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Zusammenfassung

Das Linienplanungsproblem ist ein wichtiges Teilproblem der Angebotspla-
nung im öffentlichen Nahverkehr. Dabei werden Routen und Betriebsfre-
quenzen von Linien in einem gegebenen Infrastrukturnetzwerk gesucht unter
der Voraussetzung, dass ein gegebener Beförderungsbedarf gedeckt wird und
die Kosten minimal sind. Aufgrund von Anforderungen in realen Anwen-
dungen steht nur eine diskrete Menge an möglichen Frequenzen für die Li-
nien zur Verfügung. Praktische Ansätze zum Lösen dieser Probleme beruhen
auf ganzzahliger Programmierung. Ein Schwachpunkt klassischer Ansätze
ist, dass schon kleine Änderungen der Eingabeparameter eine Vergrößerung
oder Verkleinerung der Menge der zulässigen fraktionalen Lösungen bewirken
können, auch wenn die Menge der ganzzahligen Lösungen unverändert bleibt.
Wir betrachten in dieser Arbeit einen neuen kombinatorischen Ansatz, welcher
die Möglichkeiten den Bedarf auf einer Verbindung im Netzwerk mit Fre-
quenzen zu überdecken mit Hilfe von diskreten “Konfigurationen” beschreibt
und dieses Problem eliminiert. Um die Vorteile dieses Konfigurationsmodells
aufzuzeigen, vergleichen wir es mit einem klassischen Ansatz, den wir Stan-
dardmodell nennen. Wir zeigen, dass das Konfigurationsmodell eine schärfere
LP-Relaxierung als das Standardmodell besitzt. Weitere polyedrische Un-
tersuchungen ergeben, dass die LP-Relaxierung des Konfigurationsmodells
mehrere facettendefinierende Ungleichungen des Standardmodells impliziert.
Unsere Rechenergebnisse bestätigen ebenfalls, dass wir das Standardmodell
durch die Einführung von Konfigurationsvariablen verbessern. Um die An-
zahl dieser Variablen auch für große Instanzen zu beschränken, betrachten
wir ein weiteres Modell, welches nur eine Teilmenge der Konfigurationsvari-
ablen enthält. Dieses stellt sich als ein sehr guter Kompromiss heraus und
ist den anderen Modellen vor allem auf Instanzen, welche auf realen Perso-
nennahverkehrsnetzwerken basieren, überlegen. Durch die Verwendung von
Preprocessingtechniken und Heuristiken können wir den Lösungsprozess zu-
dem beschleunigen beziehungsweise die Qualität der gefundenen Lösungen
verbessern. Da das Linienplanungsproblem eine Spezialisierung des Netz-
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werkdesignproblems ist, können unsere Methoden auch auf andere Problem-
klassen übertragen werden.
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Chapter 1

Introduction

1.1 Motivation and Outline

Numerous infrastructure planning problems such as telecommunication net-
work design and line planning in public transportation are specializations of
the discrete capacitated network design problem: The task is to provide suffi-
cient capacity on the links of a given network such that a certain demand can
be routed without exceeding the installed capacity and such that the costs
are minimal. For most of these problems there exists no polynomial time
algorithm. Due to restrictions in real world applications the set of available
capacities is often assumed to be discrete, which makes finding an optimal so-
lution more difficult. One weakness of classical integer programming models
presented in the literature is the following: Small changes in the input data
can cause an enlargement of the set of fractional solutions even though the
set of feasible integral solutions remains unchanged. In this thesis we present
a novel combinatorial approach that addresses this problem by modeling the
limited number of possible combinations of installed capacities by so called
configurations. We focus on the line planning problem and compare the re-
sulting configuration model both in theory and in practice with a classical
approach to demonstrate its strength. We remark that configuration models
have also been used successfully in railway vehicle rotation planning [7] and
railway track allocation applications [8].

The strategic planning process in public transportation usually consists of
several consecutive stages: network design, line planning, timetabling and
vehicle and crew scheduling, for an overview see for instance Bussieck, Winter
and Zimmermann [13]. We focus on the line planning problem (LPP) in
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1.2. PRELIMINARIES AND LITERATURE OVERVIEW

this thesis. The problem is to find a set of lines defined by their paths
and frequencies in a public transportation network such that a given travel
demand can be routed and a certain objective is minimized. In the following
section we give a brief review on the LPP literature and list assumptions
on the problem setting we make throughout this thesis. All models in the
literature employ some type of capacity or frequency demand constraints
in order to cover a given demand. In this thesis we discuss a concept to
strengthen such constraints by means of a novel extended formulation. The
idea is to enumerate the set of possible configurations of line frequencies
for each capacity constraint. In Chapter 2 the line planning problem is
formulated as an integer program, the standard model, and the associated
polytope is investigated. The extended configuration model is introduced in
Chapter 3. We compare it with the standard model in terms of polyhedral
aspects and show that it implies facet-defining inequalities for the standard
model. In Chapter 4 we report on our computational studies to compare the
models. We close with some final remarks in Chapter 5.

We remark that both the standard model and the configuration model have
also been described by Meirich in [21]. His polyhedral investigations refer
solely to the standard model. We deliver an elaborate comparison of the two
models in terms of polyhedral aspects and computational studies and develop
several new classes of valid inequalities for both models in this thesis.

The results in this thesis have been developed within the project “Service
Design in Public Transport” supported by the DFG Research Center Math-
eon Mathematics for key technologies at the Konrad-Zuse-Zentrum für In-
formationstechnik Berlin (ZIB). Parts of this thesis have been published by
Borndörfer, Hoppmann and Karbstein in [5], which won the Best Paper
Award at the 13th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS 2013).

1.2 Preliminaries and Literature Overview

The links in the LPP infrastructure network correspond to different modes
of transportation, e.g., streets (bus) or tracks (railway, tram, subway). The
passenger demand data is generally given by a so-called origin-destination
matrix (OD-matrix); the OD-matrix gives for each pair of stations in the
network the number of passengers that want to travel from one station to
the other within a fixed time horizon, e.g., one hour. A common approach
in the literature to deal with multi-modal transportation systems is based
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1 INTRODUCTION

on the so-called system split procedure, see Oltrogge [22]. It is assumed that
passengers change to faster train types as early as possible and leave them as
late as possible in order to minimize their traveling time. With the additional
assumption that passengers travel on shortest paths, one can determine the
traveling paths of the passengers and, hence, the number of passengers for
each link in the network before the line plan is known. Therefore, we can
decompose the LPP into separate problems for each transportation mode.
Moreover, we are given a set of possible lines, which correspond to paths
in the transportation network. We assume that all lines are operated in
both directions. There are usually two main competing objectives. One is
to minimize the induced operational costs of the line plan and the other
is to minimize the passenger inconvenience, usually measured by the total
passenger traveling time or the number of transfers. In this thesis we focus
on a model that aims at minimizing the operational costs and is based on
system split.

Since the late nineteen-nineties, the line planning literature has developed
a variety of integer programming approaches that capture different aspects.
Schöbel [24] gives an overview of the different models and mathematical
approaches in the line planning literature.

Cost-oriented models. Serving as a basis for many following publica-
tions, Claessens, van Dijk and Kroon discussed in [15] a nonlinear program-
ming model to minimize operational costs subject to service constraints and
capacity requirements, including line types and train lengths in terms of num-
bers of cars. Their model is transformed into an integer linear program by in-
troducing binary variables, which is solved by a branch-and-bound approach.
Claessens et al. [15] showed that the problem of finding a cost optimal line
plan subject to lower frequency bounds on the edges of the network is NP-
hard. Bussieck developed in his thesis [10] a branch-and-bound algorithm to
compare the linearization proposed by Claessens et al. [15] with a different
linearization of the same nonlinear formulation using general integer vari-
ables. His computational studies show that his linearization provides better
upper bounds, while the linearization of Claessens et al. seems to be superior
in generating lower bounds in order to prove optmality. Bussieck also proved
that the problem of finding a line plan with fixed passenger routes that fulfills
lower and upper frequency requirements for each edge is NP-hard. Goosens,
van Hoesel, and Kroon [17] propose a branch-and-cut approach based on a
model similar to the linearization of Claessens et al. They do not consider
upper frequency requirements and develop several valid inequalities for their
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model. In [12] Bussieck, Lindner, and Lübbecke propose a fast procedure to
find cost optimal line plans. They use the nonlinear formulation of Claessens
et al. to determine a set of promising lines and solve the linear model only
for these lines to obtain a good primal solution within a rather small com-
putation time.

Passenger convenience models. Bussieck, Kreuzer, and Zimmermann
[11] (see also the thesis of Bussieck [10]) propose an integer programming
model to maximize the number of direct travelers. Schöbel and Scholl [25]
presented the first model that focuses on minimizing the travel time and
includes penalties for transfers. Their approach includes routing of passen-
gers, i.e., it does not rely on an assignment of passengers to paths a priori.
Borndörfer, Grötschel and Pfetsch [4] also propose an integrated line plan-
ning and passenger routing model that additionally allows to generate lines
dynamically. They propose a multicommodity flow model that minimizes
a combination of the total traveling time and operational costs, which they
solve by a column-generation approach. Borndörfer and Karbstein [6, 20] de-
velop a direct connection approach and further integrated line planning and
passenger routing in their model. Karbstein compares in her thesis [20] the
direct connection approach with the approaches of Borndörfer et al. [4] and
of Schöbel and Scholl [25]. She concludes that the direct connection approach
is currently the only computationally tractable integrated line planning and
passenger routing method that provides good estimates of transfer times.

1.3 Notation

Throughout this thesis it is assumed that the reader is familiar with the
fundamental concepts of graph theory, polyhedral theory, and linear and
integer programming. For a detailed introduction we refer to the books [26,
18]; we follow the notation of [18]. Whenever needed further notation is
introduced.

We will consider frequently the polyhedra associated with integer programs.
For an integer program IP = min{cTx : Ax ≥ b, x ∈ Zn} we denote by
P (IP) the polyhedron defined by the convex hull of all feasible solutions of
IP and by PLP (IP) the set of feasible solutions of the LP relaxation of IP,
i.e., P (IP) = conv{x ∈ Zn : Ax ≥ b} and PLP (IP) = {x ∈ Rn : Ax ≥ b}.
For a polyhedron P = {(x, y) ∈ Rn+m : Ax + By ≥ b} we denote by P |x :=
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1 INTRODUCTION

{x ∈ Rn : ∃y ∈ Rm s.t. (x, y) ∈ P} the projection of P onto the space of
x-variables.

In this thesis we resort for the line planning problem to the following notaton.
We are given an undirected graph G = (V,E) representing the transportation
network. A line is a simple path in G and by L = {`1, . . . , `n}, n ∈ N, we
denote the set of predefined lines. For an edge e ∈ E let L(e) := {` ∈ L :
e ∈ `} be the set of lines that contain e. Furthermore, we are given an
ordered set of available frequencies F = {f1, . . . , fm} ⊆ N, m ∈ N, such
that 0 < f1 < . . . < fm. All lines are of the same transportation mode and
have capacity κ > 0, i.e., κ passengers can be transported by any line. The
number of passengers traveling on an edge e is given by the transportation

demand d(e) ∈ N. Hence, at least
⌈
d(e)
κ

⌉
lines have to pass edge e to cover

its demand. We call this value the frequency demand of e and denote it by
F (e) ∈ N. The cost of operating line ` ∈ L at frequency f ∈ F is given
by c`,f ∈ Q+. A line plan (L̄, f̄) consists of a subset L̄ ⊆ L of lines and an
assignment f̄ : L̄ → F of frequencies to these lines. A line plan is feasible
if the frequencies of its lines ensure that all passengers that travel on each
edge can be transported, that is, the line plan satisfies the frequency demand
requirement ∑

`∈L̄(e)

f̄(`) ≥ F (e) (1.1)

for each edge e ∈ E in the network. We define the cost of a line plan (L̄, f̄)
as c(L̄, f̄) :=

∑
`∈L̄ c`,f̄(`). The line planning problem is to find a feasible line

plan of minimal cost.
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Chapter 2

Standard Model

In this chapter we investigate the so-called standard model for the line plan-
ning problem. We are given a transportation network, a set of available
frequencies, and a set of lines with their operational costs. Further, a trans-
portation demand is given for each edge. The goal is to determine a cost
optimal line plan, i.e., a set of lines that covers the frequency demand of
each edge and minimizes the total operating costs. We introduce an inte-
ger programming formulation for this problem and investigate the associated
polyhedron. We will show that this formulation can be strengthened by band
inequalities, which were introduced in the context of network design, and the
mixed integer rounding technique. Moreover, we present a new class of im-
proving inequalities for the line planning problem and show that it contains
a knapsack substructure.

After describing the line planning problem in mathematical terms, we in-
troduce an integer programming model for this problem in Section 2.1. We
investigate the polyhedron associated with this model and analyze several
classes of valid inequalities in Section 2.2. In Section 2.3 we discuss the
relation of the presented model with two others from the literature.

2.1 Integer Programming Formulation for the

Standard Model

The line planning problem permits an intuitive integer programming formu-
lation. It is based on the natural idea to introduce binary variables x`,f that
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indicate whether line ` ∈ L is operated at frequency f ∈ F . The resulting
standard model is the following:

(SLP) min
∑
`∈L

∑
f∈F

c`,fx`,f

s.t.
∑
`∈L(e)

∑
f∈F

f · x`,f ≥ F (e) ∀ e ∈ E (2.1)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (2.2)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F . (2.3)

Model (SLP) minimizes the cost of a line plan. The frequency demand con-
straints (2.1) ensure that the frequency demand is covered on each edge in
the network. The assignment constraints (2.2) make sure that every line is
operated with at most one frequency. Hence, the feasible solutions of (SLP)
correspond to the set of feasible line plans.

Example 2.1. Consider the line planning problem defined in Figure 2.1.
The standard model for this example reads as follows:

(SLP) min 4x`1,2+16x`1,8+4x`2,2+16x`2,8+2x`3,2+8x`3,8

s.t. 2x`1,2+ 8x`1,8+2x`2,2+ 8x`2,8+2x`3,2+8x`3,8 ≥ 9

2x`1,2+ 8x`1,8+2x`2,2+ 8x`2,8 ≥ 1

x`1,2+ x`1,8 ≤ 1

+ x`2,2+ x`2,8 ≤ 1

+ x`3,2+ x`3,8 ≤ 1

x`i,f ∈ {0, 1}.

An optimal solution to (SLP) is given by x∗, where x∗`3,8 = 1, x∗`2,2 = 1, and
x∗`,f = 0 otherwise, with an objective function value of 12.

2.2 Polyhedral Aspects

In this section we focus on the standard line planning polytope P (SLP), which
corresponds to the convex hull of all feasible solutions of (SLP). We inves-
tigate its basic properties in Section 2.2.1. In Section 2.2.2 we derive band
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2 STANDARD MODEL

e1 e2

`3

`1
`2

F = {2, 8}

e e1 e2

F (e) 9 1
L(e) {`1, `2, `3} {`1, `2}
c`1,f = c`2,f = 2f and c`3,f = f ∀ f ∈ F

Figure 2.1: An instance of the line planning problem. Left : A transportation
network consisting of two edges and three lines. Right : A given set of frequencies,
frequency demands, and line costs.

inequalities for the line planning problem as a class of facet-defining inequal-
ities. In Section 2.2.3 we study the mixed integer rounding procedure to
derive a class of strong valid inequalities. We consider several classes of cuts
that can be derived by considering subsets of edges in Section 2.2.4. Finally,
in Section 2.2.5 we introduce a relaxation of P (SLP) which we obtain by
considering a single edge.

2.2.1 Basic Properties of the Line Planning Polytope

In this section we analyze the dimension and trivial facets of the polytope
P (SLP).

First we determine the dimension of P (SLP). The polytope P (SLP) is full-
dimensional if and only if for each line there is a feasible line plan in which
this line is not operated, which we show in the following proposition. The
proof is an adaption of a proof by Karbstein [20] for the dimension of the
line planning polytope with integrated passenger routing. We compare this
polytope with the polytope P (SLP) at the end of this chapter in Section 2.3.2.

Proposition 2.1. The standard line planning polytope is full-dimensional,
i.e.,

dim(P (SLP)) = |L| · |F|
if and only if the polytope

P` := {x ∈ P (SLP) : x`,f = 0 ∀ f ∈ F}

is non-empty for all ` ∈ L.

Proof. In order to prove the proposition, we use the property that P (SLP) is
full-dimensional if and only if there is no non-trivial linear equality in RL×F
satisfied by all points in P (SLP).

9



2.2. POLYHEDRAL ASPECTS

“⇒” Let P (SLP) be full-dimensional. Assume P` is empty for some line
` ∈ L. This implies that

∑
f∈F x`,f = 1 holds for every point x in P (SLP).

This is a contradiction, since P (SLP) is full-dimensional. Hence, P` is non-
empty for all ` ∈ L.

“⇐” Now, let P` be non-empty for every ` ∈ L. Assume there exists an
equality aTx = λ with non-zero coefficient vector a ∈ RL×F and λ ∈ R,
which is valid for all x in P (SLP). Let ˜̀ ∈ L be an arbitrary line and

x
˜̀ ∈ P˜̀, i.e., x

˜̀
˜̀,f

= 0 for all f ∈ F . Let f̃ ∈ F be an arbitrary frequency and

define e
˜̀,f̃ as the unit vector in RL×F , where e

˜̀,f̃
˜̀,f̃

= 1 and e
˜̀,f̃
`,f = 0 otherwise.

Since x
˜̀ ∈ P (SLP) and x

˜̀
˜̀,f

= 0 for all f ∈ F , it follows x
˜̀
+ e

˜̀,f̃ ∈ P (SLP)

and hence aTx
˜̀

= λ = aT (x
˜̀
+ e

˜̀,f̃ ). This implies a˜̀,f̃ = 0. Since we chose ˜̀

and f̃ arbitrarily, we can derive a = 0. This contradicts our assumption and
thus the polyhedron P (SLP) is full-dimensional.

Remark 2.2. From now on, we assume that P (SLP) is full-dimensional and
in particular non-empty. Proposition 2.1 directly implies that for every edge
e ∈ E and every line ˜̀∈ L(e)∑

`∈L(e)\{˜̀}

fm = (|L(e)| − 1)fm ≥ F (e)

holds. This means that setting the frequency of all lines except one to the
maximum frequency fm and setting the frequency of the remaining line to
an arbitrary frequency or zero yields a feasible line plan.

Next we will investigate the trivial facets of P (SLP). In particular, we state
under which conditions the assignment constraints (2.2) and non-negativity
inequalities implied by the integrality constraints (2.3) are facet-defining.
The proof of the following proposition follows the corresponding proof pre-
sented by Meirich [21] and is given for the sake of completeness.

Proposition 2.3. For every ` ∈ L the inequality
∑

f∈F x`,f ≤ 1 is facet-
defining for P (SLP).

Proof. Let `′ ∈ L be an arbitrary line. We prove the proposition by giving
|L| · |F| affinely independent points in P (SLP) that satisfy

∑
f∈F x`′,f ≤ 1

with equality:

xfm , which corresponds to operating all lines at the highest frequency, i.e.,

xfm`,f =

{
1 if f = fm

0 else
∀ ` ∈ L, ∀ f ∈ F ,

10



2 STANDARD MODEL

x
˜̀,f̃ for all ˜̀∈ L and f̃ ∈ F \ {fm}, which corresponds to operating line ˜̀ at

frequency f̃ and all other lines at the highest frequency, i.e.,

x
˜̀,f̃
`,f =


1 if ` 6= ˜̀, f = fm

1 if ` = ˜̀, f = f̃

0 else

∀ ` ∈ L, ∀ f ∈ F ,

x
˜̀,0 for all ˜̀∈ L \ {`′} which corresponds to not operating ˜̀ and operating

all other lines at the highest frequency, i.e.,

x
˜̀,0
`,f =

{
1 if ` 6= ˜̀, f = fm

0 else
∀ ` ∈ L, ∀ f ∈ F .

We defined in total 1 + |L| · (|F|−1) + |L|−1 = |L| · |F| points. They satisfy
by definition

∑
f∈F x`′,f = 1 and the assignment constraints (2.2). We also

observe that they satisfy the frequency demand constraints (2.1), since we
assume that P (SLP) is full-dimensional, see Remark 2.2. Hence they are
feasible for P (SLP) and it is left to show that they are affinely independent.

Assume they are not affinely independent. Then there is a vector λ 6= 0 such
that

λfmxfm`,f +
∑
˜̀∈L

∑
f̃∈F\{fm}

λ
˜̀,f̃x

˜̀,f̃
`,f +

∑
˜̀∈L\{`′}

λ
˜̀,0x

˜̀,0
`,f = 0 ∀ ` ∈ L, ∀ f ∈ F

and λfm +
∑
˜̀∈L

∑
f̃∈F\{fm}

λ
˜̀,f̃ +

∑
˜̀∈L\{`′}

λ
˜̀,0 = 0.

Let ˜̀∈ L and f̃ ∈ F \ {fm}, then x
˜̀,f̃
˜̀,f̃

= 1 and for every other defined point

the entry at position ˜̀, f̃ is equal to zero. Hence λ
˜̀,f̃ = 0 for all ˜̀∈ L and

f̃ ∈ F \ {fm}. This implies

λfmxfm`,f +
∑

˜̀∈L\{`′}

λ
˜̀,0x

˜̀,0
`,f = 0 ∀ ` ∈ L, ∀ f ∈ F

and λfm +
∑

˜̀∈L\{`}

λ
˜̀,0 = 0.

When we consider the entries of these points at position `, fm for all ` ∈ L,
we can derive the following:

λfm +
∑

˜̀∈L\{`′,`}

λ
˜̀,0 = 0 ∀ ` ∈ L, ∀ f ∈ F

and λfm +
∑

˜̀∈L\{`′}

λ
˜̀,0 = 0.
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2.2. POLYHEDRAL ASPECTS

We observe that this implies λ = 0. This is a contradiction to our assumption
λ 6= 0. Hence, the above defined points are affinely independent.

Next, we show that the non-negativity inequality x`,f ≥ 0 for a line ` ∈ L and
frequency f ∈ F defines a facet if and only if for each other line ˜̀∈ L \ {`}
there exists a line plan such that ` is not operated at frequency f and ˜̀ is
not operated at all. We remark that Meirich [21] also presents a proof to
show that x`,f ≥ 0 is facet-defining for line ` and frequency f , but he does
not define enough affinely independent points in P (SLP) satisfying x`,f = 0.
Furthermore, his proof requires that for every two lines `1, `2 ∈ L there exists
a point in P (SLP) satisfying x`1,f̃ = x`2,f̃ = 0 for all f̃ ∈ F . We provide a

more general proof, for which it suffices to require that for every line ˜̀∈ L
there exists a point in P (SLP) such that x`,f = 0 and x˜̀,f̃ = 0 for all f̃ ∈ F .

Proposition 2.4. For every line ` ∈ L and frequency f ∈ F the inequality
x`,f ≥ 0 is facet-defining for P (SLP) if and only if the polyhedron

P
˜̀

`,f := {x ∈ P (SLP) : x`,f = 0 and x˜̀,f̃ = 0 ∀ f̃ ∈ F}

is non-empty for all ˜̀∈ L \ {`}.

Proof. “⇐” Let `′ ∈ L, f ′ ∈ F such that P
˜̀
`′,f ′ 6= ∅ for all ˜̀ ∈ L \ {`′}.

We prove the proposition by giving |L| · |F| affinely independent points in
P (SLP) that satisfy x`′,f ′ = 0. In order to define these points, we distinguish
between two cases.

1. case: f ′ 6= fm: For this case, let xfm , x
˜̀,f̃ for all ˜̀∈ L, f̃ ∈ F \ {fm}

and x
˜̀,0 for all ˜̀∈ L \ {`′} be as in the proof of Proposition 2.3 with

one exception. We replace x`
′,f ′ by x`

′,0, which is defined by

x`
′,0
`,f =

{
1 if ` 6= `′, f = fm

0 else
∀ ` ∈ L, ∀ f ∈ F .

2. case: f ′ = fm: We have to differentiate between two cases again.

• If |F| = 1, i.e., F = {fm}, then define the following points:

x
˜̀,`′,0 for all ˜̀∈ L \ {`′} be defined by

x
˜̀,`′,0
`,fm

=

{
1 if ` /∈ {`′, ˜̀}
0 else

∀ ` ∈ L

12



2 STANDARD MODEL

and x`
′,0 defined by

x`
′,0
`,fm

=

{
1 if ` 6= `′

0 else
∀ ` ∈ L.

For this case, we defined in total |L| = |L| · |F| points.
• Otherwise, if |F| ≥ 2, we can define the following points:

x
˜̀,f̃ for all ˜̀ ∈ L \ {`′}, f̃ ∈ F \ {fm}, which corresponds to

operating `′ at the second highest frequency, ˜̀ at f̃ , and all other
lines at the highest frequency, i.e.,

x
˜̀,f̃
`,f =


1 if ` /∈ {`′, ˜̀}, f = fm

1 if ` = `′, f = fm−1

1 if ` = ˜̀, f = f̃

0 else,

∀ ` ∈ L, ∀ f ∈ F ,

x
˜̀,0 for all ˜̀∈ L \ {`′}, which corresponds to operating `′ at the

second highest frequency, not operating ˜̀, and operating all other
lines at the highest frequency, i.e.,

x
˜̀,0
`,f =


1 if ` /∈ {`′, ˜̀}, f = fm

1 if ` = `′, f = fm−1

0 else,

∀ ` ∈ L, ∀ f ∈ F ,

x`
′,f̃ for all f̃ ∈ F \ {fm}, which corresponds to operating `′ at f̃

and all other lines at the highest frequency, i.e.,

x`
′,f̃
`,f =


1 if ` 6= `′, f = fm

1 if ` = `′, f = f̃

0 else

∀ ` ∈ L, ∀ f ∈ F ,

x`
′,0, which corresponds to not operating `′ and operating all other

lines at the highest frequency, i.e.,

x`
′,0
`,f =

{
1 if ` 6= `′, f = fm

0 else,
∀ ` ∈ L, ∀ f ∈ F .

For this case, we defined in total (|L| − 1)(|F| − 1) + |L| − 1 +
|F| − 1 + 1 = |L| · |F| points.

13



2.2. POLYHEDRAL ASPECTS

We found for every case |L| · |F| points. They satisfy by definition x`′,f ′ = 0

and are in P (SLP), since P
˜̀
`′,f ′ 6= ∅ for all ˜̀∈ L\{`′}. The affine independence

can be shown in all cases analogously to the proof of Proposition 2.3.

“⇒” Now let `′ ∈ L, f ′ ∈ F such that there is a line ˜̀ ∈ L \ {`′} with

P
˜̀
`′,f ′ = ∅. Thus, either the polytope P`′,f ′ := {x ∈ P (SLP) : x`′,f ′ = 0}

is empty or the equality
∑

f̃∈F x˜̀,f̃ = 1 holds for every x ∈ P`′,f ′ . In both
cases, we have dim(P`′,f ′) < |L| · |F|. This implies that x`′,f ′ ≥ 0 is not
facet-defining.

2.2.2 Band Inequalities

In this section we study band inequalities, which were proposed by Stoer and
Dahl in [30] in the context of telecommunication network design. They intro-
duced this class of valid inequalities in order to tighten the LP relaxation of
their formulation by exploiting a knapsack substructure. The inequalities are
closely related to the cover inequalities for the knapsack polytope with GUB
constraints, see Wolsey [32]. We will show that the line planning problem
has a knapsack substructure late in this chapter in Section 2.2.5.

We adapt the definition of a band to our case.

Definition 2.5. Let e ∈ E. A band fB : L(e)→ F ∪{0} assigns to each line
containing e a frequency or zero. We call fB a valid band of e if∑

`∈L(e)

fB(`) < F (e).

We call the band fB maximal if fB is valid and there is no valid band fB′
with fB(`) ≤ fB′(`) for every line ` ∈ L(e) and fB(`) < fB′(`) for at least one
line ` ∈ L(e).

A valid band can be interpreted as follows. If all lines on an edge are operated
at the frequencies of the band, then the frequency demand of this edge is not
covered. Hence, at least one line needs to be operated at a higher frequency.
This leads to the following proposition.

Proposition 2.6. Let fB be a valid band of e ∈ E, then∑
`∈L(e)

∑
f∈F

f>fB(`)

x`,f ≥ 1 (2.4)

is a valid inequality for P (SLP).

14



2 STANDARD MODEL

It is easy to see that all non-redundant band inequalities (2.4) are induced
by maximal bands. Band inequalities play a special role for the polytope
P (SLP|e), which results from reducing the line planning problem to a single
edge e ∈ E. We will give a formal definition of P (SLP|e) in Section 2.2.5.
Applying the results of Stoer and Dahl [30] to our setting yields:

Proposition 2.7. Let e ∈ E and let fB be a valid band of e. Let |L(e)| ≥ 2
and fm ≥ F (e), i.e., operating any line in L(e) at the highest frequency covers
the frequency demand of e. Then the band inequality∑

`∈L(e)

∑
f∈F

f>fB(`)

x`,f ≥ 1

is facet-defining for P (SLP|e) if and only if fB is maximal.

If fm < F (e), then the statement of Proposition 2.7 does not hold. Karb-
stein [20] gives an example, with fm < F (e), of a band inequality for a
maximal band that is not facet-defining. She also shows that fm ≥ F (e) is
not a necessary requirement for a maximal band to induce a facet-defining
inequality. An example for a facet-defining band inequality is given in Ex-
ample 2.2.

Since we assume that every edge has a positive demand, there must be at least
one line operated on every edge in any feasible line plan. This observation
corresponds to the band inequalities implied by the valid band fB(`) = 0 for
all ` ∈ L(e) and implies the following proposition.

Proposition 2.8. The set cover inequality∑
`∈L(e)

∑
f∈F

x`,f ≥ 1 (2.5)

is valid for P (SLP) for all e ∈ E.

In the following example, we see that band inequalities improve the LP re-
laxation of the standard model.

Example 2.2. Consider the line planning instance given in Figure 2.2 and
the band fB of e1, where fB(`1) = 0, fB(`2) = 1, and fB(`3) = 3. The
associated band inequality

x`1,1 + x`1,3 + x`1,4 + x`2,3 + x`2,4 + x`3,4 ≥ 1

is facet-defining for P (SLP) in this example. The inequality is violated by
x̄ ∈ PLP (SLP), where x̄`1,3 = 1

3
, x̄`2,1 = x̄`3,3 = 1, and x̄`,f = 0 otherwise.
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2.2. POLYHEDRAL ASPECTS

e1 e2

`3

`1
`2

F = {1, 3, 4}

e e1 e2

F (e) 5 1
L(e) {`1, `2, `3} {`1, `2}

Figure 2.2: An instance of the line planning problem. Left : A transportation
network consisting of two edges and three lines. Right :A given set of frequencies
and frequency demands of the two edges.

2.2.3 MIR Inequalities

In this section we study the mixed integer rounding (MIR) procedure to
strengthen the frequency demand constraints (2.1). The presented class of
inequalities dominates the multicover inequalities proposed by Goosens et
al. in [17], which is shown at the end of this section. For an introduction
to MIR we refer to Raack [23] and Dash et al. [16]. To derive the MIR
inequalities we introduce the basic MIR inequality defined by Wolsey [33]:

Lemma 2.9 (Wolsey [33]). Let QI := {(x, y) ∈ Z × R : x + y ≥ β, y ≥ 0}
with β ∈ R. The basic MIR inequality

rx+ y ≥ rdβe

with r := r(β) = β − bβc is valid for QI and defines a facet of conv(QI) if
r > 0.

We can generate new inequalities by multiplying the frequency demand con-
straint for a given edge e with an arbitrary λ > 0. This new constraint can
be strengthened by mixed integer rounding, i.e., by applying Lemma 2.9.

Proposition 2.10. Let λ ∈ R+\{0}, e ∈ E, and define r = λF (e)−bλF (e)c
and rf = λf − bλfc. The MIR inequality

∑
`∈L(e)

∑
f∈F

(r bλfc+ min(rf , r))x`,f ≥ r dλF (e)e (2.6)

induced by the demand inequality (2.1) scaled by λ is valid for P (SLP).

16



2 STANDARD MODEL

Proof. Scaling inequality (2.1) by λ > 0 yields

λ · F (e) ≤ λ ·
∑
`∈L(e)

∑
f∈F

f · x`,f

=
∑
`∈L(e)

∑
f∈F
rf<r

λ · f · x`,f +
∑
`∈L(e)

∑
f∈F
rf≥r

λ · f · x`,f

≤
∑
`∈L(e)

∑
f∈F
rf<r

(bλ · fc+ rf ) · x`,f +
∑
`∈L(e)

∑
f∈F
rf≥r

(bλ · fc+ 1) · x`,f

=
∑
`∈L(e)

∑
f∈F
rf<r

rf · x`,f

︸ ︷︷ ︸
≥0

+
∑
`∈L(e)

∑
f∈F

bλ · fc · x`,f +
∑
`∈L(e)

∑
f∈F
rf≥r

x`,f

︸ ︷︷ ︸
∈Z

.

Applying Lemma 2.9 yields

r · dλ · F (e)e ≤
∑
`∈L(e)

∑
f∈F
rf<r

rf · x`,f + r ·
( ∑
`∈L(e)

∑
f∈F
bλ · fc · x`,f +

∑
`∈L(e)

∑
f∈F
rf≥r

x`,f

)

=
∑
`∈L(e)

∑
f∈F

(r · bλfc+ min(rf , r)) · x`,f .

Notice that λ > 0 only produces a non-trivial MIR inequality (2.6) if r =
λF (e) − bλF (e)c > 0. Dash, Günlük and Lodi [16] analyze for which λ the
MIR inequality (2.6) is non-redundant.

Proposition 2.11 (Dash, Günlük and Lodi [16]). Each non-redundant MIR
inequality (2.6) is defined by λ ∈ (0, 1), where λ is a rational number with
denominator equal to some f ∈ F .

Again, we can give an example where a MIR inequality improves the LP
relaxation of the standard model.

Example 2.3. Consider the line planning instance given in Figure 2.3. The
frequency demand constraint for e1 reads as follows:

2x`1,2 + 5x`1,5 + 9x`1,9 + 2x`2,2 + 5x`2,5 + 9x`2,9 + 2x`3,2 + 5x`3,5 + 9x`3,9 ≥ 8.

Let λ = 1
5
, then we have r = 8

5
− 1 = 3

5
and

r2 =
2

5
− 0 =

2

5
, r5 =

5

5
− 1 = 0, r9 =

9

5
− 1 =

4

5
.
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2.2. POLYHEDRAL ASPECTS

e1 e2

`3

`1
`2

F = {2, 5, 9}

e e1 e2

F (e) 8 2
L(e) {`1, `2, `3} {`2}

Figure 2.3: An instance of the line planning problem. Left : A transportation
network consisting of two edges and three lines. Right : A given set of frequencies
and frequency demands.

And hence we get

r

⌊
2

5

⌋
+ min(r2, r) =

2

5
, r

⌊
5

5

⌋
+ min(r5, r) =

3

5
, r

⌊
9

5

⌋
+ min(r9, r) =

6

5
.

Thus, the MIR inequality for e1 and λ = 1
5

reads as follows

2

5
x`1,2 +

3

5
x`1,5 +

6

5
x`1,9 +

2

5
x`2,2 +

3

5
x`2,5 +

6

5
x`2,9 +

2

5
x`3,2 +

3

5
x`3,5 +

6

5
x`3,9 ≥

6

5

which can be scaled to

2x`1,2+3x`1,5+6x`1,9+2x`2,2+3x`2,5+6x`2,9+2x`3,2+3x`3,5+6x`3,9 ≥ 6. (2.7)

Inequality (2.7) is violated by x̄ ∈ PLP (SLP), where x̄l1,5 = 1
5
, x̄l2,2 = 1,

x̄l3,5 = 1, and x̄l,f = 0 otherwise. One can show that (2.7) is even facet-
defining for P (SLP) in this example.

Multicover Cuts

Goosens, van Hoesel, and Kroon propose in [17] a class of valid inequalities
for P (SLP), which are also based on the frequency demand constraints. The
inequalities are motivated by the following observation: Let e be an edge,
then every feasible solution contains either more than one line passing e at
a frequency smaller than F (e) or a line passing e at a frequency higher than
or equal to F (e).

Proposition 2.12 (Goosens et al. [17]). Let e ∈ E and define F< := {f ∈
F : f < F (e)}, then the two-cover inequality∑

`∈L(e)

∑
f∈F<

x`,f +
∑
`∈L(e)

∑
f∈F\F<

2x`,f ≥ 2

is valid for P (SLP).
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2 STANDARD MODEL

For an example see Example 2.4. The two-cover inequalities described in
Proposition 2.12 can be generalized by dividing the set of frequencies into
several subsets.

Proposition 2.13 (Goosens et al. [17]). Let e ∈ E and s ∈ N such that
2 ≤ s + 1 < F (e). Define Fk := {f ∈ F : (k − 1)F (e) ≤ s · f < kF (e)} for
k = 1, . . . , s and FC := F \

⋃s
k=1Fk. Then the multicover inequality∑

`∈L(e)

s∑
k=1

∑
f∈Fk

kx`,f +
∑
`∈L(e)

∑
f∈FC

(s+ 1)x`,f ≥ s+ 1 (2.8)

is valid for P (SLP).

Proof. Let e ∈ E and ε > 0 small enough such that Fk = Fkε for all k =
1, . . . , s, where Fkε := {f ∈ F : (k − 1)(F (e) − ε) ≤ s · f < k(F (e) − ε)} for
k = 1, . . . , s. And define λ := s

F (e)−ε . Scaling inequality (2.1) by λ yields

λF (e) ≤
∑
`∈L(e)

∑
f∈F

λfx`,f

≤
∑
`∈L(e)

∑
f∈F

dλfex`,f .

Since the right-hand side of this inequality is always integral, we can round
up the left-hand side and obtain

dλF (e)e ≤
∑
`∈L(e)

∑
f∈F

dλfex`,f . (∗)

By the choice of ε we can derive dλfe =
⌈

s·f
F (e)−ε

⌉
=
⌈
s·f
F (e)

⌉
≤ k for all f ∈ Fk,

k = 1, . . . , s. For every f ∈ FC we can set the coefficient to the value of the
left-hand side in (∗), since it suffices to operate one line at this frequency in

any solution. Further, we have dλF (e)e =
⌈
s·F (e)
F (e)−ε

⌉
≥ s+ 1 and

dλF (e)e =

⌈
sF (e)

F (e)− ε

⌉
≤
⌈

sF (e)

F (e)− 1

⌉
≤
⌈

(s+ 1)(F (e)− 1)

F (e)− 1

⌉
= s+ 1.

Hence, dλF (e)e = s+ 1 and we obtain from (∗):

s+ 1 ≤
∑
`∈L(e)

s∑
k=1

∑
f∈Fk

kx`,f +
∑
`∈L(e)

∑
f∈FC

(s+ 1)x`,f .
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In the proof of the following theorem we see that the multicover inequalities
are dominated by the MIR inequalities. For a definition of dominated in-
equalities we refer to Wolsey [33], see also Raack [23]. However, we can show
that they strengthen the LP relaxation of P (SLP), see Example 2.4.

Theorem 2.14. The multicover inequalities (2.8) are dominated by the MIR
inequalities.

Proof. Let e ∈ E and λ := s
F (e)−ε as in the proof of Proposition 2.13. Then

the MIR inequality∑
`∈L(e)

∑
f∈F

(r bλfc+ min(rf , r))x`,f ≥ r dλF (e)e (2.9)

is valid for P (SLP) by Proposition 2.10, where r = λF (e) − bλF (e)c and
rf = λf − bλfc. Since r bλfc + min(rf , r) ≤ rdλfe, the corresponding
multicover inequality ∑

`∈L(e)

∑
f∈F

dλfex`,f ≥ dλF (e)e

is dominated by (2.9).

Example 2.4 (Example 2.3 continued). Let e = e1 and recall F = {2, 5, 9},
F (e1) = 8. Then the two-cover inequality from Proposition 2.12 for e1 reads
as follows

x`1,2 + x`1,5 + 2x`1,9 + x`2,2 + x`2,5 + 2x`2,9 + x`3,2 + x`3,5 + 2x`3,9 ≥ 2.

Now let s = 5, then we have F1 = ∅, F2 = {2}, F3 = ∅, F4 = {5},
and F5 = ∅ by the definition in Proposition 2.13. Hence, the multicover
inequality for e1 and s = 5 reads as follows

2x`1,2+4x`1,5+6x`1,9+2x`2,2+4x`2,5+6x`2,9+2x`3,2+4x`3,5+6x`3,9 ≥ 6. (2.10)

Note that (2.10) is strictly dominated by the MIR inequality (2.7).

2.2.4 Improving Inequalities from Edge Subsets

The inequalities studied in Section 2.2.2 and Section 2.2.3 are all derived by
strengthening the frequency demand constraint (2.1) of a single edge. In this
section we investigate cuts that can be derived by aggregating the frequency
demand constraints for a subset of edges. We apply two classes of valid
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2 STANDARD MODEL

inequalities that were presented by Bussieck [10] to our problem setting and
develop a new class of valid inequalities.

We need some further notation in this section. For a subset E ′ ⊆ E of edges
denote the total demand by F (E ′) :=

∑
e∈E′ F (e) and the set of lines passing

an edge in E ′ by L(E ′) :=
⋃
e∈E′ L(e). For a line ` ∈ L(E ′) we define by

α`E′ := |`∩E ′| the number of edges in ` that are contained in E ′. And define
αmax
E′ := max{α`E′ : ` ∈ L(E ′)}.

The first inequality, we present in this section, was introduced by Bussieck in
Section 6.5.2 in [10] and can be motivated by the small line planning problem
depicted in Figure 2.4. A closer inspection of this instance shows that the
sum of frequencies at which the lines are operated in any feasible solution
must be at least 11. This conclusion is generalized in Proposition 2.15.

Proposition 2.15 (Bussieck [10]). Let E ′ ⊆ E be a subset of edges. The
aggregated frequency inequality∑

`∈L(E′)

∑
f∈F

f · x`,f ≥
⌈
F (E ′)

αmax
E′

⌉
(2.11)

is valid for P (SLP), if αmax
E′ > 0.

Proof. Let x ∈ P (SLP) and E ′ ⊆ E such that αmax
E′ > 0. By (2.1) we get

F (e) ≤
∑
`∈L(e)

∑
f∈F

f · x`,f ∀ e ∈ E ′.

This implies

F (E ′) ≤
∑
e∈E′

∑
`∈L(e)

∑
f∈F

f · x`,f

=
∑

`∈L(E′)

α`E′
∑
f∈F

f · x`,f

≤
∑

`∈L(E′)

αmax
E′

∑
f∈F

f · x`,f .

Dividing by αmax
E′ gives ∑

`∈L(E′)

∑
f∈F

f · x`,f ≥
F (E ′)

αmax
E′

. (∗)

Since the left-hand side of (∗) is always integral, we can round up the right-
hand side and obtain (2.11).

21



2.2. POLYHEDRAL ASPECTS

`1

`3

`2

F = {3, 4, 5}
F (e) = 7 ∀ e ∈ E

`3

x̄`1,5 = 7
10

x̄`2,5 = 7
10

x̄`3,5 = 7
10

Figure 2.4: Left : An instance of the line planning problem, where all edges have
frequency demand 7. Right : A fractional solution.

We show in Example 2.5 that the aggregated frequency inequalities (2.11)
are not in general valid for all points in PLP (SLP), i.e., these inequalities
strengthen the LP relaxation of P (SLP).

Example 2.5. Consider the line planning problem instance depicted in Fig-
ure 2.4. When we define E ′ := {e1, e2, e3}, the corresponding aggregated
frequency inequality (2.11) from Proposition 2.15 reads as follows:

3x`1,3 +4x`1,4 +5x`1,5 +3x`2,3 +4x`2,4 +5x`2,5 +3x`3,3 +4x`3,4 +5x`3,5 ≥ 11. (2.12)

Inequality (2.12) is violated by x̄ ∈ PLP (SLP), where x̄`1,5 = x̄`2,5 = x̄`3,5 =
7
10

and x̄`,f = 0 otherwise.

We consider the example depicted in Figure 2.5 to derive a new class of valid
inequalities. To cover the demand of all three edges at least two lines have to
be operated in any solution. This observation is generalized in the following
proposition.

Proposition 2.16. Let E ′ ⊆ E, then the aggregated cardinality inequality

∑
`∈L(E′)

∑
f∈F

x`,f ≥
⌈
|E ′|
αmax
E′

⌉
(2.13)

is valid for P (SLP), if αmax
E′ > 0.

Proof. Let x ∈ P (SLP) and E ′ ⊆ E such that αmax
E′ > 0. By (2.5) we get

1 ≤
∑
`∈L(e)

∑
f∈F

x`,f ∀ e ∈ E ′.
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e1

e2

e3

`1

`3

`2

F = {3}
F (e1) = 3,

F (e2) = F (e3) = 1

`3

x̄`1,3 = 1
2

x̄`3,3 = 1
2

Figure 2.5: Left : An instance of the line planning problem. Right : A fractional
solution.

This implies

|E ′| ≤
∑
e∈E′

∑
`∈L(e)

∑
f∈F

x`,f

=
∑

`∈L(E′)

α`E′
∑
f∈F

x`,f

≤
∑

`∈L(E′)

αmax
E′

∑
f∈F

x`,f .

Dividing by αmax
E′ gives

∑
`∈L(E′)

∑
f∈F

x`,f ≥
|E ′|
αmax
E′

. (∗)

Since the left-hand side of (∗) is always integral, we can round up the right-
hand side and obtain (2.13).

In Example 2.6 we show that the aggregated frequency inequalities given
in Proposition 2.15 do not dominate the aggregated cardinality inequalities
given in Proposition 2.16 and vice versa.

Example 2.6 (Example 2.5 continued). First consider the line planning
problem depicted in Figure 2.4 and recall the point x̄ ∈ PLP (SLP) from Ex-
ample 2.5. The aggregated cardinality inequality (2.13) for E ′ := {e1, e2, e3}
reads as follows:

x`1,3 + x`1,4 + x`1,5 + x`2,3 + x`2,4 + x`2,5 + x`3,3 + x`3,4 + x`3,5 ≥ 2. (2.14)

Note that x̄ satisfies (2.14), but violates the aggregated frequency inequal-
ity (2.12).
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Now consider the line planning problem depicted in Figure 2.5. Define E ′ :=
{e1, e2, e3}, the corresponding aggregated frequency inequality (2.11) is given
by

3x`1,3 + 3x`2,3 + 3x`3,3 ≥ 3. (2.15)

and the aggregated cardinality inequality (2.13) is given by

x`1,3 + x`2,3 + x`3,3 ≥ 2. (2.16)

The point x̃ ∈ PLP (SLP), where x̃`1,3 = x̃`3,3 = 1
2

and x̃`2,3 = 0, violates
(2.16) but satisfies (2.15).

The third class of inequalities is motivated by the example illustrated in
Figure 2.6 and the following observation. In any feasible line plan for this
instance there exists either a line with positive frequency containing e1 and
terminating at v or the lines containing e2 and e3 have to cover a demand of
F (e1) = 8.

Proposition 2.17 (Bussieck [10]). Let E ′ ⊂ E and ẽ ∈ E\E ′. The inequality

(F (ẽ)− F (E ′))
∑
`∈L(ẽ)
`/∈L(E′)

∑
f∈F

x`,f +
∑

`∈L(E′)

∑
f∈F

α`E′ · f · x`,f ≥ F (ẽ) (2.17)

is valid for P (SLP), if F (ẽ) > F (E ′).

Proof. Let x ∈ P (SLP), E ′ ⊂ E and ẽ ∈ E \ E ′ such that F (ẽ) > F (E ′).
Since x ∈ {0, 1}L×F we know that the sum

∑
`∈L(ẽ)
`/∈L(E′)

∑
f∈F x`,f is either equal

to zero or greater than or equal to one. First, let
∑

`∈L(ẽ)
`/∈L(E′)

∑
f∈F x`,f ≥ 1.

This implies

(F (ẽ)− F (E ′))
∑
`∈L(ẽ)
`/∈L(E′)

∑
f∈F

x`,f ≥ F (ẽ)− F (E ′)

since F (ẽ)− F (E ′) > 0. Combining this with the equation∑
`∈L(E′)

∑
f∈F

α`E′ · f · x`,f ≥ F (E ′)

from the proof of Proposition 2.15 gives (2.17).
Now let

∑
`∈L(ẽ)
`/∈L(E′)

∑
f∈F x`,f = 0, i.e., all lines in the line plan corresponding
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e1

e2

e3

`1

`2

`3

v

F = {2, 3, 5}

F (e1) = 8, F (e2) = 2, F (e3) = 5

Figure 2.6: An instance of the line planning problem. Left : A transportation
network consisting of three edges and three lines. Right : A given set of frequencies
and frequency demands.

to x containing ẽ contain at least one edge in E ′. Hence, starting with (2.1)
we get

F (ẽ) ≤
∑
`∈L(ẽ)

∑
f∈F

f · x`,f ≤
∑
e∈E′

∑
`∈L(e)

∑
f∈F

f · x`,f ≤
∑

`∈L(E′)

∑
f∈F

α`E′ · f · x`,f ,

which implies (2.17). We considered both cases and the claim is proved.

Again, we give an example to show that the inequalities (2.17) improve the
LP relaxation of (SLP).

Example 2.7. Consider the line planning problem in Figure 2.6. When we
define ẽ := e1 and E ′ := {e2, e3}, the corresponding inequality (2.17) from
Proposition 2.17 reads as follows:

x`1,2 + x`1,3 + x`1,5 + 2x`2,2 + 3x`2,3 + 5x`2,5 + 2x`3,2 + 3x`3,3 + 5x`3,5 ≥ 8

This inequality is violated by x̄ ∈ PLP (SLP), where x̄`1,3 = 1
2
, x̄`2,2 = 1,

x̄`3,5 = 1, and x̄`,f = 0 otherwise.

2.2.5 Single Edge Relaxation

In this section we introduce and study a relaxation of the polytope P (SLP),
which results from reducing the line planning problem to a single edge. For
an edge e ∈ E we denote by

P (SLP|e) := conv

{
x ∈ {0, 1}L(e)×F :

(SLP) (2.1) for e,
(SLP) (2.2) for all ` ∈ L(e)

}
the polytope of the single edge relaxation of the line planning problem. Ob-
viously, any inequality that is valid for P (SLP|e) is also valid for P (SLP).
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The polytope P (SLP|e) can be transformed into a knapsack polytope with
generalized upper bound (GUB) constraints, which is shown in Lemma 2.19
below. The knapsack polytope with GUB constraints is studied in [19, 28, 32]
and is defined in the standard form, see Johnson and Padberg [19], as follows:

Definition 2.18. Let N = {1, . . . , n}, K := {1, . . . , k} and Ni ⊆ N for all
i ∈ K such that

⋃
i∈K Ni = N and Ni ∩ Nj = ∅ for all i, j ∈ K, i 6= j. Let

b > 0 and 0 < wj ≤ b for j ∈ N be positive integers. The knapsack polytope
with GUB constraints is defined by

P (KPGUB) := conv

{
x ∈ {0, 1}n :

∑
i∈K

∑
j∈Ni

wjxj ≤ b,
∑
j∈Ni

xj ≤ 1∀ i ∈ K

}
.

We show that P (SLP|e) can be viewed as a knapsack polytope with GUB con-
straints by applying a linear transformation which was presented by Johnson
and Padberg in [19].

Lemma 2.19. Let e ∈ E, then there is a knapsack polytope with GUB
constraints PK(SLP|e) such that there is a one-to-one mapping between the
points in P (SLP|e) and PK(SLP|e), respectively.

Proof. For a given edge e ∈ E we define the polytope PK(SLP|e) as follows:

PK(SLP|e) := conv

z ∈ {0, 1}L(e)×F :

∑
`∈L(e)

∑
f∈F

wl,fzl,f ≤ b,∑
f∈F

z`,f ≤ 1∀ ` ∈ L(e)


where we define wl,fm := fm and wl,f := fm − f for all f ∈ F \ {fm} and
b := |L(e)| · fm − F (e). Note that wl,f > 0 for all f ∈ F and b > 0, since
|L(e)|·fm > F (e) by the assumption in Remark 2.2. The mapping is provided
by the following variable transformation:

z`,f :=

{
x`,f for f 6= fm,

1−
∑

f∈F x`,f for f = fm.

Lemma 2.19 implies that all results for the knapsack polytope with GUB
constraints apply also to the polytope P (SLP|e).

Using results from Sherali and Lee in [28], we can determine an equation for
the dimension and the trivial facets of P (SLP|e).
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Proposition 2.20 (Sherali and Lee [28]). Let e ∈ E and define

L0 :=

{
0 if (|L(e)| − 1) · fm ≥ F (e),

1 else.

Then the following holds

dim(P (SLP|e)) = (|F| − L0) · |L(e)|.

Proof. First let L0 = 0. Obviously dim(P (SLP|e)) ≤ |L(e)| · |F|. We con-
struct |L(e)| · |F|+ 1 many affinely independent points in P (SLP|e) to prove
the statement. For each ˜̀∈ L(e) construct the following set of points:

x
˜̀,f̃ for all f̃ ∈ F \{fm}, which corresponds to operating ˜̀ at f̃ and all other

lines passing e at the highest frequency, i.e.,

x
˜̀,f̃
`,f =


1 if ` = ˜̀, f = f̃

1 if ` 6= ˜̀, f = fm

0 else.

∀ ` ∈ L(e), ∀ f ∈ F ,

x
˜̀,0, which corresponds to not operating ˜̀ and operating all other lines pass-

ing e at the highest frequency, i.e.,

x
˜̀,0
`,f =

{
1 if ` 6= ˜̀, f = fm

0 else.
∀ ` ∈ L(e), ∀ f ∈ F ,

xfm , which corresponds to operating all lines passing e at the highest fre-
quency, i.e.,

xfm`,f =

{
1 if ` ∈ L(e), f = fm

0 else.
∀ ` ∈ L(e), ∀ f ∈ F .

These |L(e)| · |F|+1 affinely independent points are all feasible for P (SLP|e),
since L0 = 0.

Now let L0 = 1. We must have
∑

f∈F x`,f = 1 for all ` ∈ L(e), and hence

dim(P (SLP|e)) ≤ (|F| − 1) · |L(e)|. Note that xfm and for each ˜̀ ∈ L(e)

and f̃ ∈ F \ {fm} the point x
˜̀,f̃ are feasible for P (SLP|e) by the assumption

in Remark 2.2. Hence, P (SLP|e) contains (|F| − 1) · |L(e)| + 1 affinely
independent points. This completes the proof of this proposition.

Applying further results of Sherali and Lee [28] to our setting, we can con-
clude that the non-negativity inequality x`,f ≥ 0 defines a facet of the poly-
tope P (SLP|e) for all lines ` ∈ L(e) and every frequency in f ∈ F \ {fm}.
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2.3 Relation to Models in the Literature

In this section we compare the standard model (SLP) with two models in the
literature, which integrate certain additional aspects. First, we compare it
with a model which integrates the possibility to operated lines with additional
cars to increase their capacity. Then, we consider a model that allows to freely
route the passengers along paths and includes the total passenger traveling
time in the objective function.

2.3.1 Including Line Capacities

We first compare the standard model (SLP) with the integer program pro-
posed by Bussieck [10] for the cost optimal line planning problem including
line capacities and the number of cars of a line. We extend our notation by
the following: For each edge e ∈ E we are given lower F (e) and upper F (e)
frequency bounds. That is the sum of the frequencies of lines operating on
edge e is bounded from below and above by F (e) and F (e), respectively. In
contrast to the standard model with a fixed train capacity, the number of
coaches per train is determined in Bussieck’s model. The train of an oper-
ating line consists of at least k cars and at most k cars. The capacity of a
single car is denoted by κk > 0. The total capacity of all lines operating
on edge e has to cover the transportation demand d(e) of e. For each line
` ∈ L and each frequency f ∈ F we introduce integer variables z`,f ∈ Z+

representing the number of additional cars of line ` at frequency f . Then
using our notation Bussieck’s model (COSTILP) reads as follows:
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2 STANDARD MODEL

(COSTILP) min
∑
`∈L

∑
f∈F

ct`,f x`,f + ck`,f (k x`,f + z`,f )

∑
`∈L(e)

∑
f∈F

f · x`,f ≥ F (e) ∀ e ∈ E (2.18)

∑
`∈L(e)

∑
f∈F

f · x`,f ≤ F (e) ∀ e ∈ E (2.19)

∑
`∈L(e)

∑
f∈F

κk · f · (k x`,f + z`,f ) ≥ d(e) ∀ e ∈ E (2.20)

k x`,f + z`,f ≤ k x`,f ∀ ` ∈ L, ∀ f ∈ F (2.21)∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (2.22)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (2.23)

z`,f ∈ Z+ ∀ ` ∈ L, ∀ f ∈ F , (2.24)

where ct`,f > 0 is the cost of a train serving line ` at frequency f and ck`,f > 0

is the cost per car. Both ct`,f and ck`,f depend on the length of ` and f .
The frequency constraints (2.18) and (2.19) require that the lower and upper
frequency bounds are satisfied for each edge in the network. The capacity
constraint (2.20) ensure that sufficient capacity is available. The constraints
(2.21) bound the number of cars for each line and frequency. The assignment
constraints (2.22) make sure that every line is operated with at most one
frequency.

As mentioned above, the difference of (SLP) and (COSTILP) is that model
(COSTILP) includes the number of cars of a line. We will show in the
following that the two models are equivalent, if no line can be operated with
additional cars and the upper frequency bounds are satisfied by every point
in P (SLP).

Proposition 2.21. Let k = k and the frequency demand for the standard

model be given by F (e) = max
{
F (e),

⌈
d(e)
κk·k

⌉}
for every edge e ∈ E. Further,

let the upper frequency bound constraints (2.19) be satisfied by every point in
P (SLP). Then the following holds

P (COSTILP)|x = P (SLP).

Proof. If the maximum number of cars k equals the minimum number of cars
k, then z ≡ 0 holds for every feasible solution (x, z) of (COSTILP). Hence, to

29



2.3. RELATION TO MODELS IN THE LITERATURE

prove the proposition it suffices to show that for all (x, z) ∈ {0, 1}(L×F)×(L×F)

with z ≡ 0 the following holds:

x satisfies (2.1) ⇔ (x, z) satisfies (2.18) and (2.20).

Let (x, z) ∈ {0, 1}(L×F)×(L×F) with z ≡ 0 and assume (x, z) satisfies the
capacity constraints (2.20). From this we get∑

`∈L(e)

∑
f∈F

f · x`,f ≥
d(e)

κk · k
∀ e ∈ E. (∗)

Since the left-hand side of (∗) is integral, we can round up the right-hand
side and obtain

(x, z) satisfies (2.20) ⇔
∑
`∈L(e)

∑
f∈F

f · x`,f ≥
⌈
d(e)

κk · k

⌉
∀ e ∈ E.

In addition, we observe that the left-hand side of (∗) is equivalent to the
left-hand side of the lower frequency bound constraints (2.18). Therefore, we
conclude that the following holds:∑

`∈L(e)

∑
f∈F

f · x`,f ≥ F (e) = max

{
F (e),

⌈
d(e)

κk · k

⌉}
∀ e ∈ E

⇔ x satisfies (2.18) and (2.20).

This completes the proof of the proposition.

Proposition 2.21 implies that under the preconditions of this proposition
solving (COSTILP) is equivalent to solving (SLP), if the operational costs
are defined by c`,f = ct`,f + k · ck`,f for all ` ∈ L and all f ∈ F . Note that
operating every line at the highest frequency fm yields a feasible solution of
(SLP). Therefore, the upper frequency bound constraints (2.19) are satisfied
by every point in P (SLP) if and only if F (e) ≥ |L(e)| · fm holds for every
edge e ∈ E.

2.3.2 Integrated Passenger Routing

Now we consider a multi-commodity flow model for the line planning problem
that allows a dynamic generation of lines and passenger paths by a column-
generation approach. This model was originally proposed by Borndörfer,
Grötschel and Pfetsch [4]; we consider here a “discrete frequency variant”
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that was described by Karbstein in [20]. The objective of this model is a
combination of operating costs and passenger travel time.

Again, we extend our notation. Let us consider more in detail the OD-
matrix. Points where passengers start or end their trips are called OD-
nodes and are denoted by VO ⊆ V . For each pair (s, t) ∈ VO × VO we
denote the corresponding entry of the OD-matrix by dst ∈ Q+, i.e., dst is
the number of passengers that want to travel from s ∈ VO to t ∈ VO. Let
D = {(s, t) ∈ VO × VO : dst > 0} be the set of all OD-pairs with positive
transportation demand. Passengers travel along paths in a directed passenger
routing graph D(G) = (V,A) that arises from G = (V,E) by replacing each
edge e ∈ E with two antiparallel arcs a(e) and ā(e); conversely let e(a) ∈ E
be the undirected edge corresponding to a ∈ A. For each arc a ∈ A we are
given a travel time τa ∈ Q+. Furthermore, we are given for every line ` ∈ L a
capacity κ` > 0 and define κ`,f = f · κ` for all f ∈ F , i.e., κ`,f is the number
of passengers that can be transported by line ` when operated at frequency
f . We require for every edge e ∈ E that all lines passing this edge have the
same capacity, i.e., we are given κe and κ` = κe holds for all ` ∈ L(e).

Denote by Pst the set of all directed paths from s ∈ VO to t ∈ VO in D(G),
by P :=

⋃
(s,t)∈D Pst all passenger paths, and by P(a) := {p ∈ P : a ∈ p} the

set of all passenger paths that use arc a. The traveling time of a passenger
path p ∈ P is defined as τp =

∑
a∈p τa.

Now, we can define the variables for this model. For every line ` ∈ L and
every frequency f ∈ F we introduce a decision variable x`,f ∈ {0, 1}, which
indicates whether ` is operated at f . For every p ∈ P we introduce a contin-
uous variable πp ≥ 0 for the number of passengers that travel on path p. Let
a parameter 0 ≤ λ ≤ 1 be given, then the basic dynamic model (BD) reads
as follows:
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(BD) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)
∑
p∈P

τp πp∑
p∈Pst

πp = dst ∀ (s, t) ∈ D (2.25)

∑
p∈P(a)

πp ≤
∑

`∈L(e(a))

∑
f∈F

κ`,f x`,f ∀ a ∈ A (2.26)

∑
`∈L(e)

∑
f∈F

f · x`,f ≤ F (e) ∀ e ∈ E (2.27)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (2.28)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (2.29)

πp ≥ 0 ∀ p ∈ P (2.30)

Model (BD) minimizes a weighted sum of line operating costs and the total
passenger travel time. Equations (2.25) enforce the passenger flow. The
capacity constraints (2.26) ensure that there is sufficient total transportation
capacity on each arc. The constraints (2.27) ensure that the upper frequency
bounds are satisfied for each edge in the network. The assignment constraints
(2.28) make sure that every line is operated with at most one frequency.

Next, we want to elaborate the relation of the models (BD) and (SLP). We
show that we obtain (SLP) from (BD) by fixing the passengers paths and
setting the parameter λ to 1.

Proposition 2.22. Let π̄ ∈ QP+ be a vector corresponding to a fixed passenger
routing, i.e.,

∑
p∈Pst

π̄p = dst for all (s, t) ∈ D, define the polytope

Pπ̄(BD) :=
{
x ∈ P (BD)|x :

∑
`∈L(e(a))

∑
f∈F

κ`,f x`,f ≥
∑
p∈P(a)

π̄p ∀ a ∈ A
}
.

and denote for each arc a ∈ A by d(a, π̄) :=
∑

p∈P(a) π̄p the transportation de-
mand induced by π̄. Furthermore, let the frequency demand for the standard
model be given by

F (e) = max

{⌈
d(a(e), π̄)

κe

⌉
,

⌈
d(ā(e), π̄)

κe

⌉}
∀ e ∈ E

and let the upper frequency bound constraints (2.27) be satisfied by every point
in P (SLP). Then the following holds

P (SLP) = Pπ̄(BD) ⊆ P (BD)|x.
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Proof. Pπ̄(BD) ⊆ P (BD)|x clearly holds, since (x, π̄) ∈ P (BD) for all x ∈
Pπ̄(BD). Note that in order to prove that P (SLP) = Pπ̄(BD) holds it suffices
to show for all x ∈ {0, 1}L×F

x satisfies (2.1) ⇔ (x, π̄) satisfies (2.26).

Remember that for every edge e ∈ E for all lines in L(e) we have κ` = κe.
Hence, starting with inequality (2.26) we get∑

`∈L(e(a))

∑
f∈F

κ` · f · x`,f ≥
∑
p∈P(a)

π̄p ∀ a ∈ A

⇔
∑

`∈L(e(a))

∑
f∈F

κe(a) · f · x`,f ≥
∑
p∈P(a)

π̄p ∀ a ∈ A

⇔
∑

`∈L(e(a))

∑
f∈F

κe(a) · f · x`,f ≥ d(a, π̄) ∀ a ∈ A

⇔
∑

`∈L(e(a))

∑
f∈F

f · x`,f ≥
d(a, π̄)

κe(a)

∀ a ∈ A. (2.31)

⇔
∑

`∈L(e(a))

∑
f∈F

f · x`,f ≥
⌈
d(a, π̄)

κe(a)

⌉
∀ a ∈ A. (2.32)

The last equivalence holds, since the left-hand side of (2.31) is integral. The
left-hand side of (2.32) is equivalent for two antiparallel arcs a(e) and ā(e),
e ∈ E. Therefore, we conclude that for all x ∈ {0, 1}L×F the following holds:∑

`∈L(e(a))

∑
f∈F

κ`,f · x`,f ≥
∑
p∈P(a)

π̄p ∀ a ∈ A

⇔
∑
`∈L(e)

∑
f∈F

f · x`,f ≥ max

{⌈
d(a(e), π̄)

κe

⌉
,

⌈
d(ā(e), π̄)

κe

⌉}
∀ e ∈ E

⇔
∑
`∈L(e)

∑
f∈F

f · x`,f ≥ F (e) ∀ e ∈ E.

Proposition 2.22 can be interpreted as follows. The polytope PLPP := P (BD)|x
describes the convex hull of all line plans that support any passenger routing
for the transportation demand given by the OD-matrix, while the polytope
P (SLP) describes the convex hull of all line plans that provide sufficient
capacity for a fixed passenger routing. Karbstein [20] investigates polyhe-
dral aspects of PLPP and derives several classes of facet-defining inequalities
for PLPP.
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Chapter 3

Configuration Model

In this chapter we discuss a novel extended formulation for the line planning
problem. The aim of the extended formulation is to tighten the frequency
demand constraints of the standard model. A small increase or decrease of
the frequency demand of an edge causes a small change in the right hand side
of the corresponding frequency demand constraint. This in turn can enlarge
or reduce the set of feasible fractional solutions of (SLP), respectively, while
the set of integer solutions remains unchanged. The idea is to enumerate
the set of possible frequency configurations for each edge. We show that
such an extended formulation implies general facet-defining inequalities for
the standard model and implies a tighter LP relaxation. In this section we
prove that the set cover, symmetric band, MIR, and multicover inequalities
are implied by the LP relaxation of the configuration model. As for the
standard model in the previous chapter, we consider the polytope associated
with the configuration model for a relaxation of the line planning to a single
edge and can derive a large class of valid inequalities for the configuration
model. At the end of this chapter we generalize the configuration model to
obtain a new model, which LP relaxation turns out to be even tighter.

We describe the extended configuration model in the following section. An
algorithm to compute the set of minimal configurations for an edge is given
in Section 3.2. We compare the configuration model with the standard model
in terms of polyhedral aspects in Section 3.3. In Section 3.4, we describe a
generalization of the configuration model and compare this new model with
the standard and configuration model.
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3.1 Extended Model

We introduce the configuration model in the following. Since the extended
formulation aims at strengthening the frequency demand constraints (2.1) of
the standard model, we start to explain the underlying idea by considering
an alternative method to ensure the frequency demand requirement (1.1) of
a given edge e ∈ E. The set of configurations of e, denoted by Q̄(e), is
a relaxed description of all possibilities to cover the demand of e. To be
more precise, a configuration q ∈ Q̄(e) states the number qf of lines that are
operated at frequency f on e. It does not specify which lines in L(e) are
operated at frequency f ∈ F . A formal definition reads as follows.

Definition 3.1. For e ∈ E we denote by

Q̄(e) :=

{
q = (qf1 , . . . , qfm) ∈ ZF+ :

∑
f∈F

qf ≤ |L(e)|,
∑
f∈F

f · qf ≥ F (e)

}
the set of feasible frequency configurations of e or shortly configurations of e.

We consider an example. Let e ∈ E be an edge with frequency demand of
F (e) = 9 and three lines containing this edge. Let the available frequencies
be given by F = {2, 8}. There are in total five configurations, namely Q̄(e) =
{(0, 2), (0, 3), (1, 1), (1, 2), (2, 1)}. The first coordinate of a configuration in
Q̄ gives the number of lines that are operated at frequency 2 and the second
coordinate the number of lines that are operated at frequency 8. For instance,
in the last configuration (2, 1) there are two lines at frequency 2 and one line
at frequency 8.
Our example shows that some configurations might be dominated by others
component-wise. That is q̄ ∈ Q̄(e) is dominated by q ∈ Q̄, if qf ≤ q̄f for all
f ∈ F and qf̃ < q̄f̃ for at least one f̃ ∈ F . This observation gives rise to the
following definition.

Definition 3.2. For e ∈ E denote by

Q(e) :=
{
q ∈ Q̄(e) : (qf1 , . . . , qfi − 1, . . . , qfm) /∈ Q̄(e) ∀ i = 1, . . . ,m

}
the set of minimal configurations of e.

A configuration is minimal if and only if it is not dominated by any other
configuration. In the above example the set of minimal configurations is
Q(e) = {(0, 2), (1, 1)}.

Remark 3.3. The minimal configurations can be considered as a lower
bound on the set of all configurations. For every edge e ∈ E and for each
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configuration q̄ ∈ Q̄(e) there is a minimal configuration q ∈ Q(e) such that
q̄f ≥ qf for all f ∈ F . This follows directly from Definition 3.2.

Now, we will argue that satisfying the frequency demand is equivalent to
choosing a minimal configuration for each edge. Let (q(e))e∈E be a vector of
minimal configurations, i.e., q(e) ∈ Q(e) for all e ∈ E. And let (L̄, f̄) be a
line plan such that |{` ∈ L̄(e) : f̄(`) = f}| ≥ q(e)f for all e ∈ E, f ∈ F .
Then we know by Definition 3.2 and Definition 3.1 that the following holds
for each edge e ∈ E: ∑

`∈L̄(e)

f̄(`) ≥
∑
f∈F

q(e)f · f ≥ F (e).

Therefore, (L̄, f̄) is a feasible line plan. On the other hand, let (L̄, f̄) be a
feasible line plan. Then q̄(e) with q̄(e)f := |{` ∈ L(e) : f̄(`) = f}| for all
f ∈ F defines for every edge e a feasible configuration. There is a minimal
configuration q(e) for each edge such that q̄(e)f ≥ q(e)f for all f ∈ F , cf.
Remark 3.3. This means, a feasible line plan can be found by choosing a
minimal configuration for each edge and finding a line plan that satisfies
the lower bounds given by these configurations. This leads to the following
formulation.

We extend the standard model (SLP) with binary variables ye,q indicating
for each edge e ∈ E which configuration q ∈ Q(q) is chosen. This results in
the following integer program:

(QLP) min
∑
`∈L

∑
f∈F

c`,fx`,f

s.t.
∑
`∈L(e)

x`,f ≥
∑
q∈Q(e)

qf · ye,q ∀ e ∈ E, ∀ f ∈ F (3.1)

∑
q∈Q(e)

ye,q = 1 ∀ e ∈ E (3.2)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (3.3)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (3.4)

ye,q ∈ {0, 1} ∀ e ∈ E, ∀ q ∈ Q(e). (3.5)

The (extended) configuration model (QLP) also minimizes the cost of a line
plan. The configuration assignment constraints (3.2) ensure that exactly one
configuration is chosen for each edge. The coupling constraints (3.1) force
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enough lines to be operated on each edge at every frequency for the chosen
configurations.

Example 3.1 (Example 2.1 continued). We reconsider the line planning
problem defined in Figure 2.1 and recall that F = {2, 8}, F (e1) = 9, F (e2) =
1, L(e1) = {`1, `2, `3}, and L(e2) = {`1, `2}. The minimal configurations for
the edges are given by Q(e1) = {q1 = (0, 2), q2 = (1, 1)} and Q(e2) = {q1 =
(0, 1), q2 = (1, 0)}. The configuration model for this example is:

(QLP) min 4x`1,2+16x`1,8+4x`2,2+16x`2,8+2x`3,2+8x`3,8

s.t. x`1,2 + x`2,2 + x`3,2 −ye1,q2 ≥ 0

+ x`1,8 + x`2,8 + x`3,8−2ye1,q1−ye1,q2 ≥ 0

x`1,2 + x`2,2 −ye2,q2 ≥ 0

+ x`1,8 + x`2,8 −ye2,q1 ≥ 0

x`1,2+ x`1,8 ≤ 1

+ x`2,2+ x`2,8 ≤ 1

+ x`3,2+ x`3,8 ≤ 1

+ ye1,q1+ye1,q2 = 1

+ye2,q1+ye2,q1 = 1

x`i,f ∈ {0, 1}
ye,q ∈ {0, 1}.

An optimal solution to (QLP) is given by (x∗, y∗), where x∗`3,8 = 1, x∗`2,2 = 1,
y∗e1,q2 = 1, y∗e2,q2 = 1, and x∗`,f = 0 and y∗e,q = 0 otherwise. The objective
function value of this solution is 12.

3.2 Computing Configurations

In this section we want to give an iterative algorithm that computes for
a given edge e ∈ E the set of minimal configurations of e. Let us recall
for reasons of convenience that by Definition 3.1 any minimal configuration
q ∈ Q(e) satisfies the frequency demand condition

∑
f∈F f · qf ≥ F (e) and

the cardinality condition
∑

f∈F qf ≤ |L(e)|.

Throughout the algorithm we maintain two sets. The set Q contains already
constructed minimal configurations and is initially empty. In the second
set T , initially containing the zero vector, we keep vectors q ∈ ZF+ which
satisfy the cardinality condition but do not yet satisfy the frequency demand
condition. We iterate over F in decreasing order, i.e., starting with the
highest frequency fm. And for each f ′ ∈ F in turn we iterate over all vectors
in T . In the beginning of an iteration for f ′ ∈ F and q ∈ T we calculate the
smallest number rmax

f ′ ∈ N that is needed such that
∑

f∈F f · qf + f ′ · rmax
f ′ ≥

F (e). If
∑

f∈F qf +rmax
f ′ > L(e), i.e., increasing the f ′-coordinate of q to rmax

f ′
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would violate the cardinality condition, then we remove q from T . Otherwise,
we calculate the smallest number rmin

f ′ ∈ Z+ to which we need to increase
the f ′-coordinate of q, such that a minimal configuration can be constructed
from q in any subsequent iteration corresponding to a smaller frequency, i.e.,

rmin
f ′ :=

{
min

{
j ∈ Z+ :

∑
f∈F qf + j +

⌈
F r−j·f ′
fi−1

⌉
≤ |L(e)|

}
if f ′ = fi, i > 1

rmax
f ′ else,

where F r := F (e)−
∑

f∈F f · qf . For a more detailed explanation of rmin
f ′ see

Example 3.2. For each j ∈ {rmin
f ′ , . . . , r

max
f ′ } we create a copy q(j) of q and

increase the f ′-coordinate, that is we set q(j)f ′ = j. Since
∑

f∈F f ·q(rmax
f ′ )f ≥

F (e) holds, the vector q(rmax
f ′ ) is added to Q. All other copies are added to

T in the end of iteration f ′. The algorithm is given in detail in Algorithm 1.
The correctness of this algorithm is proved in the next proposition.

Proposition 3.4. Algorithm 1 computes for an edge e ∈ E the set of minimal
configurations.

Proof. Let e ∈ E and Q̃ be the set returned by Algorithm 1 for e. We will
first show that Q̃ ⊆ Q(e) holds. By construction, for every q ∈ T we have∑

f∈F qf ≤ |L(e)| throughout the algorithm. When q ∈ T is moved into Q̃,∑
f∈F f · qf ≥ F (e) additionally holds. Hence we get Q̃ ⊆ Q̄(e). To argue

that every configuration q̃ ∈ Q̃ is minimal, we have a look at the iteration

f ′ when q̃ is constructed from q ∈ T . The number rmax
f ′ =

⌈
F (e)−

∑
f∈F f ·qf
f ′

⌉
is

the smallest integer such that
∑

f∈F f · qf + f ′ · rmax
f ′ ≥ F (e). Since qf = 0

for all f ≤ f ′, this implies

f ′ · (rmax
f ′ − 1) +

∑
f∈F
f>f ′

f · qf < F (e).

We have q̃f = 0 for all f < f ′, q̃f ′ ≤ rmax
f ′ and q̃f = qf for all f > f ′ and

therefore
f̃ · (q̃f̃ − 1) +

∑
f∈F
f 6=f̃

f · q̃f < F (e) for f̃ ∈ F .

Thus, Q̃ ⊆ Q(e).
It is left to show that Q(e) ⊆ Q̃ holds. First note that if q ∈ T is removed
from T in iteration f ′, since

∑
f∈F qf + rmax

f ′ > |L(e)|, then in no subsequent
iteration a minimal configuration can be created from q. Moreover, we only
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Algorithm 1: Computing minimal configurations for one edge

Input : Set of frequencies F = {f1, . . . , fm}, an edge e, the frequency
demand F (e) of e and the number |L(e)| of lines containing e.

Output: The set Q(e) of minimal feasible configurations of e.

1 Q := ∅
2 q := (0, . . . , 0) ∈ Zk+
3 T := {q}
4 for f ′ := fm, . . . , f1 do
5 T ′ := ∅
6 foreach q ∈ T do
7 F r := F (e)−

∑
f∈F f · qf

8 rmax
f ′ :=

⌈
F r

f ′

⌉
9 if

∑
f∈F qf + rmax

f ′ < |L(e)| then

10 T := T \ {q}
11 else
12 if f ′ = fi for some i > 1 then

13 rmin
f ′ := min

{
j ∈ Z+ :

∑
f∈F qf + j +

⌈
F r−j·f ′
fi−1

⌉
≤ |L(e)|

}
14 else
15 rmin

f ′ := rmax
f ′

16 end
17 for j := rmin

f ′ , . . . , r
max
f ′ do

18 q̃ := q
19 q̃f ′ := j
20 if j = rmax

f ′ then
21 Q := Q∪ {q̃}
22 else
23 T ′ := T ′ ∪ {q̃}
24 end

25 end

26 end

27 end
28 T := T ∪ T ′
29 end
30 return Q
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create necessary copies of q ∈ T , i.e., the definition of rmin
f ′ is correct: If

we created for j < rmin
f ′ a copy q̃(j) of q̃ and set q̃(j)f ′ , then q̃(j) would

be removed from T in the next iteration due to the cardinality condition.
Assume there is a minimal configuration q ∈ Q(e) such that q /∈ Q̃ and,
hence, q /∈ T holds throughout the algorithm. Let f ′ ∈ F be the smallest
frequency such that qf ′ > 0 and q′ the vector with q′f = qf for all f ∈ F \{f ′}
and q′f ′ = 0. Since q was not created from a copy of q′ in iteration f ′, we
can conclude that q′ was not added to T in any iteration. When we carry on
with this argument, we get the contradiction that 0 /∈ T holds throughout
the algorithm. Hence, it follows Q(e) ⊆ Q̃.

We remark that Algorithm 1 can be seen as an improved version of an al-
gorithm given in [21]. We obtain a significantly shorter running time by
introducing the bound rmin

f ′ in each iteration f ′, which avoids adding need-
less vectors to T . We generated the set of minimal configurations with Al-
gorithm 1 for a set of test instances. Our computations show that we can
compute the set of minimal configurations with this algorithm in a short
amount of time. Even for the largest instance, which has in total more than
2.3 million minimal configurations, the total CPU time to generate the set of
minimal configurations for all edges was significantly less than one second.
For more details on the test instances see Chapter 4.

Example 3.2. Let F = {1, 2, 5} and F (e) = 9 of an edge e and let there
be four edges passing e, i.e., |L(e)| = 4. Assume we are in an iteration
of Algorithm 1 for f ′ = 2 and q = (0, 0, 1). Then the residual demand is
F r = 9 − 5 · 1 = 4 and we have rmax

2 =
⌈

4
2

⌉
= 2. That is, at most two lines

have to be operated at frequency 2 to cover the residual demand. Assume we
create q̃ = (0, j, 1) for some j ∈ Z+ and add q̃ to T . In the next iteration for
frequency 1 in that q̃ is considered the residual demand is F r = 9−5 ·1−j ·2
and hence rmax

1 =
⌈

9−5·1−j·2
1

⌉
. If 1 + j + rmax

1 > |L(e)|, then q̃ will be
removed from T , since there could not be created a configuration satisfying
the frequency condition without violating the cardinality condition. By only
choosing j such that 1+j+

⌈
9−5·1−j·2

1

⌉
≤ |L(e)| we would prevent this; hence,

we choose only j ≥ 1. Note that this observation is reflected by the definition
of rmin

2 := min
{
j ∈ Z+ : 1 + j +

⌈
9−5·1−j·2

1

⌉
≤ |L(e)|

}
.

3.3 Polyhedral Aspects

In the following subsections we compare the configuration model with the
standard model in terms of polyhedral aspects and investigate the polytope
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of the single edge relaxation for the configuration model.

3.3.1 Model Comparison

In this section we compare the standard with the extend configuration model
for the line planning problem. We show that although the two formulations
are equivalent, the configuration model yields a stronger LP relaxation. For
this purpose we will reconsider the classes of valid inequalities discussed in
Section 2.2.2 and Section 2.2.3 and show that they are implied by the LP
relaxation of the configuration model.

Remark 3.5. The three classes of valid inequalities presented in Section 2.2.4
are not in general valid for every point in PLP (QLP), i.e., these inequalities
improve the LP relaxation of the configuration model as well. For an example
we refer to Example 3.7 in Section 3.4.

When we introduced the set of configurations of an edge, we already argued
that the configuration model describes the same set of feasible line plans
as the standard model. In the following lemma we give a formal proof by
comparing the associated polytopes.

Lemma 3.6. (QLP) provides an extended formulation for (SLP), i.e.,

P (QLP)|x = P (SLP).

Proof. P (SLP) and P (QLP) are the convex hull of all feasible solutions of
(SLP) and (QLP) respectively. Hence, it suffices to show that all integer
points in P (SLP) lie in P (QLP)|x and vice versa.
We show first P (QLP)|x ⊆ P (SLP). Let (x̄, ȳ) be an integer point in
P (QLP). Obviously, x̄ satisfies (2.2) and (2.3). We further get

∑
`∈L(e)

∑
f∈F

f · x̄`,f
(3.1)

≥
∑
f∈F

f · ∑
q∈Q(e)

qf · ȳe,q

 =
∑

q∈Q(e)

ȳe,q︸ ︷︷ ︸
(3.2)
= 1

·
∑
f∈F

f · qf︸ ︷︷ ︸
≥F (e)∀ q∈Q(e)

≥ F (e)

Hence, x̄ satisfies (2.1) as well and is contained in P (SLP).

Now, let x̄ be an integer point in P (SLP). We want to find ȳ such that
(x̄, ȳ) ∈ P (QLP). We define for each e ∈ E the configuration q̄e by:

q̄ef :=
∑
`∈L(e)

x̄`,f for all f ∈ F .
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It follows directly from (2.1), (2.2), and (2.3) that q̄e ∈ Q̄(e) for all e ∈ E.
For every e ∈ E let qe ∈ Q(e) be a minimal configuration such that q̄ef ≥ qef
for all f ∈ F , cf. Remark 3.3. Now we can define ȳ:

ȳe,q :=

{
1 if q = qe

0 else
for all e ∈ E, q ∈ Q(e).

Let f ∈ F and e ∈ E, the following holds:∑
`∈L(e)

x̄`,f = q̄ef ≥ qef =
∑
q∈Q(e)

qf · ȳe,q.

Therefore (x̄, ȳ) satisfies (3.1)–(3.5) and (x̄, ȳ) ∈ P (QLP).

Lemma 3.6 implies that the integer programs (SLP) and (QLP) minimize the
same objective function over an identical set of points in {0, 1}L×F . Hence,
solving (SLP) is equivalent to solving (QLP).

However, this is not true for the LP relaxations (SLP)LP and (QLP)LP ,
which we obtain by relaxing the binary constraints (2.3), (3.4), and (3.5)
to 0 ≤ x`,f ≤ 1 ∀ ` ∈ L, ∀ f ∈ F and 0 ≤ ye,q ≤ 1 ∀ e ∈ E, ∀ q ∈
Q(e), respectively. For instance x?, defined by x?`3,8 = 1, x?`2,2 = 1

2
, and

x?`,f = 0 otherwise, is an optimal fractional solution to the standard model in
Example 2.1. This solution has an objective function value of 10. However,
the optimal fractional solutions to the configuration model have an objective
function value of 12. We will see in the following that the configuration model
provides in general a stronger LP relaxation than the standard model.

Theorem 3.7. The LP relaxation of P (QLP)|x is tighter than the LP relax-
ation of P (SLP), i.e.,

PLP (QLP)|x ⊆ PLP (SLP).

Proof. Let (x̄, ȳ) ∈ PLP (QLP). Obviously, x̄ satisfies (2.2) and (2.3). We
further get

∑
l∈L(e)

∑
f∈F

f · x̄l,f
(3.1)

≥
∑
f∈F

(
f ·

∑
q∈Q(e)

qf · ȳe,q
)

=
∑
q∈Q(e)

ȳe,q︸ ︷︷ ︸
(3.2)
= 1

·
∑
f∈F

f · qf︸ ︷︷ ︸
≥F (e)∀ q∈Q(e)

≥ F (e).

Hence, x̄ satisfies (2.1) as well and is contained in PLP (SLP).
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The converse, i.e., PLP (SLP) ⊆ PLP (QLP)|x, does not hold in general as we
have already seen in the above example. Indeed, the ratio of the optimal
objectives of the two LP relaxations can be arbitrarily large.

Example 3.3. Consider an instance of the line planning problem involving
only one edge E = {e}, one line L(e) = {l}, a frequency demand F (e) = 6,
and one frequency F = {M} such that M > 6 with cost function cl,M = M .
The only minimal configuration for e is q = (1).

(QLP)LP : min M · x`,M (SLP)LP : min M · x`,M
s.t. x`,M − yq ≥ 0 s.t. M · x`,M ≥ 6

yq = 1

yq, x`,M ≥ 0 x`,M ≥ 0

Obviously, xl,M = 1 is the only and hence optimal solution to (QLP)LP with
objective value M and xl,M = 6

M
is an optimal solution to (SLP)LP with

objective value 6.

In the following we show that the LP relaxation of the configuration model
implies general classes of facet-defining inequalities for the line planning poly-
tope P (SLP), which we presented in Section 2.2 and are discussed in the
literature.

Band Inequalities

In this section we take another look at the band inequalities, which we intro-
duced in Section 2.2.2. We proved that they define a class of valid inequalities
of P (SLP) and gave examples to show that they improve the LP relaxation
of P (SLP). Now we consider symmetric bands.

Definition 3.8. Let e ∈ E, f ∈ F , and fB : L(e)→ F ∪{0} be a valid band
of e. We call fB symmetric if fB(`) = f for all ` ∈ L(e).

Symmetric bands are of particular interest, as they are implied by the LP
relaxation of the configuration model.

Theorem 3.9. Let e ∈ E and fB be a valid symmetric band of e. Then the
band inequality ∑

`∈L(e)

∑
f∈F

f>fB(`)

x`,f ≥ 1

44



3 CONFIGURATION MODEL

is implied by the LP relaxation of the configuration model, i.e., all band
inequalities (2.4) that are induced by a valid symmetric band are valid for
PLP (QLP).

Proof. Assume fB is a valid symmetric band of some edge e with fB(`) = f̃
for all ` ∈ L(e) with f̃ ∈ F . Thus

∑
`∈L(e) fB(`) = |L(e)| · f̃ < F (e). Note

that f̃ < fm holds by the assumption in Remark 2.2. Hence, in every minimal
configuration q ∈ Q(e) there is a frequency f > f̃ such that qf ≥ 1. Starting
from the coupling constraints (3.1), we get:∑

`∈L(e)

x`,f ≥
∑
q∈Q(e)

qf · yq ∀ f ∈ F

⇒
∑
f∈F
f>f̃

∑
`∈L(e)

x`,f ≥
∑
f∈F
f>f̃

∑
q∈Q(e)

qf · yq

⇒
∑
`∈L(e)

∑
f∈F
f>f̃

x`,f ≥
∑
q∈Q(e)

yq ·
∑
f∈F
f>f̃

qf

︸ ︷︷ ︸
≥1

≥
∑
q∈Q(e)

yq

= 1.

We observe that the set cover inequalities are induced by the valid symmetric
band fB(l) ≡ 0. This implies that they are also valid for the LP relaxation
of the configuration model.

Corollary 3.10. The set cover inequality∑
l∈L(e)

∑
f∈F

xl,f ≥ 1

is valid for PLP (QLP) for all e ∈ E.

The same does not hold for the standard model, which we showed in Ex-
ample 3.3. In the following we give another example that symmetric band
inequalities strengthen the LP relaxation of the standard model. Further-
more, band inequalities induced by non-symmetric bands are not implied by
the LP relaxation of the configuration model, see also the following example.
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Example 3.4 (Example 2.2 continued). Again, we consider the line planning
instance given in Figure 2.2 and recall F = {1, 3, 4}, F (e1) = 5, L(e1) =
{`1, `2, `3}. First, consider the symmetric maximal band fB of e1 given by
fB(`) = 1 for all ` ∈ L(e1). One can show that the corresponding band
inequality

x`1,3 + x`1,4 + x`2,3 + x`2,4 + x`3,3 + x`3,4 ≥ 1 (3.6)

is facet-defining for P (SLP) in this particular example. Inequality (3.6) is
valid for PLP (QLP) by Theorem 3.9. However, the same does not hold for
PLP (SLP). Inequality (3.6) is violated by x̃ ∈ PLP (SLP), where x̃`1,4 = 3

4
,

x̃`2,1 = x̃`3,1 = 1, and x̃`,f = 0 otherwise.
Now, reconsider the band inequality

x`1,1 + x`1,3 + x`1,4 + x`2,3 + x`2,4 + x`3,4 ≥ 1

from Example 2.2. The inequality is violated by (x̄, ȳ) ∈ PLP (QLP), where
x̄`1,3 = 1

2
, x̄`2,1 = x̄`3,3 = 1, and x̄`,f = 0 otherwise. For e1 we set ȳe1,q12 =

ȳe1,q15 = 1
2

and ȳe1,q = 0 otherwise, where q12 := (0, 2, 0) and q15 := (2, 1, 0).
For e2 we set ȳe2,q23 = 1 and ȳe2,q = 0 otherwise, where q23 := (0, 1, 0).

MIR Inequalities

We study in this section the MIR inequalities in the context of the configura-
tion model. Again, we can show that these inequalities are implied by the LP
relaxation of the configuration model. The proof is based on the following
lemma, a configuration version of Proposition 2.10.

Lemma 3.11. For e ∈ E, q ∈ Q(e), and λ ∈ (0, 1), it holds

∑
f∈F

(r · bλfc+ min(rf , r))qf ≥ r · dλ · F (e)e,

where r = λF (e)− bλF (e)c and rf = λf − bλfc.
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Proof. q ∈ Q(e) implies
∑
f∈F

f · qf ≥ F (e) and hence we get for λ ∈ (0, 1)

λ · F (e) ≤ λ ·
∑
f∈F

f · qf =
∑
f∈F
rf<r

λ · f · qf +
∑
f∈F
rf≥r

λ · f · qf

≤
∑
f∈F
rf<r

(bλ · fc+ rf ) · qf +
∑
f∈F
rf≥r

(bλ · fc+ 1) · qf

=
∑
f∈F
rf<r

rf · qf

︸ ︷︷ ︸
≥0

+
∑
f∈F

bλ · fc · qf +
∑
f∈F
rf≥r

qf

︸ ︷︷ ︸
∈Z

.

Applying Lemma 2.9 yields

r · dλ · F (e)e ≤
∑
f∈F
rf<r

rf · qf + r ·
(∑
f∈F

bλ · fc · qf +
∑
f∈F
rf≥r

qf

)
=
∑
f∈F

(r · bλfc+ min(rf , r)) · qf .

Theorem 3.12. Let λ ∈ (0, 1), e ∈ E, r = λF (e) − bλF (e)c and rf =
λf − bλfc. Then the MIR inequality

∑
`∈L(e)

∑
f∈F

(r bλfc+ min(rf , r))x`,f ≥ r dλF (e)e

is implied by the LP relaxation of the configuration model, i.e., the MIR
inequalities (2.6) are valid for PLP (QLP)|x.

Proof. Let (x, y) ∈ PLP (QLP). Then by (3.1)

∑
`∈L(e)

x`,f ≥
∑
q∈Q(e)

qf · yq ∀ f ∈ F .
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Scaling this inequality by λrf := r · bλfc+ min(rf , r) yields∑
`∈L(e)

λrf · x`,f ≥
∑
q∈Q(e)

λrf · qf · yq ∀ f ∈ F

⇒
∑
f∈F

∑
`∈L(e)

λrf · x`,f ≥
∑
f∈F

∑
q∈Q(e)

λrf · qf · yq

⇔
∑
`∈L(e)

∑
f∈F

λrf · x`,f ≥
∑
q∈Q(e)

∑
f∈F

λrf · qf · yq

(∗)
≥
∑
q∈Q(e)

r · dλ · F (e)e · yq

= r · dλ · F (e)e ·
∑
q∈Q(e)

yq

(3.2)
= r · dλ · F (e)e.

(∗) apply Lemma 3.11 here.

We proved in Theorem 2.14 that the multicover inequalities proposed by
Goosens et al. [17] are dominated by the MIR inequalities. Hence, it follows
with the previous theorem the following.

Corollary 3.13. The multicover inequalities (2.8) are implied by the LP
relaxation of the configuration model. I.e., let e ∈ E and s ∈ N such that
2 ≤ s + 1 < F (e). Define Fk := {f ∈ F : (k − 1)F (e) ≤ s · f < kF (e)} for
k = 1, . . . , s and FC := F \

⋃s
k=1Fk, then the multicover inequality

∑
`∈L(e)

s∑
k=1

∑
f∈Fk

kx`,f +
∑
`∈L(e)

∑
f∈FC

(s+ 1)x`,f ≥ s+ 1

is valid for PLP (QLP).

Remember that we showed in Example 2.3 and Example 2.4 that the MIR
as well as the multicover inequalities strengthen the LP relaxation of the
standard model.

3.3.2 Single Edge Relaxation

In this section we analyze the polytope of the single edge relaxation for
the configuration model to derive classes of facet-defining inequalities for
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P (QLP). Further, we describe a large class of valid inequalities, which we
believe to complete the description of the polytope of this relaxation.

We introduced the polytope of the single edge relaxation in Section 2.2.5 for
the standard model. Analogously, we define for an edge e ∈ E the polytope

P (QLP|e) := conv

(x, y) ∈ {0, 1}L(e)×F×Q(e) :
(QLP) (3.1) for e,
(QLP) (3.2) for e,
(QLP) (3.3) for all ` ∈ L(e)


for the configuration model. We want to emphasize that we can apply
Lemma 3.6 and Theorem 3.7 also to P (SLP|e) and P (QLP|e) and derive
that P (QLP|e)|x = P (SLP|e) and PLP (QLP|e)|x ⊆ PLP (SLP|e) holds for
every e ∈ E. Obviously, any inequality that is valid for P (SLP|e) is also
valid for P (SLP) and P (QLP). Inequalities that are valid for P (QLP|e) are
in general only valid for P (QLP).

We start by determining the dimension of P (QLP|e).

Proposition 3.14. Let e ∈ E, then

dim(P (QLP|e)) = |L(e)| · |F|+ |Q(e)| − 1

holds if and only if P (SLP|e) is full-dimensional.

Proof. “⇒” Let P (SLP|e) not be full-dimensional. Since equation (3.2) is
valid for P (QLP|e), we have dim(P (QLP|e)) ≤ |L(e)| · |F| + |Q(e)| − 1.
Since P (SLP|e) is not full-dimensional, we know from Proposition 2.20 that∑

f∈F x`,f = 1 holds for every ` ∈ L(e) for every point in P (QLP|e). Hence,
we get dim(P (QLP|e)) < |L(e)| · |F|+ |Q(e)| − 1.

“⇐” Now, let P (SLP|e) be full-dimensional. We define qm ∈ ZF+ with qmf = 0

for all f ∈ F \ {fm} and qmfm =
⌈
F (e)
fm

⌉
. Since P (SLP|e) is full-dimensional,

we know that (|L(e)| − 1) · fm ≥ F (e) and therefore qmfm ≤ |L(e)| − 1. Hence
qm ∈ Q(e) and we define ym with yme,q = 0 ∀ q ∈ Q(e) \ {qm} and yme,qm = 1.

For each ˜̀∈ L(e) and f̃ ∈ F the points (x
˜̀,f̃ , ym), (x

˜̀,0, ym) and (xfm , ym) are

feasible for P (QLP|e), with x
˜̀,f̃ , x

˜̀,0, xfm from the proof of Proposition 2.20.
Note, for every q̃ ∈ Q(e) there exists by definition a vector x ∈ P (SLP|e)
such that

∑
`∈L(e) x`,f = q̃f for all f ∈ F . For every q̃ ∈ Q(e) \ {qm} let

xq̃ ∈ P (SLP|e) be such a vector, chosen arbitrarily. Define yq̃ with yq̃e,q̃ = 1
and yq̃e,q = 0 for all q ∈ Q(e) \ {q̃}. Obviously, (xq̃, yq̃) ∈ P (QLP|e) for every
q̃ ∈ Q(e)\{qm}. Hence, we found |Q(e)−1| new affinely independent points
in P (QLP|e). We defined in total |L(e)| · |F| + |Q(e)| affinely independent
points in P (QLP|e), which proves the proposition.
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Now we can prove that the coupling constraint (3.1) for fm is facet-defining.

Proposition 3.15. For every edge e ∈ E the inequality∑
l∈L(e)

xl,fm ≥
∑
q∈Q(e)

qfm · ye,q (3.7)

is facet-defining for P (QLP|e), if P (SLP|e) is full-dimensional.

Proof. Let e ∈ E and let P (SLP|e) be full-dimensional. Proposition 3.14
implies that in order to prove the statement it suffices to define |L(e)| · |F|+
|Q(e)| − 1 many affinely independent points in P (QLP|e) that satisfy (3.7)
with equality. Recall from the proof of Proposition 3.14 the point ym and
the minimal configuration qm ∈ ZF+, where qmf = 0 ∀ f ∈ F \ {fm} and

qmfm =
⌈
F (e)
fm

⌉
, and remember that qmfm ≤ |L(e)| − 1 holds. Now, for all

˜̀∈ L(e) and f̃ ∈ F \ {fm} define the following points: Choose an arbitrary
set L′ ⊆ L(e) \ {˜̀} such that |L′| = qmfm and define

x
˜̀,f̃
`,f =


1 if ` = ˜̀, f = f̃

1 if ` ∈ L′, f = fm

0 else

and

x
˜̀,0
`,f =

{
1 if ` ∈ L′, f = fm

0 else.

It can be easily verified that (x
˜̀,f̃ , ym), (x

˜̀,0, ym) ∈ P (QLP|e). For every
minimal configuration q̃ ∈ Q(e) \ {qm} let (xq̃, yq̃) ∈ P (QLP|e) be as in the
proof of Proposition 3.14.

Now we want to show that these points satisfy (3.7) with equality. Let
˜̀∈ L(e) and f̃ ∈ F \ {fm}, then the following holds:∑

`∈L(e)

x
˜̀,f̃
`,fm︸ ︷︷ ︸

=dF (e)
fm
e

=
∑
q∈Q(e)

qfmy
m
e,q︸ ︷︷ ︸

=qmfm=dF (e)
fm
e

The same holds for (x
˜̀,0, ym). Let q̃ ∈ Q(e) \ {qm}, then by construction∑

`∈L(e)

xq̃`,fm =
∑
q∈Q(e)

qfmy
m
e,q

Hence, we found a set of |F| · |L(e)| + |Q(e)| − 1 points with the required
properties.
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In the following lemma we describe a class of valid inequalities for P (QLP).
We will see later that they define facets for P (QLP|e) and improve the LP
relaxation of P (QLP). For a motivation look at the edge e1 in Example 3.5
with F = {2, 5, 9}. If the minimal configuration q3 = (2, 1, 0) ∈ Q(e1)
is chosen for e1, then the line `1 has to be operated at frequency 2 or 5
regardless at which frequencies the lines `2 and `3 are operated.

Lemma 3.16. Let e ∈ E be an edge, L′ ⊆ L(e) be a subset of lines passing
e, F ′ ⊆ F . The inequality∑

`∈L′

∑
f∈F ′

x`,f ≥
∑
q∈Q(e)

max
{

0,
∑
f∈F ′

qf − |L(e) \ L′|
}
ye,q (3.8)

is valid for P (QLP).

Proof. Let (x, y) ∈ P (QLP) and q̄ ∈ Q(e) such that ye,q̄ = 1. Then the
following is implied by the coupling constraints (3.1)∑

`∈L′

∑
f∈F ′

x`,f ≥
∑
q∈Q(e)

∑
f∈F ′

qf · ye,q −
∑

`∈L(e)\L′

∑
f∈F ′

x`,f︸ ︷︷ ︸
(2.2)

≤ 1

≥
∑
f∈F ′

q̄f − |L(e) \ L′| .

Since x`,f ≥ 0 ∀ ` ∈ L, f ∈ F and ye,q = 0 for all q ∈ Q(e) \ {q̄}, it follows∑
`∈L′

∑
f∈F ′

x`,f ≥ max
(

0,
∑
f∈F ′

q̄f − |L(e) \ L′|
)

=
∑
q∈Q(e)

max
(

0,
∑
f∈F ′

qf − |L(e) \ L′|
)
ye,q.

We like to point out that inequality (3.8) is for the case L′ = L(e) and
F ′ = {f} equivalent to the coupling constraint (3.1) for e ∈ E and f ∈ F .
That is inequalities (3.8) generalize the coupling constraints. In the following
proposition we show that we can generalize these inequalities even further to
obtain a larger class.

Proposition 3.17. Let e ∈ E and let FB : L(e)→ 2F be a map that assigns
each line in L(e) to a subset of frequencies. And define for q ∈ Q(e)

α(FB, q) := max

{∑
f∈F ′

qf − |L(e) \ {` ∈ L(e) : F ′ ⊆ FB(`)}| : F ′ ⊆ F

}
.
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Then the configuration band inequality∑
`∈L(e)

∑
f∈FB(`)

x`,f ≥
∑
q∈Q(e)

max {0, α(FB, q)} ye,q (3.9)

is valid for P (QLP).

Proof. Let (x, y) ∈ P (QLP) and q̄ ∈ Q(e) such that yq̄ = 1. Let F ′ ⊆ F be
an arbitrary subset of frequencies. Then we get for all f ∈ F ′∑

`∈L(e)
F ′⊆FB(`)

x`,f +
∑
`∈L(e)
F ′*FB(`)

x`,f =
∑
`∈L(e)

x`,f
(3.1)

≥
∑
q∈Q(e)

qf · ye,q = q̄f .

By summing this inequality over all f ∈ F ′ and rearranging we get∑
`∈L(e)
F ′⊆FB(`)

∑
f∈F ′

x`,f ≥
∑
f∈F ′

q̄f −
∑
`∈L(e)
F ′*FB(`)

∑
f∈F ′

x`,f︸ ︷︷ ︸
(2.2)

≤ 1

≥
∑
f∈F ′

q̄f − |{` ∈ L(e) : F ′ * FB(`)}|

=
∑
f∈F ′

q̄f − |L(e) \ {` ∈ L(e) : F ′ ⊆ FB(`)}|.

Since yq = 0 for all q ∈ Q(e) \ {q̄}, it follows∑
`∈L(e)

∑
f∈FB(`)

x`,f ≥
∑
`∈L(e)
F ′⊆FB(`)

∑
f∈F ′

x`,f

≥
∑
q∈Q(e)

(∑
f∈F ′

qf − |L(e) \ {` ∈ L(e) : F ′ ⊆ FB(`)}|
)
ye,q.

We chose F ′ ⊆ F arbitrarily and x`,f ≥ 0 holds for all f ∈ F and all ` ∈ L,
therefore we get∑

`∈L(e)

∑
f∈FB(`)

x`,f ≥
∑
q∈Q(e)

max {0, α(FB, q)} ye,q.

As indicated by the term configuration band inequality, the inequalities (3.9)
are closely related to the band inequalities (2.4). In particular, we show that
the configuration band inequalities imply the band inequalities. An example
is given at the end of this section. We start the proof with the following
lemma.
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Lemma 3.18. Let e ∈ E be an edge, fB : L(e)→ F ∪ {0} a band of e, and
q ∈ Q(e) be a minimal configuration of e such that∑

f∈F
f≥f ′

|{` ∈ L(e) : fB(`) = f}| ≥
∑
f∈F
f≥f ′

qf ∀ f ′ ∈ F ,

then the following holds ∑
f∈F

fB(`) ≥
∑
f∈F

f · qf .

Proof. If |F| = 1, then the Lemma is obviously true. Assume |F| ≥ 1 and
define for a simplified notation k(f) := |{` ∈ L(e) : fB(`) = f}| for all f ∈ F .
Then the assumption in the lemma implies:∑

f∈F

k(f) ≥
∑
f∈F

qf . (3.10)

We can derive the following:∑
f∈F

fB(`) =
∑
f∈F

f · |{` ∈ L(e) : fB(`) = f}| =
∑
f∈F

f · k(f)

= f1 · k(f1) +
∑

f∈F\{f1}

f · k(f)

= f1 · k(f1) +
∑

f∈F\{f1}

f (k(f)− qf ) +
∑

f∈F\{f1}

f · qf

≥ f1

(∑
f∈F

k(f)−
∑

f∈F\{f1}

qf︸ ︷︷ ︸
(3.10)

≥ qf1

)
+

∑
f∈F\{f1}

f · qf

≥
∑
f∈F

f · qf .

This completes the proof.

Proposition 3.19. The configuration band inequalities (3.9) imply the band
inequalities (2.4). In particular, let e ∈ E be an edge and fB be a valid
band of e. Define FB(`) := {f ∈ F : f > fB(`)} for all ` ∈ L(e) and let
(x, y) ∈ PLP (QLP) such that (x, y) satisfies the configuration band inequality∑

`∈L(e)

∑
f∈FB(`)

x`,f ≥
∑
q∈Q(e)

max {0, α(FB, q)} ye,q (3.11)

53



3.3. POLYHEDRAL ASPECTS

with α(FB, q) for all q ∈ Q(e) as defined in Proposition 3.17. Then x satisfies
the band inequality ∑

`∈L(e)

∑
f∈F

f>fB(`)

x`,f ≥ 1. (3.12)

Proof. It suffices to show that α(FB, q) ≥ 1 holds for all q ∈ Q(e), since this
would imply∑

`∈L(e)

∑
f∈F

f>fB(`)

x`,f
(3.11)

≥
∑
q∈Q(e)

max {0, α(FB, q)} ye,q ≥
∑
q∈Q(e)

ye,q
(3.2)

≥ 1.

Recall the definition for all q ∈ Q(e)

α(FB, q) := max

{∑
f∈F ′

qf − |L(e) \ {` ∈ L(e) : F ′ ⊆ FB(`)}| : F ′ ⊆ F

}
.

Assume there exists a minimal configuration q ∈ Q(e) such that α(FB, q) ≥ 1
does not hold. Since α(FB, q) ∈ Z, this implies α(FB, q) ≤ 0. This in turn
implies the following∑

f∈F ′
qf ≤ |L(e) \ {` ∈ L(e) : F ′ ⊆ FB(`)}| ∀F ′ ⊆ F .

Hence, for f ′ ∈ F and F ′ = {f ∈ F : f ≥ f ′} we have∑
f∈F
f≥f ′

qf ≤ |L(e) \ {` ∈ L(e) : f ′ > fB(`)}|

= |{` ∈ L(e) : f ′ ≤ fB(`)}|

=
∑
f∈F
f≥f ′

|{` ∈ L(e) : f = fB(`)}|.

Applying Lemma 3.18 yields∑
f∈F

fB(`) ≥
∑
f∈F

f · qf ≥ F (e).

But this contradicts the assumption that fB is a valid band, see Definition 2.5.
Hence, it follows α(FB, q) ≥ 1 for every q ∈ Q(e) and the proposition is
proved.
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e1 e2

`3

`1
`2

F = {2, 5, 9}

e e1 e2

F (e) 8 2
L(e) {`1, `2, `3} {`2}

Q(e1) = {(0, 0, 1), (0, 2, 0), (2, 1, 0)}
Q(e2) = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

Figure 3.1: An instance of the line planning problem. Left : Transportation
network consisting of two edges and three lines. Right : The given set of frequencies,
the frequency demands and minimal configurations.

Our results can be summarized to the following. The configuration model
implies MIR inequalities that are induced by the frequency demand con-
straints. When we extend the configuration model by the configuration band
inequalities, then all band inequalities are additionally implied. These in-
equalities can be interpreted as follows. For any possible assignment FB of
lines to frequencies the corresponding value max{0, α(FB, q)} is for each min-
imal configuration q ∈ Q(e) a lower bound of the number of lines that need
to be assigned to a frequency given by FB if this configuration is chosen.
This leads to the following conjecture.

Conjecture 3.20. Let e ∈ E be an edge, then the configuration band inequal-
ities together with the configuration assignment constraints, and the line fre-
quency assignment constraints provide a complete description of P (QLP|e).
I.e., we define the polytope

PQ :=

(x, y) ∈ RL(e)×F×Q(e)
+ :

(3.9) for e,
(QLP) (3.2) for e,
(QLP) (3.3) for all ` ∈ L(e)

 ,

then the following holds
PQ = P (QLP|e)

and
PQ|x = P (SLP|e).

We close the section by giving an example for which (3.8) and (3.9) are
facet-defining and cut off a fractional solution.

Example 3.5. Consider the line planning instance given in Figure 3.1. Let
L′ = {`1} and F ′ = {2, 5}, then the corresponding inequality (3.8) for e1

reads as follows:
x`1,2 + x`1,5 ≥ ye1,q3 . (3.13)
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Let FB(`1) = {2, 5}, FB(`2) = ∅, and FB(`3) = {5}, then the corresponding
configuration band inequality (3.9) for e1 reads as follows:

x`1,2 + x`1,5 + x`3,5 ≥ ye1,q2 + ye1,q3 . (3.14)

One can show that (3.13) and (3.14) are facet-defining for P (QLP) in this
example.

Now, consider the valid band fB of e1, where fB(`1) = 0, fB(`2) = 5, and
fB(`3) = 9. The associated band inequality (2.4) reads as follows:

x`1,2 + x`1,5 + x`1,9 + x`2,9 + x`3,5 + x`3,9 ≥ 1. (3.15)

Let FB′(`1) = {2, 5, 9}, FB′(`2) = {9}, and FB′(`3) = {5, 9}, then the corre-
sponding configuration band for e1 reads as follows:

x`1,2 + x`1,5 + x`1,9 + x`2,9 + x`3,5 + x`3,9 ≥ ye1,q1 + ye1,q2 + ye1,q3 . (3.16)

Note that (3.16) implies (3.15), since ye1,q1 + ye1,q2 + ye1,q3 = 1 holds.

We define (x̄, ȳ) ∈ PLP (QLP|e1) by x̄`1,9 = 1
2
, x̄`2,5 = 1

2
, x̄`3,2 = 1, ȳe1,q1 = 1

2
,

ȳe1,q3 = 1
2
, and x̄`,f = ȳe1,q = 0 otherwise. Note that (3.13), (3.14), and (3.16)

are violated by (x̄, ȳ).

3.4 Multi-Edge Configurations

In this section we generalize the concept of minimal configurations. We de-
fined for the configuration model for each edge in the network a minimal
configuration. The LP relaxation of this model is tighter than the LP re-
laxation of the standard model and implies several classes of facet-defining
inequalities. These inequalities can all be obtained by strengthening the fre-
quency demand constraint of a single edge. But the inequalities presented
in Section 2.2.4, which we obtain by aggregating the frequency demand con-
straints for a subset of edges, are not implied by the LP relaxation of the
configuration model. This gives rise to the underlying idea of the multi-edge
configuration model, which is presented in this section. This model is com-
putationally not tractable due to the enormous number of variables and will
not be considered in our computational studies. However, we will show in
this section that it provides a stronger LP relaxation than the configuration
model.

The idea is to define a set of minimal configurations for a subset of edges
E ′ ⊆ E. We divide the lines that pass any edge in E ′ into equivalence classes;
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e1 e2

`3

`1
`2

E′ = {e1, e2}

EL(E′) = {{e1}, {e1, e2}}

LE′({e1}) = {`3}, LE′({e1, e2}) = {`1, `2}

Figure 3.2: A subset of edges, the equivalence classes of lines.

we consider two lines as equivalent if they pass the same edges in E ′. We
need to introduce further notation.

Definition 3.21. Let E ′, E ′′ ⊆ E be subsets of edges with E ′′ ⊆ E ′, then
we denote by

LE′(E ′′) := {` ∈ L : ` ∩ E ′ = E ′′}

the set of all lines that pass all edges in E ′′ but no edge in E ′ \E ′′. Further,
we define for E ′ ⊆ E the set

EL(E ′) := {E ′′ ⊆ E ′ : LE′(E ′′) 6= ∅},

which contains all subsets E ′′ of E ′ such that there exists a line in LE′(E ′′).

Note that the set LE′(E ′′) is an equivalence class according to the definition
above and that the equivalence classes for all E ′′ /∈ EL(E ′) are empty. Also
note that for every line ` in L(e) and for every edge in e ∈ E ′ there exists
a unique set E ′′ such that ` ∈ LE′(E ′′). We give an illustrated example in
Figure 3.2.

Analogously to the configurations of a single edge, we define a multi-edge
configuration of a subset of edges E ′ ⊆ E by specifying for each set of edges
E ′′ ∈ EL(E ′) how many lines in LE′(E ′′) are operated at a certain frequency.

We denote a multi-edge configuration by a matrix in ZEL(E′)×F
+ . We give a

formal definition in the following.

Definition 3.22. Let E ′ ⊆ E be a subset of edges.

• We call Q ∈ ZEL(E′)×F
+ a multi-edge configuration of E ′ if∑

f∈F

QE′′,f ≤ |LE′(E ′′)| ∀E ′′ ∈ EL(E ′) (3.17)

and
∑

E′′∈EL(E′)
e∈E′′

∑
f∈F

f ·QE′′,f ≥ F (e) ∀ e ∈ E ′. (3.18)
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• We denote by

Q̄(E ′) :=
{
Q ∈ ZEL(E′)×F

+ : Q satisfies (3.17) and (3.18)
}

the set of multi-edge configurations of E ′.

• We call a multi-edge configuration Q ∈ Q̄(E ′) minimal if there is no
multi-edge configuration Q̄ ∈ Q̄(E ′) such that Q̄ dominates Q, i.e.,
Q̄E′′,f ≤ QE′′,f for all E ′′ ∈ EL(E ′) and all f ∈ F and Q̄E′′,f < QE′′,f

for at least one E ′′ ∈ EL(E ′) and f ∈ F .

• We denote by

Q(E ′) :=
{
Q ∈ Q̄(E ′) : Q is minimal

}
the set of minimal multi-edge configurations of E ′.

We want to ensure that the frequency demand of every edge is satisfied by
choosing minimal multi-edge configurations. Therefore, it is required that
for every edge there is a minimal multi-edge configuration for a subset of
edges in which this edge is contained. Let E by a cover of E, i.e., E ⊆ 2E

such that
⋃
E′∈E E

′ = E. We extend the standard model (SLP) with binary
variables yE′,Q indicating for each subset of edges E ′ ∈ E which minimal
multi-edge configuration Q ∈ Q(E ′) is chosen. The multi-edge configuration
model induced by the edge cover E is the following:

(
QLPE

)
min

∑
`∈L

∑
f∈F

c`,fx`,f∑
`∈LE′ (E′′)

x`,f ≥
∑

Q∈Q(E′)

QE′′,f · yE′,Q ∀E ′ ∈ E , ∀E ′′ ∈ EL(E ′), ∀ f ∈ F

(3.19)∑
Q∈Q(E′)

yE′,Q = 1 ∀E ′ ∈ E (3.20)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (3.21)

x`,f ∈ {0, 1} ∀ ` ∈ L, ∀ f ∈ F (3.22)

yE′,Q ∈ {0, 1} ∀E ′ ∈ E , ∀Q ∈ Q(E ′). (3.23)

The multi-edge configuration model
(
QLPE

)
minimizes the cost of a line

plan. The coupling constraints (3.19) force for each subset of edges of the
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3 CONFIGURATION MODEL

given cover E that enough lines are operated at every frequency for the chosen
minimal multi-edge configuration. The multi-edge configuration assignment
constraints (3.20) ensure that exactly one minimal multi-edge configuration
is chosen for each subset of edges in the cover E .

Example 3.6 (Example 2.1 continued). We consider the line planning prob-
lem defined in Figure 2.1 and also considered in Figure 3.2. Recall that
F = {2, 8}, F (e1) = 9, and F (e2) = 1. Define E ′ = {e1, e2}, then we have
EL(E ′) = {{e1}, {e1, e2}}, LE′({e1}) = {`3}, and LE′({e1, e2}) = {`1, `2}.
The set of minimal multi-edge configurations of E ′ is

Q(E ′) =

{ ( 2 8

{e1} 1 0
{e1,e2} 0 1

)
,

(
0 1
1 0

)
,

(
0 1
0 1

)
,

(
0 0
0 2

)}
.

Let E = {E ′} be a cover of E. The multi-edge configuration model induced
by E for this example is:(

QLPE
)

min 4x`1,2+16x`1,8+4x`2,2+16x`2,8+2x`3,2+8x`3,8

+ x`3,2 −yE′,Q1
≥ 0

+ x`3,8 −yE′,Q2
−yE′,Q3

≥ 0

+ x`1,2 + x`2,2 −yE′,Q2
≥ 0

+ x`1,8 + x`2,8 −yE′,Q1
−yE′,Q3

−2yE′,Q4
≥ 0

+ x`1,2+ x`1,8 ≤ 1

+ x`2,2+ x`2,8 ≤ 1

+ x`3,2+ x`3,8 ≤ 1

+yE′,Q1
+yE′,Q2

+yE′,Q3
+ yE′,Q4

= 1

x`i,f ∈ {0, 1}
yE′,Qi

∈ {0, 1}.

An optimal solution to
(
QLPE

)
is given by (x∗, y∗), where x∗`3,8 = 1, x∗`2,2 = 1,

y∗E′,Q2
= 1, and x∗`,f = 0 and y∗E′,Q = 0 otherwise. The objective function

value of this solution is 12.

We like to remark that the multi-edge configuration model is indeed a general-
ization of the configuration model. When we consider the cover E =

⋃
e∈E{e}

of E that covers each edge exactly once by an one-element set, then every sub-
set E ′ ∈ E contains only a single edge e and we have EL(E ′) = EL({e}) = {e}
and L{e}({e}) = L(e). Hence, it follows Q({e}) = Q(e). Therefore, the
multi-edge configuration model is equivalent to the configuration model in
this case.

We show in the next lemma that the multi-edge configuration model describes
the same set of line plans as the standard model and the configuration model.
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3.4. MULTI-EDGE CONFIGURATIONS

Lemma 3.23. Let E be a cover of E. Then
(
QLPE

)
provides an extended

formulation for (SLP), i.e.,

P
(
QLPE

)
|x = P (QLP)|x = P (SLP).

Proof. We proved in Lemma 3.6 P (QLP)|x = P (SLP). We can prove in a
similar fashion that P

(
QLPE

)
|x = P (SLP) holds. P (SLP) and P

(
QLPE

)
are the convex hull of all feasible solutions of (SLP) and

(
QLPE

)
respectively.

Hence, it suffices to show that all integer points in P (SLP) lie in P
(
QLPE

)
|x

and vice versa.
We show first P

(
QLPE

)
|x ⊆ P (SLP). Let (x̄, ȳ) be a point in P

(
QLPE

)
.

Obviously, x̄ satisfies (2.2) and (2.3). Let e ∈ E and let E ′ ∈ E such that
e ∈ E ′. We get∑

`∈L(e)

∑
f∈F

f · x̄`,f =
∑
f∈F

f
∑
`∈L(e)

x̄`,f

=
∑
f∈F

f
∑

E′′∈EL(E′)
e∈E′′

∑
`∈LE′ (E′′)

x̄`,f

(3.19)

≥
∑
f∈F

f
∑

E′′∈EL(E′)
e∈E′′

∑
Q∈Q(E′)

QE′′,f ȳE′,Q

=
∑
f∈F

∑
Q∈Q(E′)

ȳE′,Q
∑

E′′∈EL(E′)
e∈E′′

f ·QE′′,f

=
∑

Q∈Q(E′)

ȳE′,Q
∑
f∈F

∑
E′′∈EL(E′)

e∈E′′

f ·QE′′,f

︸ ︷︷ ︸
(3.18)

≥ F (e)

≥ F (e)
∑

Q∈Q(E′)

ȳE′,Q︸ ︷︷ ︸
(3.20)

= 1

= F (e)

Hence, x̄ satisfies (2.1) as well and is contained in P (SLP).

Now, let x̄ be an integer point in P (SLP). We want to define ȳ such that
(x̄, ȳ) ∈ P

(
QLPE

)
. We define for each E ′ ∈ E a multi-edge configuration:

Q̄E′ ∈ ZEL(E′)×F
+ with Q̄E′

E′′,f :=
∑

`∈LE′ (E′′)

x̄`,f ∀E ′′ ∈ EL(E ′), ∀ f ∈ F .
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3 CONFIGURATION MODEL

Then we have for all E ′ ∈ E and all E ′′ ∈ EL(E ′)∑
f∈F

Q̄E′

E′′,f =
∑

`∈LE′ (E′′)

∑
f∈F

x̄`,f
(2.2)

≤ |LE′(E ′′)|

and for all e ∈ E ′∑
E′′∈EL(E′)

e∈E′′

∑
f∈F

f · Q̄E′

E′′,f =
∑

E′′∈EL(E′)
e∈E′′

∑
f∈F

f
∑

`∈LE′ (E′′)

x̄`,f

=
∑

E′′∈EL(E′)
e∈E′′

∑
`∈LE′ (E′′)

∑
f∈F

f · x̄`,f

=
∑
`∈L(e)

∑
f∈F

f · x̄`,f

(2.1)

≥ F (e).

Therefore, we can conclude Q̄E′ ∈ Q̄(E ′) for all E ′ ∈ E . For every E ′ ∈ E let
QE′ ∈ Q(E ′) be a minimal multi-edge configuration such that Q̄E′

E′′,f ≥ QE′

E′′,f

for all E ′′ ∈ EL(E ′) and for all f ∈ F , see Definition 3.22. Now we can
define:

ȳE′,Q :=

{
1 if Q = QE′

0 else
for all E ′ ∈ E , Q ∈ Q(E ′).

Let E ′ ∈ E , E ′′ ∈ EL(E ′), and f ∈ F , then the following holds:∑
`∈LE′ (E′′)

x̄`,f = Q̄E′

E′′,f ≥ QE′

E′′,f =
∑

Q∈Q(E′)

QE′′,f · ȳE′,Q.

Therefore (x̄, ȳ) satisfies (3.19)–(3.23) and (x̄, ȳ) ∈ P
(
QLPE

)
follows.

Lemma 3.23 implies that the integer programs (SLP), (QLP), and
(
QLPE

)
minimize the same objective function over an identical set of points. Further,
we can show that the multi-edge configuration model

(
QLPE

)
provides a

tighter LP relaxation than the standard model and the configuration model.

Theorem 3.24. Let E be a partition of E, i.e., E ⊆ 2E such that for all
E1, E2 ∈ E we have E1∩E2 = ∅ and

⋃
E′∈E E

′ = E holds. The LP relaxation
of P

(
QLPE

)
is tighter than the LP relaxation of P (SLP) and P (QLP)|x,

i.e.,
PLP

(
QLPE

)
|x ⊆ PLP (QLP)|x ⊆ PLP (SLP).
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Proof. Theorem 3.7 gives PLP (QLP)|x ⊆ PLP (SLP). Hence we only need to
show PLP

(
QLPE

)
|x ⊆ PLP (QLP)|x. Let (x, y) ∈ PLP

(
QLPE

)
, we will define

ȳ such that (x, ȳ) ∈ PLP (QLP) to prove the claim. We first need the following
definition. Let E ′ ∈ E and Q ∈ Q(E ′) a minimal multi-edge configuration,
then define for all e ∈ E ′ the configuration q̄(Q, e) by

q̄(Q, e)f :=
∑

E′′∈EL(E′)
e∈E′′

QE′′,f .

It follows directly from the Definition 3.22 that q̄(Q, e) ∈ Q̄(e) holds. Let
q(Q, e) ∈ Q(e) be a minimal configuration of e such that q̄(Q, e)f ≥ q(Q, e)f
for all f ∈ F , see Remark 3.3. Now define ȳ by

ȳe,q :=
∑

Q∈Q(E′)
q=q(Q,e)

yE′,Q for all e ∈ E and let E ′ ∈ E with e ∈ E ′.

We will show now that (x, ȳ) ∈ PLP (QLP) holds. Let e ∈ E be an edge and
let E ′ ∈ E such that e ∈ E ′, then we have for all f ∈ F∑

`∈L(e)

x`,f =
∑

E′′∈EL(E′)
e∈E′′

∑
`∈LE′ (E′′)

x`,f

(3.19)

≥
∑

E′′∈EL(E′)
e∈E′′

∑
Q∈Q(E′)

QE′′,f · yE′,Q

=
∑

Q∈Q(E′)

yE′,Q
∑

E′′∈EL(E′)
e∈E′′

QE′′,f

=
∑

Q∈Q(E′)

yE′,Q · q̄(Q, e)f

≥
∑

Q∈Q(E′)

yE′,Q · q(Q, e)f

=
∑
q∈Q(e)

∑
Q∈Q(E′)
q=q(Q,e)

yE′,Q · q(Q, e)f

=
∑
q∈Q(e)

qf
∑

Q∈Q(E′)
q=q(Q,e)

yE′,Q

=
∑
q∈Q(e)

qf · ye,q

62



3 CONFIGURATION MODEL

and ∑
q∈Q(e)

ȳe,q =
∑
q∈Q(e)

∑
Q∈Q(E′)
q=q(Q,e)

yE′,Q =
∑

Q∈Q(E′)

yE′,Q = 1.

Hence, (x, ȳ) satisfies (3.1)–(3.3) and we get (x, ȳ) ∈ PLP (QLP).

Now, we reconsider the aggregated frequency and aggregated cardinality in-
equalities, presented in Section 2.2.4. We show that they are implied by
PLP

(
QLPE

)
for E ′ ∈ E and give an example to show that they strengthen

the LP relaxation of P (QLP). We recall the following definitions. For a
subset E ′ ⊆ E of edges denote the total demand by F (E ′) :=

∑
e∈E′ F (e)

and the set of lines passing an edge in E ′ by L(E ′) :=
⋃
e∈E′ L(e). For a

line ` ∈ L(E ′) we define by α`E′ := |` ∩ E ′| the number of edges in ` that
are contained in E ′. And define αmax

E′ := max{α`E′ : ` ∈ L(E ′)}. We need to
prove first the following lemma.

Lemma 3.25. Let E be a cover of E, E ′ ∈ E a subset of edges, and Q ∈
Q(E ′) a multi-edge configuration of E ′. Then

∑
E′′∈EL(E′)

∑
f∈F

f ·QE′′,f ≥
⌈
F (E ′)

αmax
E′

⌉

and ∑
E′′∈EL(E′)

∑
f∈F

QE′′,f ≥
⌈
|E ′|
αmax
E′

⌉
holds, if αmax

E′ > 0.

Proof. First, notice that αmax
E′ = max{|E ′′| : E ′′ ∈ EL(E ′)}, cf. Defini-

tion 3.21. From (3.18) we immediately get for all Q ∈ Q(E ′):

F (E ′) ≤
∑
e∈E′

∑
E′′∈EL(E′)

e∈E′

∑
f∈F

f ·QE′′,f

=
∑

E′′∈EL(E′)

|E ′′|
∑
f∈F

f ·QE′′,f

≤
∑

E′′∈EL(E′)

αmax
E′

∑
f∈F

f ·QE′′,f

⇒ F (E ′)

αmax
E′

≤
∑

E′′∈EL(E′)

∑
f∈F

f ·QE′′,f .
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Since the right-hand side of this inequality is always integral we can round
up the left-hand side and obtain:∑

E′′∈EL(E′)

∑
f∈F

f ·QE′′,f ≥
⌈
F (E ′)

αmax
E′

⌉
.

On the other hand, F (e) > 0 for all e ∈ E implies∑
E′′∈EL(E′)

e∈E′

∑
f∈F

QE′′,f ≥ 1.

From this it follows:

|E ′| ≤
∑
e∈E′

∑
E′′∈EL(E′)

e∈E′

∑
f∈F

QE′′,f

=
∑

E′′∈EL(E′)

|E ′′|
∑
f∈F

QE′′,f

≤
∑

E′′∈EL(E′)

αmax
E′

∑
f∈F

QE′′,f

⇒ F (E ′)

αmax
E′

≤
∑

E′′∈EL(E′)

∑
f∈F

QE′′,f .

Since the right-hand side of this inequality is always integral we can round
up the left-hand side and obtain:∑

E′′∈EL(E′)

∑
f∈F

QE′′,f ≥
⌈
|E ′|
αmax
E′

⌉
.

This completes the proof of the lemma.

Now we can show that the aggregated frequency inequalities (2.11) and ag-
gregated cardinality inequalities (2.13) for every set E ′ ∈ E are implied by
the LP relaxation of the multi-edge configuration model.

Proposition 3.26. Let E be a cover of E, E ′ ∈ E a subset of edges. The
aggregated frequency inequality∑

`∈L(E′)

∑
f∈F

f · x`,f ≥
⌈
F (E ′)

αmax
E′

⌉
(3.24)

is valid for PLP
(
QLPE

)
, if αmax

E′ > 0.
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Proof. Let (x, y) ∈ PLP
(
QLPE

)
, then we have with Lemma 3.25:∑

`∈L(E′)

∑
f∈F

f · x`,f =
∑

E′′∈EL(E′)

∑
`∈LE′ (E′′)

∑
f∈F

f · x`,f

=
∑

E′′∈EL(E′)

∑
f∈F

f
∑

`∈LE′ (E′′)

x`,f

(3.19)

≥
∑

E′′∈EL(E′)

∑
f∈F

f
∑

Q∈Q(E′)

QE′′,f · yE′,Q

=
∑

Q∈Q(E′)

yE′,Q
∑

E′′∈EL(E′)

∑
f∈F

f ·QE′′,f

≥
∑

Q∈Q(E′)

yE′,Q

⌈
F (E ′)

αmax
E′

⌉
(3.20)
=

⌈
F (E ′)

αmax
E′

⌉
.

Proposition 3.27. Let E be a cover of E, E ′ ∈ E a subset of edges. The
aggregated cardinality inequality∑

`∈L(E′)

∑
f∈F

x`,f ≥
⌈
|E ′|
αmax
E′

⌉
(3.25)

is valid for PLP
(
QLPE

)
, if αmax

E′ > 0.

Proof. Let (x, y) ∈ PLP
(
QLPE

)
, then we have with Lemma 3.25:∑

`∈L(E′)

∑
f∈F

x`,f =
∑

E′′∈EL(E′)

∑
`∈LE′ (E′′)

∑
f∈F

x`,f =
∑

E′′∈EL(E′)

∑
f∈F

∑
`∈LE′ (E′′)

x`,f

(3.19)

≥
∑

E′′∈EL(E′)

∑
f∈F

∑
Q∈Q(E′)

QE′′,f · yE′,Q

=
∑

Q∈Q(E′)

yE′,Q
∑

E′′∈EL(E′)

∑
f∈F

QE′′,f

≥
∑

Q∈Q(E′)

yE′,Q

⌈
|E ′|
αmax
E′

⌉
(3.20)
=

⌈
|E ′|
αmax
E′

⌉
.
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`1

`3

`2

F = {1}
F (e) = 1 ∀ e ∈ E

`3

x̄`1,5 = 1
2

x̄`2,5 = 1
2

x̄`3,5 = 1
2

Figure 3.3: Left : An instance of the line planning problem, where all edges have
frequency demand 7. Right : A fractional solution.

We show in Example 3.7 that the aggregated frequency inequalities and ag-
gregated cardinality inequalities improve the LP relaxation of the configura-
tion model.

Example 3.7. Consider the line planning problem instance depicted in Fig-
ure 3.3. When we define E ′ := {e1, e2, e3}, the corresponding aggregated
frequency inequality (3.24) and the aggregated cardinality inequality (3.25)
are equivalent in this case and read as follows:

x`1,1 + x`2,1 + x`3,1 ≥ 2. (3.26)

For every edge in this instance, the set of minimal configurations contains
only the configuration q = (1). Inequality (3.26) is violated by (x̄, ȳ) ∈
PLP (QLP), where x̄`1,5 = x̄`2,1 = x̄`3,1 = 1

2
and x̄`,f = 0 otherwise and

ye,q = 1 for all e ∈ E.
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Chapter 4

Computational Study

In this chapter we report about our computational experiments. In order
to compare the configuration model (QLP) with the standard model (SLP),
we apply them to a set of test instances. For a deeper understanding of
the respective advantages of these two models we compare them with two
additional models (SLP+) and (SLPQ). Model (SLP+) is obtained by adding
the set cover, symmetric band, and MIR inequalities for all edges to the
standard model, see Sections 2.2.2 and 2.2.3. To obtain MIR inequalities we
divide the frequency demand constraints by all f ∈ F . Model (SLPQ) has
been developed to cut down the number of configuration variables, which can
explode for large instances. We order the edges in non-decreasing order with
respect to the number of minimal configurations and iteratively generate the
configuration variables and their associated constraints as long as the number
of generated configuration variables does not exceed 25% of the number of
variables for lines and frequencies. For the remaining edges we add the set
cover, symmetric band, and MIR inequalities.

The test instances are described in Section 4.1. We apply several techniques
to accelerate the solving process. In Section 4.2 we present preprocessing
routines that aim at reducing the problem size and report on computational
studies to measure their impact. We also implement primal heuristics, which
are described in Section 4.3. The results of our final computations are pre-
sented and discussed in Section 4.4.

All computations were performed on an Intel(R) Xeon(R) CPU E3-1290, 3.7
GHz computer (in 64 bit mode) with 8 MB cache, running Linux and 16 GB
of memory. We used the constraint integer programming framework SCIP
version 3.1.0 [27] with Cplex 12.6 as LP-solver to solve all integer programs.
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4.1. TEST INSTANCES

4.1 Test Instances

We use the same test instances as in [5]. Our test set consists of five trans-
portation networks that we denote as China, Dutch, SiouxFalls, Chicago,
and Potsdam. The instances SiouxFalls and Chicago use the graph and the
demand of the street network with the same name from the Transportation
Network Test Problems Library of Bar-Gera [31]. Instances China, Dutch,
and Potsdam correspond to public transportation networks. The Dutch net-
work was introduced by Bussieck in the context of line planning [9]. The
China instance is artificial; we constructed it as a showcase example, con-
necting the twenty biggest cities in China by the 2009 high speed train net-
work. The Potsdam instances are real multi-modal public transportation
networks for 1998 and 2009. We constructed a line pool by generating for
each pair of terminals all lines that satisfy a certain length restriction. To
be more precise, the number of edges of a line between two terminals s and
t must be less than or equal to k times the number of edges of the shortest
path between s and t. For each network, we increased k in three steps to
produce three instances with different line pool sizes. For Dutch and China
instance number 3 contains all lines, i.e., all paths that are possible in the
network. We omit the Potsdam1998a instance, since its line pool of size 207
is to small to generate a feasible solution. The Potsdam2010 instance arose
within a project with the Verkehr in Potsdam GmbH (ViP) [29] to optimize
the 2010 line plan [3]. The line pool contains all possible lines that fulfill the
ViP requirements.

For all instances the lines can be operated at frequencies 3, 6, 9, 18, 36,
and 72. This corresponds to a cycle time of 60, 30, 20, 10, 5, and 2.5
minutes in a time horizon of 3 hours. We set the line cost to be proportional
to the line length and the frequency plus a fixed cost term that is used
to reduce the number of lines. The costs and the capacities of the lines
depend on the mode of transportation (e.g., bus, streetcar). The travelling
paths for all passengers are generated as shortest path in the network. The
transportation demand for all edges is then determined for each edge. In
the instances each edge is associated with exactly one mode, i.e., all lines on
an edge have the same capacity, see Karbstein [20] for more details. Hence,
we can express the transportation demands in terms of frequency demands.
Table 4.1 lists some statistics about the test instances. The second to fourth
columns give the number of edges, nodes and lines in the transportation
network, respectively. The last column lists the total number of minimal
configurations of all edges. For each instance, the total CPU time to generate
the set of minimal configurations with Algorithm 1, given in Chapter 3, for
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Table 4.1: Statistics on the line planning instances. The columns list the
instance name, the number of edges and the number of nodes of the trans-
portation network, the number of lines and the total number of minimal
configurations of all edges.

name |E| |V | |L|
∑

e∈E |Q(e)|

China1 27 20 472 38 403
China2 27 20 4 869 38 405
China3 27 20 19 353 38 405
Dutch1 30 23 402 240
Dutch2 30 23 2 679 240
Dutch3 30 23 7 302 240
SiouxFalls1 37 24 865 748 652
SiouxFalls2 37 24 9 396 846 329
SiouxFalls3 37 24 15 364 846 329
Potsdam1998b 351 325 1 905 18 383
Potsdam1998c 351 325 4 340 18 383
Potsdam2010 517 486 3 432 1 074
Chicago 1 028 523 23 109 2 370 726

all edges is in total significantly less than one second and will be disregarded
in the following. In the following section we describe how the size of the
problem in terms of number of variables and constraints can be reduced.

4.2 Preprocessing

In this section we present several problem specific presolving techniques that
aim at reducing the size of the initial problem in terms of variables and
constraints. We transform the problem instances by removing redundant
constraints and fixing variables. In order to measure the effect of our pre-
solving routines we compare the size, in terms of number of variables and
constraints, of the initial instances with the size of the transformed instances
after presolving of SCIP. A description of the general purpose presolving
algorithms implemented in SCIP can be found in [1].

The resulting numbers of variables and constraints for the different models
and instances are displayed in Table 4.2. For most instances the impact of
our preprocessing techniques is only small or non-existent. For the configu-
ration models (SLPQ) and (QLP), however, the number of constraints and

69



70 4 COMPUTATIONAL STUDY

Table 4.2: Statistics on the preprocessing on the line planning instances. The
columns list the instance and the number of constraints and variables after
presolving of SCIP for the four models. The original instances, at which we
did not apply our preprocessing techniques, are marked with asterisks (∗).
The cases when the number of variables or constraints of the transformed
instance compared to the respective number of the original instance is de-
creased by more than 1%, 10% or more than 30%, are higlighted in green,
orange, and red, respectively.

(SLP) (SLP+) (SLPQ) (QLP)
name #vars #cons #vars #cons #vars #cons #vars #cons

China1∗ 2 793 499 2 793 613 3 771 656 41 235 661
China1 2 793 499 2 793 613 3 732 656 41 196 661

China2∗ 29 170 4 896 29 170 5 008 36 801 5 058 67 619 5 058
China2 29 170 4 896 29 170 5 008 36 757 5 058 67 575 5 058

China3∗ 116 074 19 380 116 074 19 492 145 780 19 542 154 523 19 542
China3 116 074 19 380 116 074 19 492 145 736 19 542 154 479 19 542

Dutch1∗ 1 544 424 1 544 481 2 652 612 2 652 612
Dutch1 1 544 424 1 544 481 1760 580 1 760 580

Dutch2∗ 11 779 2 701 11 779 2 758 16 314 2 889 16 314 2 889
Dutch2 11 779 2 701 11 779 2 758 11997 2 859 11 997 2 859

Dutch3∗ 33 988 7 324 33 988 7 381 44 052 7 512 44 052 7 512
Dutch3 33 988 7 324 33 988 7 381 34 206 7 482 34 206 7 482

SiouxFalls1∗ 5 188 902 5 188 1 112 6 682 1 117 753 842 1 124
SiouxFalls1 5 188 902 5 188 1 112 6 680 1 117 753 840 1 124

SiouxFalls2∗ 56 374 9 433 56 374 9 643 73 533 9 648 902 705 9 655
SiouxFalls2 56 374 9 433 56 374 9 643 73 531 9 648 902 703 9 655

SiouxFalls3∗ 92 182 15 401 92 182 15 611 117 713 15 616 938 513 15 623
SiouxFalls3 92 182 15 401 92 182 15 611 117 711 15 616 938 511 15 623

Potsdam1998b∗ 10 754 1 980 10 763 2 609 13 989 3 960 38 861 4 120
Potsdam1998b 10 732 1 930 10 750 2 301 13 800 2 838 29 363 2 842

Potsdam1998c∗ 25 295 4 413 25 304 5 042 32 324 6 501 53 471 6 555
Potsdam1998c 25 272 4 363 25 290 4 729 32 327 5 274 43 908 5 276

Potsdam2010∗ 8 719 2 926 8 926 3 391 22 561 5 557 22 561 5 557
Potsdam2010 8 714 2 920 8 927 3 080 10 360 3 923 10 360 3 923

Chicago∗ 131 915 24 067 131 915 27 826 173 431 30 239 2 509 855 30 295
Chicago 131 910 24 053 131 910 27 773 165 194 30 117 2 502 699 30 173
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variables are significantly lower for some instances when we apply our pre-
processing techniques. Especially on the real world instances Potsdam1998b,
Potsdam1998c and Potsdam2010 our techniques caused a further reduction
of the number of constraints by more than 18% for (SLPQ) and (QLP). In the
instance Potsdam2010 the number of variables for the models (SLPQ) and
(QLP) were further reduced by more than 50%. The applied techniques to
reduce the number of constraints and variables are presented in the following.

4.2.1 Reducing the Number of Constraints

First, we focus on decreasing the number of constraints by reducing the size
of the given transportation network. Assume the network G(V,E) contains
two edges e1, e2 ∈ E, such that every line covering e2 also covers e1 and
the frequency demand of e2 is not less than the frequency demand of e1,
i.e., L(e2) ⊆ L(e1) and F (e2) ≥ F (e1). Then, any line plan that fulfills
the frequency demand requirement (1.1) for e2 also covers the frequency
demand of e1 and we call the edge e1 redundant, cf. Figure 4.1. Hence, the
frequency demand constraints (2.1) and the coupling (3.1) and configuration
assignment constraints (3.2) are redundant for the description of all feasible
solutions and can be removed from the respective model for every redundant
edge.

We identify redundant edges in two steps. In the first step we iteratively
consider all nodes v ∈ V with |δ(v)| = 2. If no line terminates at v, then
we can compose the incident edges e1 and e2 of v to a single edge e1,2 with
frequency demand F (e1,2) = max{F (e1), F (e2)}, see Figure 4.2a. This re-
duction was proposed by Bussieck [10]. If only lines via e2 terminate at v
and F (e2) ≥ F (e1), then e2 is redundant and we compose the two edges to
e1,2 with F (e1,2) = F (e2) and L(e1,2) = L(e2), cf. Figure 4.2b. In a second
step we iterate over all nodes of degree higher than 2 and pairwise compare
all outgoing edges to identify redundant ones. Since the maximum degree
of our test instances is bounded by 9, this procedure takes reasonably short
computation time.

e1
e2

v F (e2) ≥ F (e1)

Figure 4.1: The edge e1 is redundant since L(e2) ⊆ L(e1) and F (e2) ≥ F (e1).
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e1 e2

u v w
e1,2

u w

(a) If no line terminates at v, the edges e1, e2 can be composed
to e1,2 with F (e1,2) = max{F (e1), F (e2)}.

e1 e2

u v w
e1,2

u w

(b) If no line via e2 terminates at v and F (e2) ≥ F (e1), the edges
e1, e2 can be composed to e1,2 with F (e1,2) = F (e2) and L(e1,2) =
L(e2).

Figure 4.2: Composition of edges in two line problems.

4.2.2 Reducing the Number of Variables

We next focus on deleting variables, that are equal to zero in a cost optimal
solution or even in any feasible solution.

Deleting and Fixing Line Variables. In order to describe our variable
deleting routine for the line variables we need the following frequency bound
definitions.

Definition 4.1. For an edge e ∈ E we denote by

F r(e) := max{0, F (e)− (|L(e)| − 1) · fm}

the residual demand that results from operating all lines except one at the
highest frequency. For a line ` ∈ L we denote by

fmin
` := max{F r(e) : e ∈ `}

the highest residual demand over all edges in ` and by

fmax
` := min{f ∈ F ∪ {∞} : f ≥ F (e)∀ e ∈ `}

the smallest frequency that suffices to cover the frequency demand of all
edges in `.

We can interpret F r(e) for an edge e ∈ E as follows. If all lines except
one line in L(e) are operated at the highest frequency fm, then F r(e) is the
residual frequency demand that needs to be covered by the remaining line.
This implies that every line containing e has to be operated at a frequency
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greater than or equal to F r(e) in any feasible solution. Consequently, every
line ` ∈ L has to be operated at a frequency greater than or equal to fmin

`

in any feasible line plan. Thus, we can fix all variables x`,f with f < fmin
` to

zero. An example will be given later in this section.
Similarly, let ` ∈ L be a line such that fmax

` < fm. I.e., the frequency
fmax
` suffices to cover the demand of all edges contained in `. Since the cost

functions of the lines are proportional to the frequencies, the line ` is not
operated at a frequency higher than fmax

` in any optimal solution and we can
delete the corresponding x variables, i.e., fix them to zero.
Finally, if there is a line ` ∈ L such that |{f ∈ F : fmin

` ≤ f ≤ fmax
` }| = 1

we remove the corresponding frequency assignment constraint (2.2), since it
is redundant. If additionally fmin

` > 0 holds for this line, we can fix the
remaining variable to one.

Deleting and Fixing Configuration Variables. We introduce some fur-
ther notation before describing which configuration variables can be fixed to
zero.

Definition 4.2. For an edge e ∈ E and frequency f ∈ F we denote by

qfeas
e,f := |L(e)| − |{` ∈ L(e) : fmin

` > f}|

the maximum number of lines that can be operated at f on e in a feasible
line plan. And by

qopt
e,f :=

{
0 if f > fmax

` ∀ ` ∈ L(e)

|L(e)| else.

we indicate whether lines can be operated at frequency f in an optimal line
plan. For notational convenience define

qmax
e,f := min

{
qfeas
e,f , q

opt
e,f

}
for all e ∈ E and f ∈ F .

Let e ∈ E and f ∈ F , then we know by the observations in the previous
paragraph that at least |{` ∈ L(e) : fmin

` > f}| lines containing e have to be
operated at a frequency higher than f . This implies that at most qfeas

e,f lines
on e can be operated at frequency f in any feasible line plan. Hence, we can
conclude that the left-hand side of the frequency demand constraint∑

`∈L(e)

x`,f ≥
∑
q∈Q(e)

qf · ye,q
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is less than or equal to qfeas
e,f in any feasible solution. This in turn means, that

any minimal configuration q ∈ Q(e) with qf > qfeas
e,f cannot be chosen for e

in any feasible solution of the configuration model and the corresponding y
variable can be fixed to zero.
The argumentation in the previous paragraph also implies, that no line on e
is operated at a frequency higher than max{fmax

` : ` ∈ L(e)} in any optimal
solution. Hence, every variable ye,q for a configuration q ∈ Q(e) is equal to
zero in any optimal solution, if qf > qopt

e,f for some f ∈ F . We can fix these
variables to zero as well.
Finally, if there is an edge e ∈ E such that |{q ∈ Q(e) : qf ≤ qmax

e,f ∀ f ∈ F}| =
1, we fix the corresponding y variable to 1 and remove the corresponding
configuration assignment constraint 3.2.

Example 4.1. Consider the small line planning problem given in Figure 4.3.
Since the edge e2 has a frequency demand of 9, the lines `1 and `2 both have to
be operated at frequency 5 or higher. Hence, the minimal configuration q̃ =
(3, 0, 0) of e1 cannot be chosen in any feasible solution. These observations
are reflected by the values fmin

`1
= fmin

`2
= 2, qfeas

e1,1
= qmax

e1,1
= 1, and qmax

e2,1
=

qfeas
e2,1

= 0. The variables x`1,1, x`2,1, and ye1,q̃ can be fixed to zero.
For all edges contained in line `3 frequency 5 or higher suffices to cover their
demand. Hence, assuming the operational cost of this line is proportional to
the frequency, `3 is not operated at frequency 7 and the minimal configuration
q̂ = (0, 0, 1) of e3 is not chosen in any optimal solution. This observation is
reflected by the values fmax

`3
= 5 and qopt

e3,7
= qmax

e3,7
= 0. The variables x`3,7

and ye3,q̂ can be fixed to zero.

`1 = {e1, e2}
`2 = {e1, e2}
`3 = {e1, e3}

e1

e2

e3

v

F = {1, 5, 7}
e e1 e2 e3 ` `1 `2 `3

F (e) 3 9 4 fmin
` 2 2 0

|L(e)| 3 2 1 fmax
` ∞ ∞ 5

F r(e) 0 2 0

qmax
e,1 1 0 1

qmax
e,5 3 2 1

qmax
e,7 3 2 0

Figure 4.3: An instance of the line planning problem. Left : Transportation net-
work consisting of three edges and three lines. Right : The given set of frequencies
and frequency demands, and the values from Definition 4.1 and Definition 4.2 for
all edges and lines, respectively.
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4.3 Primal Heuristics

Given a mixed integer program, a primal heuristic is an algorithm that tries
to find a feasible solution in a reasonably short amount of time. General-
purpose primal heuristics play an indispensable part of state-of-the-art MIP
solvers. For an brief overview about the primal heuristics implemented in
SCIP see Achterberg [1]. A detailed description can be found in Berthold [2].

In this section we will introduce three primal heuristics for the line planning
problem. For all these heuristics we take advantage of problem knowledge in
order to transform a fractional solution into a feasible integer solution. Our
computational studies, which can be found in the next section, show that
they usefully complement the general-purpose heuristics of SCIP. We first
give basic versions of the heuristics, that provide solutions for (SLP) and
(SLP+), and describe how they can be adapted for the configuration models
(QLP) and (SLPQ) thereafter.

Rounding Heuristic

A rounding heuristic takes an LP-feasible solution and iteratively rounds all
integer variables with a fractional value in order to obtain a feasible solution.
The main idea of the rounding heuristic roundResorted, described in this
section, is a problem specific strategy to choose the next variables to round.

The roundResorted heuristic takes as input an LP-feasible solution of (SLP)
or (SLP+). In the initialization phase the variables of all lines with already
integral values are fixed and for each edge the residual frequency demand is
initialized, i.e., the frequency demand reduced by the frequencies provided by
all already fixed lines. In the rounding phase we iteratively fix the variables
for all lines with fractional values. In each iteration we choose among the
remaining fractional lines the line with the highest total residual frequency
demand of the edges contained in the line. We break ties by taking a line with
lowest operational costs. The chosen line is fixed to the lowest frequency that
either covers the residual frequency demand of all edges contained in the line
or is at least as high as the total frequency assigned to the line in the given
LP solution. Note that there always exists such a frequency, since the total
frequency assigned to the line in the given solution cannot be greater than
the highest frequency. In the end of each iteration the residual demands of all
edges in the fixed line are updated. The heuristic is depicted in Algorithm 2.
We only assign to a line a frequency less than the total frequency in the
given LP solution, if this frequency suffices to covers the residual demand of
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Algorithm 2: Primal Heuristic: roundResorted

Input : LP solution x′ of (SLP) or (SLP+).
Output: IP solution x∗ of (SLP) or (SLP+) resp.

// initialization

1 L′ := {` ∈ L : ∃f ∈ F such that x′`,f ∈ (0, 1)}
2 L∗ := {` ∈ L : ∀ f ∈ F it holds x′`,f ∈ {0, 1} }
3 x∗`,f := x′`,f for all ` ∈ L∗, f ∈ F
4 w(e) := max

{
0, F (e)−

∑
`∈L∗
e∈`

∑
f∈F f · x∗`,f

}
// residual demand

// round all fractional lines

5 while L′ 6= ∅ do
6 `′ := arg max

{∑
e∈`w(e) : ` ∈ L′

}
7 f ′ := min

{
f ∈ F ∪ {0} : f ≥ maxe∈`′ w(e) or f ≥

∑
f∈F f · x′`′,f

}
8 x∗`′,f ′ := 1 and x∗`′,f := 0 for all f ∈ F \ {f ′}

// update

9 w(e) := max{0, w(e)− f ′} for all e ∈ `′
10 L′ := L′ \ {`′}
11 end

all edges contained in the line. Hence, the computed solution is feasible for
(SLP) and (SLP+).

The heuristic roundResorted is based on an adaption of the heuristic round-
Sorted in Karbstein [20, Section 8.2] to our problem setting. In roundSorted
the lines are sorted only once before rounding all fractional lines. More
specifically, the lines are sorted in non-increasing order of the sums of the
pseudocosts of their variables.

Diving Heuristics

A diving heuristic also takes an LP-feasible solution as input to find a feasible
integer solution. It iteratively bounds or fixes a subset of variables and
resolves the LP, see Berthold [2]. The heuristic either terminates with a
feasible solution or stops if the modified LP is infeasible or has an objective
value not better than the best known IP solution.

The first diving heuristic we present for the models (SLP) and (SLP+) differs
from roundResorted only in the rounding iterations. As in roundResorted,
in the beginning of each iteration we fix the variables of the line, which
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Algorithm 3: Primal Heuristic: roundReopt

Input : LP solution x′ of (SLP) or (SLP+).
Output: IP solution x∗ of (SLP) or (SLP+) resp.

// initialization

1 L′ := {` ∈ L : ∃f ∈ F such that x′`,f ∈ (0, 1)}
2 L∗ := {` ∈ L : ∀ f ∈ F it holds x′`,f ∈ {0, 1} }
3 x∗`,f := x′`,f for all ` ∈ L∗, f ∈ F
4 w(e) := max

{
0, F (e)−

∑
`∈L∗
e∈`

∑
f∈F f · x∗`,f

}
// residual demand

// round all fractional lines

5 while L′ 6= ∅ do
6 `′ := arg max

{∑
e∈`w(e) : ` ∈ L′

}
7 f ′ := min

{
f ∈ F : f ≥

∑
f∈F f · x′`′,f

}
8 x∗`′,f ′ := 1 and x∗`′,f := 0 for all f ∈ F \ {f ′}

// update

9 x′ := solution for (by x∗) modified LP
10 L′ := {` ∈ L : ∃f ∈ F such that x′`,f ∈ (0, 1)}
11 L∗ := {` ∈ L : ∀ f ∈ F it holds x′`,f ∈ {0, 1} }
12 x∗`,f := x′`,f for all ` ∈ L∗, f ∈ F
13 w(e) := max

{
0, F (e)−

∑
`∈L∗
e∈`

∑
f∈F f · x∗`,f

}
14 end

edges have the highest total residual frequency demand among all lines with
fractional values. It then solves the modified LP relaxation and fixes all lines
with integral values. The heuristic is depicted in detail in Algorithm 3 and
is called roundReopt. Note that

∑
f∈F f · x′`′,f ≤ maxe∈`′ w(e) holds for all

`′ ∈ L′ in every iteration, since the modified LP is solved after each fixing:
Compare line 7 in Algorithm 3 with line 7 in Algorithm 2.

The second diving heuristic we present differs from roundReopt only in the
choice of lines we fix in the initialization and in each rounding iteration. We
fix only variables of lines, which have one variable equal to 1: We fix all
variables of lines in L∗ := {` ∈ L : ∃f ∈ F such that x′`,f = 1 }, cf. line 2
and line 11 in Algorithm 3. We call this heuristic roundReopt2.

Adjustments for Configuration Models. We simply extend the three
heuristics to make them applicable to the configuration models (QLP) and
(SLPQ). After setting the values x∗ for all line variables we also have to fix
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the configuration variables for each configuration edge. For an edge e ∈ E
we consider the configuration q∗ ∈ Q̄(e) that is given by the values x∗ of the
line variables on this edge, i.e., q∗f =

∑
`∈L(e) x

∗
`,f for all f ∈ F . We simply

choose among the minimal configurations Q(e) a configuration that fits the
bounds given by q∗, that is we choose a configuration q̃ ∈ {q ∈ Q(e) : qf ≤
q∗f for all f ∈ F} and set y∗e,q̃ = 1 and y∗e,q = 0 for all q ∈ Q(e) \ {q̃}. Note
that such a minimal configuration q̃ always exists (see Remark 3.3) and the
choice of q̃ does not influence the objective value of the resulting solution
(x∗, y∗) to (QLP) and (SLPQ) respectively.

4.4 Computations

In the following we report on our computational results. We solved all in-
stances using the constraint integer programming framework SCIP version
3.1.0 [27] with Cplex 12.6 as LP-solver. We used the default settings of
SCIP apart from the time limit, which we set to one hour, and the primal
heuristic “shiftandpropagate”, which we turned off. We implemented the
preprocessing techniques as described in Section 4.2.

First, we report on our computational studies regarding the primal heuris-
tics, which we presented in Section 4.3. Some statistics on our computational
experiments for the presented heuristics are displayed in Table 4.6 – Table 4.5
for the different models, respectively. The tables list the time in seconds and
the integrality gap after solving the root node with SCIP. The second column
lists the respective values when only SCIP’s default heuristics are enabled,
the third column when additionally the presented two diving heuristics are
enabled. The next three columns list the respective values when we enable
only each of the three presented heuristics. The last row in each table lists the
arithmetic average of the integrality gap over all instances. When comparing
the three heuristics, the computations show that the heuristic roundReopt2
finds the best solutions for the China and Dutch instances while the heuristic
roundReopt has the best average performance for the other instances. For the
heuristic roundResorted there are only very few instances for which it finds
better solutions than one of the diving heuristics. The computations also
reveal that we can find on average the best solutions when the diving heuris-
tics are applied in addition to the SCIP default heuristics. The integrality
gap is less only for three instances for model (SLP+) and for the Chicago
instance for model (QLP) if only the default heuristics are enabled. This
can happen because of predefined execution characteristics of some of the
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default heuristics of SCIP; they may be turned on or off depending on the
number of already found primal solutions. When the heuristic roundResorted
is additionally applied neither the integrality gap nor the solving time is im-
proved, hence we disabled this heuristic. Further computations showed that
on average we obtain the best results when applying the diving heuristics
roundReopt and roundReopt2 in the root node for all models. We will use this
strategy in the following.

Now, we will discuss our computational results for solving all thirteen in-
stances with the four models. The results are displayed in Table 4.8. The
computations confirm that the configuration model (QLP) is superior to the
standard model (SLP); except for China1, Potsdam2010, and Chicago, the
configuration model finds a better solution within one hour or has a sig-
nificantly shorter solving time, when both models find an optimal solution.
Note that all models solve the instance Potsdam2010 within a few seconds
and that the number of variables of Chicago is more than 18 times higher
for the configuration model than the number of variables for the standard
model, see Table 4.2. The configuration model has a better dual bound after
solving the root node than the standard model for all instances except Pots-
dam1998b and Potsdam1998c. However, Potsdam1998c can only be solved
to optimality with the models (SLPQ) and (QLP). And all models find the
optimal solution for Potsdam1998b within one hour, but optimality can only
be proven by (QLP) and (SLPQ). The computations also show that the set
cover, symmetric band, and MIR cuts indeed improve the standard model:
model (SLP+) performance better than model (SLP) on all instances except
Dutch3 and Potsdam2010. For the Dutch instances and SiouxFalls1, which
can be solved to optimality by all models, the solving time for (QLP) and
(SLPQ) is much shorter than for (SLP) and (SLP+). In Table 4.3a some
statistics on the computational results over all instances are summarized.
Comparing all four models we see that (SLPQ) performances on average best
with respect to solving time, integrality gap, primal bound and dual bound;
but the difference in the average solving time between (SLP+) and (SLPQ)
is more significant than the difference in the average integrality gap. To get
a better understanding of the strength of these models we divide the test
instances in two groups: Group TN contains all instances that correspond to
a public transportation network, i.e., China, Dutch, and Potsdam, and group
SN contains all instances corresponding to a street network, i.e., SiouxFalls
and Chicago. Some statistics on the computational results regarding these
groups are summarized in Table 4.3b and Table 4.3c, respectively. (SLPQ)
clearly outperforms all other models with respect to the instances in the
group TN, while (SLP+) seems to be better suited for the instances in SN.
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Table 4.3: Statistics on the computations for models (SLP), (SLP+), (SLPQ), and
(QLP). The rows of the tables list the average computation time, average integrality gap,
average primal bound, and average dual bound over all instances in the respective group;
the best value in each row is highlighted in blue; 1geometric mean, 2arithmetic mean.

(a) Statistics on all instances.

(SLP) (SLP+) (SLPQ) (QLP)

time1 2314.12 2359.77 2083.04 2145.75
gap1 0.98 0.69 0.60 0.64
primal2 76781.91 76634.17 76474.84 76594.26
dual2 76055.34 76076.51 76110.95 76107.78

(b) Statistics on the group TN, i.e., China, Dutch, and Potsdam.

(SLP) (SLP+) (SLPQ) (QLP)

time1 607.10 725.44 340.24 351.04
gap1 0.41 0.31 0.14 0.19
primal2 107790.08 107602.16 107317.00 107486.26
dual2 106843.17 106868.30 106919.42 106917.89

(c) Statistics on the group SN, i.e., SiouxFalls and Chicago.

(SLP) (SLP+) (SLPQ) (QLP)

time1 2101.08 1956.05 1624.12 1884.99
gap1 3.30 1.96 2.40 2.34
primal2 7013.53 6956.20 7079.98 7087.26
dual2 3276.03 3294.62 3293.96 3292.98

The average solving time for (SLPQ) and also for (QLP) is less than half the
average solving time for (SLP+) on the instances in TN. The better perfor-
mance of (SLPQ) and (QLP) on group TN can not solely be explained by the
larger size of the instances in SN; the number of variables and constraints
for China3 is greater than for SiouxFalls3 and SiouxFalls2, see Table 4.2, but
the solution computed by (SLPQ) for China3 has a much better integrality
gap than the solution computed by (SLP+).

The deviation of computational results from the results published in [5] is
due to the improved performance of the newer SCIP version as well as to the
use of enhanced preprocessing techniques and the two new diving heuristics.
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Table 4.4: Statistics on the heuristics for the model (SLPQ). The smallest inte-
grality gap is highlighted in blue in each row.

name SCIP + div. heur. roundReopt roundReopt2 roundResorted
time gap time gap time gap time gap time gap

China1 8s 7.14 % 8s 1.49 % 7s 11.55 % 7s 4.73 % 7s 17.96 %
China2 61s 15.64 % 65s 3.61 % 55s 3.65 % 61s 3.61 % 56s 17.57 %
China3 276s 21.47 % 242s 1.75 % 212s 15.79 % 211s 1.75 % 262s 23.67 %
Dutch1 <1s 7.23 % <1s 1.45 % <1s 4.34 % <1s 1.45 % <1s 11.14 %
Dutch2 4s 10.55 % 4s 1.31 % 3s 6.44 % 4s 1.31 % 3s 11.58 %
Dutch3 9s 15.53 % 9s 1.16 % 6s 3.04 % 8s 1.16 % 8s 24.43 %
SiouxFalls1 6s 2.81 % 6s 2.81 % 4s 27.96 % 4s 61.55 % 4s 45.33 %
SiouxFalls2 62s 10.59 % 90s 10.59 % 59s 58.71 % 47s 226.90 % 59s 83.62 %
SiouxFalls3 177s 12.55 % 260s 12.55 % 171s 26.48 % 133s 265.44 % 171s 56.54 %
Potsdam1998b 27s 7.52 % 28s 6.58 % 37s 9.75 % 28s 10.71 % 26s 20.64 %
Potsdam1998c 98s 5.59 % 90s 3.98 % 79s 7.01 % 88s 8.97 % 96s 11.13 %
Potsdam2010 2s 0.22 % 2s 0.22 % 2s 1.90 % 2s 2.35 % 2s 0.09 %
Chicago 475s 6.45 % 770s 6.03 % 286s 24.97 % 589s 43.06 % 331s 48.00 %

average gap 9.48 % 4.12 % 15.51 % 48.69 % 28.59 %

Table 4.5: Statistics on the heuristics for the model (QLP). The smallest inte-
grality gap is highlighted in blue in each row.

name SCIP + div. heur. roundReopt roundReopt2 roundResorted
time gap time gap time gap time gap time gap

China1 21s 10.82 % 19s 2.10 % 18s 7.67 % 16s 2.10 % 18s 14.74 %
China2 37s 19.22 % 40s 2.25 % 27s 9.70 % 36s 2.25 % 33s 16.48 %
China3 192s 28.72 % 147s 2.46 % 180s 10.57 % 137s 2.46 % 180s 26.57 %
Dutch1 <1s 7.23 % <1s 1.45 % <1s 4.34 % <1s 1.45 % <1s 11.14 %
Dutch2 4s 10.55 % 4s 1.31 % 3s 6.44 % 4s 1.31 % 3s 11.58 %
Dutch3 9s 15.53 % 9s 1.16 % 6s 3.04 % 9s 1.16 % 8s 24.43 %
SiouxFalls1 62s 2.82 % 76s 2.82 % 64s 40.71 % 72s 95.36 % 58s 40.99 %
SiouxFalls2 110s 10.28 % 140s 10.28 % 102s 58.92 % 133s 154.45 % 98s 65.90 %
SiouxFalls3 115s 12.51 % 126s 12.51 % 109s 77.08 % 164s 221.79 % 100s 62.24 %
Potsdam1998b 41s 22.07 % 33s 7.19 % 39s 7.35 % 37s 3.92 % 33s 23.69 %
Potsdam1998c 53s 10.74 % 55s 5.26 % 52s 6.71 % 46s 6.40 % 47s 12.82 %
Potsdam2010 2s 0.22 % 2s 0.22 % 2s 1.90 % 2s 2.35 % 2s 0.09 %
Chicago 1925s 7.62 % 1h 24.10 % 1475s 21.16 % 1h 59.59 % 1701s 51.35 %

average gap 12.18 % 5.62 % 19.66 % 42.66 % 27.85 %
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Table 4.6: Statistics on the heuristics for the model (SLP). The smallest integral-
ity gap is highlighted in blue in each row.

name SCIP + div. heur. roundReopt roundReopt2 roundResorted
time gap time gap time gap time gap time gap

China1 3s 5.96 % 4s 3.90 % 3s 8.25 % 3s 3.90 % 3s 10.70 %
China2 22s 20.60 % 19s 2.09 % 18s 10.74 % 18s 2.09 % 17s 19.20 %
China3 491s 21.68 % 416s 2.03 % 414s 10.86 % 410s 2.03 % 484s 30.92 %
Dutch1 1s 7.24 % 1s 0.78 % 1s 1.80 % 1s 0.78 % 1s 1.80 %
Dutch2 5s 9.37 % 4s 1.32 % 4s 8.17 % 4s 1.32 % 4s 11.25 %
Dutch3 50s 16.73 % 43s 1.16 % 44s 5.09 % 42s 1.16 % 44s 11.25 %
SiouxFalls1 2s 2.67 % 2s 2.67 % 2s 19.33 % 2s 107.71 % 2s 36.44 %
SiouxFalls2 90s 11.33 % 94s 11.33 % 84s 41.23 % 88s 186.73 % 84s 66.24 %
SiouxFalls3 528s 13.89 % 537s 13.89 % 507s 57.61 % 515s 240.61 % 514s 71.79 %
Potsdam1998b 16s 3.43 % 20s 1.52 % 18s 8.43 % 18s 8.72 % 18s 14.44 %
Potsdam1998c 61s 3.76 % 64s 2.46 % 59s 7.19 % 61s 7.41 % 59s 12.04 %
Potsdam2010 1s 0.81 % 1s 0.81 % 1s 2.06 % 1s 1.86 % 1s 4.65 %
Chicago 247s 5.48 % 262s 4.44 % 182s 23.51 % 230s 61.46 % 177s 51.61 %

average gap 9.46 % 3.72 % 15.71 % 48.14 % 26.33 %

Table 4.7: Statistics on the heuristics for the model (SLP+). The smallest inte-
grality gap is highlighted in blue in each row.

name SCIP + div. heur. roundReopt roundReopt2 roundResorted
time gap time gap time gap time gap time gap

China1 13s 7.45 % 12s 1.75 % 9s 7.82 % 11s 1.75 % 11s 18.51 %
China2 51s 10.83 % 39s 2.09 % 39s 11.31 % 36s 2.09 % 39s 22.16 %
China3 643s 13.06 % 640s 3.01 % 621s 12.30 % 624s 3.01 % 624s 24.75 %
Dutch1 1s 5.20 % 1s 1.08 % 1s 1.75 % 1s 1.08 % 1s 14.03 %
Dutch2 8s 15.71 % 7s 1.33 % 7s 4.24 % 6s 1.33 % 7s 25.98 %
Dutch3 58s 14.71 % 65s 1.19 % 47s 9.23 % 64s 1.19 % 47s 22.93 %
SiouxFalls1 9s 2.59 % 7s 2.63 % 7s 7.01 % 7s 57.05 % 9s 23.87 %
SiouxFalls2 82s 10.63 % 85s 10.63 % 51s 46.69 % 53s 233.09 % 51s 76.70 %
SiouxFalls3 266s 12.38 % 272s 12.38 % 157s 41.37 % 162s 302.02 % 156s 63.51 %
Potsdam1998b 47s 3.94 % 48s 1.31 % 44s 6.76 % 42s 9.14 % 42s 17.42 %
Potsdam1998c 170s 2.98 % 180s 3.56 % 173s 6.27 % 173s 6.70 % 172s 8.97 %
Potsdam2010 2s 1.86 % 2s 1.07 % 2s 2.34 % 2s 1.07 % 2s 3.57 %
Chicago 613s 3.69 % 667s 5.09 % 468s 22.99 % 480s 39.47 % 430s 49.11 %

average gap 8.08 % 3.62 % 13.85 % 50.69 % 28.58 %
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Table 4.8: Statistics on the computations for the models (SLP), (SLP+), (SLPQ), and
(QLP). The columns list the instance name, model, computation time, number of branch-
ing nodes, the integrality gap, the primal bound, the dual bound, and the dual bound
after solving the root node.

name model time nodes gap primal dual root dual

China1 (SLP) 1h 1 086 084 0.22 % 235 649.00 235 122.59 234 928.08
(SLP+) 1h 723 287 0.14 % 235 449.00 235 119.75 234 908.95
(SLPQ) 1h 876 159 0.23 % 235 649.00 235 109.37 234 946.04
(QLP) 1h 22 511 0.42 % 236 025.80 235 049.92 234 977.93

China2 (SLP) 1h 123 300 1.19 % 236 689.20 233 912.28 233 796.77
(SLP+) 1h 32 452 0.84 % 235 977.40 234 014.88 233 905.19
(SLPQ) 1h 19 029 0.43 % 235 149.00 234 147.43 234 078.07
(QLP) 1h 10 411 0.65 % 235 695.60 234 167.09 234 102.59

China3 (SLP) 1h 17 070 2.01 % 238 387.40 233 680.06 233 648.25
(SLP+) 1h 2 632 1.70 % 237 747.40 233 763.22 233 735.48
(SLPQ) 1h 4 097 0.87 % 235 949.00 233 911.99 233 867.69
(QLP) 1h 4 160 1.12 % 236 549.00 233 938.01 233 895.49

Dutch1 (SLP) 3.61s 1 546 0.00 % 59 000.00 59 000.00 58 839.16
(SLP+) 2.49s 193 0.00 % 59 000.00 59 000.00 58 867.09
(SLPQ) 2.14s 114 0.00 % 59 000.00 59 000.00 58 851.85
(QLP) 2.14s 114 0.00 % 59 000.00 59 000.00 58 851.85

Dutch2 (SLP) 688.34s 234 649 0.00 % 58 600.00 58 600.00 58 426.27
(SLP+) 748.68s 162 964 0.00 % 58 600.00 58 600.00 58 425.15
(SLPQ) 36.08s 4 593 0.00 % 58 600.00 58 600.00 58 435.12
(QLP) 35.96s 4 593 0.00 % 58 600.00 58 600.00 58 435.12

Dutch3 (SLP) 177.46s 7 902 0.00 % 58 500.00 58 500.00 58 425.00
(SLP+) 815.12s 41 710 0.00 % 58 500.00 58 500.00 58 406.25
(SLPQ) 25.26s 42 0.00 % 58 500.00 58 500.00 58 425.00
(QLP) 25.13s 42 0.00 % 58 500.00 58 500.00 58 425.00

SiouxFalls1 (SLP) 412.17s 362 959 0.00 % 2 409.84 2 409.84 2 364.70
(SLP+) 307.58s 113 569 0.00 % 2 409.84 2 409.84 2 360.83
(SLPQ) 141.57s 47 109 0.00 % 2 409.84 2 409.84 2 360.69
(QLP) 264.09s 53 060 0.00 % 2 409.84 2 409.84 2 364.97

SiouxFalls2 (SLP) 1h 20 978 5.00 % 1 714.78 1 633.14 1 633.07
(SLP+) 1h 35 469 3.57 % 1 705.75 1 646.95 1 646.95
(SLPQ) 1h 22 846 3.51 % 1 704.76 1 646.95 1 646.95
(QLP) 1h 5 055 3.61 % 1 706.45 1 646.95 1 646.95

SiouxFalls3 (SLP) 1h 1 363 13.01 % 1 521.27 1 346.13 1 345.56
(SLP+) 1h 5 753 3.90 % 1 417.60 1 364.33 1 363.93
(SLPQ) 1h 6 639 4.16 % 1 420.71 1 363.98 1 363.93
(QLP) 1h 2 284 3.43 % 1 410.83 1 364.09 1 363.93

Potsdam1998b (SLP) 1h 642 191 0.22 % 36 067.04 35 986.98 35 910.31
(SLP+) 1h 269 321 0.20 % 36 067.04 35 995.58 35 885.10
(SLPQ) 1 983.64s 103 309 0.00 % 36 067.04 36 067.04 35 872.81
(QLP) 3 495.89s 80 224 0.00 % 36 067.04 36 067.04 35 906.74

Potsdam1998c (SLP) 1h 150 341 1.21 % 36 151.46 35 719.99 35 632.87
(SLP+) 1h 81 532 0.72 % 36 011.96 35 754.66 35 670.87
(SLPQ) 3 287.74s 65 856 0.00 % 35 872.32 35 872.32 35 724.59
(QLP) 2 468.43s 32 373 0.00 % 35 872.32 35 872.32 35 727.29

Potsdam2010 (SLP) 1.88s 1 0.00 % 11 066.60 11 066.60 11 066.60
(SLP+) 3.13s 6 0.00 % 11 066.60 11 066.60 11 044.12
(SLPQ) 3.00s 1 0.00 % 11 066.60 11 066.60 11 066.60
(QLP) 3.01s 1 0.00 % 11 066.60 11 066.60 11 066.60

Chicago (SLP) 1h 1 500 3.07 % 22 408.23 21 741.77 21 708.41
(SLP+) 1h 455 2.45 % 22 291.60 21 758.79 21 722.97
(SLPQ) 1h 82 4.77 % 22 784.61 21 746.86 21 731.98
(QLP) 1h 1 5.08 % 22 821.90 21 719.27 21 719.27
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Chapter 5

Summary

We presented an integer program, the standard model (SLP), and a novel
extended formulation, the configuration model (QLP), for the line planning
problem. We compared these two models in terms of polyhedral aspects
and proved that the configuration model provides a tighter LP relaxation.
In particular, we showed that the LP relaxation of the configuration model
implies several facet-defining inequalities for the standard model: set cover,
symmetric band, multicover, and MIR inequalities. For our computational
studies we proposed two additional models, (SLP+) and (SLPQ). Applying
the results from our polyhedral studies to the four models we obtain that the
associated polytopes have the following relations

P (QLP)|x = P (SLPQ)|x = P (SLP+) = P (SLP)

and
PLP (QLP)|x ⊆ PLP (SLPQ)|x ⊆ PLP (SLP+) ⊆ PLP (SLP).

Hence, from a theoretical point of view the configuration model is the tight-
est. Furthermore, our computational studies show that the standard model
can be strengthened by including configuration variables. However, the enor-
mous number of configuration variables for some instances is a drawback.
Model (SLPQ), which includes the configuration variables only for a subset
of edges, provides a good compromise between improving the formulation
with configuration variables and keeping the size of the formulation small.
Especially on instances corresponding to real public transportation networks
(SLPQ) outperforms the three other models. The instance Potsdam1998c can
only be solved to optimality with the models (SLPQ) and (QLP). For the in-
stance Potsdam1998b on the other hand, all models find the optimal solution
within one hour, but optimality can only be proven by (QLP) and (SLPQ).
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The comparison of the computational results of (SLP+), (SLPQ), and (QLP)
shows that we obtain a better model by extending the standard model with
configuration variables than by adding set cover, symmetric band, and MIR
inequalities. Applying several preprocessing techniques and including primal
heuristics we can speed up the solving process and improve the quality of
the solutions found by all models, respectively. Finally, we like to remark
that we focused on the line planning problem in this thesis, but the concept
of configurations can also be adapted to other capacitated network design
problems.
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Notation

General

R, R+ set of (non-negative) real numbers

Q, Q+ set of (non-negative) rational numbers

Z, Z+ set of (non-negative) integral numbers

N set of natural numbers

bλc floor of a real number λ, bλc ∈ Z

dλe ceil of a real number λ, dλe ∈ Z

2M power set of M

P polyhedron

P (IP) polyhedron defined by the convex hull of all feasible solu-

tions of the integer program IP

PLP (IP) polyhedron defined by the convex hull of all feasible solu-

tions of the LP relaxation of the integer program IP

P |x projection of P onto the space of x-variables

Graphs

G = (V,E) undirected graph

e, ẽ single edges

v single node

δ(v) set of edges with v as an endnode

D(G) = (V,A) directed graph that arises from G by replacing each edge

by two antiparallel arcs
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a single directed arc

e(a) edge corresponding to arc a

a(e), ā(e) antiparallel arcs corresponding to edge e

P, Pst set of directed paths, set of directed (s, t)-paths

P(a) set of directed paths passing arc a

Line Planning

(L̄, f̄) line plan, f̄ assigns to each line in L̄ a frequency

L set of lines

L(e) set of lines passing edge e

L(E′) set of lines passing any edge in E′

`, `′, ˜̀ single lines

F set of frequencies, F ⊂ N

f , f ′, f̃ single frequencies

f1, fm lowest and highest available frequency

d(e) transportation demand of e, d(e) ∈ N

dst transportation demand from node s to node t , dst ∈ Q+

D set of node-pairs (s, t) with positive transportation de-

mand dst

F (e) frequency demand of e, F (e) ∈ N

F (E′) total frequency demand of edges in E′

F (e), F (e) lower and upper bound on the total frequency of lines

passing edge e

τa, τp travel time of arc a, travel time of path p, τa, τp ∈ Q+

c`,f cost of operating line ` at frequency f , c`,f ∈ Q+

ct`,f cost of operating a train on line ` at frequency f , ct`,f ∈ Q+

ck`,f cost per car for line ` at frequency f , ck`,f ∈ Q+

κ, κ` capacity of a line, capacity of line `, κ, κ` > 0

κe capacity of an line passing edge e, κe > 0

κk capacity of a single car, κk > 0

88



NOTATION

Q̄(e), Q(e) set of (minimal) configurations of edge e

q̄, q single (minimal) configuration, q̄, q ∈ ZF+
E cover (partition) of E, E ⊆ 2E

LE′(E′′) set of all lines that pass all edges in E′′ but no edge in

E′ \ E′′

EL(E′) set of subsets of edges such that LE′(E′′) is not empty

Q̄(E′), Q(E′) set of (minimal) multi-edge configurations of E′

Q̄, Q single (minimal) multi-edge configuration of E′, Q̄,Q ∈

ZEL(E′)×F
+

fB band of an edge e assigning each line in L(e) to a frequency

or zero

FB configuration band of an edge e assigning each line in L(e)

to a subset of frequencies

α`E′ number of edges line ` passes in E′

αmax
E′ maximum number of edges in E′ any line in L(E′) passes

Variables

x line and frequency variables

y configuration variables, multi-edge configuration variables

z variables for the number of additional cars of a line

π passenger flow variables
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Example

We give here for an example with one edge and three lines a list of all non-
trivial facets of P (SLP) and P (QLP), which we computed with PORTA [14].

Let L(e) = {`1, `2, `3}, F = {1, 3, 4}, and F (e) = 5. The non-trivial facets
of P (SLP) are given by the following inequalities:

+xl1,1+2xl1,3+3xl1,4+xl2,1+2xl2,3+3xl2,4+xl3,1+2xl3,3+3xl3,4≥4 (MIR1)

+xl1,1+xl1,3 +xl1,4 +xl2,1+xl2,3 +xl2,4 +xl3,1+xl3,3 +xl3,4 ≥2 (MIR2)

+xl1,3 +xl1,4 +xl2,3 +xl2,4 +xl3,3 +xl3,4 ≥1 (B1)

+xl1,1+xl1,3 +xl1,4 +xl2,3 +xl2,4 +xl3,4 ≥1 (B2)

+xl1,1+xl1,3 +xl1,4 +xl2,4 +xl3,3 +xl3,4 ≥1 (B3)

+xl1,3 +xl1,4 +xl2,1+xl2,3 +xl2,4 +xl3,4 ≥1 (B4)

+xl1,4 +xl2,1+xl2,3 +xl2,4 +xl3,3 +xl3,4 ≥1 (B5)

+xl1,3 +xl1,4 +xl2,4 +xl3,1+xl3,3 +xl3,4 ≥1 (B6)

+xl1,4 +xl2,3 +xl2,4 +xl3,1+xl3,3 +xl3,4 ≥1 (B7)

+xl1,1+xl1,3 +2xl1,4+xl2,1+xl2,3 +2xl2,4 +xl3,3 +xl3,4 ≥2 (LB1)

+xl1,1+xl1,3 +2xl1,4 +xl2,3 +xl2,4 +xl3,1+xl3,3 +2xl3,4≥2 (LB2)

+xl1,3 +xl1,4 +xl2,1+xl2,3 +2xl2,4+xl3,1+xl3,3 +2xl3,4≥2 (LB3)

+xl1,1+2xl1,3+2xl1,4 +xl2,3 +2xl2,4 +xl3,3 +2xl3,4≥2 (LB4)

+xl1,3 +2xl1,4+xl2,1+2xl2,3+2xl2,4 +xl3,3 +2xl3,4≥2 (LB5)

+xl1,3 +2xl1,4 +xl2,3 +2xl2,4+xl3,1+2xl3,3+2xl3,4≥2 (LB6)

+xl1,1+2xl1,3+2xl1,4+xl2,1+2xl2,3+2xl2,4+xl3,1+xl3,3 +2xl3,4≥3 (LB7)

+xl1,1+2xl1,3+2xl1,4+xl2,1+xl2,3 +2xl2,4+xl3,1+2xl3,3+2xl3,4≥3 (LB8)

+xl1,1+xl1,3 +2xl1,4+xl2,1+2xl2,3+2xl2,4+xl3,1+2xl3,3+2xl3,4≥3 (LB9)

• Inequality (MIR1) is a MIR inequality for λ = 1
3 , see Proposition 2.10.
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• Inequality (MIR2) is a MIR inequality for λ = 1
4 .

• Inequality (B1) is a band inequality for the band fB(`1) = 1, fB(`2) = 1,
fB(`3) = 1, see Proposition 2.6.

• Inequalities (B2)–(B7) are also band inequalities for bands, which are a
permutation of fB, where fB(`1) = 0, fB(`2) = 1, fB(`3) = 3.

The minimal configurations of e are

Q(e) = {q1 = (0, 0, 2), q2 = (0, 1, 1), q3 = (1, 0, 1), q4 = (0, 2, 0), q5 = (2, 1, 0)}.

All non-trivial facets of P (QLP) are configuration band inequalities in this ex-
ample. We list now facet-defining configuration band inequalities, see Propo-
sition 3.17. The remaining facets, which are not given in the following, are
configuration band inequalities for a configuration band which can be ob-
tained by a permutation of another configuration band, which is considered
here. We first give the configuration band and then the corresponding con-
figuration band inequality.

FB(`1) = {1, 4}, FB(`2) = {1, 4}, FB(`3) = ∅:

+x`1,1 +x`1,4+x`2,1 +x`2,4 −yq1 −yq3 −yq5 ≥0

FB(`1) = {4}, FB(`2) = {4}, FB(`3) = ∅:

+x`1,4 +x`2,4 −yq1 ≥0

FB(`1) = {1, 3}, FB(`2) = ∅, FB(`3) = ∅:

+x`1,1+x`1,3 −yq5 ≥0

FB(`1) = {1}, FB(`2) = {1}, FB(`3) = ∅:

+x`1,1 +x`2,1 −yq5 ≥0

FB(`1) = {3}, FB(`2) = {3}, FB(`3) = ∅:

+x`1,3 +x`2,3 −yq4 ≥0

FB(`1) = {1, 3}, FB(`2) = {3}, FB(`3) = ∅:

+x`1,1+x`1,3 +x`2,3 −yq4 −yq5 ≥0

FB(`1) = {1, 3}, FB(`2) = {1, 3}, FB(`3) = ∅:

+x`1,1+x`1,3 +x`2,1+x`2,3 −yq4 −2yq5≥0
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EXAMPLE

FB(`1) = {1}, FB(`2) = {1}, FB(`3) = {1}:

+x`1,1 +x`2,1 +x`3,1 −yq3 −2yq5≥0

FB(`1) = {3}, FB(`2) = {3}, FB(`3) = {3}:

+x`1,3 +x`2,3 +x`3,3 −yq2 −2yq4−yq5 ≥0

FB(`1) = {4}, FB(`2) = {4}, FB(`3) = {4}:

+x`1,4 +x`2,4 +x`3,4−2yq1−yq2−yq3 ≥0
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