
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

Rudolf Beck

Bodo Erdmann

Rainer Roitzsch

KASKADE User’s Guide

Version 3.x

Technical Report TR 95-11 (December 1995)

KASKADE User’s Guide
Version 3.x

Rudolf Beck Bodo Erdmann Rainer Roitzsch

Abstract

KASKADE 3.x was developed for the solution of partial differential equati-
ons in one, two, or three space dimensions. Its object-oriented implementation
concept is based on the programming language C++ . Adaptive finite element
techniques are employed to provide solution procedures of optimal computatio-
nal complexity. This implies a posteriori error estimation, local mesh refinement
and multilevel preconditioning.

The program was designed both as a platform for further developments of ad-
aptive multilevel codes and as a tool to tackle practical problems. Up to now
we have implemented scalar problem types like stationary or transient heat con-
duction. The latter one is solved with the Rothe method, enabling adaptivity
both in space and time. Some nonlinear phenomena like obstacle problems or
two-phase Stefan problems are incorporated as well. Extensions to vector-valued
functions and complex arithmetic are provided.

This report helps to work with KASKADE . Especially we

– study a set of examples,

– explain how to define a user’s problem and

– introduce a graphical user interface.

We are extending this guide continuously. The latest version is available by
network.

CONTENTS 3

Contents

1 Introduction 8

2 Installation 8

2.1 Obtaining the Source Code . 8

2.2 Compiling and Linking the Code . 9

2.3 More about the Makefile . 10

3 Starting the Program 11

3.1 Parameters and Parameter Files . 11

3.2 Algorithmic Kernel . 12

3.3 Examples . 15

3.3.1 Static Problems . 15

3.3.2 Transient Problems . 34

3.3.3 Nonlinear Problems . 35

4 Problem Classes 37

5 Geometry and Material Properties 39

5.1 Definition of the Geometry . 39

5.2 Ouput of Geometrical Data . 53

5.3 Material Coefficients, Boundary Conditions, and Initial Values 54

6 System Solution and Preconditioning 57

6.1 The Iterative Solvers . 57

6.2 Preconditioners for Linear Problems . 58

6.3 Preconditioners for Nonlinear Problems 58

7 Error Estimation and Mesh Refinement 58

8 How to Define a New Problem 62

8.1 Everything is variable . 62

8.2 Something is variable, something is constant 67

CONTENTS 4

9 Obtaining Run-Time Information 67

10 Technical Details for Programmers 67

10.1 Vector and Matrix Classes . 67

10.2 Batchjobs . 70

11 Graphical User Interface 71

11.1 How to install the ZIBGui environment 71

11.2 Examples . 72

12 Frequently Asked Questions 79

A Problem Classes 80

B Command Listing 83

References 87

LIST OF TABLES 5

List of Tables

1 important parameters . 13

2 problem types . 37

3 material types . 54

4 Dirichlet boundary conditions . 55

5 iterative solvers . 58

6 parameters for linear solvers . 59

7 preconditioners for linear problems . 60

8 preconditioners for nonlinear problems 60

9 error estimators . 61

10 refinement strategies . 61

11 info- and print-commands . 68

12 plot-commands . 69

13 commands for time informations . 70

LIST OF FIGURES 6

List of Figures

1 main iteration loop . 12

2 example: peak-1d . 16

3 example: peak-2d . 17

4 example: peak-3d . 19

5 example: unit-2d-A . 20

6 example: slit-2d-45i . 20

7 example: slit-2d-45 . 21

8 example: slit-2d-init . 22

9 example: slit-2d . 22

10 example: slit, solution . 23

11 example: slit-2d-a . 24

12 example: corner-3d . 25

13 example: jump-2d . 26

14 example: jump-2d-a . 26

15 example: flow-2d . 28

16 example: flow2d-a . 28

17 example: flow-3d . 29

18 example: skull, coarse grid . 30

19 example: skull, refined grid . 31

20 example: cylindrical mesh . 32

21 example: axisymmetrical problem 1 . 32

22 example: axisymmetrical problem 2 . 33

23 example: obstacle problem . 35

24 example: Stefan problem . 36

25 example: porous media . 38

26 partition of the unit interval . 40

27 partition of the unit square . 42

28 circlular geometry . 43

29 2D–region with holes . 48

30 3D–region with holes . 51

LIST OF FIGURES 7

31 layer in 3d . 51

32 cylindrical geometry . 53

33 userdefined problem . 63

34 graphical user interface 1 . 72

35 graphical user interface 2 . 75

1 INTRODUCTION 8

1 Introduction

The finite element code KASKADE, version 3.x, solves some types of linear elliptic
or parabolic equations, and some nonlinear problems. A more detailed description of
the related problem classes is given in appendix A.

Our main goal is to present an easy way to customize this software package for solving a
wide range of partial differential equations. Of course, there are a lot of applications of
similar problem types which cannot be handled directly with the included algorithms.
But we hope that our additional advices for extending the code by numerical methods
or problem classes will help to use the code as a base for the development of new
prototypes.

After reading the first two chapters, the reader should be able to install the code and
to run a set of provided examples. In the following chapters he can learn how to
implement his own problem.

This user’s guide does neither provide a treatment of mathematical concepts nor does
it describe the object-oriented implementation of these. Such issues are covered in the
technical report [BER95].

We are extending this tutorial continuously. The latest version is available by network
as described in the next chapter. If there are any users extending KASKADE , we
would be pleased to get notice of their work. If possible, we will publish their solution
in the appendix.

The authors are very thankful for any suggestion to improve the code or this guide.
Please send your contribution by e-mail to

erdmann@zib-berlin.de or roitzsch@zib-berlin.de.

Please note, that there is another way to exchange experiences about KASKADE :
the mailing list kaskade-l@zib-berlin.de.

You can subsribe by sending a mail to the listserver Majordomo@zib-berlin.de with
the message subscribe kaskade-l in the body.

By this list you are always informed on essential news about the code and its appli-
cations, and you can use this channel for discussing questions of general interest.

2 Installation

2.1 Obtaining the Source Code

The KASKADE source code is part of the CodeLib, a collection of numerical codes
developed at the Konrad–Zuse–Zentrum. It is available in the electronical library elib

2 INSTALLATION 9

by anonymous ftp:

> ftp elib (Internet: 130.73.108.11)

> username: anonymous

> password: e-mail-address

> cd pub/kaskade/3.x

In this directory you find a compressed tar–file 3.x.tar.Z and a README with some
hints for installation. x stands for the number of the newest version.

By the commands

> binary

> get README

> get 3.x.tar.Z

you fetch copies into your local directory.

The tar-file 3.x.tar.Z contains the source code and examples. Use the following
commands to extract these files:

> uncompress 3.x.tar.Z

> tar -xf 3.x.tar

2.2 Compiling and Linking the Code

The make-file is kaskade.make . There are four ’targets’ in kaskade.make to obtain
separate versions for different space dimensions (and one that comprises all of them):

> make -f kaskade.make k1 → 1D-code k1

> make -f kaskade.make k2 → 2D-code k2

> make -f kaskade.make k3 → 3D-code k3

> make -f kaskade.make k6 → code included for all space dimensions

Or shorter, if you have made a copy makefile of kaskade.make:

> make k1 → 1D-code k1

> make k2 → 2D-code k2

> make k3 → 3D-code k3

> make k6 → code included for all space dimensions

Additionally, the desired space dimension has to be set in the file dimension.h . k6
is the default target.

2 INSTALLATION 10

The default compiler is GNU’s g++, version 2.7.2. If you prefer GNU’s g++,

version 2.6.3, you have to change the type of complex in the file general.h. Addi-
tionally, we use the C Set ++ for AIX/6000, version 2.1 on IBM RS/6000 work-
stations and DEC C++, V5.0-3 for DEC OSF/1.

2.3 More about the Makefile

The makefile helping to install KASKADE is called kaskade.make. It includes the
configuration of system resources necessary to compile and link the program. Here you
can select your compilers (C++, Fortran), loaders and the pathnames for the libraries
you need on your machine (e.g. X11, Fortran,...). We mentioned examples for some
platforms. Maybe they are not up to date.

In the makefile you can select your compile and loader options, e.g. FORFLAGS or
OPTFLAG.

Finally, all the file dependencies are listed. Thus we are sure that changes in one of
the source files initiate a new compilation. A user is recommended to update this list
after he added new dependencies (e.g. include files). That can be done by

make -f kaskade.make dependencies

generating a new makefile makefile with all discovered dependencies.

3 STARTING THE PROGRAM 11

3 Starting the Program

3.1 Parameters and Parameter Files

Please see section 2 how to obtain the source files and how to compile and link the
code.

The name of the program depends on the chosen program version:

1D: k1 ,
2D: k2 ,
3D: k3 ,
all three space dimensions: k6 .

The program is started by specifying a parameter file, which defines a problem and
sets relevant parameters, e.g.

> k6 cmd=unit-1d.cmd

Here unit-1d.cmd is the command file for the selected problem (1D static heat con-
duction).

Parameters may also be set on the command-line, e.g.

> k6 cmd=unit-1d.cmd graphics=1 globalPrecision=1.0e-2

Commands have the following syntax:

(1) command (example: pause)

(2) command=number (example: spaceDim=3)

(3) command=keyword (example: problem=staticHeatConduction)

The case (1) is only possible for commands of boolean type and is equivalent to
command=1, where 1 means true. The value is set to false by command=0 .

Some general remarks on commands and command files:

• All commands are read at startup. Thus the program execution cannot be
altered during run-time (with a few exceptions, e.g. for output routines).

• The symbol ‘#’ starts a comment up to the rest of the line in any input file.

• The main command file kaskade.init is always read as the first. It sets default
values for most commands.

• Parameter values are overwritten by subsequent commands.

3 STARTING THE PROGRAM 12

Postprocessing

Assemble and Solve Linear System

Read Coarse Initial Grid

BreakCondition

Refine Grid

Yes

No

Estimate Discretization Error

Figure 1: Main iteration loop of the adaptive solution procedure

• If the characters ‘<CR>’ appear on the output screen at run-time, the function
Pause() has been activated by the command pause and the program expects
input from the user (see the description of pause in table 1).

Some important parameters are shown in Table 1.

Any problem (like the one specified by unit-1d.cmd) expects a geometry definition
file (e.g. unit-1d.geo) and a material file (e.g. unit-1d.mat) .

3.2 Algorithmic Kernel

The finite element methods in KASKADE use adaptive multilevel techniques to
achieve of optimal complexity, see [DLY89].

Here we give a short outline of the algorithm in the elliptic case, which is selected by
the command problem=staticHeat:

1. The user has to define the following input:

• Coefficients of the equation in a mat-file for piecewise constant values or he has
provide appropriate functions in the source code. The material class is specified
by the parameter material.

• Dirichlet boundary conditions. The command DirichletBCs selects the (con-
stant or variable) Dirichlet boundary conditions.

3 STARTING THE PROGRAM 13

Parameter Name Default Description
(set in file
kaskade.init)

dirichletBCs= constDirichlet identifies the type of Dirichlet boundary
condition

file= unit-2d.geo name of geometry file (the extension .geo)
need not be specified. The material file is
expected to have the same name, but the
extension .mat.

globalPrecision= 1e-3 desired relative precision (maximum dis-
cretization error with respect to global
energy) if absPrecision=0, otherwise de-
sired absolute precision

material= defaultMaterial name identifying the material type,
defaultMaterial defines constant coeffi-
cients on the elements

linSolver= cg determines the type of iterative solver

pause= 1 (true) stop when function Pause() is called in
the code and wait for input:
<CarriageReturn>� continue until next
Pause() is encountered,
’c’ � continue and disable the function
Pause(),
’p’� generate a picture in postscript for-
mat of the actual mesh and the approxi-
mate solution,
’q’ � quit program

problem= staticHeat specifies the problem type to be allocated
and solved

spaceDim= 2 space dimension

Table 1: Some important parameters

3 STARTING THE PROGRAM 14

• Space dimension. It is set by parameter spaceDim.

• A coarse triangulation for the region Ω in a geo-file. This file is specified by
the parameter file.

2. On the actual triangulation of the region Ω the weak formulation of the partial
differential equation is discretized by linear finite elements.

The resulting linear system is usually solved by a direct sparse-matrix Cholesky me-
thod. This direct sparse solver is only efficient as long as the dimension of the matrix
is not too large. We use the command level0direct=*** to select an iterative solver
instead of Cholesky’s method, i.e. the direct solver will be used on the first grid (level
== 0) for a matrix dimension up to ***. The switch between direct and iterative sol-
ver on higher refinement levels is defined by the command directSolverLimit=***,
where *** stands for the maximal matrix dimension for the direct solver on levels >
0.

The iterative solver may include a preconditioner to reduce the number of iterations
for the new approximate solution. The iterative solver must be specified with the
command linSolver, the preconditioner with the command precond.

3. The global discretization error of the approximate solution is estimated. If it is
below the required precision, the process stops. Otherwise we use local error indicators
to refine the mesh where the errors are beyond a threshold.

The estimator is selected by the command errorEstimator. A refinement strategy
uses the local error information to mark elements for refinement; it can be chosen by
the command refStrategy.

4. We repeat the steps 2. and 3. until a convergence or break condition stops
this cycle. Normally the process ends if the desired precision (defined by command
globalPrecision=***) or a maximal number of refinement steps (defined by com-
mand maxRefSteps) is reached. The command minRefSteps prescribes a minimal
number of refinement steps.

By default, we look at the estimated error relative to the energy norm of the approxi-
mate solution. Only if the parameter absPrecision is set to true, we compute until
the absolute error is below the threshold globalPrecision. This break condition is
reasonable if we want to approximate a solution with a range near zero.

Figure 1 illustrates the main iteration loop of this adaptive process.

The self–adaptive grid refinement minimizes the number of nodes to achieve the re-
quested precision. Additionally, the refinement history allows an efficient multilevel
preconditioning of the linear systems.

For linear parabolic partial differential equations we use the adaptive approach of
F. Bornemann, see [Bor90], which is able to handle complicated geometries and in-
consistent initial data. Here the time is discretized first, allowing an adaptive stepsize

3 STARTING THE PROGRAM 15

control. The errors of the arising spatial elliptic subproblems are controlled indepen-
dently. Thus advanced adaptive techniques for ordinary differential equations and
elliptic boundary value problems are combined.

R. Kornhuber contributes the algorithms for problems formulated as variational ine-
qualities, see appendix A and [Kor95].

3.3 Examples

The KASKADE package includes some example problems, each of them is defined by
setting parameters in a command file (extension .cmd). Just type

> k6 cmd=****

to compute one of them with the executable k6. The **** stands for the name of a
command file, e.g.

> k6 cmd=unit-1d.cmd

In the next chapter you learn how to formulate these command files.

3.3.1 Static Problems

(1) Static problem using the files peak-1d.cmd, peak-1d.geo, peak-1d.mat.

Static heat conduction of type (1) in appendix A on the one-dimensional unit
interval.

−uxx = f in [0, 1]

u = 0 in the points 0 and 1

This Poisson problem has the constant coefficient k = 1 in the Laplacian and a
source function f ∼ exp(−100.0∗ (x−0.5)2) with a central peak and zero values
on the boundary points.

The solver stops when the relative global error of the approximated solution is
less than 1.0e−5 (relative to the energy norm). The conjugate gradient method
that solves the linear systems is preconditioned by a multigrid algorithm.

The adaptive refinement is tuned by an error estimator. Figure 2 shows the final
grid.

In this and in the two following examples we know the true solution of the
problems, and by setting the parameter compareSolution=1 we can compute

3 STARTING THE PROGRAM 16

Min: 0 Max: 0.2528

Figure 2: Final mesh and solution in example (1)

the maximum error of the approximate solution in the nodes. In the chapter 8
we explain how you can compare the approximate solution of your problem with
a given function (e.g. the true solution).

(2) Static problem using the files peak-2d.cmd, peak-2d.geo, peak-2d.mat.

This problem is the 2D–analogue to problem (1).

−(uxx + uyy) = f in [0, 1] x [0, 1]

u = 0 on the boundary

Here the source function f ∼ exp(−100.0 ∗ [(x− 0.5)2 + (y − 0.5)2]) has a peak
in the center of the unit square.

The inital grid consists of only four triangles. In figure 3 you see the grid after
6 refinement steps and the solution in a quasi-3d-plot.

(3) Static problem using the files peak-3d.cmd, peak-3d.geo, peak-3d.mat.

3 STARTING THE PROGRAM 17

Figure 3: Mesh and quasi-3d-plot of the solution after 6 refinement steps in example (2)

3 STARTING THE PROGRAM 18

This problem is the 3D–analogue to problem (1).

−(uxx + uyy + uzz) = f in [0, 1] x [0, 1] x [0, 1]

u = 0 on the boundary

Here the source function f ∼ exp(−100.0 ∗ [(x− 0.5)2 + (y− 0.5)2 + (z − 0.5)2])
has a peak in the center of the unit cube.

The algorithm starts with a partition of the cube into 6 tetrahedra. In figure
4 we show a cut through the finite element mesh provided after some steps of
the adaptive solver . This picture and some of the following were produced by
GRAPE 1.

For 3D–geometries there is no online–graphics integrated in KASKADE .
We recommend to use one of the popular visualization programs GRAPE,
EXPLORER2, or AVS3 and to use our interfaces to write data on a file in an
appropriate format.

(4) Static problem using the files unit-1d.cmd, unit-1d.geo, unit-1d.mat.

Poisson equation with constant coefficients on the unit interval

−0.0001uxx = 5.5 in [0, 1]

u = 0 in the points 0 and 1

The coefficient of uxx is arbitrary and chosen so mysteriously only to illustrate
the use of keywords (e.g. Factors) in the .mat file. Compare the chapter 5 and
the file unit-1d.mat.

(5) Static problem using the files unit-2d.cmd, unit-2d.geo, unit-2d.mat.

Poisson equation with constant coefficients on the unit square

−(uxx + uyy) = 1 in [0, 1] x [0, 1]

u = 10.0 on the boundary

(6) Static problem using the files unit-2d-a.cmd, unit-2d-a.geo, unit-2d-a.mat.

�GRAPE, Graphical Programming Environment, Copyright Sonderforschungsbereich 256, Uni-
versity of Bonn, Germany

�Copyright The Numerical Algorithms Group Ltd., Oxford UK
�Copyright Advanced Visual Systems Inc.

3 STARTING THE PROGRAM 19

Figure 4: Cut through the adaptive mesh in example (3)

Here we solve the same elliptic equations as in example (5) but with additional
Neumann and Cauchy boundary conditions:

u = 10.0 on the boundary x = 0 or y = 0 (Dirichlet)

uy = 0.0 on the boundary y = 1 (Neumann)

ux + u = 2.0 on the boundary x = 1 (Cauchy)

Figure 5 illustrates the grid and solution after some refinement steps.

(7) Static problem using the files slit-2d-45.cmd, slit-2d-45.geo,
slit-2d-45.mat.

The problem is defined on the polygonial region in figure 6 by the same equation
as in example (5) and the boundary conditions

∂u/∂n = 0.0 on the boundary y = 0, x >= 0 (Neumann)

u = 1.0 elsewhere on the boundary (Dirichlet)

3 STARTING THE PROGRAM 20

Figure 5: Mesh and solution after some refinement steps in example (6)

D

D D

D

D

DD

D

N

N: Neumann

D: Dirichlet

(1.4142,0)

(0,-1.4142)

(1,-1)(-1,-1)

(-1,1)
(1,1)

(0,1.4142)

(-1.4142,0)

Figure 6: Initial triangulation in example (7)

3 STARTING THE PROGRAM 21

Min: 1 Max: 1.31

Figure 7: Mesh and solution after 13 refinement steps in example (7)

The adaptive refinement generates a fine mesh in the neighbourhood of the origin
where the solution has a singularity.

In figure 7 we show the mesh and the isolines of the solution after 13 refinement
steps.

(8) Static problem using the files slit-2d.cmd, slit-2d.geo, slit-2d.mat.

The same problem as in (7) but on a different domain. Here the angle of the
slit has been set to 0 degree. That means we have two edges from (0, 0) to
(1.4142, 0), one with Dirichlet and one with Neumann condition, compare figure
8. Additionally, we approximate a circular boundary during the refinement
process.

∂u/∂n = 0.0 on the boundary y = 0, x >= 0 (Neumann)

u = 1.0 elsewhere on the boundary (Dirichlet)

In figure 9 you see the mesh and the isolines of the solution after adaptive
refinement.

(9) Static problem using the files slit-2d-a.cmd, slit-2d-a.geo, slit-2d-a.mat.

Consider Laplace’s equation

−Δu = 0.0

3 STARTING THE PROGRAM 22

D

D D

D

DD

D

(1.4142,0)

(0,-1.4142)

(1,-1)(-1,-1)

(-1,1)
(1,1)

(0,1.4142)

(-1.4142,0) N

D

N: Neumann
D: Dirichlet

D

Figure 8: Initial triangulation in example (8)

Min: 1 Max: 1.352

Figure 9: Mesh and solution after adaptive refinement steps in example (8)

3 STARTING THE PROGRAM 23

Min: 0 Max: 1.091

Figure 10: Contour lines of the solution in example (9)

on a circle of radius 1 (centered at the origin) with a slit along the positive x-
axis. Homogeneous Dirichlet boundary conditions are imposed on the top, and
homogeneous Neumann boundary conditions at the bottom of the slit.

The solution is singular and has the leading term

u = r1/4sin(φ/4).

This function is used as Dirichlet boundary condition on the remaining part of
the boundary, yielding it as exact solution. The associated contour plot is given
in figure 10.

Starting with a simple polygonial region we approximate the circular boundary
during the refinement process by placing new boundary points onto the circle.

In figure 11 the meshes after 4, 9, and 12 refinement steps are presented.

(10) Static problem using the files unit-3d.cmd, unit-3d.geo, unit-3d.mat.

Poisson equation with constant coefficients on the unit cube

−(uxx + uyy + uzz) = 1 in [0, 1] x [0, 1] x [0, 1]

u = 0 on the boundary

3 STARTING THE PROGRAM 24

Figure 11: Initial mesh and meshes after 4, 9, and 12 refinement steps in example (9)

(11) Static problem using the files l-3d.cmd, l-3d.geo, l-3d.mat.

The same equation as in Problem (10), but on a region with reentrant corner as
described in l-3d.geo, see figure 12.

The singularity of the solution in the re-entrant corner is well resolved by the
error estimator.

(12) Static problem using the files jump.cmd, jump.geo, jump.mat.

The same equation and region as in Problem (5), but with a jump in the coeffi-
cients.

−100(uxx + uyy) = 1 in [0.25, 0.75] x [0.25, 0.75]

−(uxx + uyy) = 1 elsewhere in the unit square

u = 10.0 on the boundary

In this example it is recommended to work with the option plot3d=1 for gra-
phical illustration. Figure 13 shows the initial coarse mesh and the solution as

3 STARTING THE PROGRAM 25

Figure 12: Initial mesh and mesh after some refinement steps in example (11)

quasi–3d plot after some adaptive refinement steps, and in Figure 14 you can
see the mesh and solution after seven refinement steps.

(13) Static problem using the files layer-2d.cmd, layer-2d.geo, layer-2d.mat.

Here we want to solve the same equation as in Problem (12). But additionally,
we consider a term of type (3) in the weak formulation of the problem, see
appendix A. For example, problems of this kind appear in electrodynamics.

−100(uxx + uyy) = 1 in [0.25, 0.75] x [0.25, 0.75]

−(uxx + uyy) = 1 elsewhere in the unit square

u = 10.0 on the boundary

On the layer between the two materials (which must be marked by type 1 and
2 in the .mat-file) we integrate the term (k1 − k2)(x + y), where the material
coefficients are k1 = 1 and k2 = 100.

This integration must be initiated by the command innerBoundary=1.

3 STARTING THE PROGRAM 26

Figure 13: Initial mesh and solution plot after some refinement steps in example (12)

Min: 10 Max: 10.05

Figure 14: Mesh and solution after seven refinement steps in example (12)

3 STARTING THE PROGRAM 27

(14) Static problem using the files layer-3d.cmd, layer-3d.geo, layer-3d.mat.

Here we solve the analogous equation to Problem (13) in three space dimensions.

−100(uxx + uyy + uzz) = 1 in [0.25, 0.75] x [0.25, 0.75] x [0.25, 0.75]

−(uxx + uyy + uzz) = 1 elsewhere in the unit cube

u = 10.0 on the boundary

By the command innerBoundary=1 we additionally integrate the term (k1 −
k2)(x + y + z) on the layer between the two different materials (which must be
marked by type 1 and 2 in the .mat-file). k1 = 1 and k2 = 100 denote the
material coefficients.

(15) Static problem using the files flow-2d.cmd, flow-2d.geo, flow-2d.mat.

The same equation and region as in Problem (5), but with Neumann boundary
conditions on each boundary edge. Only on two points we prescribe Dirichlet
values.

−(uxx + uyy) = 1 in [0, 1] x [0, 1]

∂u/∂n = 0.0 on the boundary

u = 1.0 in (0,0)

u = 5.0 in (1,0)

Figure 15 shows the initial coarse mesh and the mesh after some adaptive refi-
nement steps.

(16) Static problem using the files flow-2d-a.cmd, flow-2d-a.geo, flow-2d-a.mat.

Here we solve an elliptic equation with a mass term and only Neumann condition
on the boundary.

−(uxx + uyy) + u = 1 on a circle of radius
√
2

∂u/∂n = 1.0 on the boundary

Figure 16 shows the mesh and the isolines of the approximate solution after
some refinement steps. In chapter 5 we explain how we handle arcs of a circle
as boundaries.

3 STARTING THE PROGRAM 28

Figure 15: Initial mesh and mesh after some refinement steps in example (15)

Min: 2.113 Max: 2.743

Figure 16: Mesh and contour map of the solution in example (16)

3 STARTING THE PROGRAM 29

Figure 17: Mesh and contour map of the solution on a cutting plane in example (17)

(17) Static problem using the files flow-3d.cmd, flow-3d.geo, flow-3d.mat.

As in example (16) we solve an elliptic equation with a mass term and only
Neumann condition on the boundary.

−(uxx + uyy + uzz) + u = 1 in a ball of radius
√
3

∂u/∂n = 1.0 on the boundary

Figure 17 shows the mesh and the isolines of the approximate solution on a
cutting plane after some refinement steps. In the chapter 5 about geometrical
input we explain how we handle curvilinear boundaries.

(18) Static problem , a calculation from Hyperthermia. In order to demonstrate the
applicability of our code to real life problems, we consider a problem arising in
hyperthermia.

Hyperthermia is a cancer therapy based on the observation that local heating
may slow down the growth of a tumor, especially if it is applied in combination
with other methods like chemotherapy or radiotherapy. The heating of the
tissue is obtained by radiowaves generated by an antenna array. The antennas
are either fixed on the skin or implanted in the tissue itself. Of course, the

3 STARTING THE PROGRAM 30

Figure 18: Surface of the initial triangulation of a skull (18)

position of the antennas and frequency of the electric field have to be chosen
properly to achieve a local heating of the tumor, compare [HYP89]. This requires
the efficient and robust solution of the stationary or transient BHT (bio heat
transfer) equation [Pen48]:

−∇(k∇T) + qT = Qe

with coefficients k and q depending of the tissue, Qe describing the power of
the electrical field generated by radiowaves in the tissue. We refer to Seebaß,
[See90], for a more detailed explanation and the numerical data of the following
example.

We consider the heating of the tumor by the electric field resulting from three
implanted antennas. A suitable description of the computational domain Ω is
obtained by computer tomography. Figure 18 shows the surface of Ω and the
initial triangulation T0 from Sebaß, [See90]. Note that T0 is chosen such that
different tissues as bone, brain and tumor belong to different tetrahedra.

The adaptive refinement concentrates on the neighborhood of the antennas and
the tumor in the interior of the skull where we have high gradients of the tem-
perature. This is illustrated by the figure 19 showing the final triangulation T5

and the contour lines of the temperature on some clipping plane. The different
tissues are indicated by black (bone), white (brain) and grey (tumor inside the
brain).

(19) Static problem using the files cylindrical-3d.cmd, cylindrical-3d.geo,
cylindrical-3d.mat.

Poisson equation with constant coefficients in a cylindrical region Z = Z(r, φ, z)
with radius r ∈ [0,

√
2.0) and z ∈ [−1, 1].

−(uxx + uyy + uzz) = −(4.0 + x2 + y2) ∗ e−z in the cylinder Z

3 STARTING THE PROGRAM 31

Figure 19: Clipping of the mesh on refinement level 7 and temperature on this plane in
example (18)

u = (x2 + y2) ∗ e−z on the boundary

We start on a coarse triangulation of the cube (−1, 1) x [−1, 1] x [−1, 1]. During
refinement we approximate the shape of Z by placing new point coordinates on
the surface of the cylinder. Figure 20 shows the first three steps of uniform
refinement and figure 20 the mesh of the cylinder and isolines of the solution on
a vertical cut through it.

(20) Static problem using the files cylindrical-2d.cmd, cylindrical-2d.geo,
cylindrical-2d.mat.

Poisson equation in a cylindrical domain Z formulated in cylindrical coordinates
r, φ, and z. The cylinder Z = Z(r, φ, z) has radius r = 1 and height z between
−1 and 1.

−ΔT = e−z with

ΔT =
1

r

∂

∂r
(r
∂T

∂r
) +

1

r2
∂2T

∂φ2
+

∂2T

∂z2
in Z

The boundary conditions are shown in figure 21. On the top and on the cur-
vilinear faces we have a temperature of 50◦C . On the bottom there is an area
(r <= 0.5) with temperature of 200◦C , and 50 + 300(1 − r)◦C elsewhere.

This problem has axial symmetry and can be treated as a 2d–problem as des-
cribed in figure 22:

3 STARTING THE PROGRAM 32

Figure 20: Mesh and solution on a cut after some refinement steps in example (19)

T = 200

height h

R = 1

r = 0.5

T = 50

T = 300(1-r)+50

Figure 21: Axialsymmetric problem in example (20)

3 STARTING THE PROGRAM 33

z = -1.0

z = 1.0

T = 50

T = 50

r = 1.0r = 0.0 T = 200
N

eu
m

an
n

bo
un

da
ry

 d
T

/d
n

=
0

r = 0.5

T = 50 + 300(1-r)

Figure 22: Axialsymmetric problem in example (20)

∂T

∂φ
= 0

=⇒ ΔT =
1

r

∂

∂r
(r
∂T

∂r
) +

∂2T

∂z2
in Z

=⇒ rΔT =
∂

∂r
(r
∂T

∂r
) +

∂

∂z
(r
∂T

∂z
) = re−z

By substitutions r −→ x and z −→ y this results in the usual 2d–problem with
a variable elliptic coefficient k = x and the right-hand side multiplied by x :

− ∂

∂x
(x

∂T

∂x
)− ∂

∂y
(x

∂T

∂y
) = xe−y

At the inner boundary, we have the Neumann boundary condition ∂T/∂n = 0.

Analogously we can treat the Laplace operator in spherical coordinates

Δ =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2cos2θ

∂2

∂φ2
+

1

r2cosθ

∂

∂θ
(cosθ

∂

∂θ
)

3 STARTING THE PROGRAM 34

Multiplying with r2 and cosθ yields

r2cosθΔ =
∂

∂r
(r2cosθ

∂

∂r
) +

∂

∂φ
(

1

cosθ

∂

∂φ
) +

∂

∂θ
(cosθ

∂

∂θ
)

Again, by a simple multiplication of the transformed partial differential equation
with a special factor depending on the used coordinate system, we arrive at the
standard problem formulation (1), see appendix A. Note that this conversion
has also to be done for the Cauchy boundary conditions.

3.3.2 Transient Problems

The following examples demonstrate the parabolic solver, which is adaptive in space
and time. In each time step, the computation of the spatial solution starts from the
initial grid.

(1) Transient Problem using the files u-1d-step.cmd, u-1d-step.geo,
u-1d-step.mat.

The solution of this parabolic problem shows a transient diffusion process star-
ting from a sharp initial profile

1000ut −Δu+ 100u = 0.0

u(0) =

�
1.0, for x ≤ 0.5
0.0, for x > 0.5

The coefficients are described in the file u-1d-step.mat, the domain (unit in-
terval) in u-1d-step.geo.

The boundary conditions are u=0 in x=0 and u=1 in x=1.

The initial values are provided by a function in the file dirichlettr.cc.

(2) Transient Problem using the files u-2d-step.cmd, u-2d-step.geo,
u-2d-step.mat.

Analogous to example (1), but on the unit square. The boundary condition are
u=0 on the left side, u=1 opposite to it, and homogeneous Neumann condition
on the other parts of the boundary.

(3) Transient Problem using the files u-3d-step.cmd, u-3d-step.geo,
u-3d-step.mat.

Analogous to example (2), but on the unit cube.

3 STARTING THE PROGRAM 35

Min: 0 Max: 0.4709

Figure 23: Final mesh and isolines of solution after 8 refinement steps in example (1)

3.3.3 Nonlinear Problems

(1) Nonlinear Problem using the files obstacle.cmd, obstacle.geo, obstacle.mat.

Here we treat a stationary 2D–problem of type (5) in appendix A with cons-
traints u(x) ≤ dist(x, ∂Ω), see figure 23. This obstacle problem is modelling a
form of elasto–plastic torsion of a cylindrical bar with cross–section Ω.

The region along the diagonals of Ω is inactive, i.e. not on the obstacle.

Figure 23 shows the final mesh and the contour lines of the solution after 8
adaptive refinement steps.

(2) Nonlinear Problem using the files stefan.cmd, stefan.geo, stefan.mat.

The two–dimensional Stefan problem (6) in appendix A describes the transition
between two phases of a material, e.g. a melting iceberg.

Two–phase Stefan problems of this form are arising in the simulation of the heat
conduction in a substance undergoing a change of pase at the nominal phase
change temperature θ1. In this case, the function U is a generalized temperature
resulting from a standard Kirchhoff transformation U = κ0 for θ < θ1 and
U = κ1θ for θ > θ1 of the physical temperature θ.

3 STARTING THE PROGRAM 36

Figure 24: Final triangulations for the first and the last time step in example (2)

There are further applications in metallurgy, soil mechanics, decision and control
theory, etc. For more details, we refer to Crank [Cr88], Elliot and Ockendon
[EO82], Hoffmann and Sprekels [HS90], Kornhuber [Kor95] and the literature
cited therein.

For discretization in time we use a backward Euler scheme with a uniform step-
size. The spatial problems at the different time levels are similar to those solved
in the obstacle problem (1).

In figure 24 you see the final triangulations for the first and the last time step.

.

(3) Nonlinear Problem using the files pmedia.cmd, pmedia.geo, pmedia.mat.

In this example we consider the degenerate parabolic initial-boundary value
problem

∂θ/∂t−Δθm = 0, θ ≥ 0, m > 1 in Ω × (0, T)

θ(0) = θ0 in Ω

θ = g on ΓD × (0, T), ∂θ/∂n = 0 on ΓN × (0, T)

4 PROBLEM CLASSES 37

of type 6 in appendix A, describing the adiabatic flow of a homogeneous gas
through a porous medium [Mus37]. This example in two space dimensions shows
the time–dependent diffusion in porous media.

In our example we select m = 2 and the initial condition θ0,

θ0(x1, x2) = [0.4− r2(1 + 0.5sin(14φ))]
1/2
+ ,

using r = (x2
1 + x2

2)
1/2 and φ = atan(x2/x1). We solve on Ω = (0, 1)× (0, 1) and

T ∈ (0, 0.05) prescribing homogeneous Neumann conditions at x1 = 0, x2 = 0
and homogeneous Dirichlet conditions at x1 = 1, x2 = 1.

Again we use only a fixed stepsize for time discretization.

4 Problem Classes

The program handles several problem types. Anyone of these is selected by the com-
mand

problem=*** ,

where *** represents one of the keywords in the left column of table 2.

The problem type is used internally to describe the structure of the differential equa-
tion and to select the suitable solver routines.

Keyword problems

staticHeat linear elliptic problem, e.g. static heat conduction

transientHeat linear parabolic problem, e.g. transient heat conduction

obstacle obstacle problem

stefan Stefan problem

porousMedia porous media equation

Table 2: Keywords for problem types

See appendix A for a desription of basic problem classes.

4 PROBLEM CLASSES 38

Min: -2.118e-22 Max: 0.3961

Min: -2.647e-23 Max: 0.2897

Min: 0 Max: 0.2184

Figure 25: Final mesh and isolines of solution after 1, 20 and 40 time steps in example (3)

5 GEOMETRY AND MATERIAL PROPERTIES 39

5 Geometry and Material Properties

For a complete definition of a problem, we have to specify the type of the partial
differential equation (see preceding chapter), the space dimension of the domain, a
triangulation of the domain, and the coefficients (e.g. k and f in appendix A, (1)),
which usually describe material properties.

5.1 Definition of the Geometry

The space dimension is selected by the command

spaceDim=*** .

Here *** stands for 1, 2, or 3. The default value is 2.

The triangulation of the domain Ω is given in a file defining a set of intervals (1D),
triangles (2D) or tetrahedra (3D). We use the extension .geo for this file. The filename
is specified by the command

file=*** .

We offer two formats to code the geometrical data. By the command
readOldFormat=1 you select the format we used in former versions (up to 2.x) of
KASKADE, see Roitzsch et al. [Roi93]. We recommend as default a simpler format
(readZIBFormat=1) which we describe here:

• 1D–region:

comments
Points: maxIndex maxIndex
<index of point > <x – coordinate of point>
· · ·
<index of point > <x – coordinate of point>
end

Elements:
<indices of points of element> <classification (material-id)>
· · ·
<indices of points of element> <classification (material-id)>
END

5 GEOMETRY AND MATERIAL PROPERTIES 40

point with index 2, x = 0.0 point with index 4, x = 0.5 point with index 3, x = 1.0

element with points 2 and 4 element with points 3 and 4

and classification = 1
and classification = 2

Figure 26: Partition of unit interval

Boundary:
<index of point on boundary> <boundary conditon type> <classification>
· · ·
<index of point on boundary> <boundary conditon type> <classification>
END

The classification parameter has to be greater than 0 and less than 128. The
same is valid in the 2d- and 3d-case.
As an example we present a unit interval divided into two intervals, see figure
26:

1D unit interval

Points: maxIndex 4

2 0.0

4 0.5

3 1.0

end

Elements

2 4 1

3 4 2

end

Boundary

2 D 1

3 D 1

end

• 2D–region:

5 GEOMETRY AND MATERIAL PROPERTIES 41

comments
Points: maxIndex maxIndex
<index of point > <x,y – coordinates of point>
· · ·
<index of point > <x,y – coordinates of point>
end

Elements:
<indices of points of element> <classification>
· · ·
<indices of points of element> <classification>
END

Boundary:
<indices of points of boundary edge> <type> <classification>
· · ·
<indices of points of boundary edge> <type> <classification>
END

this section is optional:
Points:
<index of point on boundary> <type> <classification>
· · ·
<index of point on boundary> <type> <classification>
END

In the section after the keyword Boundary you have to specify the boundary
condition for each boundary edge. All the points on an edge inherit the boundary
property from the edge, e.g. if a point belongs to a Neumann edge, it becomes a
Neumann point itself. If it lies both on a Neumann edge and on a Dirichlet edge,
it becomes a Dirichlet point. The keyword Points after the keyword Boundary

opens the optional section for specifying boundary conditions on points. This
special treatment of points may be necessary in some cases, e.g. if we have only
Neumann edges and want to specify one point of Dirichlet type.

During the refinement process of our algorithm, a new point inherits the proper-
ties of the edge on which it lies. New edges or triangles inherit the properties of
their fathers.

As an example we present a unit square divided into two triangles, see figure 27:

5 GEOMETRY AND MATERIAL PROPERTIES 42

point with index 1, x = 0.0, y = 0.0 point with index 2, x = 1.0, y = 0.0

point with index 3, x = 1.0, y = 1.0point with index 4, x = 0.0, y = 1.0

element with points 1, 2 and 3
and classification = 1

element with points 1, 3 and 4

and classification = 1

Dirichlet boundary with points 1 and 2, classification = 1

Dirichlet boundary with points 3 and 4, classification = 1

 c
la

ss
if

ic
at

io
n

=
1

D
ir

ic
hl

et
 b

ou
nd

ar
y

w
it

h
po

in
ts

 1
 a

nd
 4

,

 c
la

ss
if

ic
at

io
n

=
1

D
ir

ic
hl

et
 b

ou
nd

ar
y

w
it

h
po

in
ts

 2
 a

nd
 3

,

Figure 27: Partition of unit square

2D unit square

Points: maxIndex 4

1 0.0 0.0

2 1.0 0.0

3 1.0 1.0

4 0.0 1.0

end

Elements:

1 2 3 1

1 3 4 1

END

Boundary:

1 2 D 1

2 3 D 1

3 4 D 1

4 1 D 1

5 GEOMETRY AND MATERIAL PROPERTIES 43

Figure 28: Approximation of a circular geometry by 3 uniform refinement steps

END

In the 2D–case we implemented a simple mechanism to approximate a circular
geometry. The refinement algorithm computes new boundary points on the circle
centered in the origin. After some steps of refinement the polygonal region is
very similar to a circle.

As an example, look at figure 28.

This special handling of boundary edges is initiated by specifying an additional
character for each curvilinear boundary edge, see for example the parameter file
circle.cmd with the geometry description in circle.geo or circle-2d.geo.

circle.geo

Points: maxIndex 10

1 1.0 0.0

2 0.5 0.866025404

3 -0.5 0.866025404

4 -1.0 0.0

5 -0.5 -0.866025404

6 0.5 -0.866025404

5 GEOMETRY AND MATERIAL PROPERTIES 44

7 0.0 0.0

end

Elements:

1 2 7 1

2 3 7 1

3 4 7 1

4 5 7 1

5 6 7 1

6 1 7 1

END

Boundary:

1 2 d 1 s

2 3 d 1 s

3 4 d 1 s

4 5 d 1 s

5 6 d 1 s

6 1 d 1 s

END

The character s marks the edge for being approximating as circular arc during
further refinement steps by placing the coordinates of a new point on this edge
onto a circle centered in the origin (x = 0, y = 0) through the boundary points
of the edge. Omitting the specification of the boundary shape or the character
P provides the usual calculation of the coordinates as midpoint between the two
boundary points of an edge.

Though our implementation of curvilinear boundaries is rather special (e.g. cir-
cular arcs are centered in the origin), it does not seem very difficult to generalize
the concept.

As an example for a more complicated geometry we present the .geo file of
example (9) among the static problems.

slit-2d-a.geo

Points: maxIndex 10

1 -1.000000e+00 -1.000000e+00

2 0.000000e+00 -1.414213562e+00

3 1.000000e+00 -1.000000e+00

4 -1.414213562e+00 0.000000e+00

5 0.000000e+00 0.000000e+00

5 GEOMETRY AND MATERIAL PROPERTIES 45

6 1.414213562e+00 0.000000e+00

7 -1.000000e+00 1.000000e+00

8 0.000000e+00 1.414213562e+00

9 1.000000e+00 1.000000e+00

10 1.414213562e+00 0.000000e+00

END

Elements:

1 2 5 1

2 3 5 1

3 6 5 1

5 10 9 1

5 9 8 1

5 8 7 1

5 7 4 1

5 4 1 1

END

Boundary:

1 2 d 1 S

2 3 d 1 S

3 6 d 1 S

5 6 n 2

5 10 d 1

9 10 d 1 S

8 9 d 1 S

7 8 d 1 S

4 7 d 1 S

1 4 d 1 S

END

Points:

6 D 2

END

We present one more 2D–example showing how to define regions with holes. The
domain is

Ω = {(x, y)|0 <= x, y <= 10}
\ {(x, y)|4 < x < 6 ∧ 2 < y < 4}
\ {(x, y)|4 < x < 6 ∧ 6 < y < 8}

5 GEOMETRY AND MATERIAL PROPERTIES 46

and one coarse triangulation is given by the following description, see also figure
28:

holes-2d.geo

Points: maxIndex 24

1 0.0 0.0

2 4.0 0.0

3 6.0 0.0

4 10.0 0.0

5 0.0 2.0

6 4.0 2.0

7 6.0 2.0

8 10.0 2.0

9 0.0 4.0

10 4.0 4.0

11 6.0 4.0

12 10.0 4.0

13 0.0 6.0

14 4.0 6.0

15 6.0 6.0

16 10.0 6.0

17 0.0 8.0

18 4.0 8.0

19 6.0 8.0

20 10.0 8.0

21 0.0 10.0

22 4.0 10.0

23 6.0 10.0

24 10.0 10.0

END

Elements:

2 1 5 1

2 6 5 1

2 3 6 1

7 3 6 1

4 3 7 1

4 8 7 1

5 9 6 1

6 10 9 1

7 8 11 1

5 GEOMETRY AND MATERIAL PROPERTIES 47

8 12 11 1

9 10 13 1

10 14 13 1

10 11 14 1

11 15 14 1

11 12 15 1

12 16 15 1

13 14 17 1

14 17 18 1

15 19 16 1

16 20 19 1

17 21 18 1

18 21 22 1

18 19 22 1

19 22 23 1

19 20 23 1

20 23 24 1

END

Boundary:

1 2 d 1

2 3 d 1

3 4 d 1

4 8 d 1

8 12 d 1

12 16 d 1

16 20 d 1

20 24 d 1

24 23 d 1

23 22 d 1

22 21 d 1

21 17 d 1

17 13 d 1

13 9 d 1

9 5 d 1

5 1 d 1

6 7 d 2

7 11 d 2

11 10 d 2

10 6 d 2

14 15 d 3

15 19 d 3

19 18 d 3

5 GEOMETRY AND MATERIAL PROPERTIES 48

Figure 29: Triangulation of a quadratic geometry with two holes

18 14 d 3

END

• 3D–region:

comments
Points: maxIndex maxIndex
<index of point> <x,y,z – coordinates of point>
· · ·
<index of point> <x,y,z – coordinates of point>
end

Elements:
<indices of points of element> <classification>
· · ·
<indices of points of element> <classification>
END

Boundary:
<indices of points of boundary triangle> <type> <classification>
· · ·
<indices of points of boundary triangle> <type> <classification>

5 GEOMETRY AND MATERIAL PROPERTIES 49

END

optional section:
Points:
<index of point on boundary> <type> <classification>
· · ·
<index of point on boundary> <type> <classification>
END

In the section after the keyword Boundary you have to specify the boundary
condition for each triangle. All the points on an triangle inherit the boundary
property of the triangle. If a point belongs to a Neumann and to a Dirichlet
triangle, it becomes a Dirichlet point. Edges are treated analogously.

The keyword Points after the keyword Boundary opens the section for specify-
ing boundary conditions on points. This special treatment of points may be
necessary in some cases, e.g.if we have only Neumann triangles and want to
specify one point of Dirichlet type. This data section can be omitted.

During the refinement process of our algorithm, a new point inherits the pro-
perties of the edge on which it lies. New edges, triangles, or tetrahedra inherit
the properties of their fathers.

As an example we present a unit cube divided into six tetrahedra:

unit cube

points: maxIndex 10

1 0 0 1

2 0 1 1

3 1 1 1

4 1 0 1

5 0 0 0

6 0 1 0

7 1 1 0

8 1 0 0

END

elements:

1 2 3 6 1

1 3 5 6 1

3 5 6 7 1

1 3 4 5 1

5 GEOMETRY AND MATERIAL PROPERTIES 50

4 5 7 8 1

3 4 5 7 1

END

boundary: # faces

1 2 3 d 1

1 2 6 d 1

1 5 6 d 1

2 3 6 d 1

3 6 7 d 1

5 6 7 d 1

1 3 4 d 1

1 4 5 d 1

4 5 8 d 1

4 7 8 d 1

3 4 7 d 1

5 7 8 d 1

END

We present as example for a little bit more complicated 3D–geometry a cube with a
hole inside. The domain is

Ω = {(x, y, z)|0 <= x, y, z <= 1.0}
\ {(x, y, z)|0.25 < x, y, z < 0.75}

and a coarse tetrahedral mesh is given in holes-3d.geo, see also figure 30 showing a
cut through z = 0.5. The faces outside are marked as Dirichlet type, the inner ones
as Neumann type.

In layer-3d.geo you find the geometry similar to the last example, but the hole
is filled with another material. The triangulation of the interior is generated by an
additional point in (0.5, 0.5, 0.5) and 48 tetrahedra. Figure 31 shows the configuration.
On the boundary we defined Dirichlet conditions.

The generation of a sphere in 3D is analogous to the 2D-case. We also use the character
S to mark a boundary face for curvilinear adaption during refinement. The ball must
be centered in the origin. For example, see the files circle3d.cmd, circle3d.geo,
circle3d.mat.

We can approximate a cylindrical region, too. On the initial grid we have to mark
by a C those boundary faces which shall change during refinement to the curvili-
near faces of a cylinder. For example, we start from the following cube (compare
cylindrical-3d-geo)

5 GEOMETRY AND MATERIAL PROPERTIES 51

Figure 30: Cut through a cube with a hole

Figure 31: Cut through a cube consisting of two materials

5 GEOMETRY AND MATERIAL PROPERTIES 52

cube with faces marked to approximate curvilinear faces

of a cylinder during the refinement process.

points: maxIndex 10

10 -1 -1 1

2 -1 1 1

3 1 1 1

4 1 -1 1

5 -1 -1 -1

6 -1 1 -1

7 1 1 -1

8 1 -1 -1

END

elements:

10 2 3 6 1

10 3 5 6 1

3 5 6 7 1

10 3 4 5 1

4 5 7 8 1

3 4 5 7 1

END

boundary: # faces

10 2 3 d 1

10 2 6 d 1 C # C or c marks a curvilinear face

10 5 6 d 1 C

2 3 6 d 1 C

3 6 7 d 1 C

5 6 7 d 1

10 3 4 d 1

10 4 5 d 1 C

4 5 8 d 1 C

4 7 8 d 1 C

3 4 7 d 1 C

5 7 8 d 1

END

As an example, look at figure 32.

5 GEOMETRY AND MATERIAL PROPERTIES 53

Figure 32: Approximation of a cylindrical geometry during 3 uniform refinement steps

In the future, we will realize a more general concept for curvilinear boundaries.

5.2 Ouput of Geometrical Data

We offer a set of formats to store the geometrical data of the actual refinement level
into a file. The user can select one of the following formats.

• writeZIBFormat

This format recommended by the ZIB is described in the preceding section.

• writeGRAPEFormat

This format can be used by the graphical visualization software GRAPE.

• writeAVSFormat

This format is evaluable by the graphical visualization software AVS.

The output is initiated by the command writesolution=1.

In additon to the geometrical data we write the values of the approximate solution
in the nodes into the file. A file generated in the ZIB-format can be reread by the
file-command. In this case the values in the nodes are ignored.

5 GEOMETRY AND MATERIAL PROPERTIES 54

5.3 Material Coefficients, Boundary Conditions, and Initial

Values

We select the coefficients (usually describing material properties) of the equation, the
Neumann and the Cauchy boundary conditions by the command

material=***

where *** represents one of the keywords in the left column of table 3.

Keyword materials

DefaultMaterial all coefficients are constant

PeakSource coefficients in the differential operator are constant, the
peak-shaped source function depends on spatial coordina-
tes (e.g. used in example peak1d.cmd)

MultiPeakSource similar to PeakSource, but a different source function

TransPeakSource in transient problems: variable source function, all the other
coefficients are constant

StepSource in transient problems: all coefficients are piecewise constant
(e.g. used in example u2step.cmd)

StefanSource variable source function, all coefficients are piecewise con-
stant (e.g. used in example stefan.cmd)

UserStaticMaterial all coefficients and boundary conditions are variable and gi-
ven by a function (e.g. used in example user-static-1d.cmd)

UserTransientMaterial all coefficients and boundary conditions are variable and gi-
ven by a function (e.g. used in example user-trans-1d.cmd)

Table 3: Keywords for material types

The boundary condition is chosen by the command

DirichletBCs=***

where *** represents one of the keywords in the left column of table 4.

In general, the coefficients of the equation, the Dirichlet boundary values, and the
initial values in transient problems are provided by member functions of the classes
Material or DirichletBCS which are implemented in materials.cc, materialsA.cc,
dirichlet.cc, dirichletA.cc,....

In the case of piecewise constant material coefficients or piecewise constant Dirichlet
boundaries, it is not necessary to modify the source code. The user only has to set the

5 GEOMETRY AND MATERIAL PROPERTIES 55

Keyword dirichletBCs

ConstDirichletBCs the solution is piecewise constant on the Dirichlet boundary

UserDirichlet the Dirichlet boundary values are given by a function

UserTransient the Dirichlet boundary and initial values are given by a
function

Table 4: Keywords for Dirichlet boundary types

parameters material=defaultMaterial and dirichletBCs=constDirichlet. Then
the description of these values is read from a .mat–file in which the material coefficients
and the boundary conditions are specified like in the following example. The classifi-
cations of the region or boundary have to correspond to those of the geometry–file. If
there is no .mat–file specified by the command

matFile=***

we suppose as default name the root name of the .geo-file but with the extension
.mat.

This is a simple example for a mat–file:

Boundary:
1 D 10.0
1 N 0.0
2 D 12.0
2 N 1.0
end

Materials:
isotropic
1 e 1 s 0 end
2 e 2 s 1 end
end

5 GEOMETRY AND MATERIAL PROPERTIES 56

Factors:
e 1e-4 end

The first integer in each row is the classification of the region, or boundary. It cor-
responds to the classification in the geometry file set for each element of the region
or each face of the boundary. The classification parameter must be an integer greater
than 0.

In our example we define values for boundary sections of classification 1 and 2. On
sections with classification 1 or 2 and boundary type Dirichlet D, we have the constant
values 10 and 12. On sections with boundary type Neumann N, we have homogeneous
or inhomogeneous Neumann conditions.

On elements marked with 1, the elliptic coefficient is k = 1, and there is no source
(f = 0) or mass term (q = 0).

On elements marked with 2, we have an elliptic coefficient k = 2, a constant source
(f = 1), and no mass term (q = 0).

Material terms which are set to zero may be omitted.

If the keyword Factors occurs, then the values following after one of the keywords
e (elleptic), s (source), m (mass), co (convection), c (Cauchy), n (Neumann), or d
(Dirichlet) are used for scaling the corresponding values of the material or boundary
defined in the Materials section before. We introduced this scaling to simplify the
handling of physical units.

The next example (compare the preceding example 5) shows how to handle Cauchy
boundary conditions. We have the unit square as geometry described in the file
unit-2d-A.geo

unit square

Points: maxIndex 4

1 0.0 0.0

2 1.0 0.0

3 1.0 1.0

4 0.0 1.0

end

Elements:

1 2 3 1

1 3 4 1

END

6 SYSTEM SOLUTION AND PRECONDITIONING 57

Boundary:

1 2 D 1 # Dirichlet

2 3 C 3 # Cauchy

3 4 N 2 # Neumann

4 1 D 1 # Dirichlet

END

The corresponding values of the boundary conditions are set in the unit-2d-A.mat–
file.

Boundary:

1 D 10.0 # Dirichlet

2 N 0.0 # Neumann

3 C 1.0 2.0 # Cauchy

end

Materials:

isotropic

1 e 1 s 1 end

end

The Cauchy boundary condition is given by two values (compare (1) in appendix A),
the first is α, the second is the right-hand side qC. Here we have

u = 10.0 on the boundary x = 0 or y = 0 (Dirichlet)

uy = 0.0 on the boundary y = 1 (Neumann)

ux + u = 2.0 on the boundary x = 1 (Cauchy)

The values specified in the mat–file are only relevant for the program in case of constant
materials or constant boundary conditions. In one of the following sections we explain
where to define nonconstant coefficients or boundary values in the source code.

6 System Solution and Preconditioning

6.1 The Iterative Solvers

We have implemented several iterative solvers. Anyone of these is invoked by the
command

7 ERROR ESTIMATION AND MESH REFINEMENT 58

linSolver=*** ,

where *** represents one of the keywords in the left column of table 5.

Keyword Solver

cg conjugate gradient solver

cgODir conjugate gradient solver with 3-term recurrence

cr conjugate residual solver

crODir conjugate residual solver with 3-term recurrence

relax relaxation routine (Jacobi, SSOR etc.; for technical reasons
the type is determined by the choice of a preconditioner
applied to the Richardson iteration)

gmRes GMRES of Saad and Schultz [SS86]

stdBiCG bi-conjugate gradients (‘standard version’)

biCGStab BiCGStab of van der Vorst [vdV92] (‘stabilized version’)

cgs the CGS algorithm of Sonneveld [Son89]

lsqCG conjugate gradients for the normal equations (CGNR)

nonLinRelax nonlinear relaxation routine; to be used in conjunction with
a nonlinear preconditioner

Table 5: Keywords for iterative solvers

In table 6 we list the commandswhich are relevant for the iterative solution procedures.

6.2 Preconditioners for Linear Problems

The possible choices are summarized in table 7.

6.3 Preconditioners for Nonlinear Problems

These types are summarized in table 8.

7 Error Estimation and Mesh Refinement

The error estimator provides estimates for the global and the local discretization errors.
The global error is used to stop the algorithm when the requested precision is reached.

7 ERROR ESTIMATION AND MESH REFINEMENT 59

Parameter Name Default Description
(set in file
kaskade.init)

directSolverLimit= 0 limit for the direct sparse matrix solver on
levels > 0 (see also ’level0direct’)

extPrecFactor= 1.0 external precision factor; manipulates re-
quested precision for convergence test in
iterative solvers

infoLinSystem= 25 print information on every 25th iteration
step

level0direct= 3000 limit for the direct sparse matrix solver
on level 0; i.e. the solver will be used for a
matrix dimension up to 3000

linSolver= cg determines the type of iterative solver

maxOrthoGMRes= 12 maximal number of vectors to be orthogo-
nalized in GMRES

omega= 1.0 relaxation parameter for preconditioning
with Jacobi- or SSOR- smoothing

preConditioner= MGsgs select one of the preconditioners

timeLinSystem= 0 (false) print cpu-time for system solution

Table 6: Parameters for linear solvers and preconditioners

7 ERROR ESTIMATION AND MESH REFINEMENT 60

Keyword Preconditioner

Jacobi Jacobi type preconditioner

SGS symmetric Gauss-Seidel preconditioner

ILU preconditioning by incomplete LU-factorization

MLJacobi multilevel preconditioner with Jacobi-type smoothing. The
default relaxation parameter ω is 2/3

MLSGS multilevel preconditioner with symmetric Gauss–Seidel
smoothing. Forward Gauss–seidel is applied for pre-
smoothing, the backward operation for post-smoothing

AMLJacobi Additive multilevel preconditioner with Jacobi-type smoo-
thing, also called BPX–preconditioner [BPX90]

AMLSGS Additive multilevel preconditioner with Gauss–Seidel
smoothing

Table 7: Preconditioners for linear problems

Keyword Preconditioner

nonlinSGGS single-grid Gauss-Seidel preconditioner

nonlinMLGS multi-level Gauss-Seidel preconditioner

trcNonlinMLGS truncated multi-level Gauss-Seidel preconditioner

Table 8: Preconditioners for nonlinear problems

7 ERROR ESTIMATION AND MESH REFINEMENT 61

The local information gives the error on each element on the actual mesh. We use it
to determine a set of elements to be marked for refinement.

An estimator is selected by the parameter

errorEstimator=***

where *** represents one of the keywords in the left column of table 9.

Keyword Estimator

DLY estimator due to [DLY89], see also [BEK92]

modDLY modification of DLY (see [BEK93]), in case of constant coef-
ficients and constant right-hand side identical with the stan-
dard DLY estimator,

EFDLY 3D–estimator due to [BEK93]

RK1 estimator for nonlinear problems due to [Kor95]

RK2 estimator for nonlinear problems, including one multigrid
cycle for hierarchical defect correction, due to [Kor95]

Table 9: Keywords for Error Estimators

We offer some refinement strategies. The parameter

refStrategy=***

invokes one of these, where *** represents one of the keywords in the left column of
table 10.

Keyword Strategy

maxValue refinement with respect to the maximum of local errors

extrapolation refinement with respect to extrapolated errors

uniform uniform refinement

Table 10: Keywords for Refinement Strategies

The refinement strategy computes a threshold and marks those elements, where the
estimated local error is beyond this threshold. Use the command

minRefRatio=***

8 HOW TO DEFINE A NEW PROBLEM 62

to request a minimal number of elements to be refined. The default is 0.05, which
means that at least 5 % of all elements will be refined.

If no estimator or no refinement strategy is selected, all elements will be refined.

8 How to Define a New Problem

In the preceding chapters we already learned how to solve a problem class of type (1)
or (4) (see appendix A) with piecewise constant coefficients and piecewise constant
boundary conditions. But a lot of applications also treat material properties varying
in space, i.e. k = k(x, ..), q = q(x, ..) or f = f(x, ..).

We summarize the steps for defining a new problem:

• Define the triangulation of the domain in a .geo–file

• Define boundary conditions and material properties (the coefficients of the equa-
tion) in a .mat–file, if piecewise constant, or in the file userStatic.cc resp.
userTrans.cc, if variable.

• Specify your problem in a .cmd–file

8.1 Everything is variable

You can handle equations with variable coefficients and boundary conditions very ea-
sily by defining the coefficient functions in the file userStatic.cc for static problems
(1) or in userTransient.cc for transient problems (4). In these files we prepared
sample functions which can be overwritten by the user. They are named E() for the
elliptic term k, M() for the mass term q, or P() for the coefficient of the time derivate
in (4), and S() for the source term f. Each of these functions calls a subfunction
depending on the space dimension. You only have to define the functions for the
space dimension of your problem. Furthermore, it may be that you want to com-
pare the approximate solution with a given function (e.g. for a simple test problem
the known true solution). Such a function can be defined in the member function
trueSolInPoint() and will be used if the parameter compareSolution is set to 1 in
your .cmd-file.

In userStatic.cc we realized the following examples:

• 1–D:

8 HOW TO DEFINE A NEW PROBLEM 63

(1,0)(0,0)

(0,1)

Dirichlet boundary
D

ir
ic

hl
et

 b
ou

nd
ar

y

Cauchy boundary (1,1) Dirichlet

N
eu

m
an

n
bo

un
da

ry

Figure 33: Geometry and boundary condition in example user static 2d

−∇x∇u+ xu = 1 − 4x + x2(x− 1) in Ω

u = x(x− 1) on ΓD

x
∂u

∂n
= x(2x− 1) on ΓN

• 2–D:

−∇xy∇u+ (x+ y)u = x ∗ y ∗ (x+ y)− x ∗ x− y ∗ y in Ω

u = xy on ΓD

u = 1 in (1, 1)

xy
∂u

∂n
= xy2 on ΓN

xy
∂u

∂n
+ x ∗ u = 2x2y on ΓC

Γ is defined in the file user static 2d.geo, see figure 33 and the following
description.

unit square

Points: maxIndex 4

1 0.0 0.0

8 HOW TO DEFINE A NEW PROBLEM 64

2 1.0 0.0

3 1.0 1.0

4 0.0 1.0

end

Elements:

1 2 3 1

1 3 4 1

END

Boundary:

1 2 D 1 # Dirichlet

2 3 N 1 # Neumann

3 4 C 2 # Cauchy

4 1 D 1 # Dirichlet

End

Points:

3 D 1 # Dirichlet

END

• 3–D:

−∇x∇u+ (x+ y + z)u = xyz(x+ y + z)− yz in Ω

u = xyz on ΓD

x
∂u

∂n
= xyz on ΓN

As an example, we give the definition of dummy functions for the elliptic coefficient
k, the mass term q, and the source f:

Real UserStaticMaterial:: E(int type, Vector<Real>* x, int i, int j)

{

Vector<Real>& xx = *x;

switch(spaceDim)

{

case 1: return E1d(xx[1]);

case 2: return E2d(xx[1], xx[2]);

case 3: return E3d(xx[1], xx[2], xx[3]);

8 HOW TO DEFINE A NEW PROBLEM 65

default: abort(); return 0;

}

}

Real UserStaticMaterial:: S(int type, Vector<Real>* x, Real time)

{

Vector<Real>& xx = *x;

switch(spaceDim)

{

case 1: return S1d(xx[1]);

case 2: return S2d(xx[1], xx[2]);

case 3: return S3d(xx[1], xx[2], xx[3]);

default: abort(); return 0;

}

}

Real UserStaticMaterial:: M(int type, Vector<Real>* x, int i, int j)

{

Vector<Real>& xx = *x;

switch(spaceDim)

{

case 1: return M1d(xx[1]);

case 2: return M2d(xx[1], xx[2]);

case 3: return M3d(xx[1], xx[2], xx[3]);

default: abort(); return 0;

}

}

The coefficient k is defined in the function Real UserStaticMaterial::E which
calls one of the functions E1d, E2d, or E3d depending on the space dimension. The
coefficient q is computed in the function M, and the source term f in the function S.

Available are functions for variable Neumann, Cauchy or Dirichlet boundary condi-
tions. To specify a Cauchy condition we define two functions: the coefficient α of u
is provided by the function Real UserStaticMaterial::Cauchy(. . .) and the right-
hand side by the function Real UserStaticMaterial::Neumann(. . .). In order to
distinguish this Neumann part of the Cauchy boundary from other Neumann boun-
dary faces, we have to use a common class identifier to the boundary face in the .geo

8 HOW TO DEFINE A NEW PROBLEM 66

file.

Though we make no use of it in our examples, we provided a function Real

UserStaticMaterial:: Inner(. . .) which is only evaluated if the command pa-
rameter innerBoundary is set to 1. This is necessary if you want to compute an
additional term of the form (3), appendix A. Please compare the examples (13) and
(14) in chapter 3.

The point (1, 1) is declared to be of type Dirichlet in the user-static-2d.geo file.
The values for this point and the other Dirichlet points are computed by the function
Real UserDirichletBCs::setBC(. . .).

For invoking your user problem of type (1) in appendix A, you just have to set the
parameters

• problem=staticHeat

• material=userStatic

• dirichletBCs=userStatic

We provided .cmd-files with these commands:

user-static-1d.cmd, user-static-2d.cmd, and user-static-3d.cmd.

The .geo-files are named

user-static-1d.geo, user-static-2d.geo, or user-static-3d.geo.

Of course, you can choose other names.

In userTransient.cc you find the following 2–D problem:

∂u

∂t
−∇ · ∇u+ u = −2.0(x(x− 1.0) + y(y − 1.0)) exp(−t) in Ω

u = x(x− 1.0)y(y − 1.0) exp(−t) on ΓD

u(x, y, 0) = x(x− 1.0)y(y − 1.0) in Ω

A problem of type (4) in appendix A is invoked by the commands

• problem=transientHeat

• material=userTransient

• dirichletBCs=userTransient

You find sample .cmd–files setting these parameters:

user-trans-1d.cmd, user-trans-2d.cmd, and user-trans-3d.cmd.

The .geo–files are named user-trans-1d.geo, user-trans-2d.geo, or
user-trans-3d.geo.

9 OBTAINING RUN-TIME INFORMATION 67

8.2 Something is variable, something is constant

In the last section we made the assumption that all the functions defining problem
coefficients are variable. This allows an easy handling of the program, similar to the
case of constant functions.

Of course you can mix problems of the form: constant Dirichlet boundary and variable
material coefficients (including Neumann and Cauchy boundary), or vice versa. You
have to select either

dirichletBCS=ConstDirichlet and material=userStaticMaterial

or dirichletBCS=userDirichlet and material=DefaultMaterial

It is a bit more complicated if some coefficients are piecewise constant and others are
variable.

For example, we derived a material type UserVarSource for problems with piecewise
constant coefficients k, q or c, and a variable right-hand side. This material can be
selected by command

material=userVarSource

The source function f has to be specified in the class UserVarSource within file
materialA.cc. The other coefficients, the Neumann or Cauchy boundary are ex-
pected to be constant with values defined in the .mat–file.

Other constellations of coefficients can be handled analogously by implementing a new
material class.

9 Obtaining Run-Time Information

In the tables 11, 12, and 13 we list commands which are relevant for getting runtime
information.

10 Technical Details for Programmers

10.1 Vector and Matrix Classes

We realized vector and matrix structures as special classes allowing index control
during runtime. This is a very helpful feature during the development of new code,
because the violation of array bounds is one of the most frequent errors. Of course,

10 TECHNICAL DETAILS FOR PROGRAMMERS 68

Parameter Name Default Description
(set in file
kaskade.init)

info= 0 (false) all information levels are activated or de-
activated

infoAb= 0 (false) general info about linear system

infoErrorEstimator= 0 (false) info about error estimation

infoLinSystem= 25 print information on every 25th iteration
step

infoMG= 0 (false) info about multi-grid preconditioning

infoPrecond= 0 (false) info about preconditioning

infoRefinement= 1 mesh: info levels ranging from 0 to 2, gi-
ving statistics about refinement steps

infoSolution= 1 (true) info after each solution step

printAb= 0 (false) print linear system

printAL= 0 (false) print multi-level matrices

printMatLabFormat= 0 (false) print stiffness matrix A in a format reada-
ble by MatLab

printMesh= 0 (false) print triangulation (lists)

printParameters= 0 (false) print command parameters

Table 11: Info– and print–commands

10 TECHNICAL DETAILS FOR PROGRAMMERS 69

Parameter Name Default Description
(set in file
kaskade.init)

graphic= 0 (false) switch graphic support on/off

plotBoundary= 1 (true) plot no boundary when solution is plotted

plotElements= 0 (false) plot no elements when the solution is
plotted

plotIsoLines= 1 (true) plot isolines of solution

plotSolution= 1 (true) plot solution data after each space step

plot3d= 0 (false) plot 2D–results as a surface plot (quasi–3d
plot)

plotKeep= 0 (false) keep all plots in separate windows

plotLevels= 10 desired number of iso-lines

plotPointNodes= 0 (false) plot number of nodes at points

plotSize= 0.4 size of plot window

plotTimeStep= 1 plot the solution after each time step

plotTriangleNodes= 0 (false) plot number of nodes at triangle

postScript= 0 (false) generate postscript pictures of mesh and
solution

scaleX= 1 scaling x-coordinate for quasi-3d plots

scaleY= 1 scaling y-coordinate for quasi-3d plots

scaleZ= 1 scaling z-coordinate for quasi-3d plots

Table 12: Plot–commands

10 TECHNICAL DETAILS FOR PROGRAMMERS 70

Parameter Name Default Description
(set in file
kaskade.init)

accTime= 0 (false) print all accumulated cpu times

time= 0 (false) print cpu-time for all essential modules

timeAssembler= 0 (false) print cpu-time for matrix assembling

timeErrorEstimator= 0 (false) print cpu-time for error estimation

timeLinSystem= 0 (false) print cpu-time for system solution

timeRefinement= 0 (false) print cpu-time for mesh refinement

timeTransport= 0 (false) print cpu-time for data transport between
different grids

timeUpdate= 0 (false) print cpu-time for update operation in
node management

Table 13: Time information

such control is expensive in time. Therfore we provided a switch to turn on or off
the array bound check by setting the flag CheckBoundsFlag in the files vector.h and
matrix.h to True or False (default). A change of the flag is effective after recompiling
the code.

10.2 Batchjobs

When the program fulfills a break condition (e.g the requested precision is reached)
it stops with the prompt REGULAR PROGRAM TERMINATION <CR>. It terminates not
before the user types the RETURN–key.

Sometimes, this pause is not very practical, e.g. if you want to run a sequence of
batchjobs controlled by a shell script.

In such applications you can initiate an automatic termination of each job by setting
the parameter batchJob=1 in the corresponding cmd–file.

11 GRAPHICAL USER INTERFACE 71

11 Graphical User Interface

Often it is difficult to learn the handling of a program and to understand the meaning
of the parameters. To make these first steps easier, we support the user by a graphi-
cal user interface (ZIBGui). The ZIBGui is a manager only for the most important
commands and parameters:

• It reads the usual .cmd files and displays the parameters. For practical reasons
we changed the extension of those files to .ex.

• It changes parameters and generates a new parameter file.

• It starts the KASKADE executable.

The interface is based on the tool Tcl/Tk due to J. Ousterhout [Ouster94] for develo-
ping graphical interfaces. It is independent of the numerical code KASKADE . Each
.ex file is recognized as an example and the parameters in it can be interpreted and
changed. However, the use of the parameters is more restrictive than for the parser in
the KASKADE program. Only those parameters are understood correctly which con-
cur fully with the notation of the table in appendix B. Abbreviations are not allowed,
capital letters are significant.

You find a detailed description (in German) in the manuals [NPR96] and [NPRW96]
including examples for customizing the user interface for your changes in the numerical
application, e.g. you have a new parameter.

11.1 How to install the ZIBGui environment

First install the public domain software Tcl/Tk (version Tcl 7.4 and Tk4.0) on your
system. Then execute the following steps in order to translate the ZIBGui sources
which you find in subdirectory /zgui:

• Goto subdirectory /zgui.

• Set in the Makefile the path to the directories of your Tcl/Tk libraries and
include files. Additionally adapt the name of your operating system, for instance
OS = SUNOS. This name will be used to store object-files and libraries in the
subdirectories obj-OSname and lib-OSname.

• Type make to compile and link the files. The name of the generated executable
is zgui.

• Set in the file zgui/k6.tcl the path to the directory with the KASKADE ap-
plication k6. In the standard case the path is the parent directory of the zgui

11 GRAPHICAL USER INTERFACE 72

Figure 34: Starting menu of the graphical user interface

directory. Further you can modify the path to the library with the tcl-files of
zgui. By default it is zgui/library.

• If you have not already installed the KASKADE executible k6, please do it now.

• Simply start the graphical interface by typing

> zgui

11.2 Examples

When ZIBGui is started, it opens a window similar to that shown in figure 34. (Please
note: If the following pictures of some ZIBGui windows are a little bit blurred, try to
print these pages on a 600dpi printer.)

The menus of the graphical user interface (ZIBGui) reflect the structure of the nume-
rical software. Before starting the KASKADE code by clicking on the Start-button in
the application control board you may change your mathematical problem (type,
material, and boundary conditions) , the components of the multilevel solver (linear
solver, preconditioner, convergence criteria, error estimator), and select some graphical
and protocol parameters in the submenus of the Settings menu in the root window.

11 GRAPHICAL USER INTERFACE 73

There are default values which configure a simple static heat conduction problem on
the unit square in 2 space dimensions.

Meanwhile we added a Postscript-button to the application control board which
can be used to generate postscript pictures of the actual mesh and approximate solu-
tion.

In the root window you find the Example–menu. It offers a set of prepared examples.
Each example is a collection of parameter settings stored in a file (extension .ex).
To create your own example file you can use the saveAs or save field in this menu.
By save you can overwrite only the example you selected before. Maybe, you have
overwritten an example but want to reestablish the example settings recommended by
the authors, then you can select Default in the Example–menu.

It may be that for a special problem type the selection of some other parameters
(materials, boundary conditions, or numerical methods) makes no sense. In this case
these widgets should be disabled.

Changes in one of the settings windows have to be confirmed with the Apply–button
before being valid for the next run. The Default–button resets all options to the
default values you get when you start the program. By the Reset–button the state
before the last Apply–click is reestablished.

A path through the program:

• Select the type of your problem. In the user interface we use the name
staticHeat synonymous to linear, scalar elliptic problem, and the name
transHeat to linear, scalar parabolic problem, because we cannot solve general
elliptic or parabolic equations.

• Use the geo-file button to select the .geo file which describes the triangulation
(1D, 2D, or 3D) of the region Ω.

• The .mat-file button offers the possibility to select a .mat file describing pie-
cewise constant material coefficients or constant boundary conditions. If you
have variable coefficients and boundary conditions, the specification of a .mat

file is not necessary.

• The global precision parameter specifies the error tolerance for the solution pro-
cess. The adaptive process will be continued until the estimated error lies under
this threshold. The value for maximal level provides a possibility to stop the
multilevel solver after a certain number of steps independently of the achieved
precision.

• Now you can choose the setup for the multilevel solver. First you may select the
iterative method to compute the solution of linear systems. The system may be

11 GRAPHICAL USER INTERFACE 74

preconditioned by one of the offered methods. Depending on the problem type
you have some suitable error estimators which can provide an estimation of the
global error. This is important to control the multilevel process. In addition the
estimator computes local errors which can be used together with a refinement
strategy to generate an adaptive grid.

• The coupling of requested precision in the iterative solver of the linear system
and the estimated discretization error is tuned by the convergence test strategy.
Both the residual– and the cascadic iteration–method are used for elliptic
problems. In general the former one is recommended, see [BER95].

• For parabolic equations you find entries in the problem definitionwindow for
the start time and final time.

• The graphics setting menu provides different graphical presentations of the
solution process, e.g. plots of the solution and the grid. The graphic output is
X11–based.

• The amount of information of the program during runtime is tuned by the
protocol settings. For further evaluations of the protocol information we in-
troduce the Special Statistic button. The tool which uses this additional
output is not yet part of the KASKADE package.

For 3–D examples, there is no interactive graphic support integrated in this version
of the program.

Some examples:

• default:

This is the example which is automatically selected when the program starts.

– Problem

Static heat conduction in two space dimensions, constant coefficients k = 1,
and constant right–hand side s = 1, and homogeneous boundary conditions.

Problem settings:

∗ Type = staticHeat, Material = constant, Dirichlet = constant

∗ geo-file selection: file = unit–2d.geo (unit square)

∗ mat-file selection: file = unit–2d.mat

∗ · · ·
– Numerics

Conjugate gradient method with a multigrid preconditioner (sym. Gauss–
Seidel smoother), error estimation (Deuflhard, Leinen, Yserentant, 1989,
see [DLY89]) and adaptive refinement.

Numerical parameters:

11 GRAPHICAL USER INTERFACE 75

Figure 35: Menus for setting the problem parameters

∗ linear solver = cg

∗ preconditioner = MLsgs

∗ error estimator = DLY

∗ refinement strategy = extrapolation

∗ · · ·

Variation of parameters:

– change the region by the geo-file button, e.g. select unit–1d.geo, unit–
3d.geo, hexagon.geo, l–2d.geo, l–3d.geo, slit–2d.geo, or corner.geo.

The space dimension of the problem is automatically provided by analyzing
the the .geo–file. Then the program selects the appropriate numerical algo-
rithms. Of course, the material data must be reasonable for the geometry,
e.g. if the region includes a Neumann boundary, the values of it must be
defined in the corresponding mat–file (if values are piecewise constant) or
in a member function of the selected material (if values are not piecewise
constant). We recommend to use always a .mat file with the same root
name as the .geo file.

11 GRAPHICAL USER INTERFACE 76

– change the coefficients in the equation, e.g. select Material=PeakSource
(peak in the source term) or Material=MultiPeakSource.

– change the numerical parameters in the Numerics window, e.g. select
different linear solvers and combine them with some preconditioners, or
test different refinement strategies. For example, a computation without
error estimation (error estimator = None) or with uniform refinement
(refinement strategy = uniform) is quite interesting, if you have selec-
ted the problem with a peak source (Material = peakSource). In the
uniform case you need 5 refinement steps and about 2000 nodes to achieve
an accuracy of 2%. In the adaptive case you need 5 steps, too. But less
than 500 nodes. This example shows the efficiency of adaptive methodes.

• boundaryLayer

The solution of this elliptic 2D–problem has a boundary layer along the sides
x = 1 and y = 1.

– Problem

equation: Δu− 100u = 0

domain: unit square

boundary condition: Dirichlet defined by cosh(10x)+cosh(10y)
2 cosh(10)

– Numerics

In this example, it is not reasonable to vary the material data, but the user
can test the different numerical parameters like in the default example.

• corner

The solution of this Laplace equation on a reentrant corner 2D–problem has a
singularity in the origin.

– Problem

equation: Δu = 0

domain: part of 2D–hexagon with reentrant corner

boundary condition: On parts of the boundary we have homogeneous Neu-
mann conditions which are defined in the file corner.mat.
On the rest of the boundary there are non-constant Dirichlet conditions
u(x, y) = r1/2, with r =

√
x2 + y2.

They are defined in the source file dirichletA.cc. In near future, we will
present a function in the ZIBGui in order to modify interactively parts of
the code and to recompile the executable automatically.

– Numerics

In this example the user can test the different numerical parameters like in
the default example.

11 GRAPHICAL USER INTERFACE 77

• staticPeak

The solution of this stationary Poisson problem has a peak at a point.

– Problem

equation: −Δu = f , the source f has a peak of the form f ∼ c · e−p(x−a)2

in the 1D-case, and analogously in higher dimensions. It is defined in the
source file materialsA.cc as a function of the coordinates.

domain: unit interval in 1D, unit square in 2D, cube in 3D.

boundary condition: homogeneous Dirichlet

– Numerics

In this example, it is not reasonable to vary the material data or boundary
conditions, but the user can test the different numerical parameters like in
the default example. It is very interesting to study the differences between
adaptive and uniform refinement.

Variation of parameters:

– change the region by the geo–file button, e.g. select peak-2d.geo, peak-
3d.geo.

– change the numerical methods similarly to the tests in the default example.

• transientPeak

The solution of this parabolic problem has a peak at a point of the domain.

– Problem

equation: ut−Δu = f , the source f has a time–dependent peak of the form
f ∼ c · e−p(x−a(t))2 in the 1D-case, and analogously in higher dimensions. It
is defined in the source file materialstr.cc as function of the coordinates
and the time.

domain: unit interval in 1D, unit square in 2D, unit cube in 3D.

boundary condition: homogeneous Dirichlet conditions.

– Numerics

In this example, it is not reasonable to vary the material data or boundary
conditions, but the user can test the different numerical parameters like in
the default example.

Variation of parameters:

– Change the region by the geo-file button, e.g. select transpeak–
2d.geo, unit-3d.geo. We recommend to request less accuracy (factor
globalPrecision) in higher space dimensions.

11 GRAPHICAL USER INTERFACE 78

– Change the numerical methods like in the default example.

• transientDiffusion

The solution of this parabolic problem shows a diffusion process starting from a
sharp initial profile.

– Problem

equation:

1000ut −Δu =

�
1.0, for t ≤ 10.0
0.0, for t > 10.0

The coefficients are described in the file u-1d-step.mat, u-2d-step.mat,
resp. u-3d-step.mat depending on the space dimension.

domain: unit interval in 1D, unit square in 2D, cube in 3D.

boundary condition: u=0 on the left side, u=1 opposite to it, and homoge-
neous Neumann condition on the other parts of the boundary.

initial value: is given as function in the file dirichlettr.cc and is available
under the name Step.

– Numerics

This example demonstrates the parabolic solver, which is adaptive in space
and time. In each time step, the computation of the spatial solution starts
from the initial grid.

In this example, it is not reasonable to vary the material data or boundary
conditions, but the user can test the different numerical parameters like in
the default example.

Variation of parameters:
change the region by the geo-file button, e.g. select u-1d-step.geo, u-2d-
step.geo, or u-3d-step.geo. If the user changes the geometry in this example, he
has also to select the mat-file u-1d-step.mat, u-2d-step.mat, or u-3d-step.mat
with the suitable material and boundary condition.

• obstacle

Here we present a special stationary obstacle problem. In this class of problems
we have to solve variational inequalities with constraints. In chapter 3, nonlinear
problem (1), we give a more detailed description of this 2D–problem.

• stefan

The stefan problem describes the transition between two phases of a material,
e.g. a melting iceberg.

12 FREQUENTLY ASKED QUESTIONS 79

– Problem

This time-dependent problem is formulated in form of variational inequali-
ties. See chapter 3, nonlinear problem (2) for a detailed description of this
2D–problem.

– Numerics

For this class of nonlinear problems we provide a special error estimator
and two suitable multigrid methods as linear solver.

• porousMedia

This example shows the time-dependent diffusion in porous media. In chapter
3, nonlinear problem (3), you find more informations on this 2D–problem.

12 Frequently Asked Questions

Here we present a list of frequently asked questions

• Which file is responsible of what?

• How to add a convective term?

• How can we handle periodic boundary conditions?

Shortly you can read here the answers, too.

A PROBLEM CLASSES 80

A Problem Classes

Here we give a description of the installed problem classes.

Static Heat Conduction and Related Problems

This problem class involves elliptic partial differential equations of the type

−∇k∇u+ qu = f in Ω

u = u0 on ΓD

k
∂u

∂n
= qN on ΓN

k
∂u

∂n
+ αu = qC on ΓC

(1)

where k and α denote material parameters (thermal conductivity and transfer coef-
ficient). Ω may be a one-, two-, or three-dimensional region; boundary conditions
of Dirichlet, Neumann, or Cauchy type are applied on the corresponding boundary
sections ΓD, ΓN , and ΓC . The source f and the coefficients k, q, and α may depend on
space coordinates. An extension to anisotropic materials with tensors k = kij is quite
straightforward.

The weak formulation associated with (1) is: Find û ∈ H1
ΓD

(Ω) satisfying

a(û, v) = G(v) ∀v ∈ H1
0 (Ω) (2)

where

a(u, v) =
Z
Ω

(k∇u∇v + quv)dxdydz +
Z
ΓC

αuvds

G(v) =
Z
Ω

fvdxdydz +
Z
ΓC

qCvds+
Z
ΓN

qNvds

There is the possibility in KASKADE to compute one additional boundary integral
on the right-hand side of the equation 2, e.g. due to a special source in the region. It
has the form:

G(v) = . . .+
Z
ΓI

qIvds (3)

Here ΓI denotes an interior layer, e.g. the face between two different materials, and
qI is a function defined on this layer.

A PROBLEM CLASSES 81

Transient Heat Conduction

This class comprises linear parabolic problems of the form

c
∂u

∂t
−∇k∇u+ qu = f in Ω (4)

The boundary conditions are like in (1), but may be time-dependent like the source
term f . Additionally we have to define initial values for t = 0 :

u(x, 0) = u0(x) in Ω

u0(x) has to be supplied by the user or can be calculated via the solution of a static
heat conduction problem.

Nonlinear Problems

Here, the problem classes have an additional function describing the nonlinearity.
It defines the nonlinear characteristics of the problems, e.g. obstacle functions or a
nonlinear heat capacitance.

Obstacle Problems

Two obstacle functions ϕup(x), ϕlow(x) can be added to a differential equation of type
(1):

u(x) < ϕup(x)
u(x) > ϕlow(x)

(5)

Such constraints may occur in various types of applications. The corresponding va-
riational inequality yields a nonlinear system, which is solved by a single-level Gauss-
Seidel or a monotone multigrid method [Kor95].

Stefan Problems and Related Nonlinear Equations

These problems may be regarded as degenerate parabolic initial value problems of the
form

∂

∂t
H(u)−∇k∇u = f in Ω

u(x, 0) = u0(x) in Ω

H(x, 0) = H0(x) in Ω

(6)

A PROBLEM CLASSES 82

combined with boundary conditions like in (1). H is the heat content or a generalized
enthalpy. In KASKADE H is the discontinuous derivative of a continuous piecewise
quadratic function of u. Thus H must be specified as a piecewise linear function of u;
a discontinuity in H defines a change of phase with a certain amount of latent heat.

Other nonlinear problems may be formulated in a similar way, e.g. the porous media
equation (see [Kor95]). Of course, we may have additional obstacle functions of the
form (5).

B COMMAND LISTING 83

B Command Listing

On the following pages we present an alphabetical list of the command parameters:

Parameter Name Default Description
(set in file
kaskade.init)

accTime= 0 (false) print all accumulated cpu times

absPrecision= 0 (false) see parameter globalPrecision

batchJob= 0 (false) the program terminates automatically
when fulfilling a break condition

cmd= input command file

compareSolution = 0 (false) compare approximate solution with the
true solution in the grid nodes

cycle= 0 (false) new boundary points are placed on a circle
(2d) or ball (3d) around the origin

cylinder= 0 (false) new boundary points are placed on a circle
around the origin parallel to the plane z=0

directSolverLimit= 0 limit for the direct sparse matrix solver on
levels > 0 (see also ’level0direct’)

dirichletBCs= constDirichlet identifies the type of Dirichlet boundary
condition

errorEstimator= DLY select an error estimator

extPrecFactor= 1.0 external precision factor; manipulates re-
quested precision for convergence test in
iterative solvers

file= unit-2d.geo name of geometry file (the extension .geo)
need not be specified. The material file is
expected to have the same name, but the
extension .mat.

globalPrecision= 1e-3 desired relative precision (maximum dis-
cretization error with respect to global
energy) if absPrecision=0, otherwise de-
sired absolute precision

graphic= 0 (false) switch graphic support on/off

info= 0 (false) all information levels are activated or de-
activated

infoAb= 0 (false) general info about linear system

B COMMAND LISTING 84

Parameter Name Default Description
(set in file
kaskade.init)

infoErrorEstimator= 0 (false) info about error estimation

infoLinSystem= 25 print information on every 25th iteration
step

infoMG= 0 (false) info about multi-grid preconditioning

infoPrecond= 0 (false) info about preconditioning

infoRefinement= 1 mesh: info levels ranging from 0 to 2, gi-
ving statistics about refinement steps

infoSolution= 1 (true) info after each solution step

level0direct= 3000 limit for the direct sparse matrix solver
on level 0; i.e. the solver will be used for a
matrix dimension up to 3000

linSolver= cg determines the type of iterative solver

localExtend= 1 (true) extend smoothing pattern (=0: only new
nodes, =1: new nodes + neighbours)

localOnTop= 1 (true) local smoothing of top-level matrix

localSmooth= 1 (true) local multigrid

material= defaultMaterial name identifying the material type,
defaultMaterial defines constant coeffi-
cients on the elements

maxOrthoGMRes= 12 maximal number of vectors to be orthogo-
nalized in GMRES

maxRefSteps= 50 maximal number of adaptive refinement
steps in solve

minRefRatio= 0.05 elements marked for refinement: at least
5%

minRefSteps= 0 minimal number of adaptive refinement
steps in solve

nPostSmooth= 1 number of post-smoothing steps in
multigrid

nPreSmooth= 1 number of pre-smoothing steps in
multigrid

omega= 1.0 relaxation parameter for preconditioning
with Jacobi- or SSOR- smoothing

B COMMAND LISTING 85

Parameter Name Default Description
(set in file
kaskade.init)

pause= 1 (true) stop when function Pause() is called in
the code and wait for input:
<CarriageReturn>� continue until next
Pause() is encountered,
’c’ � continue and disable the function
Pause(),
’p’� generate a picture in postscript for-
mat of the actual mesh and the approxi-
mate solution,
’q’ � quit program

plotBoundary= 1 (true) plot no boundary when solution is plotted

plotElements= 0 (false) plot no elements when the solution is
plotted

plotSolution= 1 (true) plot solution data after each space step

plot3d= 0 (false) plot 2D–results as a surface plot (quasi–3d
plot)

plotIsoLines= 1 (true) plot isolines of solution

plotKeep= 0 (false) keep all plots in separate windows

plotLevels= 10 desired number of iso-lines

plotPointNodes= 0 (false) plot number of nodes at points

plotSize= 0.4 size of plot window

plotTimeStep= 1 plot the solution after each time step

plotTriangleNodes= 0 (false) plot number of nodes at triangle

postScript= 0 (false) generate postscript pictures of mesh and
solution

postTimeStep= 0 generate postscript pictures of mesh
and solution for timestep which fulfills
timestep%postTimeStep==0 and time-
step > 0

preConditioner= MGsgs select one of the preconditioners

printAb= 0 (false) print linear system

printAL= 0 (false) print multi-level matrices

printMatLabFormat= 0 (false) print stiffness matrix A in a format reada-
ble by MatLab

printMesh= 0 (false) print triangulation (lists)

printParameters= 0 (false) print command parameters

problem= staticHeat specifies the problem type to be allocated
and solved

B COMMAND LISTING 86

Parameter Name Default Description
(set in file
kaskade.init)

readOldFormat= 0 (false) read the geometry input in old ZIB–
format

readZIBFormat= 1 (true) read the geometry input in new ZIB–
format

refStrategy= extrapolation select the refinement strategy

refTetrahedron= shortestEdge method for refinement of a tetrahedron

scaleX= 1 scaling x-coordinate for quasi-3d plots

scaleY= 1 scaling y-coordinate for quasi-3d plots

scaleZ= 1 scaling z-coordinate for quasi-3d plots

spaceDim= 2 space dimension

time= 0 (false) print cpu-time for all essential modules

timeAssembler= 0 (false) print cpu-time for matrix assembling

timeErrorEstimator= 0 (false) print cpu-time for error estimation

timeLinSystem= 0 (false) print cpu-time for system solution

timeRefinement= 0 (false) print cpu-time for mesh refinement

timeTransport= 0 (false) print cpu-time for data transport between
different grids

timeUpdate= 0 (false) print cpu-time for update operation in
node management

writeAVSFormat= 0 (false) set format for geometrical output, it cor-
responds to AVS visualization tools, only
for 3D objects

writeCpuTime= 0 (false) write cpu–time information to info–file

writeGrapeFormat= 0 (false) set format for geometrical output, it cor-
responds to GRAPE visualization tools,
only for 3D objects

writeIterations= 0 (false) write iteration numbers to info-file

writeZIBFormat= 0 (false) set format for geometrical output, it cor-
responds to the standard ZIB–format

writeSolution= 0 (false) allow output on a file, the format of
output has to be defined by one of the
commands writeZIBFormat, writeGRA-
PEFormat, writeAVSFormat

writeTimeStep= 0 (false) write the solution after each time step

REFERENCES 87

References

[Bor90] F.A. Bornemann. An Adaptive Multilevel Approach to Parabolic Equations I,
II. IMPACT Comput. Sci. Engrg. 2, 1990, and IMPACT Comput. Sci. Engrg. 3,
1991.

[BEK92] F. Bornemann, B. Erdmann, R. Kornhuber. Adaptive Multilevel–Methods in
Three Space Dimensions. Int. J. Numer. Meths. in Eng., 36, 1993.

[BEK93] F. Bornemann, B. Erdmann, R. Kornhuber. A Posteriori Error Estimates
for Elliptic Problems in Two and Three Dimensions. Preprint SC 93-29, Konrad-
Zuse-Zentrum für Informationstechnik Berlin, 1993.

[BER95] R. Beck, B. Erdmann, and R. Roitzsch. KASKADE 3.0: An Object-Oriented
Adaptive Finite Element Codes. Technical Report TR 95-4, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, 1995.

[BPX90] J.H. Bramble, J.E. Pasciak and J. Xhu. Parallel Multilevel Preconditioners.
Math. Comp, Vol 55, 1990.

[Cr88] J. Crank. Free and Moving Boundary Problems.. Oxford University Press,
Oxford, 1988.

[DLY89] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an Adaptive Hier-
archical Finite Element Code. IMPACT Comput. Sci. Engrg. 1, 1989.

[EO82] C. M Elliot, J. R. Ockendon. Weak and Variational Methods for Moving
Boundary Problems, Reseach Notes in Mathematics 53. Pitman, London, 1982.

[GRA] GRAPE, Graphical Programming Environment. Sonderforschungsbereich 256.
University of Bonn, Germany.

[HS90] K. H. Hoffmann and J. Sprekels, editors. Free Boundary Value Problems.
Birkhäuser, Basel, 1990.

[HYP89] P. Wust, J. Nadobny, R. Felix, P. Deuflhard, W. John, A. Louis. Numerical
approaches to treatment planning in deep RF-Hyperthermia. Strahlenther. Onkol.
165, p. 751-757, 1989.

[Kor95] R. Kornhuber. Monotone Multigrid Methods for Nonlinear Variational Pro-
blems. Habilitationsschrift, Freie Universität Berlin, Berlin, 1995.

[Mus37] M. Muskat. The Flow of Homogeneous Fluids Through Porous Media..
McGraw–Hill, New York, 1937.

REFERENCES 88

[NPR96] U. Nowak, U. Pöhle, R. Roitzsch. Eine graphische Oberfläche für nume-
rische Programme. Internal report, Konrad-Zuse-Zentrum für Informationstech-
nik Berlin, 1996. Available as postscript file (zgui-german.ps.Z in subdirectory
pub/kaskade/Manuals/3.x) by anonymous ftp to machine elib.zib-berlin.de.

[NPRW96] U. Nowak, U. Pöhle, R. Roitzsch, R. Werk. ZGUI – Manual. Internal
report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1996.

[Ouster94] J. Ousterhout. Tcl and the Tk Tollkit. Addison-WesleyPublishing Com-
pany, Professional Computing Series, 1994.

[Pen48] H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting
human forearm. J. Appl. Physiol. 1, p. 93-122, 1948.

[Rodr87] J. F. Rodrigues. Obstacle Problems in Mathematical Physics. Mathematical
Studies 134, North Holland, Amsterdam, 1987.

[Roi93] B. Erdmann, J. Lang, and R. Roitzsch. KASKADE Manual Version 2.0: FEM
for 2 and 3 Space Dimensions. Technical Report TR 93-5, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, 1993.

[See90] M. Seebaß. 3D-Computersimulation der interstitiellen Mikrowellen-
Hyperthermie von Hirntumoren. Bericht Nr. 1/90, Inst. f. Radiologie und Patho-
physiologie, Deutsches Krebsforschungszentrum Heidelberg, 1990.

[Son89] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear sy-
stems. SIAM J. Sci. Stat. Comp., 10(1), 1989.

[SS86] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7(3), July 1986.

[vdV92] Henk A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comp., 13(3), March 1992.

