi. Refining only a
small number of elements, high c < 1 leads to optimal distributions
of errors. We reduce only the biggest errors [Roi89a].

• the mean value of local errors, θ = c · ε/n, which does not need a
problem dependent tuning parameter using c = 1.

• fixed percentage c of the total energy error is refined, choose θ with∑
εi≥θ εi ≥ cε. This guarantees in conjunction with a proper ini-

tial grid the convergence of the whole adaptive FEM process due to
[Dör94].

• some combinations of the criteria, e.g. a linear combination of maxi εi
and ε/n, while preserving a geometric prescribed progression of nodes
(three parameters) [Lei90].

There is a modification, not just using the estimated local errors εi, but
estimations for the gain of refinement [BR78]. This can be accomplished by
means of extrapolation [ERFA91]:

ε̃i = ε2i /ε
father
i

introducing another component for decision ε̃i. Now the maximum crite-
rion also does not need a parameter

ε̃i ≥ θ = max
i
εi

The transfer of error estimates evaluated on edges to elements has a
smoothing property. The procedure of green closure of triangulations to

2.1 Error Estimation and h–p–Refinements 59

avoid slave nodes smoothes the triangulation in a discrete sense, too. For
p–version some max p conditions on common element boundaries smooth,
too. The procedures enhance the approximation quality of the grids, lead-
ing locally to more regular grids with more accurate solution and error
estimates again. Local failure of error estimates may be overcome by forc-
ing refinement because of neighbor refinement. Any resulting slight over-
refinement does degrade performance of the adaptation process.

Asymptotically ε → 0 the different strategies all deliver the same local
optimal grids [Rhe80]. The actual performance is guided by the quality of
error estimation and the adaptation of tuning parameters towards the test
case. There are also considerations about grid optimization instead of error
estimation like [Jar86].

2.1.3 h–p Refinement Control

Besides indication of refined elements, we have to perform another task,
identifying h refined elements and p refined ones. First we have to state,
that the criterion of optimality may be modified. The derivation of the
equidistribution of local errors uses an assumption of equal work per el-
ement. A generalization is given in [ROD89] using an equidistribution of
error per work

ε̂i = εi/P (wi), P polynomial

for which we have to introduce some measures for work load depending
on the local polynomial degree pi:

wi ≈
(
pi + d

d

)
= O((1 + pi)

d) for varying pi

wi is the number of unknowns, w2
i is the number of non-zeros in the stiff-

ness matrix and w3
i is the complexity of local matrix diagonalization. Fol-

lowing [Deu83] we instead have to consider terms of

log ε̂i = log εi/P (wi), P polynomial

We now can apply the previous strategies with threshold θ and estimated
local errors for each local h–refinement ε̃hi and p–refinement ε̃pi , considering
the local work wh

i and wp
i for both possible decisions. Actually there is a

third possibility of combined refinement ε̃hpi and whp
i . The workloads may

60 2 ALGORITHMIC CONSTITUENTS

be estimated by

wh
i = wi2

d

wp
i = wi(

2+pi
1+pi

)d

w
hp
i = wi(2

2+pi
1+pi

)d

We can take different extrapolations of old and actual h–error and p–
error for εhi , εpi and εhpi . We now employ the usual θ threshold strategy with
iteration over all elements i ∈ {1, . . . , n} and no, h, p and h− p refinement
for each element.

We also introduce a different approach, without history and extrapola-
tion with old error estimates. History of local errors is not available in a
startup phase of the algorithm. In 3D we do not perform many refinement
steps, so history is of limited benefit. It may be inaccurate and misleading,
if one tries to compare errors for a previous p–refinement with a previous
h–refinement, or h–refinement with different orders p. Hence we do not
use any history of local errors. We have to base the decision on estimated
p– and h–errors and on the known workloads. The h–error is of low global
quality, so we use the p–error for standard refinement decision. Afterwards
we decide, whether to refine an element the h– or the p–way. Now we em-
ploy a quotient of h–error and p–error, using usual threshold techniques.

For other considerations about h–p grid generation see Gui and Babuška
[GB86a, GB86b, GB86c], Oden [Ode94], Rachowicz, Oden and Demkowicz
[ROD89] and A. Hohmann [Hoh94]. Similar work on best bases selection
is done in wavelet context c.f. [CW90].

2.2 Parallelization

A great part of all parallel finite element research efforts are directed to-
wards parallel linear algebra. Domain decomposition methods are con-
sidered as decomposing the physical computational domain into pieces
mapped to processors. However it turned out, that standard multilevel
and multi-grid methods parallelize quite good [BPX90, Zum91, Gri94] and
many implementations like [Bas93, Lem94] and are often faster than ex-
cessive cutting lines of information by lower communication methods like
domain decomposition. Hence we only consider parallel implementations
of multilevel finite element methods, which are identical to the scalar ones
(up to rounding errors).

Let us assume there is an efficient parallel implementation (data parallel)
of an adaptive multilevel h–version finite element code available. We now
want to add the p–version capabilities described (like [BEM92]), towards

2.2 Parallelization 61

implementing an adaptive h–p–version. For polynomial degree p > 1
we add local work and we increase the local stiffness matrices, which are
dense. For uniform p global and local work increases. Meanwhile data at
the boundary of elements or element patches decreases relatively. Hence
parallel efficiency will get better. If we now consider varying degrees p,
we introduce some imbalance of work. Hence an adaptive partitioning al-
gorithm has to take the different local work into account, which is only a
minor modification in most cases.

Properties of a parallel adaptive h–p code strongly depend on the effi-
ciency of the underlying parallel adaptive h code. We want to mention
some steps towards such a parallel adaptive code. We want to make some
distinctions, sorted form ‘easy’ to ‘still to do’:

• non parallel codes: all kinds of adaptive and uniform h and p codes,
h–p codes with restrictions mentioned (usual scalar codes)

• fully adaptive parallel codes on shared memory computers, without
data partitioning but with coloring of data [Lei90, Bir93], perform-
ance is limited by computer hardware restrictions (not scalable)

• parallel codes on (uniform refined) structured grids: main part of all
parallel finite element codes, grid partition is easy (just use High-Per-
formance-Fortran, Parmacs, . . . , excellent efficiencies)

• parallel codes on (uniform refined) unstructured grids: grid parti-
tion is calculated (often scalar) before actual computation (use good
heuristics like [PSL90])

• parallel codes on a set of non-uniform refined unstructured grids,
given a priori: grid partition for the whole set is calculated before
actual computation (for block structured grids, with adaptivity in the
scalar case [Lem94], with interfaces for dynamic repartitioning and
with adaptivity in the scalar case [Bas93])

• parallel codes on adaptively derived non-uniform refined unstruc-
tured grids: grid partition for the initial grid can be calculated before
actual computation, following grid partitions have to be done while
parallel processing (without repartitioning, no multi-grid linear alge-
bra [BSS91, Wil92, JP92])

We conclude that there are efforts towards adaptive parallel codes, but
existing ones are either parallel or adaptive. Looking at parallelization of

62 2 ALGORITHMIC CONSTITUENTS

unstructured finite element codes with different grids or evolution turns
out the enormous implementational efforts to maintain data and data struc-
tures correct in parallel. Of course it is easy to use a very high level of ab-
straction, partitioning single elements with a comfortable numeric library
sacrifying performance and efficiency. However gains of parallel comput-
ing for this kind of problems are supposed to be so small, that full optimiza-
tion of the parallel code has to be applied. This means a very intricated and
error prone implementation. But there is a more general problem unsolved.
Following [Zum91], we mention some complexity bounds for h–version in-
volved. n denotes the number of unknowns, P is the number of processors.
The nested grids are assumed to have a geometric progression of nodes, we
have O(log n) different grids.

We assume a typical two-level non uniform memory access computer
architecture. Local memory access is assumed to have a linear access pa-
tern and it is sufficient to count the number of operations performed (‘com-
putation’). Global memory access is sensitive to both, volume of data ac-
cessed (‘data to transfers’) and the number of block read or write operations
(‘number of transfers’). This pattern can be motivated either by message-
passing or by a cache coherence protocol for shared memory and is found
to be very precise [Zum91]. All numbers are complexity bounds neglecting
constants, where n or π turns to infinity (n ≥ π).

2.2 Parallelization 63

description scalar parallel number local data
computation of local to transfer
(π processors) transfers

assembly of local matrices n n/π 0 0
coupling to global matrices n n/π 1 ≤ n/π
matrix multiply n n/π 1 ≤ n/π
scalar product n n/π + logπ logπ log π
multilevel preconditioner n n/π 1 n/π + logn
multi-grid preconditioner n n/π logn n/π + logn
fixed number of precond. n n/π + logπ logπ n/π + logn

cg iterations (+ logn) + logπ
error estimation n n/π 1 ≤ n/π
marking elements n n/π + logπ logπ log π

for refinement
refining grid n n/π 1 ≤ n/π

without ‘green’ closure
nested iteration cycle, n n/π + logn log π logn log π n/π + log2 n

without repartitioning (+ log2 n) (+ log2 n) + logn log π
one grid bisection, n n/π + logπ logπ n/π + logπ

by Lanczos iteration
one grid partitioning, n logπ n log π/π log2 π n/π

nested bisection + log2 π + log2 π

partitioning of all grids n logπ n log π/π log2 π logn n/π

+ log2 π logn + log2 π logn

The grid partitioning algorithms known have a complexity O(n log π)
for recursive spectral bisection [PSL90] and modifications such as [WCE95]
with references therein and even higher O(n logn) for Hilbert curve in-
dex based partitioning like [PO93] and [KOR95] (in this reference, adaptive
means variable computational environment), a complexity which is larger
than of the complete numerical algorithm itself. Just looking at complex-
ities may be misleading here, because a parallel version of a one dimen-
sional index based method with a high scalar and parallel complexity of
O(n log π+n/π log n) (parallel sort) often is much faster than the very good
partitions obtained by recursive bisection algorithms. Although for mas-
sively parallel computations the algorithms can not be used without spe-
cial care. Clustering techniques [Bas93, WCE95] trace the problem to lower
granularity and put the limits of log π to higher π. Another improvement
is the consideration of ‘scaling up’ a problem, denoting n/π is fixed while
n turns to infinity. For a parallel computer with fast communication hard-
ware, the number of transfers may be neglect-able. There is a hope that fast
communication is a future direction of parallel computing. Depending on

64 2 ALGORITHMIC CONSTITUENTS

the problem solved and the hardware used, one may trade off granularity
versus quality of partitioning. But at the end, a general solution for the
O(n) partitioning problem (if ever possible) still has to be found.

2.3 Evaluation of Shape Functions

We want to mention one implementational detail concerning the numerical
evaluations of the shape functions. [Pea76] used monomials for perform-
ance reasons, using less arithmetical operations per evaluation. However
we use a fixed set of integration formulas in the finite element code and
therefore a (greater) fixed set of evaluation points (in barycentric coordi-
nates) a priori known. We simply store the values of the shape functions at
these points in a table. Restoring these values is of course cheaper than cal-
culating them. The table may be set up without any connection to a finite
element run.

Actually we have to compute the table once. We could have done this
completely in the symbolic algebra package used for computing the shape
functions itself, put we did this in the code itself, by means of symbolically
generated code. But at the first time the was a drawback concerning a bad
code optimization of the code generator. Consider the following example,
a general polynomial of degree 3 in two variables:

f =
∑

i+j≤3

ai,jx
iyj

or in computer input

f:=a30*x**3+a03*y**3+a21*x*x*y+a12*x*y*y+
a20*x*x+a11*x*y+a02*y*y+a10*x+a01*y+a00;

We get generated C source code without optimization like this:

h=pow((double)x,3.0)*a30+pow((double)x,2.0)*y*a21+
pow((double)x,2.0)*a20+x*pow((double)y,2.0)*a12+
x*y*a11+x*a10+pow((double)y,3.0)*a03+
pow((double)y,2.0)*a02+y *a01+a00;

using the amount of arithmetic operations: 5 power, 12 mult, 9 add.
Turning on optimization, we are able to drop the power operations:

double a00,y,a02,a12,x,a03,a11,a21,a20,a30,a01,a10,h;

h=a00+y*y*(a02+a12*x+a03*y)+y*x*(a11+a21*x)+
x*x*(a20+a30*x)+a01*y+a10*x;

2.4 Post-processing 65

using the amount of arithmetic operations: 12 mult, 9 add.
Simply using Horner’s scheme (by hand) for polynomial evaluation re-

cursively for each variable, we are able to reduce computational effort to

h=((a30*x+(a21*y+a20))*x+((a12*y+a11)*y+a10))*x+
(((a03*y+a02)*y+a01)*y)+a00;

which is an amount of arithmetic operations: 9 mult, 9 add.
The Horner option has been added to the new release of the symbolic

package used.

2.4 Post-processing

Some pictures showing results from finite element calculations are made
by a standard finite element post processor. It uses linear interpolation be-
tween given data at control points connected with nodes or finite elements.
For h–version of finite element this is an exact representation of the solu-
tion because of the linear shape functions used. p–extensions are not used
in graphics. This may be dangerous in the presence of large elements with
high p used in p– or h–p–version.

 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 1 1 4 4 4 4

Figure 36: two components of a solution of an h–p adaptive procedure,
common h–grid and different distribution of p, numbers denote polyno-
mial degrees

66 2 ALGORITHMIC CONSTITUENTS

It is of course possible, to project the calculated solution onto a refined h
grid for export to graphics. However the structure of the calculation grid
would be lost in the post-processor and we applied p– and h–p–version for
the sake of efficiency, which we do not want to sacrify for graphics. To
fix the later one, one could reduce precision for post-processing, using less
refined h–grids. But there is no convenient way of determining a priori,
what part of the data has to be precise for interactive post-processing.

We will present some steps towards post-processing including higher p
and using standard formats of data from computer graphics in 2D follow-
ing [Zum94]. In one dimension we just show an output by straight lines
(figure 36 on the page before). The step size for graphics (polynomials
p ≥ 2) is chosen in dependence of the resolution of the output device.

If the graphical results of the piecewise linear representations are not sat-
isfying and we want to increase precision, we have to supply additional
data. This can be done by using patches with a higher level of precision.
In order to improve the patches, we choose higher order B-splines and ra-
tional B-splines, which are both heavily used in computer graphics. Any
component of a solution is a surfaces, that has to be global continuous. The
surfaces are analytic on each local finite-element.

2.4.1 NURBS

We now concentrate on the exact graphical representation of higher order
polynomial shape functions stemming from a finite element code. We will
use one complete description of a NURBS for each finite element (p ≥ 2)
according to a standard computer graphics data format. We will see that
every polynomial of degree p on a triangle is exactly contained in a NURBS
of degree p.

If we use central projection for representing the surface, which is in ⊂ R3,
starting with polynomials, we have to do the remaining parts of computa-
tion with rational functions. Hence we can operate on rational functions
anyway. They transform to rational functions of the same degree under
central perspective transformations. Orthographic perspective is consid-
ered as a special case of central perspective. Rational functions sometimes
are efficiently implemented in graphic subsystems.

We introduce the projective space E4 based on R4 by the relation

�x = λ�y mod R4 , λ ∈ R, λ �= 0 ⇒ �x = �y mod E4

Now we can write central projection in projective coordinates, which is the

2.4 Post-processing 67

way it is typically implemented in graphics hardware

�x =

⎛
⎜⎜⎜⎝
x1
x2
x3
1

⎞
⎟⎟⎟⎠ �→ A�x =

⎛
⎜⎜⎜⎝
�a1�x
�a2�x
�a3�x
�a4�x

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝
�a1�x/�a4�x
�a2�x/�a4�x
�a3�x/�a4�x

1

⎞
⎟⎟⎟⎠

with transformation matrix

A =

⎛
⎜⎜⎜⎝
�a1
�a2
�a3
�a4

⎞
⎟⎟⎟⎠ ∈ R4,4

We now want to define NURBS. Using B-splines in 1D (curves), we can
define every spline by its set of control points xi and its weights ωi.

f(t) =
n∑

i=0

ωiB
n
xi
(t)

The B-Splines may be implemented using de Casteljau’s algorithm ([DH93],
for further reading [Far90]). This may be generalized to two parameter sur-
faces on regular grids of control points. The simplest one is a tensor product
approach for quadrilaterals:

f(t, u) =
n∑

i=0

n∑
j=0

ωi,jB
n
xi
(t)Bn

yj (u)

Inserting this B-spline surface into central projection,

�f(t, u) =
n∑

i=0

n∑
j=0

�ωi,jB
n
xi
(t)Bn

yj (u) ∈ R4

leads to rational B-splines. If the control points xi, yi are not equidistant,
we have got ‘non-uniform rational B-splines’, called NURBS.

We want to represent one polynomial of degree p by a NURBS. Hence
we transform the piecewise rationals into a meromorph function choosing
in 1D the set of p+ 1 control points

(x0, x1, x2, . . . , xp) = (0, 1/p, 2/p, . . . , 1)

which corresponds to a set of spline ‘knots’ actually used

(k−p, k−p+1, . . . , k0, k1, . . . , kp+1) = (0, 0, . . . , 0, 1, . . . , 1)

68 2 ALGORITHMIC CONSTITUENTS

We turn the meromorph functions into a polynomial by the weights

(�ωi,j)4 = 1

For uniform interpolation we set

(�ωi,j)1 = x(b1 = i/p, b2 = j/p), (�ωi,j)2 = y(b1 = i/p, b2 = j/p)

with x and y being the coordinate system of the finite element We are left
with a transformation of the actual solution to a set of

(�ωi,j)3

which is unique and linear.

2.4.2 Trimming Bivariate NURBS

Figure 37: A bivariate NURBS on a square, automatically resolved into
patches and a triangular trim curve for it, hardcopy from screen.

Unfortunately in most cases only the bivariate NURBS for the quadrilater-
als are implemented in graphical subsystems (Iris GL, OpenGL, Hewlett-
Packard Starbase), but we need them on the triangle. NURBS on the trian-
gle are determined by a lower number of coefficients (control points), but

2.4 Post-processing 69

Figure 38: The bivariate NURBS trimmed to a NURBS on a triangle, addi-
tionally with texture mapping in an interactive scene viewer tool

they are completely contained in the space of NURBS on the quadrilater-
als of the same degree and the double area, analogously to the polynomial
spaces. Hence we can compute the coefficients of the NURBS on the quadri-
lateral instead of the ones on the triangle. For graphical representation we
have to remove one half of the quadrilateral which can be done by ‘trim-
ming’. We restrict the domain of parameters to a subset of [0, 1]2 bounded
by NURBS curves called trimming curves. This is shown in the sequence of
figures 37 on the facing page and 38. The NURBS is defined in parameter
space on [0, 1]2 → E4 . We can restrict this space to a domain T ⊂ [0, 1]2

defined as the interior of an oriented trimming loop. In our case T will be
the triangle T = {(x, y)|x, y, (1− x− y) ≥ 0}.

2.4.3 Adaptive Tessellation

There is a general problem concerning higher degree polynomials: We can-
not render an higher order surface directly, if the degree p of the poly-
nomials exceeds three. Hence we apply adaptive subdivision of patches
until the area of display is resolved fine enough (display space), or the ob-

70 2 ALGORITHMIC CONSTITUENTS

Figure 39: A solution on an L-shaped domain with quadratic triangle
shaped elements. It is automatically resolved into patches. We show a
global view and a detail of the adaptive tessellation. The picture enlarge-
ment triggers a finer tessellation.

ject itself is resolved fine enough (object space) (figure 39). We postponed
this problem to the graphical software package (here Iris GL). We only sup-
ply the coefficients of the polynomial in a NURBS representation and we
supply a parameter c ∈ [0, 1] for adaptivity in display space, called ‘geo-
metric complexity’ (figures 40 on the next page and 41 on page 72).

We now show the influence of the polynomial degrees onto the tessella-
tion (figure 41 on page 72). The graphical object of the figures itself comes
from h–p–version finite element calculation on a 2D L-shaped domain with
non-uniform degree p and is a rather rare one in graphical representation.
Up to rounding errors, the functions on the boundary of the patches are
equal, because the global function is approximated continuously. Hence
the dense subdivision of quadratic elements which have an edge in com-
mon with a linear element do not produce errors in continuity. A key point
is either a stable (unique) representation of the polynomials or a high pre-
cision of the coefficients. Relying on precision, excessive subdivision or
excessive enlargement of the picture will result in display errors. Such er-

2.4 Post-processing 71

Figure 40: Quadratic triangle shaped elements, geometric complexity for
adaptive control of the tessellation is set to 0.01 (detail) and to 0.9.

rors will always occur on edges of two triangles with different represented
polynomials or different subdivided polynomials, which is the case for dif-
ferent polynomial degrees.

A general solution for this problem is not a change of the NURBS ba-
sis. There are two alternatives: One can use the original representation
of data of the finite element method and do the adaptive tessellation in a
global conforming way. This can be done in a approach like [WR92]. An-
other way is used in [RR93a, RR93b], where the NURBS basis is retained,
but additional information concerning topology of the tessellation is sup-
plied. The renderer ‘knows’, that the surface is continuous and that specific
functions have to be equal on an edge. In the case of critical decisions for
drawing, an algorithm can use this information by some kinds of modified
skyline algorithms, which cannot miss a pixel.

2.4.4 Texture Mapping

We want to show results using a second technique of computer graphics,
which does not depend directly on NURBS but is easily used in conjunction

72 2 ALGORITHMIC CONSTITUENTS

Figure 41: L-shaped domain with linear, quadratic and cubic triangle
shaped elements. Linear shape functions are not resolved into smaller
patches because they are drawn exactly. Adaptive tessellation.

with NURBS, which is texture mapping. Texture mapping is algorithmi-
cally simple, but computationally intensive. It can be supported by hard-
ware [Sil] and it has the same measure of complexity O(n), like usual hid-
den line Z-buffer algorithm. We are able to transmit additional information
via texture mapping. It is a natural generalization of the linear color lookup
tables, which are widely used.

We use a linear mapping of coordinate space R2 into the periodic param-
eter space of the texture defined in [0, 1]2. Some pictures like the brick ex-
ample (figure 42 on the facing page) give a realistic impression of an artifi-
cial object inR3 depicting the solution surface. The feature texture mapping
extends the imagination of the surface plots. Here we can easily perceive
curvature and relative height. In the square example (also figure 42 on the
next page) we are able to observe a widening and a thickness of the lines
depending on their distance to the observer. This is a very intuitive effect
similar to a textured membrane (a balloon) put onto the surface. Choosing
a proper texture, one add text and annotations onto the texture, inscrip-
tions like name of the axis and numerical values, and graphics like contour

2.4 Post-processing 73

Figure 42: L-shaped domain with quadratic triangle shaped elements, tex-
tured with a squared pattern and with bricks.

Figure 43: L-shaped domain with quadratic triangle shaped elements, tex-
ture mapping is solution dependent.

74 2 ALGORITHMIC CONSTITUENTS

lines.
We continue with linear texture mapped views of the geometric object,

modifying the parameterization of the texture T ⊂ [0, 1]2 → R2. We can dis-
tort the map in the x, y–plane which leads to line plots instead of grid plots.
The lines can have different thickness and focal points in the picture (fig-
ure 43 on the preceding page). We also introduce additional components
of a vector valued solution. They are used as a component of parameter-
ization by a similar NURBS representation, x left and x&y right in figure
43. Geometrically this is a generalization of one dimensional color lookup
table, introducing a 2D table which is the texture.

75

3 Numerical Experiments

In this chapter we present some numerical data and experiments concern-
ing the constituents of the adaptive multilevel h–p–finite element code. We
will show numerical comparisons of condition numbers for different fam-
ilies of shape functions and compare the approximation of different FEM
versions for some synthetic test cases and some applications to linear struc-
tural mechanics.

3.1 Comparison of Condition Numbers

We compare condition numbers of the local stiffness matrices for differ-
ent families of shape functions discussed in chapter 1.1 on page 13. The
numbers increase dramatically for higher degrees p. With this background
knowledge we look at the condition of the preconditioned system. The lo-
cal condition numbers were obtained in chapter 1.4.3 on page 43 already,
and we have presented resulting effective iteration counts for the global
linear system of equations in chapter 1.4.4 on page 45.

3.1.1 1D Condition Numbers

We now compare the resulting local condition numbers like in [BGP89,
CMTT93]. We choose the Laplace operator Δu (i.e. a0 ≡ 0 and aik ≡ I) and
vary the geometry of the elements. Equivalently we could have changed
the differential operator keeping the element fixed. The absolute scaling of
the elements is not relevant, hence we only change angles and aspect ratios.
The condition numbers are evaluated numerically.

We compare the condition numbers of the local matrices for the Laplace
operator on the interval [0, 1]. We may draw conclusions from this 1-D case
for edge based shape functions in higher dimensions.

The polynomials compared are (see chapter 1.1 on page 13):

• the monomials xp for p ∈ N0

• p–hierarchical polynomials proposed by [ZT89], which are of Her-
mitean type till degree two

fp(x) =

⎧⎨
⎩

1
p!(x

p − 1) p even
1
p!(x

p − x) p odd

76 3 NUMERICAL EXPERIMENTS

1 2 3 4
10

0

10
1

10
2

10
3

10
4

monomials

degree

co
nd

iti
on

 n
um

be
r

p-hierarch.

Lagrange

norm. p-hierarch.

Bernstein

integ. Legendre

Figure 44: Local condition numbers for the Laplace operator on the interval
for different polynomials of degree 1 to 4 (detail)

• normalized polynomials φi. φi is substituted by φi√
〈φi,φi〉

, if the (semi-)

norm of the polynomial is not zero (
√〈φi, φi〉 �= 0).

• Lagrange polynomials which are interpolation polynomials for the
equidistributed interpolation points xi = i/p, i ∈ {0, 1, . . . , p} on the
interval [0, 1].

fip(xi) =

{
1 for i = p

0 for i �= p

• Bernstein polynomials of degree p [Far90]

fip(x) =
p!

i!(p− i)!
(1− x)ixp−i

3.1 Comparison of Condition Numbers 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

0

10
2

10
4

10
6

10
8

10
10

monomials

degree

co
nd

iti
on

 n
um

be
r

p-hierarch.

Lagrange

norm. p-hierarch.

Bernstein

integ. Legendre

Figure 45: Local condition numbers for the Laplace operator on the interval
for different polynomials of degree 1 to 15

• the integrated Legendre polynomials on [−1, 1] [SB91]

fp(x) =

⎧⎨
⎩

1±x
2 for p < 2

1
2(2p−1)

(fp(x)− fp−2(x)) for p ≥ 2

with Legendre polynomials fp defined in example (1.1.3 on page 17).

We observe the following: For degree one all condition numbers start
with a low number. For degree two, the quadratic case, the condition num-
bers diverge, but not with the same pattern as in the asymptotic case. The
Bernstein polynomials keep optimal for degree two. The p–hierarchical
polynomials are slightly better than the normalized ones in the quadratic
case, but are outperformed for higher degrees. The integrated Legendre
polynomials keep the optimal constant condition number due to their con-
struction.

78 3 NUMERICAL EXPERIMENTS

The numbers of the monomials and the p–hierarchic polynomials in-
crease drastically. At first the monomials are worse, but are caught at de-
gree 6, getting unacceptable for higher degrees. The normalized p–hierarchic
polynomials perform better. One can obtain a “staircase effect” for odd
and even degrees. The non-hierarchical Bernstein and the Lagrange poly-
nomials asymptotically show the same behavior.

3.1.2 2D Condition Numbers

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

monomials

degree

co
nd

tio
n

nu
m

be
r

monomialsmonomialsmonomialsmonomialsmonomials

ortho. 1ortho. 1ortho. 1ortho. 1ortho. 1ortho. 1

ortho. 2ortho. 2ortho. 2ortho. 2ortho. 2ortho. 2

norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

Figure 46: Local condition numbers for the Laplace operator on the equilat-
eral triangle for different polynomials of degree 1 to 10

We compare the condition numbers of the local matrices for the Laplace op-
erator on the triangle. The results only depend on the angles of the triangle.
The symmetric hierarchic shape functions in this section and the next one
are optimized for pure condition numbers [Zum93], instead of precondi-
tioned condition numbers of the last chapter.

The polynomials compared are (see chapter 1.1 on page 13):

• the monomials xiyj with i+ j = p ∈ N0

• the orthogonal (ortho. 1) polynomials proposed by [GM78] for the

3.1 Comparison of Condition Numbers 79

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14 monomials

degree

co
nd

tio
n

nu
m

be
r

monomialsmonomialsmonomialsmonomialsmonomials

ortho. 1ortho. 1ortho. 1ortho. 1ortho. 1ortho. 1

ortho. 2ortho. 2ortho. 2ortho. 2ortho. 2ortho. 2

norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2norm. ortho. 2

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14 p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

Figure 47: Local condition numbers for the mass-matrix on the equilateral
triangle for different polynomials of degree 1 to 10

right angled 1:1 right angled 1:16equilateral streched equilateral contracted equilateral

Figure 48: The different triangle shapes

d–simplex:

fα =
∑
β≤α

(−1)|α|+|β| (d− 1 + |α|+ |β|)!
(d− 1 + 2|α|)! (α−β)!

(α!

(α− β)!β!

)2
bβ, α, β ∈ Nd

0

• the orthogonal (ortho. 2) polynomials proposed by [AF26] for the d–
simplex

fα = ∂α
(
(1−

d∑
j=1

bj)
|α|bα

)
, α ∈ Nd

0

80 3 NUMERICAL EXPERIMENTS

Figure 49: triangles with large angles

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

1 2 3 4 5 6 7 8 9 10

10
5

10
10

10
15

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

Figure 50: Local condition numbers for the Laplace operator on the right-
angled triangle with short edges of length 1 : 1 and 1 : 16 for different poly-
nomials of degree 1 to 10

with derivatives ∂i with respect to bi.

• normalized polynomials φi. φi is substituted by φi√
〈φi,φi〉

, if the (semi-)

norm of the polynomial is not zero (
√〈φi, φi〉 �= 0).

3.1 Comparison of Condition Numbers 81

1 2 3 4 5 6 7 8 9 10

10
5

10
10

10
15

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

1 2 3 4 5 6 7 8 9 10

10
5

10
10

10
15

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.p-hierarch.p-hierarch.p-hierarch.p-hierarch.

mod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomialsmod. monomials

mod. Legendremod. Legendremod. Legendremod. Legendremod. Legendremod. Legendre

norm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendrenorm. mod. Legendre

BernsteinBernsteinBernsteinBernsteinBernsteinBernstein

LagrangeLagrangeLagrangeLagrangeLagrangeLagrange

sym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsqsym. hierarch. lsq

sym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. stepsym. hierarch. step

sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.sym. hierarch.

Figure 51: Local condition numbers for the Laplace operator on the distorted
equilateral triangle stretched and contracted by a factor of 16 for different
polynomials of degree 1 to 10

• a modified version of the p–hierarchical polynomials proposed by [ZT89],
which are a generalization of the one-dimensional polynomials. We
have the linear functions {b0, b1, b2} and the edge-functions gener-
ated by rotations (cyclic permutations) of:

fp(x) =

{
1
p! ((b2 − b1)

p − (b2 + b1)
p) p even

1
p!

(
(b2 − b1)

p − (b2 − b1)(b2 + b1)
p−1
)

p odd

Additionally, the internal function b0b1b2 is proposed for degree 3 and
the functions {b0(b0b1b2), b1(b0b1b2), b2(b0b1b2)} for degree 4 as a sub-
stitution for it. Hence the functions are not p–hierarchical any longer.
We modify this step using the the usual monomials multiplied by the
“bubble”-function bi1b

j
2(b0b1b2) with i+ j + 3 = p. Hence we enforce

p–hierarchy and violate symmetry on the triangle. Thus the poly-
nomials are defined for all degrees p, not only till degree 4.

82 3 NUMERICAL EXPERIMENTS

• the modified monomials for the triangle proposed by [Pea76]:

f01 = 1

f11,2 = b1, b2 point functions

fp1,2,3 = bp−1
0 b1, b

p−1
1 b2, b

p−1
2 b0 edge functions, p > 1

fpi+3 = fp−3
i b0b1b2 internal functions, i ≥ 0

After construction of the polynomials we substitute the usual linear
polynomial b0 for f01 .

• Lagrange polynomials which are interpolation polynomials for the
equidistributed interpolation points xi = i/p and yj = j/p , i, j ∈
{0, 1, . . . , p} on the reference triangle (x + y) ≤ 1, (i + j) ≤ p (for
details see [MP72, Nic72]).

fij(xk, yl) =

{
1 for i = k and j = l
0 else

• Bernstein polynomials of degree p [Far90]

fijp(x, y) =
p!

i!j!(p− i− j)!
xi yj (1− x− y)p−i−j

• a construction using Legendre polynomials on the triangle [SB91]:
point functions {b0, b1, b2} as usual,

Fp =
√
8(2p− 1)

b0 b1
1− (b0 − b1)2

∫ b0−b1

−1
fp−1(x)dx

the edge function for the edge (0, 1) together with its cyclic permuta-
tions, and internal functions

Fp,q = b0b1b2 fp(b1 − b0) fq(2b2 − 1)

with Legendre polynomials fp defined in example (1.1.3 on page 17).

• the symmetric hierarchical least squares polynomials of the polynomial
vector spaceP 2,±

p , optimized consecutively by a least squares method.

• the symmetric hierarchical step-wise/ consecutively (by a Gauß-Seidel
method) optimized polynomials of the polynomial vector space P 2,±

p .
Each polynomial generating a symmetrical subset is optimized with
respect to the previous optimized polynomials.

3.1 Comparison of Condition Numbers 83

• the symmetric hierarchical polynomials of the polynomial vector space
P 2,±
p , optimized by a Gauß-Seidel method for each space P 2,±

p , p =
1, 2, . . .

We observe the following: For degree one all condition numbers start
with a low number. For degree two, the quadratic case, the condition num-
bers diverge, but not in the same pattern as in the asymptotic case. For
non-symmetric triangles we could get up to six different condition num-
bers depending on the orientation of the triangle, but actually we do get
only three different numbers. We see that a suitable orientation pays off in
this case. The symmetric polynomials have got only one unique condition
number independent of orientation.

We can separate the polynomials into three different groups (figure 46
on page 78). The highest condition numbers are produced by the mono-
mials, the modified monomials, the orthogonal polynomials and the p–
hierarchical polynomials. The condition numbers are not acceptable for
higher p and grow dramatically. The second group contains the normalized
orthogonal polynomials number 2, the modified Legendre polynomials and,
asymptotically, the normalized modified Legendre polynomials. The slow-
est growth of condition numbers show the Bernstein and Lagrange poly-
nomials and the symmetric hierarchical polynomials. The different ver-
sions of optimization procedures do not differ much from each other. We
have chosen the best optimization as a reference for the following tests.
Looking at the details for low degrees we see a cluster until p = 3 or 4. An
optimal choice in these sections may differ from a choice for higher p. In
this range the condition numbers are generally not very high, hence other
properties than condition numbers may become a criterion of higher prior-
ity.

The comparison of the condition numbers for the Laplace-operator and
the pure mass-matrix (i.e. a0 ≡ 1 and aik ≡ 0) on the equilateral trian-
gle shows that the numbers are approximately of the same size but are not
equally clustered (figure 47 on page 79). Some polynomials perform signif-
icantly better for the mass-matrix and some perform in a similar way. The
orthogonal polynomials number 2 do benefit from this operator, whereas
the normalized ones (normalized for the Laplace-operator) are slightly bet-
ter in the beginning until p = 5, but are asymptotically worse. The La-
grange polynomials have got smaller condition numbers, too. In this case
they generally differ from the numbers of the Bernstein-polynomials. The
symmetric hierarchical polynomials perform similarly to the modified Legendre-
polynomials. Besides the similarity of condition numbers for the different

84 3 NUMERICAL EXPERIMENTS

differential-operators for the equilateral triangle one has to mention the fact
that the eigenvalues for the mass-matrix scale in a different way in h than
they do for the Laplace-operator.

Let us look at some other triangles. A “canonical” one is the right-angled
triangle with short edges of length 1 and the hypotenuse of length

√
2 (fig-

ure 50 on page 80). The triangle is no longer symmetric which means that
non-symmetric polynomials are sensitive for orientation. We can see this
effect for the modified monomials which split into two different paths of
condition numbers. We can see that the Bernstein-polynomials perform
slightly worse for small p, but in general there is not much difference to the
equilateral triangle.

Things change for a distorted right-angled triangle with short edges of
length 1 and 16 (figure 50 on page 80). The condition numbers are approx-
imately a factor of 162 higher than for the undistorted case. We obtain a
splitting of condition number histories not only for the modified monomi-
als (up to 3 branches) but also for the p–hierarchic polynomials and the
modified Legendre-polynomials. The difference between different orien-
tations diverges for the Legendre–polynomials starting with p = 5, which
means that a proper orientation of the polynomials depending on the ge-
ometry does pay off. Both for the normalized and the original modified
Legendre-polynomials the best condition numbers (lowest branch) do not
suffer as much from the distortion as the other polynomials do.

Going further into details we look at two other triangles distorted by a
factor of 16 which gives a stretched and a contracted equilateral triangle
(figure 51 on page 81). The condition numbers for the stretched triangle
do not differ much from the long right-angled triangle. In the contracted
case the splitting of the condition numbers for the modified Legendre-
polynomials converges for high p, which was not the case for the previ-
ous triangles. The normalized Legendre-polynomials perform better than
before in a medium range of p.

We can summarize this by saying that the lowest condition numbers are
gained with the Lagrange and Bernstein polynomials. They are not far
away from the numbers for the new symmetric hierarchical polynomials
and the modified Legendre polynomials, which depend on orientation. The
exact ranking depends on the triangle and the differential operator itself.

3.1.3 3D Condition Numbers

We compare the condition numbers of the local matrices for the Laplace
operator on the tetrahedron. The results only depend on the angles of the

3.1 Comparison of Condition Numbers 85

1 2 3 4 5 6 7
10

0

10
2

10
4

10
6

10
8

10
10

monomials

degree

co
nd

tio
n

nu
m

be
r

monomials

ortho. 1

ortho. 2

Lagrange

sym. hierarch.

1 2 3 4 5 6 7
10

0

10
2

10
4

10
6

10
8

10
10

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

Figure 52: Local condition numbers for the Laplace operator on the equilat-
eral tetrahedron for different polynomials of degree 1 to 7

tetrahedron.
The polynomials compared are (see chapter 1.1 on page 13):

• the monomials xiyjzk with i+ j + k = p ∈ N0

• the orthogonal (ortho. 1) polynomials proposed by [GM78] for the
d–simplex defined in chapter (3.1.2 on page 78).

• the orthogonal (ortho. 2) polynomials proposed by [AF26] for the d–
simplex defined in chapter (3.1.2 on page 78).

• a modified version of the p–hierarchical polynomials proposed by [ZT89],
which are a generalization of the one- and two-dimensional poly-
nomials. We take the usual linear functions {b0, b1, b2, b3} and the
edge-functions generated by permutations of:

fp =

{
1
p! ((b2 − b1)

p − (b2 + b1)
p) p even

1
p!

(
(b2 − b1)

p − (b2 − b1)(b2 + b1)
p−1
)

p odd

Analogously to the two dimensional case we enforce p–hierarchy and
violate symmetry by constructing internal functions and functions on

86 3 NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7
10

0

10
2

10
4

10
6

10
8

10
10

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

1 2 3 4 5 6 7
10

2

10
4

10
6

10
8

10
10

10
12

p-hierarch.

degree
co

nd
tio

n
nu

m
be

r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

Figure 53: Local condition numbers for the Laplace operator on the right-
angled tetrahedron with short edges of length 1 : 1 : 1 and 1 : 1 : 16 for
different polynomials of degree 1 to 7

the triangular faces with standard monomials and “bubble” functions
b0 · b1 · · ·bd.

• the modified monomials originally proposed by [Pea76] for the triangle,
generalized for the d–simplex:

F d
0 = {1}
F d
1 = {b1, b2, . . . , bd}
F 1
p = {bp0}
F d
p =

⋃
k

permutations of F k
p−k−1 · b0 · b1 · · · bk

After the construction of the polynomials we substitute the usual lin-
ear polynomial {b0} for F d

0 .

• Lagrange polynomials which are interpolation polynomials for the
regular equidistant interpolation points xα on the reference simplex:

fβ(xα) =

{
1 for α = β
0 for α �= β

3.1 Comparison of Condition Numbers 87

1 2 3 4 5 6 7
10

2

10
4

10
6

10
8

10
10

10
12

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

1 2 3 4 5 6 7

10
6

10
8

10
10

10
12

10
14 p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

Figure 54: Local condition numbers for the Laplace operator on the right-
angled tetrahedron with short edges of length 1 : 16 : 16 and 1 : 16 : 162 for
different polynomials of degree 1 to 7

• Bernstein polynomials of degree p for the d–simplex [Far90]

fα =

(
|α|
α

)
bα

• a construction using Legendre polynomials on the tetrahedron [SB91]:
point functions {b0, b1, b2, b3} defined as usual,

Fp =
√
8(2p− 1)

b0 b1
1− (b0 − b1)2

∫ b0−b1

−1
fp−1(x)dx

as edge function for the edge (0, 1) together with permutations for the
other edges,

Fp,q = b0b1b2 fp(b1 − b0) fq(2b2 − 1)

as triangle function for the triangular face (0, 1, 2) together with per-
mutations for the other faces,

Fα = b0 · b1 · · · bd fα1(b1 − b0) fα2(2b2 − 1) · fα3(2b3 − 1) · · ·

88 3 NUMERICAL EXPERIMENTS

1 2 3 4 5 6 7
10

2

10
4

10
6

10
8

10
10

10
12

p-hierarch.

degree

co
nd

tio
n

nu
m

be
r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

1 2 3 4 5 6 7

10
2

10
4

10
6

10
8

10
10

p-hierarch.

degree
co

nd
tio

n
nu

m
be

r

p-hierarch.

mod. monomials

mod. Legendre

Lagrange

Bernstein

sym. hierarch. lsq

sym. hierarch. step

sym. hierarch.

Figure 55: Local condition numbers for the Laplace operator on the distorted
equilateral tetrahedron stretched and contracted by a factor of 16 for different
polynomials of degree 1 to 7

as general internal functions for a d–simplex with |α| = d and with
Legendre polynomials fp defined in example (1.1.3 on page 17).

• the symmetric hierarchical least squares polynomials of the polynomial
vector space P 3,±

p , optimized by a step-wise least squares method.

• the symmetric hierarchical step-wise/ consecutively (by a Gauß-Seidel
method) optimized polynomials of the polynomial vector space P 3,±

p .
Each polynomial which generates a symmetrical subset is optimized
with respect to the previous optimized polynomials.

• the symmetric hierarchical polynomials of the polynomial vector space
P 3,±
p , optimized by a Gauß-Seidel method for each space P 3,±

p , p =
1, 2,

We observe the following: For degree one all condition numbers start
with a low number. For degree two, the quadratic case, the condition num-
bers diverge, but not with the same pattern as in the asymptotic case. For
non-symmetric tetrahedra we could get up to 24 different condition num-
bers depending on the orientation of the tetrahedron, but actually we get

3.1 Comparison of Condition Numbers 89

up to six different condition numbers. We see that a suitable orientation
pays off in this case. The symmetric polynomials have got only one unique
condition number independent from orientation.

In more detail we can see in figure (52 on page 85) an analogous pattern
of condition numbers for the equilateral tetrahedron. We can split the poly-
nomials into groups of lower or higher growth of condition numbers. The
monomials, the orthogonal polynomials, the p–hierarchical polynomials,
the modified monomials and the modified Legendre polynomials belong
to the group with rapidly growing condition numbers. On the triangle
the modified Legendre-polynomials were in the group with better condi-
tion numbers, but this is not the case for the tetrahedron. Now the Bern-
stein polynomials perform best and the Lagrange polynomials are slightly
worse. In general the lowest condition numbers are of the same magnitude
like on the triangle, but other ones may be much higher. We have to keep in
mind that the number of polynomials involved for each p grows an order
of p faster in 3D than in 2D.

Looking at right-angled tetrahedra we have to consider different situa-
tions concerning a factor 16 of distortion (figures 53 on page 86 and 54 on
page 87). The distortions are applied analogously to the 2-D case (figure 48
on page 79). We take the edges 1 : 1 : 1, 1 : 1 : 16, 1 : 16 : 16 and
1 : 16 : 162 preserving the right-angle. The 1 : 1 : 1 situation produces
only slightly higher condition numbers than the equilateral tetrahedron.
The other distorted tetrahedra have a factor of 162 and the twice distorted
ones (1 : 16 : 162) an even higher factor. The condition numbers for the
1 : 16 : 16 case are slightly better than for the 1 : 1 : 16 one. In each case
the symmetric hierarchical polynomials have the lowest condition number
of all hierarchic polynomials. Only Bernstein- and Lagrange-polynomials
have lower ones, but are not far away. The different distortions lead to
a splitting of the condition number histories, which diverge for modified
monomials and modified Legendre-polynomials. For high p a proper ori-
entation pays off for these polynomials.

Proceeding to distortions of an equilateral tetrahedron (figure 55 on the
preceding page), we can observe a similar pattern but with different scal-
ing. We have contracted and stretched a tetrahedron by a factor 16. The
contracted one leads to a smaller divergence of non-symmetric polynomials
and at some points to a slightly lower condition number. The general be-
havior and the division into groups remains the same. At degree p = 3 we
can see small deviations for some polynomials.

We can summarize the results saying that the lowest condition numbers
arise in the case of Bernstein and Lagrange polynomials. They are not far

90 3 NUMERICAL EXPERIMENTS

away from the numbers for the new symmetric hierarchical polynomials.
The modified Legendre polynomials have got higher condition numbers,
which additionally depend on orientation. The exact ranking depends on
the tetrahedron shape and the differential operator itself.

3.2 Comparison of h–, p– and h–p–Versions

We present some numerical experiments concerning the performance of
different finite element versions. Depicted are the error measured in energy
norm versus the number of unknowns in the linear system of equations
(logarithmic scale). The examples shall confirm that the uniform p–version
is faster than the uniform h–version, different behavior of the adaptive ver-
sions and performance of the h–p adaptation for some threshold parame-
ters. The adaptivity is controlled by a posteriori error estimators and error
indicators described in chapter 2.1 on page 53. For a detailed explanation
of such kind of figures we refer to [SB91].

For Poisson equation

−Δu = f, in Ω, Ω ⊂ R
d

with smooth right hand side

f ∈ C∞(Ω)

we obtain smooth solutions in the interior of the domain Ω and several
kinds of singularities at the boundary ∂Ω, sometimes referred as pollution
effect. In one dimension d = 1 there are no such singularities. In two
dimensions all singularities are vertex singularities of the type

u = Ψ(φ)rα

written in polar coordinates (r, φ) with a smooth function Ψ. α determines
the regularity of the solution u and depends on the angle ω of the vertex
and the kind of boundary conditions, α = π/ω or α = π/2ω (D-D and
N-D).

In three dimensions d = 3 there are three different types of singularities,
called edge, vertex and edge-vertex singularities. Following [Gri92, Dau88,
BS94] and more general [NP94], we denote the asymptotic expansions like
this:

Edge singularities are genuine 2D vertex singularities, written in cylinder
coordinates (r, φ, x) with smooth c

u = c(x)Ψ(φ)rα

3.2 Comparison of h–, p– and h–p–Versions 91

Vertex singularities are real 3D singularities, in polar coordinates (r, θ, φ)
with smooth c

u = c(θ, φ)rβ

and exponent β depending on the lowest eigenvalue of the Laplace-Beltrami
operator on a infinitesimal sphere around the vertex (in Ω).

Edge-Vertex singularities denote a mixture of pure edge and vertex sin-
gularities, which often is the case

u = Ψ(φ)rβθα

There is another kind of pollution driven by some non-smoothness of the
right hand side f or jumps in the coefficients of the differential operator,
e.g. change of material. These discontinuities often are resolved by the
initial grid. An adaptation scheme suitable for this singularities mainly is a
proper adaptive integrator.

3.2.1 Polynomial Solution

uni h, p=1

adap h, p=1

uni p

adap p

adap h,p=2

adap h, p=3

adap h, p=4

uni h, p=2

hp, thres

hp, ratio .3

hp, ratio .7

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 56: Nearly polynomial solution

First example is a problem with a nearly quadratic solution,

Δu(x) = 1, x ∈ [−1, 1]3

92 3 NUMERICAL EXPERIMENTS

with homogeneous Dirichlet boundary conditions.
This example seems to be a little bit unfair for linear element p = 1

h–version FEM. For exact polynomial solution an higher order FEM is of
course able to reproduce this solution exactly. Distorting the quadratic
polynomial by the introduction of vertices of the cube, higher order FEM
inherits an advantage, but is not exact any longer.

The convergence results are depicted in figure 56 on the page before, with
a computational domain of only 1/8th of the cube. The energy error of the
discretization versus the number of unknowns are given, with neglect-able
error of a linear algebra solution procedure. It shows a comparison of uni-
form and adaptive h–versions with different orders p, uniform and adap-
tive p–versions on the initial grid and some h–p–version runs. For linear
elements p = 1 adaptivity does not pay off. We see the rare case of uni-
form h–version being superior over adaptive versions at some stages. In
general the h–adaptive control is very robust, but of course it is easy to trap
an adaptive procedure by bad error indicators, even delivering no conver-
gence at all. Here the error estimator has got good equivalence constants,
preventing this worst case.

Things completely change for quadratic elements. Now the adaptive ver-
sion gains an extraordinary factor of at least 4 (number of unknowns) com-
pared to the uniform h–version. General approximation by quadratic ele-
ments is good and we have to resolve the vertex and to a certain extend the
edges with the aid of adaptivity. We want to point out, that this is no effect
of error estimation, but a question of approximation, which can be verified
looking at the other examples.

When we now have a look on the bulk of other tests, we do not expect
great differences between them. The adaptive p–version seems to be prefer-
able at some stages, but uniform p, adaptive h with p = 2 or p = 3 do not
deteriorate much. The h–p–tests are among them, after some initialization
phases. The ratio of .7 means more p–refinement (and less h–refinement)
than the ratio of .3, which is faster approaching the p–version’s convergence
history in this example.

3.2.2 Analytic Solution

Next example is an analytic one, also rewarding higher order approxima-
tions:

Δu(x) = cosx1 cos x2 cosx3, x ∈ [−π/2, π/2]3

with homogeneous Dirichlet boundary conditions.

3.2 Comparison of h–, p– and h–p–Versions 93

uni h, p=1

adap h, p=1

uni p

adap p

hp, ratio .7

hp, ratio .8

hp, thres 1e2

hp, thres 1e4

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 57: Analytic Solution

This example illustrates the behavior of smooth solution in the interior
of a domain and an analytic right hand side. Even a solution with singu-
larities at the boundary may be thought of a linear combination of such a
smooth solution and some approximations of the singularities. Hence such
an example isolates the performance of the method for the interior of the
domain.

There is another challenge of the problem, which is connected with higher
order derivatives. The solution is an even function. Hence even and odd
derivatives behave differently at each point in the domain. This exagger-
ates any oscillations of an error estimator during p–refinement, because the
higher order approximation p→ p+ 1 need not improve the solution. This
also challenges the p–adaptive control and the h–p–version control.

The results are depicted in figure 57, calculations done on a domain of
1/8th with different scaling in x. The h–adaptivity does not pay off in this
example. Conversely the moderate increase of number of unknowns re-
quires a higher number of matrix assemblies and solution steps than uni-
form (factor 8) refinement. For p–version we slightly can see an exponen-
tial convergence with the adaptive version oscillating around the smoother
convergence history of the uniform p–version. The threshold h–p–versions
perform between pure p–version and h–version, depending on the thresh-

94 3 NUMERICAL EXPERIMENTS

old parameter (parameter times maximum). The fixed thresholds (without
using maxima) need some startup, but do outperform the p–version on the
long run. The precisions reached in this example are extraordinary high for
3D calculations due to the smoothness.

3.2.3 Edge Singularity

CS1_{Global} CS1_{Global}

ka linear elasticity
RESULTS: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 6.93E+00 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 0.00E+00

 6.93E-01

 1.39E+00

 2.08E+00

 2.77E+00

 3.46E+00

 4.16E+00

 4.85E+00

 5.54E+00

 6.24E+00

 6.93E+00

Figure 58: Edge singularity: geometry with boundary conditions and per-
spective view of the solution (h version)

We consider the edge singularity (in cylinder coordinates) of the type

u = sin(αφ)rα, α = 2/7

analogous the 2D singularity example ‘circle’ of [Ban94] and [Lei90]. We
use homogeneous Neumann and varying Dirichlet boundary conditions
and a right hand side f = 0. The problem serves as an example for one kind
of singularities caused by the geometry of the domain and by boundary
conditions. Figure 58 shows geometry and boundary conditions and the
solution. Although the solution would not be H2–regular in 2D (H1 2

7
+ε(Ω)),

it is almost H2–regular in 3D (H25/14+ε(Ω)). Hence it is not a very strong

3.2 Comparison of h–, p– and h–p–Versions 95

uni h, p=1

adap h, p=1

uni p

adap p

adap h, p=2

adap h, p=3

hp, ratio

hp, thres

hp, thres

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 59: Edge Singularity

singularity and performance of h–version FEM of order p = 1 should not
be seriously deteriorated by the singular behavior.

This is why the adaptive h–version as shown in figure 59 only gains a
constant factor less than 2 compared to the uniform h version. This too
gives rise to the good performance of the p version although adaptive p
version control is oscillating a little bit. The p–versions remain the best ones
until the maximal degree p is reached. Beyond an error of 2% the adaptive
h–version with quadratic elements seems to be preferable. The cubic ele-
ments probably will be superior for even higher precision demands. The
h–p–version show a whole spectrum of convergence behavior: One thresh-
old version near the p–version, one near the h–versions and another version
which has a drop out, refining all h at 10% error, leading to an disastrous
amount of work before recovering.

There is another general drawback in performance of the adaptive h–
version here, which is isotropic refinement. Some kind of anisotropy as
proposed by [BS94] would certainly be more suitable for the structure of
the singularity than the isotropic one. While solution changes rapidly per-
pendicular to the edge, it is smooth along the edge.

There are such anisotropic refinements in computational fluid dynam-
ics, even for triangular grids in 2D (‘blue refinement’ proposed by [KR90].

96 3 NUMERICAL EXPERIMENTS

However there are certain implementational difficulties, performing this in
the context of an (self-) adaptive procedure and only based on local infor-
mation. First there is the decision to be made whether to refine in one di-
rection or isotropically in both directions. For means of efficiency, elements
have to be rotated and distorted. Last un-refinement has to be considered,
because one wrong isotropic / anisotropic decision made in the first steps
of the algorithm may deteriorate the overall performance of the adaptive
procedure.

These difficulties may explain, why we did not consider anisotropy in
3D, although the shape functions do facilitate anisotropic distribution of
degrees of freedom, too. But the possible gain of a reduction of degrees of
freedom from n = h−3 down to n = h−2 seems to be neglect-able in view of
h–p version asymptotic convergence. With respect to the regularity of many
3D problems and the good performance of higher order FEM versions, this
decision seems to be justified.

3.2.4 Edge-Vertex Singularity

CS1_{Global}

ka linear elasticity
RESULTS: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 6.93E+00 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 0.00E+00

 6.93E-01

 1.39E+00

 2.08E+00

 2.77E+00

 3.46E+00

 4.16E+00

 4.85E+00

 5.54E+00

 6.24E+00

 6.93E+00

Figure 60: Edge-vertex singularity, geometry with boundary conditions
and perspective view of the solution

3.2 Comparison of h–, p– and h–p–Versions 97

CS1_{Global}

ka linear elasticity
RESULTS: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 6.93E+00 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 0.00E+00

 6.93E-01

 1.39E+00

 2.08E+00

 2.77E+00

 3.46E+00

 4.16E+00

 4.85E+00

 5.54E+00

 6.24E+00

 6.93E+00

Figure 61: Edge-vertex singularity, cross-section of the solution

The edge-vertex singularity problem is constructed by means of homoge-
neous Neumann and varying Dirichlet boundary conditions, right hand
side f = 0 analogous the edge-singularity example in the previous section
3.2.3. Figure 60 shows the geometry and the boundary conditions for the
edge-vertex singularity problem.

The appropriate solution u is depicted in figures 61. The edge-vertex
singularity is not a very strong one as explained in section 3.2.3 on page 94.
The results seem to be comparable at a first glance.

We obtain a factor of 2 improved convergence by using adaptive h–version
instead of uniform h–version. Up to an error of 3% the adaptive p–version
performs best, when the maximal polynomial degree is reached. Uniform
p–version is slightly less efficient, about a factor of 1.3. For a higher pre-
cision beyond the 1% mark, quadratic adaptive h–version seems to be the
method of choice. Cubic elements are to expensive below a precision of
2%. The different h–p–versions mimic the p–version’s behavior in a suc-
cesfull way. The version using h and p estimates uses slightly to much
h–refinement in the startup phase.

The overall good performance of the equal p–version and higher order
h–version are generally due to regularity of the solution. Any effect of the

98 3 NUMERICAL EXPERIMENTS

uni h, p=1

adap h, p=1

uni p

adap p

adap h,p=2

adap h, p=3

hp, h est

hp, hp est

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 62: Edge-Vertex Singularity

use of anisotropic refinement probably would at least be disturbed by the
additional presence of vertex-singularity components in the solution and
in view of the regularity without great effect.

3.2.5 Vertex Singularity

Unfortunately the construction of pure vertex singularities with zero right
hand side f = 0 via boundary conditions is difficult in 3D, so we present
a vertex singularity of rα–type induced by the right hand side (in spherical
coordinates)

f = rα−2, α = −.3
with homogeneous Dirichlet boundary conditions on the unit cube with a
computational domain of 1/8th. The right hand side is not analytic any
longer. Nevertheless this does not destroy the exponential convergence of
a p– or h–p–version, because of the spherical rα type solution.

First we look at the vertex singularity of exponent α = .3, which is not a
very strong one and belongs to H1.8+ε(Ω) as explained in chapter 3.2.3 on
page 94. The results depicted in figure 64 on page 100 seem to be compara-
ble to the previous regular solution ones at a first glance.

3.2 Comparison of h–, p– and h–p–Versions 99

CS1_{Global}

ka linear elasticity
RESULTS: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 8.56E+04 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 0.00E+00

 4.28E+03

 8.56E+03

 1.28E+04

 1.71E+04

 2.14E+04

 2.57E+04

 3.00E+04

 3.42E+04

 3.85E+04

 4.28E+04

 4.71E+04

 5.14E+04

 5.57E+04

 5.99E+04

 6.42E+04

 6.85E+04

 7.28E+04

 7.71E+04

 8.13E+04

 8.56E+04

CS1_{Global}

ka linear elasticity
RESULTS: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 8.56E+04 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 0.00E+00

 4.28E+03

 8.56E+03

 1.28E+04

 1.71E+04

 2.14E+04

 2.57E+04

 3.00E+04

 3.42E+04

 3.85E+04

 4.28E+04

 4.71E+04

 5.14E+04

 5.57E+04

 5.99E+04

 6.42E+04

 6.85E+04

 7.28E+04

 7.71E+04

 8.13E+04

 8.56E+04

Figure 63: Vertex singularity, perspective view of the solution and close up

Due to regularity, the adaptive h–versions is able to gain a factor of only
2.5 compared to uniform h–version. However uniform p–version performs
poor below an error of 5%. Performance degrades in this asymptotic phase
worse than uniform h–version. Such is cubic element adaptive h–version,
with a rare effect of increasing error while refinement. This increase is not
possible for nested FEM spaces, only stagnation would be possible. The
effect is do to green closure of triangulations, which introduces a small ef-
fect of non nested-ness of spaces in some distance away from the singu-
larity. While quadratic adaptive h–version seems to be preferable up to
an error of 2%, it is overtaken by the adaptive p–version. After a startup
phase the adaptive p–version reaches the pre-asymptotic exponential con-
vergence phase down to .4%. This is in sharp contrast to uniform p and in
fact a rare case of a drastic improvement by p–adaptivity. One has to men-
tion that the improved approximation at the last adaptive p–version steps
in this case is also visible at the increase of iterations during solution. The
two h–p–versions perform in a smoother fashion than the superior quad-
ratic h–version in the 1% error area. Different refinement control has got no
great effect onto convergence.

We now consider the other exponent example. The vertex singularity

100 3 NUMERICAL EXPERIMENTS

uni h, p=1

adap h, p=1

uni p

adap p

adap h,p=2

adap h, p=3

hp, h est

hp, hp est

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 64: Vertex Singularity for another (more regular solution) exponent
α = .3

uni h, p=1

adap h, p=1

uni p

adap p

hp, h est

hp, hp est

adap h, p=2

adap h, p=3

hp, uni p

hp, uni p

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 65: Vertex singularity for (original) exponent α = −.3

3.2 Comparison of h–, p– and h–p–Versions 101

with parameter α = .3 are almost H2(Ω)–regular (H1.8+ε), whereas expo-
nent α = −.3 gives rise to a strong singularity only contained in H1.2+ε(Ω),
shown in figure 65 on the preceding page. This completely changes the
role of adaptive h–version. Adaptivity now has to restore the usual H2(Ω)
convergence properties of the h–version (with respect to the amount of
work), which is O(1/ 3

√
n) and now is not only a gain of a constant factor

any longer. The history of grids during refinement becomes an arithmetic
progression of nodes in a pre-asymptotic phase instead of geometric pro-
gression for regular solutions. Now any O(n) implementation instead of
O(#levels) in the FEM code pays off in this phase of convergence.

Figure 65 on the facing page depicts the convergence for exponent α =
−.3. We do not obtain the regular convergence slope of .5 : 2d for uni-
form h–version, but can clearly see the degradation down to approximately
.5.2 : 2d ≈ .87 : 8. Hence uniform h–version becomes unacceptably slow.
We also observe the feigned convergence of the p–versions suffering from
pollution of the singularity.The p–versions do not only fail to converge at
an observable speed, but they fake convergence in conjunction with a pos-
teriori error estimators. For this example and this very coarse initial grid,
p–version is by no means reliable. This is in contrast to the overall good
performance in other examples and illustrates the potential danger of the
method.

The different h–p–versions are in certain trouble, too, because they should
not raise p in the first steps and perform h–refinements only very selec-
tively. We can see the p = 2 adaptive h–version overtaking the p = 1
version at about .15 error and reaching an asymptotics at .07 error with
overall best performance. The p = 3 h–version seems to be much to costly
in this phase. Hence any h–p version avoiding to much p–refinements is
comparable to the p = 1 h–version and will be overtaken by the p = 2 ver-
sion at this point of .15, while raising p at this point (like for the uniform
p h–p–versions) is much to costly and introduces un-smooth convergence
histories, because the whole grid is not adapted for higher p and h–de-
refinements at additional cost seem to be appropriate but we would expect
to be unmanageable to control.

We can draw two conclusion out of this: In the vicinity of strong singular-
ities p–version is extremely dangerous while different adaptive h–versions
perform well. And additionally any h–p control of comparable quality in
the presence of strong singularities can not be a pure local strategy based
on local error estimates as proposed by the Kaskade principle (look for the
uniform p h–p–versions). Nevertheless higher order FEM pays off even in
this case, for precision better than 15%.

102 3 NUMERICAL EXPERIMENTS

In general we have seen the potential danger of pure p–versions for sin-
gularities and a comparable performance of higher order adaptiveh–versions
overcoming this danger. The optimal polynomial degree depends on the
final precision required. In our examples we obtained an optimal switch
form linear to quadratic elements at an error level of about 10%. For ex-
traordinary high precisions, solution dependent methods like adaptive p–
versions or h–p–versions have to be applied.

3.3 Application to Structural Mechanics

Before presenting some examples, we briefly want to summarize some ba-
sic equations of structural mechanics.

3.3.1 Foundations of Structural Mechanics

We want to derive the basic equations from elasto mechanics in brief, us-
ing notation of [Bra92, Ran78], for further reading see [Cia88, Gur81]. We
consider a bounded mechanical body at an un-deformed position, called
reference configuration, Ω ⊂ R3. It is subject to forces and is thereby de-
formed to a new position. The transformation

x→ x+ u(x) = (u+ id)(x) ∈ R3

describes the position of every point of the body x ∈ Ω after deformation.
The field

u : Ω → R
3

is called the displacement field. The symmetric tensor

C = ∇(u+ id)t∇(u+ id)

is called the right Cauchy-Green strain tensor related to the local change of
scales. The (symmetric) strain tensor itself is defined by

E =
1

2
(C − Id)

sometimes also called ‘kinematic balance’, yielding

Eij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) +
1

2

3∑
k=1

∂ui
∂xk

∂uj
∂xk

Looking at the eigenvalues and eigenvectors of E gives rise to the main
directions of strain. One can also extract geometric shears.

3.3 Application to Structural Mechanics 103

Stress is defined as force per area, introduced by Cauchy (1823) stating
the existence of a symmetric tensor T , which fulfills the static balance

divT (x) + f(x) = 0

with f(x) being forces (dead loads) applied to the body. Unfortunately the
strain tensor T is given in the coordinate system of the deformed body.
Transforming the Cauchy stress tensor back to the reference system by Pi-
ola transform leads to an un-symmetric first Kirchhoff stress tensor. The
symmetric version is called (second) Kirchhoff stress tensor defined by

Σ = det(∇(u+ id))(∇(u+ id))−1T (∇(u+ id))−t

For completeness we include the definition of the term ‘constitutive equa-
tion’ describing properties of the material:

Σ = Σ(x, E(x), . . .)

A constitutive equation has to be ‘objective’, which means independent of
the coordinate system, it may be homogeneous (independent of position
x) or isotropic (independent of orientation). A homogeneous material is
called ‘elastic’, iff the stress tensor does only depend on the strain

Σ(x) = Σ(E(x))

Applying proper boundary conditions, including prescribed displacements
or forces onto the boundary, the problem description is completed.

3.3.2 The Linear Elastic Problem

We want to simplify the situation a little bit, looking at the linearized elastic
problem. We have to make the assumption of small strains, giving rise to
the linear variant of the Cauchy-Green strain E

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

)

We are able to identify the stress tensors T and Σ writing σ in the latter.
Hence the constitutive equation becomes linear. If the material is isotropic,
there are only two parameters left (as a consequence of a theorem of Rivlin
and Erickson).

σ =
e

1 + ν
(ε+

ν

1− 2ν
(tr ε)Id)

104 3 NUMERICAL EXPERIMENTS

is called St. Venant-Kirchhoff equation or just generalized Hookean law,
with constants e Young’s modulus of elasticity (in units of pressure) and ν
Poisson ratio, 0 ≤ ν ≤ 1/2. It is sometimes written in Lamé constants

λ =
eν

(1 + ν)(1− 2ν)
μ =

e

2 + 2ν

The differential equation of the static balance in the variational formulation
leads to the energy functional

Π =

∫
Ω
(
1

2
ε : σ − fu)dx

The interior forces f may stem from gravity or in one application from
thermal expansion. Introducing a temperature τ and a reference system of
the body at a reference temperature τ0, we substitute the strain ε by ε − ε0,
with thermal strain being

ε0 = α(τ − τ0)Id

with a thermal expansion coefficient α [ZT89]. One is able to rewrite the
equations, inserting the temperature into the right hand side force f =
α∇τ . For further reading see [BW60]. The equations are called Navier-
Lamé.

We are able to exploit the variational formulation for finite element dis-
cretization, called the displacement approach. We discretize the displace-
ments u by H1(Ω) finite elements leading to a second order elliptic partial
differential equation in 3D with a system of three unknowns per node. El-
lipticity is guaranteed by Korn’s inequality, if the Poisson ratio ν < 1/2. In
the vicinity of ν = 1/2 we obtain numerical effects of ‘locking’, the finite
element approximation constants become worse, which is not as dramatic
for p–version finite elements [Vog83].

3.3.3 Discretizations

Another way to overcome locking is the use of mixed finite element meth-
ods, discretizing the stress σ, too. This leads to saddle point problems not
considered here. We just want to mention some approaches like the two-
field mixed discretization (u − σ) named Hellinger-Reissner and the three-
field mixed discretization (u− ε−σ) named Hu-Washizu, see [ZT91, RT91].

Most of engineering finite element computations are not done with full
3D models, but with less computational expensive 2D ones. Under the as-
sumption of small thickness of a body or homogeneity in that direction,

3.3 Application to Structural Mechanics 105

there are reduced models of plain stress and plain strain. Using some
higher order differential terms, previously neglected, there are masses of
different models for plate bending and shells, depending on what parts of
the equations are considered to be small and are neglect-able and depend-
ing on some given symmetry. In plate bending we want to mention models
of Kirchhoff-Love and Reissner-Mindlin. There are also some approaches
of varying approximations for plates and shells in the direction of thick-
ness. In 1D there are analogs named beams and rods [ZT91].

3.3.4 Nonlinear Mechanics

In the derivation of the linear equations we made some derivations about
small displacements and small strains. These need not be fulfilled. We
are now able to enhance the system of equations by several kinds of non-
linearity.

First one is called the geometric non-linearity. We have to consider the
second order derivatives of displacement:

Eij = εij +
1

2

3∑
k=1

∂ui
∂xk

∂uj
∂xk

Taking into account the different stresses T and Σ we have a fourth or-
der partial differential equation, which under some circumstances loses
uniqueness of the solution. There are effects of symmetry breaking (e.g. Eu-
lerian rod) and history dependence of the solution. Non-unique solutions
are often calculated by means of path following methods, see [Le 94, Cri91]
and citations therein and [Hoh94]. These effects generally appear in bend-
ing, not only in 3D but for plates and shells in 2D and rods in 1D.

There is another effect of geometric non-linearity, for large deformations
not contained in the differential equations. The deformation of the body
may be restricted by some other bodies, leading to the problem of contact.
Besides modelling of actual contact (friction, slip, adhesive) (see [KO88]
and references therein) there come some inequalities into play written as a
constraint Ω̃

(u+ id) : Ω → Ω̃, injective

It is not only a question of numerical algorithms here [HHNL88] and [Hop90,
HK94], but sometimes is an algorithmic challenge, too, identifying the lo-
cations of contact.

If stresses become large, even the elliptic constitutive equations for a
specific material may become complicated. The number of parameters in-

106 3 NUMERICAL EXPERIMENTS

creases. But modelling a material as being elliptic need not be appropriate
any longer. There are two generalizations: Viscosity means a certain flow
of the material which may occur just before melting or under extreme con-
ditions. A constitutive equation may be written as

Σ ∈ ∂φ(Ė)

with a dissipation potential φ. This would be fluid dynamics, but with
transitions from elastic response to viscous flow we are at visco-elasticity.
The problems are time dependent, see also [Le 90, FLO76]. Pure melting
with phase transitions of a material is a special subject where numerical
detection of the transition area can be studied in detail [HK90].

Another material property is plasticity. Material has got memory and be-
havior depends on the history of time at that point [DL76, FLO76]. Perfect
plasticity may be written as

Σ ∈ C
(E − Elinear(Σ)) ∈ {normal cone to Y at Σ}

with local linear elasticity tensor Elinear denoting the elastic constitutive
equation for E and Σ. Sometimes a combination of all of them is used,
called elasto-visco-plasticity, where the yield surface Y is time dependent.
These problems definitely are time dependent. Integrating one time-step,
one has to solve variational inequalities giving rise to rather complex al-
gorithms and often prohibiting the use of advanced strategies of ordinary
differential equation solvers.

3.3.5 Experiments

We present some experiments in linear elastic mechanics with a full 3D
displacement discretization. For an analogous treatment of singularities
for elasto mechanics like in chapter 3.2 on page 90, the reader is referred to
Grisvard [Gri89, Gri92].

3.3.6 Attachment Lug

This example is a typical 2D benchmark test, so it seems to be prohibitive
for 3D calculations. But we are able to test symmetry of the solution while
initial triangulation is not symmetric, and we are able to test loading (Neu-
mann) boundary conditions. The solution has got singularities at the bound-
aries of the prescribed displacement area (change homogeneous Dirichlet/

3.3 Application to Structural Mechanics 107

CS1_{Global}

−0.05

0

0.05

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

−0.05

0

0.05

ka:elasto

Figure 66: Attachment lug: geometry and boundary conditions, and p–
version solution (displacement)

Neumann conditions). Only constant loads on triangle faces are applied
due to the lack of proper geometric handling of the curved surface (lack
of exporting curved surfaces due to I-DEAS). Hence there are some minor
singularities in the loaded area, which do not influence convergence very
strongly depicted in figure 68 on the following page.

The adaptiveh–version is a factor of 2.5 faster than the uniform h–version.
This asymptotic behavior is reached in the very first steps. Best perform-
ance delivers adaptive p–version up to a precision of .3%. Uniform p–
version seems to be a constant factor slower before performing two ex-
ponential convergent final steps below .1%. The higher order adaptive
h–versions are comparable down to a precision of .5% before reaching an
asymptotic phase. It is interesting to mention that cubic h–version per-
forms better than quadratic in this example, while usually it appears to be
too costly. The h–p–versions in the first steps do too much h–refinement
before recovering down to the general .5% mark. We conclude that we ob-
tain a very regular solution’s behavior facilitating a high final precision and
smooth p–convergence properties.

108 3 NUMERICAL EXPERIMENTS

CS1_{Global}

ka linear elasticity
RESULTS: 3- STRAIN
STRAIN - VON MISES MIN: 9.76E-12 MAX: 6.72E-10
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 6.84E-08 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 9.76E-12

 7.60E-11

 1.42E-10

 2.08E-10

 2.75E-10

 3.41E-10

 4.07E-10

 4.73E-10

 5.39E-10

 6.06E-10

 6.72E-10

CS1_{Global}

ka linear elasticity
RESULTS: 2- STRESS
STRESS - VON MISES MIN: 4.51E-03 MAX: 1.71E-01
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 6.84E-08 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 4.51E-03

 2.12E-02

 3.78E-02

 5.45E-02

 7.11E-02

 8.77E-02

 1.04E-01

 1.21E-01

 1.38E-01

 1.54E-01

 1.71E-01

Figure 67: Attachment lug: strain and displacement (left) and stress and
displacement(right)

uni h, p=1

adap h, p=1

uni p

adap p

adap h,p=2

adap h, p=3

hp, h est

hp, hp est

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 68: Attachment Lug

3.3 Application to Structural Mechanics 109

3.3.7 Molding Case

Figure 69: Molding case: perspective view of the geometry and boundary
conditions

We apply this as an example for complicated while plane geometry. Walls
are considered thick, so a real 3D approach is needed. One triangle shaped
area on top of the case is loaded by a constant force while zero displacement
is prescribed at the base of the case. This may reflect some test of durability
of the case. Singularities mainly are placed at the edges of this triangle.
The other singularities are at obtuse angle corners and slightly above the
prescribed zero deformation at ground level.

Results are shown in figure 71 on the next page which is a relatively reg-
ular solution’s behavior. The overall precision is limited by a larger initial
grid due to a more sophisticated geometry, compared to the previous exam-
ple. Adaptive h–version delivers a .5 advantage over uniform h–version.
There are too much and too weak singularities. Up to a precision of 8% the
quadratic adaptive h–version performs best, overtaken by cubic adaptive
h–version. Both sharply end up in an asymptotic convergence phase. The
pure p–versions both perform very well, adaptive p down to 5% and uni-
form below. Uniform p–version even reaches an exponential convergence
phase ending up at the most precise solution about 1.5%. The h–p–versions

110 3 NUMERICAL EXPERIMENTS

CS1_{Global}

ka linear elasticity
RESULTS: 2- STRESS
STRESS - VON MISES MIN: 7.52E-08 MAX: 1.31E-06
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 4.22E-13 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 7.52E-08

 1.37E-07

 1.99E-07

 2.61E-07

 3.23E-07

 3.84E-07

 4.46E-07

 5.08E-07

 5.70E-07

 6.32E-07

 6.94E-07

 7.55E-07

 8.17E-07

 8.79E-07

 9.41E-07

 1.00E-06

 1.06E-06

 1.13E-06

 1.19E-06

 1.25E-06

 1.31E-06

CS1_{Global}

ka linear elasticity
RESULTS: 2- STRESS
STRESS - Z MIN:-1.11E-06 MAX: 1.44E-07
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 4.22E-13 VALUE OPTION:ACTUAL
FRAME OF REF: PART

-1.11E-06

-1.05E-06

-9.86E-07

-9.23E-07

-8.60E-07

-7.98E-07

-7.35E-07

-6.72E-07

-6.09E-07

-5.46E-07

-4.84E-07

-4.21E-07

-3.58E-07

-2.95E-07

-2.32E-07

-1.70E-07

-1.07E-07

-4.40E-08

 1.88E-08

 8.15E-08

 1.44E-07

Figure 70: Molding case: perspective view of stress and displacement and
cross-section

uni h, p=1

adap h, p=1

uni p

adap p

adap h, p=2

adap h, p=3

hp, h est

hp, hp est

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 71: Molding Case

3.3 Application to Structural Mechanics 111

both perform well, independent form exact control. They should have done
some more p–refinement, but converge in a smooth way. To conclude we
obtain a very regular behavior with exponential p–version convergence and
finial precision guided by geometric complexity of the domain.

3.3.8 Valve Body

Figure 72: Valve body: perspective view of the geometry and boundary
conditions

This example is considered as a relatively complicated geometry. Interior
forces are used, to squeeze the thick pipes of the valve body. One side con-
tains an area with fixed displacement (an attachment) giving rise to some
singularities at the boundary of the attachment area.

Convergence history is depicted in figure 75 on page 113, where usual
performance for regular solution can be obtained. In detail, adaptive h–
version is about a factor of 2 faster than uniform h–version, both deliver-
ing usual regular convergence. Adaptive p–version performs best, which
is slightly better than uniform p–version. The higher order adaptive h–
version are comparable down to a precision of 5% and continue with slower
asymptotic convergence. In this case, the cubic version performs better

112 3 NUMERICAL EXPERIMENTS

CS1_{Global}

ka linear elasticity
RESULTS: 3- STRAIN
STRAIN - VON MISES MIN: 1.66E-02 MAX: 2.59E+00
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 1.28E+02 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 1.66E-02

 2.74E-01

 5.31E-01

 7.89E-01

 1.05E+00

 1.30E+00

 1.56E+00

 1.82E+00

 2.08E+00

 2.33E+00

 2.59E+00

CS1_{Global}

ka linear elasticity
RESULTS: 3- STRAIN
STRAIN - VON MISES MIN: 1.66E-02 MAX: 2.59E+00
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 1.28E+02 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 1.66E-02

 2.74E-01

 5.31E-01

 7.89E-01

 1.05E+00

 1.30E+00

 1.56E+00

 1.82E+00

 2.08E+00

 2.33E+00

 2.59E+00

Figure 73: Valve body: perspective view of strain and displacement and
cross-section

than the quadratic one, which seems to be natural,but look for the singu-
larity examples chapter 3.2.3 on page 94 ff. The h–p–version’s performance
approaches the p–versions if one increases the number of refined elements
at every refinement step. Low numbers of 10% elements marked for re-
finement are far to specific and tend to use to much high degrees p. We
presented 30% refinement for threshold and fixed h–p criterion based and
h– and p– estimates and a 60% run, which is difficult to separate form pure
p–version although h-refinements were applied.

We conclude for all three elasto mechanics examples a very regular con-
vergence, although there are some singularities present. Final precision is
strongly limited by geometric complexity of the domains, while the num-
ber of unknowns on the very coarse initial grid seem to be comparable.
Hence pure p–versions pay off in this mechanics examples, while higher
order h–versions seemed to be preferable for the Poisson equation proto-
type singularities.

3.3 Application to Structural Mechanics 113

CS1_{Global}

ka linear elasticity
RESULTS: 3- STRAIN
STRAIN - VON MISES MIN: 1.66E-02 MAX: 2.59E+00
DEFORMATION: 1- DISPLACEMENT
DISPLACEMENT - MAG MIN: 0.00E+00 MAX: 1.28E+02 VALUE OPTION:ACTUAL
FRAME OF REF: PART

 1.66E-02

 2.74E-01

 5.31E-01

 7.89E-01

 1.05E+00

 1.30E+00

 1.56E+00

 1.82E+00

 2.08E+00

 2.33E+00

 2.59E+00

Figure 74: Valve body: diagonal cross-section, strain and displacement

uni h, p=1 adap h, p=1 uni p adap p adap h,p=2 adap h, p=3 hp, fix hp, thres hp, thres

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

degrees of freedom

en
er

gy
 e

rr
or

Figure 75: Valve Body

Conclusion

We have presented a complete framework for adaptive h-p finite element
methods for second order boundary value problems. Aiming an efficient
computational code with fully automatic control, we were led to the h-p
version of finite elements ensuring (sub-) exponential convergence in con-
trast to the standard algebraic one. To generate the full convergence order,
well-adapted grids had to be generated by the code.

The demands for efficiency in conjunction with unstructured grids (be-
cause of geometry constraints and adaptation), varying polynomial de-
grees (in space and in adaptation history) and some concerns on robust-
ness required new shape functions. The different polynomial degrees call
for the concept of p-hierarchy of the shape functions. The easy assembly
of the global stiffness matrix and the load vector on unstructured grids of
simplices clearly lead to the requirements of symmetry of the shape func-
tions on the boundary of each individual element. Finally independence
of orientation demands symmetry of the shape functions on the whole ele-
ment.

A short review showed some symmetric and p-hierarchic families of shape
functions. But it was proved, that no one could have both properties at once
for standard polynomial spaces. Hence the spaces of polynomials spanned
by the shape functions were slightly modified and p-hierarchic and sym-
metric shape functions were constructed.

Therefore, a domain decomposition preconditioner for h-p grids based
on a standard multilevel iterative solver for h grids was developed. This
construction implied an orthogonalization of shape functions by means of
optimization of the resulting condition numbers of the preconditioner. The
optimization procedure delivered the uniqueness (modulo symmetry) of
the shape functions.

A set of error estimators and refinement strategies was developed for an
adaptive construction of h-p grids where h- and p-refinements were applied
simultaneously. The most robust strategies turned out to be the ones with
different a posteriori error estimators on the finest grid.

The numerical experiments demonstrated the superior convergence prop-
erties of pre-asymptotic p-version and the global convergence of h-p-version
finite elements which agrees with the theory. This was shown both for
the characteristic 3D singularities of the Laplacian and for some 3D ex-
amples of linear elasto mechanics. Medium or high precision solutions
(less than 5%-20%) for 3D problems could only be obtained by higher order
methods. Comparisons with standard h-version implemented in KASKADE

Conclusion 115

were available only for low precision on the very first grids and refinement
steps. However we also have to state the enormous efforts in implementa-
tion needed for h-p adaptive codes.

The advances in parallelization of adaptive finite element codes appeared
to be slow and there was no complete implementation found. Further-
more complexity bounds were derived for the partitioning of adapted grids
(the bottle-neck). Hence there may be only convincing solutions for mas-
sive parallelization which depend on the problem and the computer hard-
ware. The computer graphics capabilities for higher order elements were
reviewed, stating that appropriate base software is available which only
lacks the usage by finite element packages.

In a short introduction to structural mechanics we have shown some fu-
ture directions of development for the existing linear finite element code,
which are different kinds of non-linearities, variational inequalities for pri-
mal or dual variables, mixed finite elements for nearly incompressible ma-
terials, reduced elements in 2D or in 1D following different theories of me-
chanics (or dimension adaptation), time dependent problems and path fol-
lowing for (geometric) instabilities (bifurcations). Some of the generaliza-
tions were done within the KASKADE project.

We conclude that further finite element projects dealing with piecewise
analytic (or at least smooth) solutions or data, should be based on higher
order methods. These are the p–version FEM on solution dependent adap-
ted grids and (from the scratch) the h–p–version. For ease of coding p-
extensions should be omitted or encapsulated by object oriented coding
during development of new numerical procedures.

116 Symbols

Symbols

R real numbers

N natural numbers

d number of space dimensions, domain is in Rd

Ω ⊂ R
d polyhedral domain

L2(Ω) space of square integrable functions

Hα(Ω) Sobolev space, α-th derivatives are in L2(Ω)

n number of unknowns, number of degrees of freedom

h step-size, diameter of the finite elements

p local approximation order, polynomial degree of the shape
functions

π in chapter 2.2 on page 60 only: number of parallel processors

O(n) Landau order symbol

a second order selfadjoint elliptic differential operator (intro-
duction on page 3)

a(., .) weak formulation of a

(b0, b1, . . . , bd) barycentric coordinates inRd, normed by
∑d

i=0 bi(x) = 1, ∀x
(chapter 1.1 on page 13)

Pd
p polynomials of degree p in d variables

Sd+1 group of permutations of the set (1, 2, . . . , d, d + 1) (chap-
ter 1.2.3 on page 31)

S+d+1 ⊂ Sd+1 alternating group, even permutations

S±
d+1 anti-symmetry of functionsRd → R, based on S+d+1 expressed

in barycentric coordinates (chapter 1.2.3 on page 31)

E
d projection of the Euclidean space Rd onto the hyper-plane

xd = 1 (chapter 2.4 on page 65)

REFERENCES 117

References

[AF26] P. Appell and J. Kampé de Fériet. Fonctions Hypergéométriques et
Hyperspheriques–Polynomes d’Hermite. Gauthier–Villars, Paris, 1926.

[BA76] I. Babuška and A. K. Aziz. On the angle condition in the finite element
method. SIAM J. Numer. Anal., 13:214–226, 1976.

[Bab93] I. Babuška. Courant element: Bofore and after. Technical Report BN-
1154, Univ. of Maryland, College Park, MD, 1993.

[Ban82] R. E. Bank. PLTMG Users’ guide, june 1981 version. Technical report,
Dept. of Mathematics, Univ. of Calif., San Diego, 1982.

[Bän91] E. Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT
Comput. Sci. Engrg., 3:181–191, 1991.

[Ban94] R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Dif-
ferential Equations, Users’ Guide 7.0. SIAM, Philadelphia, 1994.

[Bas93] P. Bastian. Parallel Adaptive Multigrid Methods. IWR, Universität Hei-
delberg, 1993. Preprint 93–60.

[BCMP91] I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta. Efficient precon-
ditioning for the p-version finite element method in two dimensions.
SIAM J. Numer. Anal., 28(3):624–661, 1991.

[BD81a] I. Babuška and M. R. Dorr. Error estimates for the combined h and p
versions of the finite element method. Numer. Math., 37:257–277, 1981.

[BD81b] R. E. Bank and T. F. Dupont. An optimal order process for solving
elliptic finite element equations. Math. Comp., 36:967–975, 1981.

[BD95] F. A. Bornemann and P. Deuflhard. Cascadic multigrid method for
elliptic problems. Numer. Math., 1995. to appear.

[BDR92] I. Babuška, R. Duran, and R. Rodriguez. Analysis of the efficiency
of an a posteriori error estimator for linear triangular finite elements.
SIAM J. Numer. Anal., 29(4):947–964, 1992.

[Bec93] R. Beck. Feldberechnung in dreidimensionalen Leitungsstrukturen der
Mikroelektronik mittels p-adaptiver Finite-Elemente-Methoden. PhD the-
sis, TU Berlin, 1993.

[BEK93a] F. A. Bornemann, B. Erdmann, and R. Kornhuber. Adaptive multilevel
methods in three space dimensions. Internat. J. Numer. Methods Engrg.,
36:3187–3202, 1993.

[BEK93b] F. A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori er-
ror estimates for elliptic problems in two and three space dimensions.
SIAM J. Numer. Anal., 1993. to appear.

[BEM92] I. Babuška, H. Elman, and K. Markley. Parallel implementation of the
hp-version of the finite element method on a shared-memory architec-
ture. SIAM J. Sci. Statist. Comput., 13:1433–1459, 1992.

118 REFERENCES

[BG88] I. Babuška and B. Q. Guo. The h-p version of the finite element method
for domains with curved boundaries. SIAM J. Numer. Anal., 25(4):837–
861, 1988.

[BGP89] I. Babuška, M. Griebel, and J. Pitkäranta. The problem of selecting
the shape functions for a p-type element method. Internat. J. Numer.
Methods Engrg., 28:1891–1908, 1989.

[BH82] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular empha-
sis on the incompressible Navier-Stokes equations. Comput. Methods
Appl. Mech. Engrg., 32:199–259, 1982.

[Bir93] K. Birken. Ein Parallelisierungskonzept für adaptive, numerische
Berechnungen. Diplomarbeit, Universität Erlangen-Nürnberg, 1993.

[BKP79] I. Babuška, R. B. Kellogg, and J. Pitkäranta. Direct and inverse es-
timates for finite elements with mesh refinements. Numer. Math.,
33:447–471, 1979.

[BM87] I. Babuška and A. Miller. A feedback finite element method with a
posteriori error estimation: Part i. the finite element method and some
basic properties of the a posteriori error estimator. Comput. Methods
Appl. Mech. Engrg., 61:1–40, 1987.

[Bor91] F. A. Bornemann. A Sharpened Condition Number Estimate for the BPX
Preconditioner of Elliptic Finite Element Problems on Highly Nonuniform
Triangulations. Konrad–Zuse–Zentrum, Berlin, 1991. Preprint SC 91–
9.

[BPX90] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel precondi-
tioners. Math. Comp., 55:1–22, 1990.

[BR78] I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite
element computations. SIAM J. Numer. Anal., 15:736–754, 1978.

[BR87] I. Babuška and E. Rank. An expert system like feedback approach
in the h-p version of the finite element method. Finite Elements and
Design, 3:127–147, 1987.

[Bra76] A. Brandt. Multi-level adaptive solutions to boundary value prob-
lems. Math. Comp., 31:333–390, 1976.

[Bra92] D. Braess. Finite Elemente. Springer, Berlin, 1992.

[BS90] I. Babuška and M. Suri. The p- and h-p versions of the finite element
method. An overview. Comput. Methods Appl. Mech. Engrg., 80(1–3):5–
26, 1990.

[BS94] I. Babuška and M. Suri. The p and h-p-versions of the finite element
method, basic principles and properties. SIAM Rev., 36(4):578–632,
1994.

REFERENCES 119

[BSK81] I. Babuška, B. A. Szabó, and I. N. Katz. The p-version of the finite
element method. SIAM J. Numer. Anal., 18(3):515–545, 1981.

[BSS91] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adap-
tive scientific algorithms on distributed memory machines. Concur-
rency: Practice and Experience, 3:159–178, 1991.

[BSW83] R. E. Bank, A. H. Sherman, and H. Weiser. Refinement algorithms
and data structures for regular local mesh refinement. In Scientific
Computing, R. Stepleman (ed.), pages 3–17, Amsterdam, 1983. IMACS
North-Holland.

[BW60] B. A. Boley and J. H. Weiner. Theory of Thermal Stresses. J. Wiley &
Sons, New York, 1960.

[BW85] R. E. Bank and A. Weiser. Some a-posteriori error estimators for ellip-
tic partial differential equations. Math. Comp., 44, 1985.

[BW93] P. Bastian and G. Wittum. On Robust and Adaptive Multigrid Methods.
IWR, Universität Heidelberg, 1993. Preprint 93–59.

[BY87] I. Babuška and D. Yu. Asymptotically exact a posteriori error estima-
tor for biquadratic elements. Finite Elem. Anal. Des., 3:341–354, 1987.

[Cia80] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North–
Holland, Amsterdam, 1980.

[Cia88] P. G. Ciarlet. Mathematical Elasticity, volume 1. North–Holland, Ams-
terdam, 1988.

[Cia91] P. G. Ciarlet. Basic error estimates for elliptic problems. In P. G. Cia-
rlet and J. L. Lions, editors, Handbook of Numerical Analysis, volume 2,
pages 17–351, Amsterdam, 1991. North–Holland.

[CL90] C. K. Chui and Ming-Jun Lai. Multivariate vertex splines and finite
elements. J. Approx. Theory, 60(3):245–343, 1990.

[CMTT93] P. Carnevali, R. B. Morris, Y. Tsuji, and G. Taylor. New basis functions
and computational procedures for p-version finite element analysis.
Internat. J. Numer. Methods Engrg., 36:3759–3779, 1993.

[Coo68] S. Coons. Rational bicubic surface patches. Technical Report, MIT,
Project MAC, 1968.

[Cri91] M. A. Crisfield. Non-Linear Finite Element Analysis of Solids and Struc-
tures, volume 1. J. Wiley & Sons, Chichester, 1991.

[CT65] R. Clough and J. Tocher. Finite element stiffness matrices for analy-
sis of plates in bending. In Proc. of Conference on Matrix Methods in
Structural Mechanics, 1965.

[CW90] R. R. Coifman and M. V. Wickerhauser. Best-adapted wave packet
bases. via ftp, Yale Univ., New Haven, 1990.

120 REFERENCES

[CZZ84] A. W. Craig, J. Z. Zhu, and O. C. Zienkiewicz. A posteriori error esti-
mation, adaptive mesh refinement and multigrid methods using hier-
archical finite element bases. In MAFELAP84, The Mathematics of Finite
Elements and Applications, 1984.

[Dau88] M. Dauge. Elliptic Boundary Value Problems on Corner Domains.
Springer, Berlin, 1988.

[Deu83] P. Deuflhard. Order and stepsize control in extrapolation methods.
Numer. Math., 41:399–422, 1983.

[Deu94] P. Deuflhard. Cascadic conjugate gradient methods for elliptic partial
differential equations. Algorithm and numerical results. In D. Keyes
and J. Xu, editors, Proceedings of the 7th International Conference on Do-
main Decomposition Methods 1993. AMS, Providence, 1994.

[DH93] P. Deuflhard and A. Hohmann. Numerische Mathematik I. Eine algorith-
misch orientierte Einführung. de Gruyter, Berlin, 2. edition, 1993.

[DKO92] L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of elastic scatter-
ing problems in linear acoustics using h-p boundary element method.
Comput. Methods Appl. Mech. Engrg., 101:251–282, 1992.

[DL76] G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics.
Springer, Berlin, 1976.

[DLY89] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive
hierarchical finite element code. IMPACT Comput. Sci. Engrg., 1:3–35,
1989.

[Dör94] W. Dörfler. A convergent adaptive algorithm for poisson’s equation.
SIAM J. Numer. Anal., 1994. to appear.

[DORH89] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward a
universal h-p adaptive finite element strategy. i: Constrained approxi-
mation and data structure. Comput. Methods Appl. Mech. Engrg., 77:79–
112, 1989.

[Dub91] M. Dubiner. Spectral methods on triangles and other domains. J. Sci.
Comp., 6(4):345–390, 1991.

[ERFA91] B. Erdmann, R. Roitzsch, and Bornemann F. A. KASKADE, Numerical
Experiments. Konrad-Zuse-Zentrum, Berlin, 1991. Technical Report
TR 91-1.

[Far90] G. Farin. Curves and Surfaces for Computer Aided Geometric Design – A
Practical Guide. Academic Press, San Diego, 2nd edition, 1990.

[FLO76] W. N. Findley, J. S. Lai, and K. Onaran. Creep and Relaxation of Nonlinear
Viscoelastic Materials. North–Holland, Amsterdam, 1976.

[FP93] D. A. Field and Y. Pressburger. An h-p-multigrid method for finite
element analysis. Internat. J. Numer. Methods Engrg., 36:893–908, 1993.

REFERENCES 121

[GB86a] W. Gui and I. Babuška. The h, p and h-p versions of the finite element
method in 1 dimension. i. The error analysis of the p-version. Numer.
Math., 49:577–612, 1986.

[GB86b] W. Gui and I. Babuška. The h, p and h-p versions of the finite ele-
ment method in 1 dimension. ii. The error analysis of the h- and h-p
versions. Numer. Math., 49:613–657, 1986.

[GB86c] W. Gui and I. Babuška. The h, p and h-p versions of the finite element
method in 1 dimension. iii. The adaptive h-p version. Numer. Math.,
49:659–683, 1986.

[GM78] A. Grundmann and H. M. Möller. Invariant integration formulas
for the n-simplex by combinatorial methods. SIAM J. Numer. Anal.,
15(2):282–290, 1978.

[Gri89] P. Grisvard. Singularités en elasticité. Arch. Rational Mech. Anal.,
107:157–180, 1989.

[Gri92] P. Grisvard. Singularities in Boundary Value Problems. Masson, Paris,
Springer, Berlin, 1992.

[Gri94] M. Griebel. Punktblock-Multilevelmethoden zur Lösung elliptischer
Differentialgleichungen. Teubner, Stuttgart, 1994.

[Guo93] B. Q. Guo. The h-p version of the finite element method for solving
boundary value problems in polyhedral domains. In Proceedings of the
International Conference on Boundary Value Problems and Integral Equa-
tions in Nonsmooth Domains, CIRM Luminy, France, 1993.

[Gur81] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press,
Orlando, 1981.

[Hea93] A. C. Hearn. Reduce User’s Manual 3.5. Rand, Santa Monica, CA 90407-
2138, 1993.

[HHNL88] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek. Solution of Variational
Inequalities in Mechanics. Springer, New York, 1988.

[Hip95] R. Hiptmair. Object oriented concepts for an adaptive finite element
code. via www, TU München, 1995.

[HK90] R. H. W. Hoppe and R. Kornhuber. Multi-grid solution of two cou-
pled stefan equations arising in induction heating of large steel slabs.
Internat. J. Numer. Methods Engrg., 30:779–801, 1990.

[HK94] R. H. W. Hoppe and R. Kornhuber. Adaptive multilevel-methods for
obstacle problems. SIAM J. Numer. Anal., 31:301–323, 1994.

[Hoh94] A. Hohmann. Inexact Gauss Newton Methods for Parameter Dependent
Nonlinear Problems. PhD thesis, FU Berlin, 1994.

122 REFERENCES

[Hop90] R. H. W. Hoppe. Une méthode multigrille pour la solution des
problèmes d’ obstacle. RAIRO Modél. Math. Anal. Numér., 24:711–736,
1990.

[IR72] B. M. Irons and A. Razzaque. Experience with the patch test for con-
vergence of finite element method. In Mathematical foundations of the
finite element method (ed. A.K. Aziz), pages 557–587. Academic Press,
1972.

[Jac36] D. Jackson. Formal properties of orthogonal polynomials in two vari-
ables. Duke Math. J., 2:423–434, 1936.

[Jam76] P. Jamet. Estimations d’erreur pour des elements finis droits presque
degeneres. RAIRO Anal. Numér., 10:43–61, 1976.

[Jar86] H. Jarausch. On an adaptive grid refining technique for finite element
approximations. SIAM J. Sci. Statist. Comput., 7:1105–1120, 1986.

[JH92] C. Johnson and P. Hansbo. Adaptive finite element methods in com-
putational mechanics. Comput. Methods Appl. Mech. Engrg., 101:143–
181, 1992.

[JP92] M.T. Jones and P.E. Plassmann. Parallel Algorithms for the Adaptive Re-
finement and Partitioning of Unstructured Meshes. Argonne National
Laboratory, 1992.

[KO88] N. Kikuchi and J. T. Oden, editors. Contact Problems in Elasticity:
A Study of Variational Inequalities and Finite Element Methods. SIAM,
Philadelphia, 1988.

[KOR95] M. Kaddoura, C.-W. Ou, and S. Ranka. Mapping unstructured com-
putational graphs for adaptive and nonuniform computational envi-
ronments. IEEE Parallel and Distributed Technology, page submitted,
1995.

[Kos82] A. I. Kostrikin. Intorduction to Algebra. Springer, New York, 1982.

[KR90] R. Kornhuber and R. Roitzsch. On adaptive grid refinement in the
presence of internal or boundary layers. IMPACT Comput. Sci. Engrg.,
2:40–72, 1990.

[Kri92] M. Križek. On the maximum angle condition for linear tetrahedral
elements. SIAM J. Numer. Anal., 29(2):513–520, 1992.

[Le 90] P. Le Tallec. Numerical Analysis of Viscoelastic Problems. Masson, Paris,
Springer, Berlin, 1990.

[Le 94] P. Le Tallec. Numerical methods for nonlinear three-dimensional elas-
ticity. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical
Analysis, volume 3, pages 465–622, Amsterdam, 1994. North–Holland.

REFERENCES 123

[Lei90] P. Leinen. Ein schneller adaptiver Löser für elliptische Randwertprobleme
auf Seriell– und Parallelrechnern. PhD thesis, Universität Dortmund,
1990.

[Lem94] M. Lemke. Multilevelverfahren mit selbstadaptiven Gitterverfeinerungen
für Parallelrechner mit verteiltem Speicher. Oldenburg, München, 1994.

[Man90a] J. Mandel. Hierarchical preconditioning and partial orthogonaliza-
tion for the p-version finite element method. In T. Chan, R. Glowin-
ski, J. Periaux, and O. Widlund, editors, Proceedings Third Internat.
Symp. on Domain Decomposition Methods for Partial Differential Equa-
tions, pages 141–156. SIAM, 1990.

[Man90b] J. Mandel. Two-level domain decomposition preconditioning for the
p-version finite element method in three dimensions. Internat. J. Nu-
mer. Methods Engrg., 29:1095–1108, 1990.

[Mat92] The Math Works, Inc., Natick, Mass. 01760. Matlab, High-Performance
Numeric Computation and Visualization Software, 1992.

[McC89] S. McCormick. Multilevel Adaptive Methods for Partial Differential Equa-
tions. SIAM, Philadelphia, 1989.

[Mit89] W. F. Mitchell. A comparison of adaptive refinement techniques for
elliptic problems. ACM Trans. Math. Software, 15:326–347, 1989.

[MMS82] C. Mesztenyi, A. Miller, and W. Szymczak. FEARS: Details of mathe-
matical formulation UNIVAC 1100. Technical Report BN-994, Univ. of
Maryland, College Park, 1982.

[MP72] A. R. Mitchell and G. M. Phillips. Construction of basis functions in
the finite element method. BIT, 12:81–89, 1972.

[MTC92] R. B. Morris, Y. Tsuji, and P. Carnevali. Adaptive solution strategy for
solving large systems of p-type finite element equations. Internat. J.
Numer. Methods Engrg., 33:2059–2071, 1992.

[Mys81] I. P. Mysowskich. Interpoljazionnye Kubaturnye Formuly. Nauka,
Moskau, 1981.

[Nic72] R. A. Nicolaides. On a class of finite elements generated by Lagrange
interpolation. SIAM J. Numer. Anal., 9(3):435–445, 1972.

[NP94] S. A. Nazarov and B. A. Plamenevsky. Elliptic Problems in Domains with
Piecewise Smooth Boundaries. de Gruyter, Berlin, 1994.

[NVL93] R. V. Nambiar, R. S. Valera, and K. L. Lawrence. An algorithm for
adaptive refinement of triangular element meshes. Internat. J. Numer.
Methods Engrg., 36:499–509, 1993.

[Ode91] J. T. Oden. Finite elements: An introduction. In P. G. Ciarlet and J. L.
Lions, editors, Handbook of Numerical Analysis, volume 2, pages 3–15,
Amsterdam, 1991. North–Holland.

124 REFERENCES

[Ode94] J. T. Oden. Optimalh-p finite element methods. Comput. Methods Appl.
Mech. Engrg., 112, 1994.

[ODRW89] J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann. To-
ward a universal h-p adaptive finite element strategy. ii: A posteri-
ori error estimation. Comput. Methods Appl. Mech. Engrg., 77:113–180,
1989.

[OPF93] J. T. Oden, A. Patra, and Y. Feng. Domain decomposition for adaptive
hp finite element methods. Technical report, TICOM, Univ. of Texas at
Austin, Tx., 1993.

[OR70] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, Orlando, San Diego, New
York, 1970.

[Osw90] P. Oswald. On function spaces related to finite element approximation
theory. Z. Anal. Anwendungen, 9(2):43–64, 1990.

[Pav92] L. F. Pavarino. Domain Decomposition Algorithms for the p-Version Fi-
nite Element Method for Elliptic Problems. PhD thesis, Report TR616,
Courant Institute, New York, 1992.

[Pav94a] L. F. Pavarino. Additive Schwarz methods for the p-version finite ele-
ment method. Numer. Math., 66(4):493–515, 1994.

[Pav94b] L. F. Pavarino. Schwarz methods with local refinement for the p-
version finite element method. Numer. Math., 69(2):185–211, 1994.

[Pea76] A. G. Peano. Hierarchies of conforming finite elements for plane elas-
ticity and plate bending. Comput. Math. Appl., 2:211–224, 1976.

[PO93] A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite
element methods. Technical report, TICOM, Univ. of Texas at Austin,
Tx., 1993.

[PSL90] A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430–452,
1990.

[Ran78] R. Rannacher. Probleme der Elastizitätstheorie und ihre numerische Be-
handlung. Univ. Bonn, 1978. Vorlesungsskriptum.

[Rhe80] W. C. Rheinboldt. On a theory of mesh-refinement processes. SIAM J.
Numer. Anal., 17:766–778, 1980.

[Riv84a] M. C. Rivara. Algorithms for refining triangular grids suitable for
adaptive and multigrid techniques. Internat. J. Numer. Methods Engrg.,
20:745–756, 1984.

[Riv84b] M. C. Rivara. EXPDES Users’ guide. Technical report, Catholic Univ.
Leuven, Belgium, 1984.

REFERENCES 125

[ROD89] W. Rachowicz, J. T. Oden, and L. Demkowicz. Toward a universal h-p
adaptive finite element strategy. iii: Design of h-p meshes. Comput.
Methods Appl. Mech. Engrg., 77:181–212, 1989.

[Roi89a] R. Roitzsch. KASKADE Programmer’s Manual. Konrad-Zuse-Zentrum,
Berlin, 1989. Technical Report TR 89-5.

[Roi89b] R. Roitzsch. KASKADE User’s Manual. Konrad-Zuse-Zentrum, Berlin,
1989. Technical Report TR 89-4.

[RR93a] L. Rose and D. Ramey. Advanced Visualizer User’s Guide, Version 4.0.
Wavefront Technologies, Inc., Santa Barbara, CA 93103, 3rd edition,
1993.

[RR93b] L. Rose and D. Ramey. Wavefront File Formats, Version 4.0. Wavefront
Technologies, Inc., Santa Barbara, CA 93103, 1st edition, 1993.

[RT91] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In P. G.
Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, vol-
ume 2, pages 523–639, Amsterdam, 1991. North–Holland.

[SB91] B. A. Szabó and I. Babuška. Finite Element Analysis. J. Wiley & Sons,
New York, 1991.

[Sha94] V. V. Shaidurov. Some Estimates of the Rate of Convergence for the Cascadic
Conjugate-Gradient Method. Otto-von-Guericke-Universität, Magde-
burg, 1994. Preprint.

[Sil] Power series. Technical report, Silicon Graphics, Inc., Mountain View,
CA 94039-7311.

[SK95] S. J. Sherwin and G. E. Karniadakis. Triangular and tetrahedral spec-
tral elements. In ICOSAHOM’95, 1995.

[SW92] C. Schütte and M. Wulkow. Quantum theory with discrete spectra
and countable systems of differential equations – a numerical treat-
ment of infrared spectroscopy. Technical Report SC 92-7, Konrad-
Zuse-Zentrum, 1992.

[Sza85] B. A. Szabó. PROBE: Theoretical Manual, Release 1.0. Noetic Technolo-
gies Corporation, 7980 Clayton Road, Suite 205, St. Louis, MO 63117,
1985.

[Sza86] B. A. Szabó. Implementation of a finite element software system with
h and p extension capabilities. Finite Elements in Analysis and Design,
2:177–194, 1986.

[Vog83] M. Vogelius. An analysis of the p-version of the finite element method
for nearly incompressible materials. Numer. Math., 41:39–53, 1983.

[Wac75] E. L. Wachspress. A Rational Finite Element Basis. Academic Press,
New York, 1975.

126 REFERENCES

[WCE95] C. Walshaw, M. Cross, and M. G. Everett. A parallelisable algorithm
for optimising unstructured mesh partitions. Technical report, School
of Math., Stat. & Scientific Comp., Univ. of Greenwich, London, 1995.

[Web88] J. P. Webb. Finite element analysis of dispersion in waveguides with
sharp metal edges. IEEE Trans. Microwave Theory Tech., 36(12):1819–
1825, 1988.

[Wil92] R. Williams. A Dynamic Solution-Adaptive Unstructured Parallel Solver.
Caltech CCSF, Pasadena, 1992. Report 21–92.

[WR92] A. Wierse and M. Rumpf. GRAPE - Eine objektorientierte
Visualisierungs- und Numerikplattform. Informatik Forsch. Entw., 7,
1992.

[Xu89] J. Xu. Theory of Multilevel Methods. PhD thesis, Report No. AM 48,
Pennsylvania State University, Department of Mathematics, 1989.

[Xu92] J. Xu. Iterative methods by space decomposition and subspace correc-
tion. SIAM Rev., 34:581–613, 1992.

[Yse86] H. Yserentant. On the multilevel splitting of finite element spaces.
Numer. Math., 49:379–412, 1986.

[Zla68] M. Zlamal. On the finite element method. Numer. Math., 12:394–409,
1968.

[ZT89] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, vol-
ume 1. McGraw-Hill, Maidenhead, 4th edition, 1989.

[ZT91] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, vol-
ume 2. McGraw-Hill, Maidenhead, 4th edition, 1991.

[Zum91] G. W. Zumbusch. Adaptive parallele Multilevel-Methoden zur
Lösung elliptischer Randwertprobleme. SFB-Report 342/19/91A,
TUM-I9127, TU München, 1991.

[Zum93] G. W. Zumbusch. Symmetric hierarchical polynomials for the h-p-
version of finite elements. Preprint SC 93-32 ZIB, 1993.

[Zum94] G. W. Zumbusch. Visualizing functions of the h-p-version of finite
elements. Technical Report TR 94-5, Konrad-Zuse-Zentrum, Berlin,
1994.

[ZW92] L. F. Zeng and N.-E. Wiberg. Adaptive h-p procedures for high ac-
curacy finite element analysis of two-dimensional linear elastic prob-
lems. Comput. & Structures, 42(6):869–886, 1992.

[ZZCA89] O. C. Zienkiewicz, J. Z. Zhu, A. W. Craig, and M. Ainsworth. Sim-
ple and practical error estimation and adaptivity: h and h-p version
procedures. In Adaptive methods for partial differential equations, pages
100–114, Troy / New York, 1989. Workshop 1988, SIAM.

