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Abstract

KASKADE 3.0 was developed for the solution of partial differential equati-
ons in one, two, or three space dimensions. Its object-oriented implementation
concept is based on the programming language C++ . Adaptive finite element
techniques are employed to provide solution procedures of optimal computatio-
nal complexity. This implies a posteriori error estimation, local mesh refinement
and multilevel preconditioning.

The program was designed both as a platform for further developments of ad-
aptive multilevel codes and as a tool to tackle practical problems. Up to now
we have implemented scalar problem types like stationary or transient heat con-
duction. The latter one is solved with the Rothe method, enabling adaptivity
both in space and time. Some nonlinear phenomena like obstacle problems or
two-phase Stefan problems are incorporated as well. Extensions to vector-valued
functions and complex arithmetic are provided.

We have implemented several iterative solvers for both symmetric and unsym-
metric systems together with multiplicative and additive multilevel precondi-
tioners. Systems arising from the nonlinear problems can be solved with lately
developed monotone multigrid methods.
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1 Introduction

The purpose of this report is to give an overview of

– the capabilities of the software package KASKADE 3.0,

– its object-oriented implementation concept and

– the multilevel solution strategies included.

The report is not intended to serve as a user’s guide or tutorial; such information will
be provided elsewhere. We assume that the reader is familiar with basic finite ele-
ment concepts. Furthermore he should have some knowledge about iterative solution
techniques for equation systems arising from the discretization of partial differential
equations.

KASKADE 3.0 was designed both as a basis for the development of adaptive multilevel
codes and as a tool for the solution of practical problems. Thus we wanted to be able
to handle problems for one, two, or three space dimensions within one single program.
Of course, the capabilities of the predecessors, the KASKADE family version 2.0
[ELR93], had to be included as well.

The purpose of multilevel techniques is to combine reliability and numerical efficiency.
Therefore we implemented – besides the routines which carry out adaptive mesh refi-
nement – a broad framework for the solution of the arising equation systems. Linear
solvers and preconditioners can be combined with high flexibility.

In the description of our program we deliberately do not want to separate mathema-
tical and implementational issues, as the code itself should reflect natural hierarchies
and dependencies of the mathematical solution concepts employed. This, in fact,
was one of the main reasons why we chose the object-oriented programming language
C++ . Its class hierarchies and virtual functions play an important role throughout
the implementation, and often merely figures showing class hierarchies or declarations
will give insight into the programmers’ philosophy.

For the code developmentwe used the GNU C++ -compiler (up to version 2.6.3), which
is public domain software and one of the best compilers we encountered. We also want
to mention the excellent (and witty!) book of Scott Meyers [Mey92], which tells more
about the principles of object-oriented programming than many heavy tomes.

We close this section with some general remarks on the text:

– C++ -language conventions are used for code descriptions. Class names are set
in typewriter style.

– Often expressions like . . . is represented by class X . . . can be found. This is a
sloppy abbreviation, and the precise expression should read . . . is represented
by an object of class X or one of its derived classes. However, we consider the
latter formulation to be rather ponderous and pedantic.
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– We will list some pieces of C++ -code or excerpts of code. In these listings
dots (...) are used to indicate omitted lines. The data type Num represents a
numerical value (float, double or complex). The type Real may be a float

or a double.

2 The Code Organization

The main element in the code hierarchy is the base class Problem. Its members (see
figure 1) are the ‘ingredients’ necessary to define and solve specific problem types by
a finite element method.

The constitutive members for the problem definition are

– the finite element (class Element),

– the triangulation (class Mesh) and

– the material properties and essential boundary conditions (classes Material and
DirichletBCs).

The other members of Problem participate in the numerical solution procedures or
provide graphical output (FEPlot). It is worth noting that the class ErrorEstimator
in general must have access to the complete Problem itself.

One major concept of the implementation was the separation of topological and alge-
braic entities. The former ones comprise the constitutive members quoted above. The
topology of the problem, i.e. the mesh structure and node distribution, may be rather
complex due to the nested refinement levels created in the adaptive solution process.

By using a global node-numbering strategy we are able to transfer the topological
features into algebraic structures. The latter ones are based on special sparse matrix
classes and vectors. This concept allows a rigorous separation of the constitutive
classes and those which perform algebraic operations. The link between the two parts
is the Interface.

3 The Problem Classes

Figure 2 gives an overview of the problem types implemented up to now. A basic
distinction was made between static and time dependent problems. As both of them
may contain nonlinear features, we decided to construct transient nonlinear problems
by the means of multiple inheritance.

The most important members of a problem class are shown in figure 1. We think
the names are self-explanatory, descriptions of these classes are given in the relevant
sections.
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Interface

FamilyTree

(Node Manager)

Preconditioner
SystemMatrix

Element

DirichletBCs

LinSystem

Mesh

Material

object has a pointer with read access (‘const pointer’) to other object
object has a pointer with read and write access to other object

Problem

ErrorEstimator

FEPlot (Graphics)

Figure 1: The problem class and its members (the error estimator has access to all of them).
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TransientProblem NonLinearProblem

Problem

TransientHeatConduction TransientNonLinearProblem

StaticNonLinearProblem

StaticHeatConduction

Figure 2: The main problem classes. Classes printed in bold italics can be instantiated;
dashed lines originate from virtual base classes.

Basic member functions of a problem class are the adaptive solution procedure (see
figure 3) and the assembling routine for the weak form of the differential equation.
The former is rather general, whereas the assembling procedure, of course, depends
on the specific problem.

Vector-Valued Solutions

The problem classes StaticHeatConduction and TransientHeatConduction can be
used for vector-valued functions or equation systems, too. In this case, the parameter
nComp is provided to specify the number of components at each base node. There are
derived finite element classes (see section 5) with the appropriate assembling routines.
A special block matrix class can be used for the efficient handling of the linear systems
(see section 7).
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Bool Problem:: staticSolution(Real globalPrecision, Real time)

{

...

newLinSystem(); // construct and initialize

newPreconditioner(); // some new members

newInterface();

newErrorEstimator();

for (int step=0; step<=maxRefinementSteps; ++step)

// adaptive refinement steps

{

assembleGlobal(time);

linSystem->solve(...);

... // some post-processing

// operations may follow

errorEstimator->adapt(...);

SolutionInfo(step); // print some information

if (globalConvergenceTest(globalPrecision,step)) return True;

interface->refine(u);

}

return False;

}

Figure 3: Structure of the basic adaptive solution procedure
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3.1 Static Heat Conduction

This problem class involves elliptic partial differential equations of the type

−∇k∇u = f in Ω

u = u0 on ΓD

k
∂u

∂n
= qN on ΓN

k
∂u

∂n
+ α u = qC on ΓC

(1)

where k and α denote material parameters (thermal conductivity and transfer coef-
ficient). Ω may be a one-, two-, or three-dimensional region; boundary conditions
of Dirichlet, Neumann, or Cauchy type are applied on the corresponding boundary
sections ΓD, ΓN , and ΓC . An extension to anisotropic materials with tensors kij or
αij is quite straightforward.

3.2 Transient Heat Conduction

This class comprises linear parabolic problems of the form

c
∂u

∂t
−∇k∇u = f in Ω (2)

The boundary conditions are like in (1), but may be time-dependent like the source
term f . Additionally we have to define initial values for t = 0 :

u(x, 0) = u0(x) in Ω

u0(x) has to be supplied by the user or can be calculated via the solution of a static
heat conduction problem.

Adaptive Time Step Control

The adaptive Rothe-Method is employed for the time-stepping algorithm [Bor91]. This
approach completely separates time and space discretization: we first discretize (2)
with respect to the time variable by choosing a step width τ . Then the resulting
spatial elliptic subproblem may be solved adaptively like problem (1).

If the index n denotes the n-th time step, i.e. tn = tn−1 + τn, the value τn+1 for the
next step is proposed by

τn+1 = τn

√
Tol

εtn
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Tol is a user-specified tolerance and εtn the estimated time error of step n. To obtain
εtn we calculate solutions of first and second order accuracy in time via a multiplicative
error correction procedure:

u(2)
n = u(1)

n + ηn

An implicit Euler-step for (2) yields u(1) with first order accuracy:

(M + τnA)u
(1)
n = τnf(tn) +M u

(1)
n−1 (3)

The matrices M and A arise from the first and second term on the left hand side
in (2).

The correction ηn is given by [Bor91]

(M + τnA) ηn =
τn
2
{A(u(1)

n − u
(1)
n−1)− (f(tn)− f(tn−1))}

This formulation preserves the structure of the first-order system (3). The second-
order correction ηn yields an estimate of the time error εtn.

For every time step both time and space error are required to remain below the
tolerance Tol. If εtn is too large, the proposed step width τn is reduced. The space
error is calculated by a hierarchical defect correction method (see section 11) and
reduced by adaptive mesh refinement.

3.3 Nonlinear Problems

Nonlinear problem classes have the additional member NonLinearity. It defines the
nonlinear characteristics of the problems, e.g. obstacle functions or a nonlinear heat
capacitance. A pointer to NonLinearity is also handed to the nonlinear preconditioner
classes to supply the appropriate updates during the solution of the equation system.

3.3.1 Obstacle Problems

Obstacle functions ϕ(x) can be added to any differential equation:

u(x) < ϕup(x)
u(x) > ϕlow(x)

(4)

Such constraints may occur in various types of applications. The corresponding va-
riational inequality yields a nonlinear system, which is solved by a single-level Gauss-
Seidel or a monotone multigrid method [Kor95] (see sections 8 and 9).
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3.3.2 Stefan Problems and Related Nonlinear Equations

These problems may be regarded as degenerate parabolic initial value problems of the
form

∂

∂t
H(u)−∇k∇u = f in Ω

u(x, 0) = u0(x) in Ω

H(x, 0) = H0(x) in Ω

(5)

combined with boundary conditions like in (1). H is the heat content or a generalized
enthalpy. In KASKADE H may be a continuous quadratic function of u but with
discontinuous derivatives H ′. Thus H ′ must be specified as a piecewise linear function
of u; a discontinuity in H ′ defines a change of phase with a certain amount of latent
heat.

A characteristic feature of the nonlinear part in H is that by mass-lumping its contri-
bution can be restricted to the diagonal of the stiffness matrix. Such a nonlinearity
can be handled very efficiently in the solution procedure for the equation system.

Other nonlinear problems may be formulated in a similar way, e.g. the porous media
equation (see [Kor95]). Of course, we may have additional obstacle functions like
in (4).

4 The Mesh and its Components

All our finite element meshes exclusively comprise simplexes, which are derived from
the base class PATCH (see figure 4).

In this context, the term element is used for the geometric elements of the mesh (tetra-
hedra in 3D, triangles in 2D and edges in 1D space). It should not be mixed up with
the finite element itself, which defines the local nodes and provides assembling proce-
dures for the weak form of the differential equations. In these procedures the finite
element is mapped onto all geometric elements of the mesh by the class Interface.
This is done via global node numbers set on all the relevant patches of the mesh. In
principle, every PATCH may be given a global node number:

class PATCH // abstract base class for all elements

{

protected:

int node; // node number (set by Interface)

public:

int getNode() const { return node; }

void setNode(int no) { node = no; }
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PT2 PT3PT1 EDG1 EDG2 EDG3 TR2 TR3 TET3

TREDGPT TET

PATCH

TR2TR TET3TREDG1TR

MESH2

MESH2TRMESH1TR

MESH1

MESH3TR

MESH3

MESH

Figure 4: The classes comprising geometric entities. Each MESH is a non-overlapping ar-
rangement of simplexes with the base class PATCH, from which points, edges, triangles and
tetrahedra are derived. Numbers in class names indicate the space dimension.



4 THE MESH AND ITS COMPONENTS 14

...

};

To show the connections within a finite element mesh, we list some details of the
declarations of 3D-patches:

class PT3 : public PT

{

protected:

Real x,y,z; // coordinates in 3D space

char boundP, mark, classA, depth; // some descriptors

PT3 *next, *prev; // pointers for doubly-linked list

...

};

class EDG3 : public EDG

{

protected:

PT3 *p1, *p2, *pm; // vertices at ends and midpoint

char boundP, classA, type, depth;

EDG3 *father, *firstSon; // connections in multi-level structure

EDG3 *next, *prev;

...

};

class TR3 : public TR // triangle for outer surface

{

protected:

PT3 *p1,*p2,*p3;

EDG3 *e1,*e2,*e3;

TET3 *t31, *t32; // tetrahedra on both sides (0 if none)

char mark, type, classA, depth, boundP;

TR3 *next, *prev, *father, *firstSon;

...

};

class TET3 : public TET

{

protected:

PT3 *p1, *p2, *p3, *p4;

EDG3 *e1, *e2, *e3, *e4, *e5, *e6;
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PATCH *n1, *n2, *n3, *n4; // neigbour tetra’s or surface triangles

char type, classA, depth, mark;

TET3 *next, *prev, *father, *firstSon;

...

};

All objects of a mesh are stored in doubly-linked lists to allow the removal or replace-
ment of any element. The lists are stacked with respect to the refinement level (also
called depth) of the elements. There are separate lists for points, edges etc.; stepping
through these lists is done by iterators. The patches can be accessed by virtual func-
tions, thus the operations of the Interface on the grid are independent of the actual
mesh implementation and space dimension.

As an example we give an excerpt of the three-dimensional class MESH3:

class MESH3 : public MESH

{

protected:

Stack<DList<PT3>*> ptList; // points

Stack<DList<EDG3>*> edgList; // edges

Stack<DList<TR3>*> trList; // triangles on the outer surface

Stack<DList<TET3>*> tetList; // tetrahedra

int noOfPoints, noOfEdges, noOfTriangles, noOfBoundaryTriangles,

noOfTetrahedra;

...

public:

MESH3(const char* inFileName, Bool readMesh=True);

virtual void Refine(); // does the mesh refinement

...

};

For transient problems, the mesh and element classes are slightly modified. Due to
the use of the adaptive Rothe method, the grids of the separate time steps may look
quite different. Here each element has a pointer to its ‘partner element’ in the mesh
of the previous step to facilitate the transfer of the solution u between the grids. The
classes in question have been given the suffix TR (indicating TRansient).

If a mesh is to be refined adaptively, all elements with an error above a certain level
are marked by the error estimator. The way of subdivision in 2D is that of PLTMG
[Ban88] or the bisection strategy of Rivara [Riv84], which does not need irregular
‘green closures’.

In three dimensions, an approach similar to the former one has been chosen: regular
(red) subdivision of the marked tetrahedra and a green closure. The red subdivision
can be carried out according to Bey [Bey91], which guarantees stability with respect
to the minimum angle, or by a shortest edge strategy [Zha88, Ong89, BEK93].
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HQuadTriangle

LQuadTriangle

Tetra

HQuadTetra

LQuadTetra

Line

HQuadLine

LQuadLine

HQuadMCLine HQuadMCTriangle

MCTriangleMCLine

HQuadMCTetra

Element

StdElement

Triangle

MCTetra

Figure 5: The finite element classes. The standard elements are nodal elements with linear
or quadratic shape functions (Lagrange or hierarchical type). For vector-valued functions
several degrees of freedom may be located at each node (multi-component type, indicated
by the prefix MC).

5 The Finite Elements

5.1 Standard Elements

This family comprises simplex-type finite elements with standard nodal basis functions
(Lagrange type) up to second order: line, triangle, and tetrahedron. The hierarchical
second order counterparts are implemented as well and are used in error estimation
procedures. The class hierarchy is shown in figure 5.

The main member functions serve for assembling the weak representation of the dif-
ferential equations or for interpolating a discrete solution vector on the element. For
numerical integration on elements with varying material coefficients Gaussian quadra-
ture formulae are provided (up to degree 15 in two and three space dimensions).
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Interface

MGInt

LQuadElemSG

HQuadElemSG

LinElemSG
LinElemMG

LinElemML

LinElemIntHQuadElemIntLQuadElemInt
SGInt MLInt

Figure 6: The interface classes. The interface carries out the ‘node management’ and is
constructed with respect to the specific finite element and the preconditioner type employed
for the problem solution.

5.2 Multi-Component Elements

If several degrees of freedom are located at each node, e.g. in the case of vector-valued
functions or systems of equations, these classes form an appropriate extension of the
standard scalar elements. A set of assembling routines is provided, which can be
adapted to the specific problem.

6 The Node Interfaces

As we mentioned above, we attempted a thorough separation of topological and al-
gebraic code structures. This is achieved by a global node numbering concept. The
interface classes are responsible for the node management, including update and refi-
nement functions, which modify the data in various members of the Problem class.

We list some details of the base class Interface:
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class Interface

{

protected: // pointers to objects supplied by problem

const Element* element;

MESH* mesh;

DirichletBCs* dirichletBCs;

LinSystem* Ab;

Preconditioner* precond;

...

public: // some member functions

...

virtual void setNodeNumbers() = 0; // set global nodes

virtual void getGlobalNodes(const PATCH* t,

Vector<int>& globalNodes) const = 0;

virtual void refine(Vector<Num>& u) = 0; // mesh refinement and

// and update functions

...

};

A finite element defines local nodes, which are mapped onto the global nodes of the
mesh. This is carried out by the function getGlobalNodes(...), for example during
the global assembling procedure. The function setNodeNumbers(...) distributes the
global node numbers after a mesh refinement.

The patches of the mesh (points, edges, triangles etc.) are accessed via list iterators
and virtual functions. Thus nearly all operations of the interface can be implemented
without regarding the specific mesh class and space dimension.

A basic distinction is made between interfaces for single- and multi-level precondi-
tioners. For the latter, of course, the node management is more complicated, as the
family tree (see section 10) and the system matrices of the different refinement levels
have to be maintained.

7 The Sparse Matrices

Sparse matrix structures play an important role in the implementation of finite element
codes. They are a natural consequence of locally defined basis functions, allowing the
storage allocation for system matrices to be of order N , N being the total number of
degrees of freedom on the mesh. Combined with an ‘order-1 solver’ for the equation
system this yields a solution strategy of optimal complexity with respect to memory
space and execution time.
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SystemMatrix

MA28Matrix

SparseMatrix

MLSparseMatrix

MLMatrix

LocalMLSparseMatrix LocalMLBlockMatrix

MLBlockMatrix

Figure 7: The system matrix classes. Special types are provided for single- and multi-
level preconditioning. The prefix Local in the class names indicates the possibility of local
smoothing operations in multilevel preconditioners. An extension for the Harwell MA28
sparse matrix solver has been included.

Figure 7 shows the implemented system matrix classes. Various types are available for
different problem classes and solution techniques. All of them have a sparse structure
and can be used for both symmetric and unsymmetric systems (in the latter case they
are assumed to be symmetrically populated). The class SparseMatrix stores all data
entries in vectors, whereas in all the other classes the off-diagonal entries are collected
in linked lists, thus allowing more flexibility (see figure 8).

The letters ML indicate that a matrix is of ‘multilevel-type’, i.e. it can be used in
conjunction with a multilevel-preconditioner. These matrices are supplied with a
Galerkin procedure for the computation of coarse grid matrices.

The most important member functions of the sparse matrix classes carry out the
following operations:

– multiplication with a vector

– forward and backward Gauss-Seidel and SOR smoothing

– LU-decomposition

– forward-backward substitution of a decomposed matrix

For LU-decomposition and forward-backward substitution we have added the Harwell-
MA28 sparse matrix solver [Duf80]. A drop tolerance parameter may be set to get
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Diagonal D

Lower Triangle L

Column Indices

Upper Triangle U

End-of-Row Pointers
for Column Index Vector

Linked List of NodeNeighbours

Diagonal D

Lower and Upper Triangle

MLSparseMatrix:

SparseMatrix:

Figure 8: Data arrangement in sparse matrix classes. In SparseMatrix all data are stored
in vectors. For a symmetric matrix the upper triangle vector U is identified with L and
does not need extra space. L is stored row-wise, whereas U is stored column-wise. Thus
for symmetrically populated matrices the column vector contains the column indices for the
entries of L and the row indices for those of U. This structure is similar to the one used in
PLTMG [Ban88].
The type MLSparseMatrix maintains lower and upper triangle by linear lists. The class
NodeNeighbour contains the column index of the entry and one or two off-diagonal terms
(one in the symmetric case).
In an MLBlockMatrix the diagonal entries and NodeNeighbours are substitued by special
block-entries.
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incomplete LU-decompositions, which are used in the ILU-preconditioner (see sec-
tion 9).

The block matrices (MLBlockMatrix) are useful for problems with vector-valued func-
tions. If there are several degrees of freedom at each node, these are collected in block
entries. For smoothing operations all blocks of the matrix diagonal are inverted by
LU-decomposition.

8 The Equation Systems and Solvers

We have implemented the class LinSystem for the storage and solution of equation
systems arising from finite element discretizations. Its main members are the system
matrix A and the right-hand side vector b. A is always stored as a sparse matrix.

The equation system can be solved via LU-Decomposition of A, which is carried out
by a sparse matrix routine [Duf80], or by an iterative procedure.

The class LinSystem is also used in the context of nonlinear problems. Here the
relevant preconditioners supply the updates for nonlinear terms (see section 9).

8.1 The Direct Sparse Matrix Solver

We employ the Harwell-MA28 sparse matrix solver [Duf80] for an LU-decomposition.
It is based on a nested dissection approach and thus achieves optimal complexity for a
direct solution procedure. It is also possible to generate incomplete LU-factorizations,
which may be used as preconditioners for an iterative solver. The incomplete factori-
zation works with a user-specified drop-tolerance.

For technical reasons the factorization and forward-backward substitution algorithms
are included in the sparse matrix classes (see section 7).

8.2 Iterative Solvers

We have implemented several iterative solvers for systems arising from linear and
nonlinear problems.

Linear Equation Systems

• Systems with symmetric positive definite (SPD) matrix:

– Conjugate Gradients

• Systems with symmetric indefinite matrix:

– Conjugate Residuals
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• Unsymmetric systems:

– Bi-Conjugate Gradients

– the CGS algorithm of Sonneveld [Son89]

– BiCGStab of van der Vorst [vdV92]

– GMRES of Saad and Schultz [SS86]

– Conjugate Gradients for the normal equations (CGNR)

– Relaxation routines (Jacobi, SSOR etc.; for technical reasons the type is
determined by the choice of a preconditioner applied to the Richardson
iteration)

Nonlinear Equation Systems

Here we apply relaxation routines, which work efficiently in conjunction with a nonli-
near multigrid preconditioner (see section 9).

Structure of the Iterative Solvers

All preconditioned iterative solvers that are implemented in KASKADE have the
following structure (here iterSolve is a fictitious name):

Bool LinSystem:: iterSolve(Vector<Num>& u, int maxIter) // solve Au=b

{

...

preCond->initialize(A,u,b);

...

for (iter=1; iter<=maxIter; ++iter)

{

...

preCond->invert(e,A,r); // solve defect equation Ae=r

// approximately (r is the residual)

...

if (convergenceTest(...)) break;

...

}

preCond->close(A,u,b);

return iter <= maxIter;

}

The calls preCond->initialize(A,u,b) and preCond->close(A,u,b) are required
for preconditioners which implicitely transform the system (like TrSSOR, see section 9).
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The function preCond->invert(e,A,r) involves the actual preconditioning operation.
Here the defect equation

Ae = r

is solved approximately (see section 9).

8.3 Convergence Tests for Iterative Solvers

The Residual Norm

If we consider the equation system Au = b, the ‘standard’ stopping criterion is

‖ r ‖
‖ b ‖ < ε ,

with ‖ r ‖ denoting the Euclidian norm of the residual r = b − A ũ . Here ũ is the
approximate solution of the current iteration step. By default the limit ε is chosen to
be

ε = 0.1 εdisc ,

where εdisc is the maximal allowed relative discretization error for the solution and is
specified by the user. Usually this choice is quite reliable but ε may be changed to
any other value, of course.

Cascadic Iterations

For positive definite systems and single-level preconditioning this stopping criterion
may be quite efficient if the user is merely interested in the energy norm of the solution.

The convergence test arises from the lately developed ‘cascadic iteration’ concept
[Bor94, Deu94]. Instead of monitoring the residual, here the iterative process is stop-
ped if the estimated energy norm of the iteration error u− ũ is below a certain limit.
The choice of this limit is accomplished by to a clever matching of the estimated dis-
cretization error of the previous refinement level (calculated in the energy norm) and
the iteration error of the current iteration step.

9 The Preconditioners

Throughout the text we use the term ‘preconditioner’ in a rather extensive sense.
Here every device allowing the (approximate) solution of a defect equation is called a
preconditioner. In KASKADE even classical iteration schemes like Jacobi or SSOR are
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implemented in the form of a linear relaxation solver (Richardson iteration) combined
with the respective preconditioner (Jacobi or SSOR).

Let us have a brief look onto the characteristics of preconditioning operations. We
consider the solution of the linear system

Au = b (6)

by one of the iterative procedures of section 8. The usual way to introduce precondi-
tioning is to define a transformation matrix C with a suitable splitting

C = F G

to transform (6) into

F−1AG−1 Gu = F−1b (7)

with improved condition number for F −1AG−1. For symmetric A, a preconditioner
with symmetric splitting should be chosen:

G = F T ,

where F T denotes the transpose of F . Thus the transformation preserves the symme-
try of the original system.

The iterative algorithms of section 8 are arranged in a way that does not form (7)
explicitely, but rather incorporates the transformation via a defect equation. If we
have an approximation ũ of the exact solution u, we define the error or defect

e = u− ũ

and its residual
r = b− A ũ

The preconditioning operation can be included formally as the approximate solution
of the defect equation

Ae = r ,

in which A is replaced by C :
C e = r

The formalism is equivalent to (7) and preserves the symmetry of the original system
if C is symmetric.

The preconditioner C may be a matrix derived from A (e.g. an incomplete factori-
zation) or may represent a more complex operation (like a multigrid cycle), which
nevertheless can be written algebraically in matrix form. If C involves operations on
different refinement levels of our finite elementmesh, we call it a multigrid or multilevel
preconditioner.

Figure 9 shows the preconditioners implemented in KASKADE. A more detailed de-
scription is given in the following sections.
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MGPreconditioner

MGJacobi MGSGS

MLSGSMLJacobi

MGSSOR

NonLinearMLGS

TrcNonLinearMLGS

MMGPreconditioner

AMGJacobi AMGSGS

AMLJacobi

AMGPreconditioner

AMLSGS

ILU NonLinearSGGS

Preconditioner

TrSSOR

SSOR

Jacobi

Figure 9: The preconditioners. Several types of single- and multi-level preconditioners have
been implemented.
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9.1 The Single-Level Preconditioners

These variants derive the preconditioner C exclusively from the stiffness matrix A of
the current refinement step.

Jacobi Preconditioning

Here the diagonal D of the system matrix A is chosen for preconditioning:

C = D

SSOR and TrSSOR Preconditioning

In this variant the preconditioner C is formed by an SSOR-splitting of A (with rela-
xation parameter ω):

C = F G

=
1

ω(2 − ω)
(D + ωL)D−1(D + ωU)

L and U denote the lower and upper triangle of A, D its diagonal.

The TrSSOR (‘Transforming SSOR’) directly uses the transformed system in (7). Of
course, the matrix F −1AG−1 is never formed explicitely by matrix multiplication,
which would cause heavy fill-in. But for an SSOR-splitting the multiplication of
F−1AG−1 with a vector can be carried out at the cost of one matrix-vector multi-
plication and three multiplications of vectors with a scalar [AB84]. Usually this is
much more efficient than one matrix-vector multiplication plus one inversion of the
preconditioner, as required in the non-transforming variant.

ILU Preconditioning

An incomplete factorization of A can be carried out by using the sparse matrix sol-
ver MA28 (see section 8). Fill-in is generated with respect to a user-specified drop
tolerance.

9.2 The Multilevel Preconditioners

For the implementation of these preconditioners we made an arbitrary technical di-
stinction between multigrid and multilevel types.

Here multigrid preconditioners quite generally are all those ones which use smoothing
operations on different grids. The multilevel preconditioners use smoothers which are
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arranged with respect to the refinement levels of the nodal basis functions. In the
class names the latter ones are marked with the prefix ML, the former ones with MG.

The ML-type preconditioners compute their coarse grid matrices via a Galerkin proce-
dure. Local smoothing is possible, the smoothing pattern can be determined by the
user. By default, the set of nodes to be smoothed on a specific level contains all nodes
which are new on this level and their neighbour nodes.

On the other hand, our MG-type preconditioners simply store the system matrix of se-
lected refinement steps and use these ones for the smoothing operations. No Galerkin
procedure is necessary for the computation of coarse grid matrices, thus the imple-
mentation is simplified considerably. These variants are often very efficient concerning
memory space and execution time. In the case of uniform grid refinement, ML- and
MG-type preconditioners operate equivalently.

The following sketch shows the most important data and functions within the class
MGPreconditioner:

class MGPreconditioner : public Preconditioner

{

public:

...

virtual void invert(Vector<Num>& e, SystemMatrix* A,

Vector<Num>& r);

protected:

FamilyTree* familyTree; // used for grid transfer

Stack<SystemMatrix*> Al; // the coarse grid matrices

Stack<Vector<Num>*> rl; // residuals on coarse grids

Stack<Vector<Num>*> el; // defects on coarse grids

Stack<Real> omega; // relaxation parameters

int nPreSmooth, nPostSmooth; // number of smoothing operations

...

virtual void MGCycle(Vector<Num>& e, SystemMatrix& A,

Vector<Num>& r, int level);

// the multigrid V-Cycle

};

9.2.1 Multiplicative Versions

These preconditioners are derived from the class MMGPreconditioner. Below we list
the simplified code of the V-Cycle. The parameters passed to the function MGCycle

are the defect correction e, the residual r and the system matrix A (all of the same
level).
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void MMGPreconditioner:: MGCycle(Vector<Num>& e, SystemMatrix& A,

Vector<Num>& r, int level)

{

if (A.DirectSolution()) A.FBSubst(e,r); // matrix is decomposed

else

{

preSmooth(level, e, A, r);

residual(rNew, r, A, e); // compute new residual rNew

restrict(rNew, *rl[level-1], level);

MGCycle(*el[level-1], *Al[level-1],

*rl[level-1], level-1); // recursive call of MGCycle

prolong(*el[level-1], e, level);

postSmooth(level, e, A, r);

}

}

We give a list of some of the derived classes:

– MGJacobi: multigrid preconditioner with Jacobi-type smoothing. The default
relaxation parameter ω is 2/3.

– MGSGS: multigrid preconditioner with symmetric Gauss-Seidel smoothing. For-
ward Gauss-Seidel is applied for pre-smoothing, the backward operation for post-
smoothing.

– NonLinearMLGS: multilevel preconditioner for nonlinear systems with Gauss-
Seidel smoothing (see below).

The characteristic functions of all these preconditioners are pre- and post-smoothing
operations. As an example we list the declaration of the symmetric Gauss-Seidel
multigrid version:

class MGSGS : public MMGPreconditioner

{

public:

...

virtual void initialize(SystemMatrix* A, Vector<Num>& x,

Vector<Num>& b);

virtual void close (SystemMatrix* A, Vector<Num>& x,

Vector<Num>& b);

protected:

virtual void preSmooth (int level, Vector<Num>& e,

SystemMatrix& A, Vector<Num>& r);
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virtual void postSmooth(int level, Vector<Num>& e,

SystemMatrix& A, Vector<Num>& r);

};

9.2.2 Additive Versions

Additive multilevel preconditioners are prefixed with an ‘A’. We give the simplified
code of the V-Cycle for these preconditioners:

void AMGPreconditioner:: MGCycle(Vector<Num>& e, SystemMatrix& A,

Vector<Num>& r, int level)

{

if (A.DirectSolution()) A.FBSubst(e,r); // matrix is decomposed

else

{

smooth(level, e, A, r);

restrict(r, *rl[level-1], level);

MGCycle(*el[level-1], *Al[level-1], *rl[level-1], level-1);

prolong(*el[level-1], e, level);

}

}

Additive preconditioning involves only one smoothing operation on each level. Here is
the declaration of the additive multigrid preconditioner with symmetric Gauss-Seidel
smoothing:

class AMGSGS : public AMGPreconditioner

{

public:

virtual void initialize(SystemMatrix* A, Vector<Num>& x,

Vector<Num>& b);

protected:

virtual void smooth(int level, Vector<Num>& e, SystemMatrix& A,

Vector<Num>& r);

};

The AMLJacobi type is also called BPX-preconditioner [BPX90]. If the smoothing
pattern is restricted to the new nodes on each level, it is equivalent to the hierarchical
basis preconditioner in [DLY89].
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9.3 Preconditioners for Nonlinear Problems

These preconditioners are applied to the nonlinear relaxation-type solvers. They are
equipped with a pointer to the class NonLinearity (see section 3.3), which yields the
appropriate updates for every iteration step.

Nonlinear Single-Grid Gauss-Seidel Preconditioning

The preconditioner NonLinearSGGS realizes the classical nonlinear Gauss-Seidel itera-
tion.

Nonlinear Multilevel Gauss-Seidel Preconditioning

Here the coarse grid problems are substituted by linear approximations, which are
constructed such that the monotone decrease of the energy functional is guaranteed.
Thus the procedure is globally convergent [Kor93].

In every iteration the coarse grid problems are set up due to the result of one nonlinear
Gauss-Seidel step on the fine grid. It determines the free boundary and the obstacle
functions for the coarse-grid corrections.

Truncated Nonlinear Multilevel Gauss-Seidel Preconditioning

In this variant the coarse grid basis functions are truncated appropriately in the neigh-
bourhood of the free boundary. This is realized by modified restriction procedures for
the residuals and the coarse grid matrices. The approach creates an optimal support
for the coarse grid problem and may yield drastically improved convergence rates.

10 The Grid Transfer

The grid transfer routines play an essential part in multilevel algorithms. Their main
tasks are restriction of residuals, prolongation of solutions and transformations bet-
ween nodal and hierarchical basis representations of such objects.

In a general way these operations can be considered as matrix-vector multiplications,
thus revealing their rather simple algebraic nature. If we define a prolongation matrix
Pl, the related grid transfer is given by

ul = Pl ul−1 ,

where ul is the solution on level l. For all our multilevel preconditioners we use the
transpose of Pl for restriction (sometimes called ‘full weighting’), i.e.

rl−1 = P T
l rl ,



10 THE GRID TRANSFER 31

with rl denoting the residual on level l. For symmetric smoothers this choice results in
symmetric multilevel cycles and thus preserves the symmetry of the solution algorithm
for the linear system (if, for example, a conjugate gradient solver is used). Other
choices, like injection, are possible but usually not to be recommended.

Every transfer matrix Pl is sparse and coded in a data structure called Generation. All
generations of a mesh are collected on a stack within the class FamilyTree. There is
one generation for every refinement level, in which each node of this level is represented
by the class Son. A son stores the node numbers of his father nodes and their weights.

We briefly sketch the classes FamilyTree and Generation:

class FamilyTree

{

protected:

Stack<Generation*> generation;

public:

virtual void prolong (const Vector<Num>& eLow, Vector<Num>& eHigh,

int highLevel) const

{ generation[highLevel]->prolong(eLow, eHigh); }

virtual void restrict(const Vector<Num>& rHigh, Vector<Num>& rLow,

int highLevel) const

{ generation[highLevel]->restrict(rHigh, rLow); }

virtual void solToNB(Vector<Num>& e, int level) const;

// hierarchical basis transformation of a

// solution vector

virtual void rhsToHB(Vector<Num>& r, int level) const;

// hierarchical basis transformation of a

// right-hand-side vector (e.g. a residual)

...

};

class Generation

{

protected:

Vector<Son*> son;

public:

virtual void prolong (const Vector<Num>& eLow, Vector<Num>& eHigh)

const;

virtual void restrict(const Vector<Num>& rHigh, Vector<Num>& rLow)

const;

...

};
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The FamilyTree is maintained by the class Interface. The latter extracts the topo-
logical structure of the mesh and combines it with the node arrangement of the finite
element to establish the multilevel connections of all nodes. Thus the numerical rou-
tines can operate efficiently on a simple algebraic structure even in the case of rather
intricate nodal arrangements.

11 The Error Estimators and Adaptive Strategies

11.1 Error Estimation by Hierarchical Defect Correction

Here we employ a finite element basis which is a hierarchical extension of the one
used in the previous solution procedure. Error Estimators of this type are described
in [DLY89] and [ZdSRGK83].

In the simplest case we extend a linear finite element with quadratic hierarchical shape
functions. Then the hierarchical equation system reads in block form

(
ALL ALQ

AQL AQQ

)(
uL

uQ

)
=

(
bL
bQ

)
(8)

For uL we use the solution of our original low-order problem, which we assume to be
exact. Neglecting the influence of uQ on uL we rewrite the quadratic part (second
block row) of (8) in the form of a defect equation

AQQ uQ = bQ − AQL uL = rQ

For the solution of this system we carry out one step of a Jacobi iteration with the
initial solution uQ = 0 :

uQ = D−1
QQ rQ (9)

DQQ denotes the diagonal of AQQ. Loosely speaking, uQ reflects the high-frequency
components of the extended solution (uL, uQ) and this is exactly the quantity we are
interested in for local error estimation. As the Jacobi iteration may be regarded as
a smoother (reducing predominantly the high-frequency error in (uL, uQ)), such an
approximate solution step is quite efficient in the positive definite case. Alternatively
we could say that the coupling among the quadratic shape functions is neglected.

We obtain an estimate for the energy norm ‖u‖
E
of the global error by

‖u‖
E

= uQDQQ uQ (10)

The local components uQj DQQj
uQj of the error are distributed appropriately to the

elements of the mesh.



11 THE ERROR ESTIMATORS AND ADAPTIVE STRATEGIES 33

Nonlinear Problems

In this case we use a nodal basis instead of a hierarchical one to formulate a higher-
order system like (8). A modification of (9) takes into account the additional nonlinear
terms appearing on the diagonal. As these terms depend on the values of the solution,
we cannot employ a hierarchical basis for the extended vector (uL, uQ)). However, a
transformation of the result uQ into the hierarchical basis allows an error estimation
by (10).

In an alternative approach we solve the complete extended system in the nodal basis by
one nonlinear Gauss-Seidel step including a multigrid V-Cycle (see section 9). Usually
this costly procedure does not yield significantly better results [Kor95].

11.2 Residual-Based Error Estimators

These estimators directly evaluate the residuals in the interior of the elements and on
their boundaries [BM81, ZKGB82]. Here we only consider estimators for (1).

If u is the solution within the discrete finite element space, the inner residual of an
element is – with respect to (1) – given by

rI = ∇k∇u+ f

The residuals on the element boundaries result from the jump of the flux normal
k ∂u/∂n across the boundaries:

rB = kout
∂u

∂n

∣∣∣∣
out

− kin
∂u

∂n

∣∣∣∣
in

The indices out and in refer to the element under consideration and to its neighbours.
If hT is the maximal edge length of an element T and ∂T its boundary, the energy
norm ηT of the error is given by

η2T =
h2
T

k

∫
T
r2I dΩ +

hT

k

∮
∂T

r2B dΓ

This error estimator may require less computational effort than the defect correction
scheme of section 11.1. However, it may not be guaranteed to be correct in the
asymptotic limit.

11.3 Mesh Refinement Strategies

Once we have calculated an estimated error for each element of the mesh, we have
to determine the set of elements to be marked for refinement. The straightforward
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approach is to define a limit η and to select all elements with an estimated error above
this threshold.

A simple, but usually quite satisfying choice is to set η to a fixed percentage of the
maximum error encountered on the mesh:

η =
1

4
max

T
εT (11)

The factor 1
4
is empirical.

An attractive alternative is to use extrapolated local errors for the determination of
the limit [BR78]. For the element error εT we assume a local behaviour of the form

εT = cT hPT
T

If element T was created by a subdivision of its ‘father’ T0, we can predict a value εt
for the sons of element T

εt =
ε2T
εT0

Then we set the limit η to

η =
1

2
max
t

εt (12)

The factor 1
2
is empirical, too.

One important additional point is to refine at least a certain percentage of all elements
to ensure a proper convergence behaviour even in cases where our choice for η is too
large. A minimum ratio of five per cent is the default and usually quite satisfying.

12 Some Utilities: Template Classes

12.1 Vectors

We have implemented vectors as a rather simple template class. It is possible to
construct vectors of all data types; we deliberately did not incorporate numerical
functions (like a dot product). The main goal was to provide index-checking on the
vector bounds, which can be turned on and off by a flag defined in the declaration file
vector.h. We give a brief overview of the class Vector:

#define CheckBoundsFlag 1 // index-checking on
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template<class T> class Vector

{

protected:

T* v; // pointer to the actual data array

int l, h; // lower and upper bound

void allocate(int l, int h);

void checkBounds(int i) const;

public:

Vector(int l, int h) { allocate(l, h); }

Vector(int h) { allocate(1, h); }

virtual ~Vector() { v+=l; delete[] v; }

int low() const { return l; }

int high() const { return h; }

virtual void resize(int newl, int newh);

T& operator[] (int i)

{

if (CheckBoundsFlag) checkBounds(i);

return v[i];

}

const T& operator[] (int i) const

{

if (CheckBoundsFlag) checkBounds(i);

return v[i];

}

...

};

12.2 Stacks

The class Stack is derived from Vector. A stack behaves like a vector of variable size;
the functions push and pop are provided to extend and shrink the stack:

template<class T> class Stack : public Vector<T>

{

...

void push(const T a);

T pop();

...

};

Stacks are often preferable to linked lists, as they allow random access via an index.
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12.3 Matrices

Most that was said about vectors holds for the matrix class as well. The data of a
matrix are allocated as one contiguous memory block. Additionally there are pointers
to the first element of each row:

template<class T> class Matrix

{

protected:

T** row; // pointer to array of row pointers

int rl, rh, cl, ch; // row and column bounds

void allocate (int rl, int rh, int cl, int ch);

void checkBounds(int i, int j) const;

T& operator() (int i, int j)

{

if (CheckBoundsFlag) checkBounds(i,j);

return row[i][j];

}

const T& operator() (int i, int j) const

{

if (CheckBoundsFlag) checkBounds(i,j);

return row[i][j];

}

...

};

12.4 Lists

We have implemented linear and doubly-linked lists: the template classes SList and
DList. The latter one is used for the objects in the finite element mesh, as the removal
or replacement of any element must be possible. The off-diagonal entries in the classes
MLSparseMatrix and MLBlockMatrix are organized in linear lists.

12.5 Memory Allocators

For certain classes large numbers of objects have to be allocated and deleted during
run-time. We have created two template classes of allocators. A StaticAllocator

can be incorporated as a static member of a class. Thus the operators new and delete

may be overloaded, like in the class TR3 :
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class TR3 : public TR

{

protected:

static StaticAllocator<TR3> alloc;

...

public:

void* operator new(size_t size) { return alloc.Get(); }

void operator delete(void* tr) { alloc.Return((TR3*) tr); }

...

};

The derived class Allocator cannot be incorporated as a static member and thus does
not allow the overloading of new and delete. But for this reason any Alligator can
be deleted at run-time, whereas its static counterpart is always removed at the end of
program execution.
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