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Olga Heismann and Ralf Borndorfer

Abstract

The set packing problem, sometimes also called the stable set problem, is a
well-known NP-hard problem in combinatorial optimization with a wide range
of applications and an interesting polyhedral structure, that has been the sub-
ject of intensive study. We contribute to this field by showing how, employing
cliques, odd set inequalities for the matching problem can be generalized to
valid inequalities for the set packing polytope with a clear combinatorial mean-
ing.

1 Introduction and Terminology

The set packing problem, sometimes also called the stable set problem, is a well-
known NP-hard (Garey and Johnson||1979) problem in combinatorial optimization
with a wide range of applications. Its weighted version can be formulated as follows.
Given a finite set V and some set E C 2" with weights assigned to each set in E, find
a subset of pairwise disjoint sets from E, called a packing, with a maximum sum
of weights. Although many classes of facets for the set packing problem polytope
are known (see, e.g., (Borndorfer, (1998)), there is still no complete polyhedral
description known and further facet classes have to be researched.

A polynomially solvable special case of the set packing problem, where all sets
in E have size two, is the matching problem. For this problem, the polytope can
be completely described by adding so-called odd set inequalities to the canonical
description (Edmonds, [1965)). In this paper, we show how, employing cliques, the
odd set inequalities can be generalized to valid inequalities for the set packing prob-
lem polytope with a clear combinatorial meaning. For the hypergraph assignment
problem (Borndorfer and Heismann), 2012)), a partitioning problem on bipartite hy-
pergraphs, inequalities from this class can be facet-defining. We also relate the
presented inequality class to a different generalization of odd set inequalities for
the stable set problem called general clique family inequalities (Pécher and Wagler,
20006).

After summarizing the basic terminology needed in what follows, we present a
combinatorial derivation of the inequality class. In the end, we show a comparison
with the general clique family inequalities.



Definition 1.1. A hypergraph G = (V,E) is a pair of a vertex set V and aset E C 2"\ ()
of subsets of V called hyperedges. A packing H C E in G is a subset of pairwise
disjoint hyperedges, i.e., e; Ne, =@ for all e1, e, € H with e; # e,.

If all hyperedges have size k, i.e., |e| = k for all e € E, G is called k-uniform. A
two element hyperedge is also called an edge. If all hyperedges are edges, i. e., the
hypergraph G is 2-uniform, G is also called a graph.

The set packing problem can then be stated as follows:
Problem 1.2 (Set Packing Problem).
Input: A pair (G, cg) consisting of a hypergraph G = (V,E) and a cost function
cg:E—>R.
Output: A maximum cost packing in G w.r. t. ¢, i.e., a packing H* in G such that

Z cgle) = max{z cg(e) : H is a packing in G}.

ecH* e€H

The set packing problem can also be formulated as an integer linear program.
The canonical formulations is the following.

maximize Z cgle)x, (SSP)
x€ERE
ecE
subject to Z x, <1 YveVv Q)
ecé(v)
x=0 (ii)
xeZk. (iii)

Let P(SSP) := conv{x € Rf : @-(@D} and Pp(SSP) := {x € RE :
({-(d)} be the polytopes associated with the integer linear program
and its LP relaxation, respectively.

At the end of our generalization procedure, we will substitute vertices by hyper-
edge cliques. They are defined as follows.

Definition 1.3. A hyperedge clique in a hypergraph G = (V,E) is a set Q C E of
hyperedges such that every two hyperedges e;,e, € Q have at least one vertex in
common, i. e., e; Ne, # @.

Associated with the hyperedge clique Q is the clique inequality >} ., x, < 1.

ecQ

2 Generalizing Odd Set Inequalities

Consider the set packing problem for the hypergraph G = (V, E).
In the special case that G is a graph, the set packing problem becomes an edge
packing problem which can be completely described by the following system of



inequalities (Edmonds), [1965)):

>x <1 Vvev (MP i)
ec6(v)

|V/| —1 / / / ..

D XS —p— YV CV, V|23, |V odd (MP i)
ecE:ecV’

x>0 VecE (MP iii)

The inequalities are called odd set inequalities. Their combinatorial mean-
ing is that for every odd set V' C V of |V’/| = 2k + 1 vertices there can be at most
[W—zllJ = lvl% = k edges connecting pairs of them in a matching. This holds since
every edge is incident to two vertices in k, every vertex can be incident to at most
one edge in a matching, and k + 1 edges would need therefore already 2k +2 > |V’|
distinct vertices.

A formal proof of validity for odd set inequalities can be interpreted as a Chvatal-
Gomory procedure with coefficient 1 for all inequalities of type forveVv’
and O for all others.

We will generalize these inequalities for the set packing problem, i.e., from
graphs to hypergraphs, in three steps. The first one will adapt the odd set inequal-
ities to p-uniform hypergraphs, i. e., to hypergraphs which have hyperedges all of
size p, where p can be greater than two. Then, we will tackle hypergraphs with
hyperedges of arbitrary size by viewing them as combinations of hyperedges of size
p in the second step. The third step will generalize sets of hyperedges incident to
one vertex to hyperedge cliques.

0Odd set inequalities can be also written as

ZV{VEV/ :;Eé(V)HJXeSl'V/'T_lJ’

e€E

which is a more useful representation for our generalization procedure.

Step 1. Let G be p-uniform. Applying the idea of odd set inequalities to this
situation yields that for every set V' C V of |V/| = pk+r, 0 < r < p— 1 vertices
there can be at most [“%‘J = W;# = k hyperedges, each connecting p of them, in
a packing. For an example see Figure

This leads to the inequality

;{l{vev’ :;Eé(vaxeSl";T/'J YV C V.

The coefficients [@J all have value 0 or 1.

The inequality can be also derived using a Chvatal-Gomory procedure with co-
efficient 117 for all inequalities of type (i for v € V’ and 0 for all others.

Step 2. Let G be an arbitrary hypergraph. Choose some p € N, p > 2. Contrary
to the previous case, where all hyperedges had size p, there now might be hyper-
edges in the packing that contain more than p vertices from V’. The inequality from



Figure 1: A packing in a 3-uniform hypergraph G = (V, E) with nine vertices and a
vertex subset V’ surrounded by an ellipse. There can be at most [%J =1 hyperedge
which is a subset of the five vertices in V’. All other hyperedges in the packing have
to have at least one vertex from V \ V’.

Step 1, however, is still true. A hyperedge that contains kp + r vertices from V' can
be viewed as k hyperedges of size p that are contained in V’. For an example see

Figure
This idea leads to the inequality class

ZV{VGVIZEG5(V)}|JX€SV‘;T/|J VUV CV

e€E p

HVEV’:iﬂJ may now have a value

for arbitrary hypergraphs. The coefficients I_
greater than 1.

As in the last step, a Chvétal-Gomory procedure with coefficient % for all in-
equalities of type for v € V/ and 0 for all others yields these inequalities.

Step 3. For the third step, observe that for every vertex v in a graph or hy-
pergraph, &(v) is a hyperedge clique. To get the odd set inequalities or their gen-
eralizations in Steps 1 and 2, the Chvatal-Gomory procedure could be applied to
the inequalities of type (D, which are clique inequalities. In a graph, §(v) is
the only type of maximal edge cliques. However, there may be other maximal hy-
peredge cliques and therefore also other valid clique inequalities for a hypergraph.
Applying the previous ideas to also other types of hyperedge cliques for some hy-
peredge clique set 2’ C 2 we get the the inequalities

ZV{QGQ :eEQ}IJxeSVf%J Ve2'C2,peN,p=2.

e€E p




Figure 2: A packing in a hypergraph G = (V, E) with eleven vertices and a vertex
subset V' surrounded by an ellipse, p = 2. There can be at most [IZ,J = 3 edges which
are subsets of both the seven vertices in V’ and some hyperedge in the packing. All
other possible edges that would connect two vertices that are contained in some
hyperedge in the packing have to have at least one vertex from V \ V'.

We remark that for the hypergraph assignment problem (HAP)
(Borndorfer and Heismann,|2012), a partitioning problem on bipartite hypergraphs,
for which all inequalities valid for the corresponding set packing relaxation are
valid, these inequalities can be facet-defining. In the HAP polytope for a certain
“complete bipartite hypergraph with three parts in each of the two vertex sets, all
parts having size two”, one half of the 30 facet classes (this is modulo symmetry,
they contain all together 14049 facets) can be described in this way with p = 2.

3 Comparison with General Clique Family Inequali-
ties

(Pécher and Wagler, |2006) propose a different generalization of odd set cuts of the
set packing problem. These inequalities, “general clique family inequalities”, have
a similar structure (division by some p € N, rounding, coefficient for a hyperedge
variable depends on the number of hyperedge cliques that contain this hyperedge),
however, the resulting inequality is different. Also, to the best of our knowledge no
combinatorial interpretation was developed for general clique family inequalities
so far.

General clique family inequalities are defined as follows. Let 2’ C 2 be a set of
at least three edge cliques for the hypergraph G = (V, E). Choose an integer p with
2 < p <|2’|, define R := | 2’| mod p and choose an integer J with 0 <J < p—R.
Now define E;:={e€E: |{Qe 2 :ecQ}| =i} fori €{1,2,...,|2’|} to be the set



0 <i< p—J 0
p—J <i< p =
- / 1

p <i< |2 H 1

Table 1: Coefficient of x,, e € E on left hand sides of the inequalities derived
in Step 3 and general clique family inequalities depending on the number i :=
{Q € 2’ : e € Q}| of hyperedge cliques in &’ that contain e.

of hyperedges that are contained in exactly i hyperedge cliques in &’. The general
clique family inequality

|27|

Z(p R)Zx +Z(p R—j) Z X,

e€E; e€E, ;

isvalidif b > (p— R)[lg |J
To compare the general clique family inequalities to our inequalities we rewrite
Step 3 as

|2']

2 151Z=5)

i=0 ecE;

and divide both sides of the general clique family inequalities with strongest allowed
b by (p —R) to get the valid inequality

|2']

> PR ]Z w<| =) @

i=p e€E; j=1 e€E,

Now the right hand sides are equal. The coefficients of x,, e € E on the left hand
sides are summarized in Tabledepending on the numberi :=|{Q € 2’ :e € Q}| of
edge cliques in &' that contain e. The table shows that the inequalities concentrate
on coefficients for different kinds of hyperedge variables although they employ sim-
ilar objects. The inequalities derived in this paper have non-zero coefficients only
for hyperedges of size > p. These coefficients may differ depending on the hyper-
edge size and be > 1, whereas the corresponding coefficients in the general clique
family inequalities are all equal to 1. General clique family inequalities, however,
have non-zero coefficients for smaller hyperedges.

Thus, the inequality class presented in this paper is different from the general
clique family inequalities.
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