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Abstract

We propose a new coarse-to-fine approach to solve certain linear programs by column generation.
The problems that we address contain layers corresponding to different levels of detail, i.e., coarse
layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell,
the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major
decisions are taken in the coarse layer, while minor details are tackled within the fine layer.
We elucidate our methodology by an application to a complex railway rolling stock rotation
problem. We provide comprehensive computational results that demonstrate the benefit of this
new technique for the solution of large scale problems.
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Keywords and phrases column generation, coarse-to-fine approach, multi-layer approach, rolling
stock rotation problem

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

This paper is motivated by an application in railway optimization, namely the rolling stock
rotation problem (RSRP). This problem consists of several “layers” that address different
levels of detail. The major decisions of the RSRP deal with covering timetabled trips by
rolling stock rotations. This is a coarse layer of the problem. At the same time minor
decisions, for example, about the detailed arrival of a multi-traction vehicle composition at
some station, must be considered for technical reasons. This defines a fine layer. Suppose
there is a solution for the coarse layer that has been found by ignoring the details of the fine
layer. Then it is often possible to extend this coarse solution to a solution for the fine layer,
but not always. In this situation one can try to refine the coarse model locally at the critical
parts. This leads to an iterative refinement approach with a model that mixes coarse and
fine parts and is therefore difficult to handle. The idea of this paper is different. We propose
to work with a version of the fine model that is restricted to a small subset of variables. This
restricted model is iteratively extended using information from the coarse model. In other
words, the coarse model is used to identify the relevant parts of the fine model, (hopefully)
focusing the attention exactly to where it is needed.
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2 A Coarse-To-Fine Approach to the RSRP

Technically, the variable selection process is handled by column generation. Our idea is to
work with two linear programs (LPs), one for the coarse and one for the fine layer. The
coarse LP is constructed by aggregating suitable rows of the fine LP and sometimes turns out
to be a combinatorial optimization problem of low complexity, e.g., a network flow problem.
Variables for the fine LP are generated using the coarse LP until convergence. This method
aims at a rapid solution progress and at a complete elimination of stalling and tailing-off
effects that are due to the fine layer.

Row aggregation techniques for column generation algorithms are a topical research area.
Elhallaoui et al. [3] present a multi-phase dynamic constraint aggregation approach to solve
large scale set partitioning type models. Desrosiers and Lübbecke [2] use row aggregation to
utilize degeneracy in linear programming to improve the convergence characteristics of column
generation algorithms. Coarse-to-fine ideas have also been studied to solve optimization
problems on graphs. Raphael [6] describes an algorithm for solving a dynamic program (DP)
on a large graph corresponding to a state space. A sequence of coarse DPs is solved, and
the level of detail in the fine DP increases gradually. Schlechte et al. [10] used a two level
micro-macro approach to solve railway track allocation models. An exact iterative graph
aggregation procedure for solving network design problems is considered in Bärmann [1]. For
a survey on aggregation and disaggregation techniques for optimization problems, see Rogers
et al. [9].

In contrast to our approach, all these methods mix the coarse and the fine layer within one
model, while our approach separates the coarse and the fine layer. This approach turns out
to be easier. Of course, the layers have to be defined in a meaningful way and the success of
the method depends on the quality of the layering. While we offer no general theory how
to do this, in many applications the layers are evident, e.g., for the RSRP. These are the
applications that we have in mind. We remark that a somehow similar idea of separated
layers is used by multi-grid methods to solve linear equation systems, see [11]. Here, the
preconditioner plays the role of the coarse layer which improves the tractability of the fine
layer.

The paper is organized as follows. In Section 2 we describe our general coarse-to-fine column
generation approach for linear programming. Section 3 introduces the RSRP application.
Three layers for the RSRP that are motivated by combinatorial vehicle composition require-
ments for rolling stock are introduced and motivated in Section 4. We present in Section 5 our
instantiation of the coarse-to-fine method for the RSRP. Finally, we provide comprehensive
computational results for real-world instances of the RSRP given by our industrial partner
DB Fernverkehr AG. We assume that the reader is familiar with column generation methods
for linear programming, see [5] for an introduction.

2 A Coarse-To-Fine Approach to Column Generation

Given index sets I = {1, . . . ,m} and J = {1, . . . , n}, a matrix A ∈ RI×J , and vectors b ∈ RI

and c ∈ RJ , consider a linear program {A, b, c}(J)

min cTx

(MP)(J) s.t. Ax = b

x ∈ RJ
+,

max bTπ

and its dual s.t. ATπ ≤ c
π ∈ RI .
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We call (MP) = (MP)(J) the master LP. If |J | is very large, the column generation algorithm
(CGA) is the method of choice to solve the master problem. By using the CGA one restricts
J to a sub-set J ′ ⊆ J of columns to solve the restricted master problem (RMP). We assume
xi to be zero for i ∈ J \ J ′. In each iteration of the CGA we try to price columns (i.e., to
find at least one column that is added to (RMP)) j ∈ J \ J ′ by solving the pricing problem.
The pricing problem is to solve c := min {cj − πTaj | j ∈ J} where aj ∈ Rm is the column
vector of A for column j ∈ J and cj ∈ R is the objective coefficient for column j. If c ≥ 0
we have a proof that an optimal solution x∗ for (MP)(J ′) is also an optimal solution for
(MP)(J). Otherwise, we select a set of columns J∗ ⊆ J such that at least one j ∈ J∗ has
negative reduced cost dj := cj − πTaj , add the columns associated with J∗ to (RMP), and
continue with re-optimizing (RMP).

We are free in selecting columns for the set J∗ by a column selection rule as long as at
least one element of J∗ has negative reduced cost. But, it is obvious that a better column
selection rule improves the efficiency of the CGA. In particular, it can be beneficial to add
also columns with positive reduced cost as we will see. We address applications where J is
enumerated to check every j ∈ J whether dj is negative, e.g., the simplex method. We call
this enumeration pricing loop. For a survey on column generation techniques see [5].

Our main idea is to introduce layers (precise definition follows) that are utilized to improve
two aspects of the column generation method. The first one is to speed-up the pricing loop
in each iteration of the CGA. The second one is to refine the column selection rule. The
latter, aims at reducing the total number of iterations performed by the column generation
algorithm and to reduce the total number of columns generated.

We restrict our considerations for general linear programs to two layers, namely the coarse
layer and the fine layer. The fine layer is equal to (RMP). The coarse layer appears by the
following considerations.

Let [·] : I 7→ [I] be a coarsening projection that maps the index set I of the equations of
(MP) to a smaller coarse index set [I] of size |[I]| ≤ |I|. We use this notation because [·]
induces an equivalence relation on the row indices I, namely, i ∼ j ⇐⇒ [i] = [j]. Let v ∈ RI

be a (column) vector with index set I, let vi be the element of v with index i ∈ I, and let
τ(v, i) be the cardinality of the set {vk 6= 0 | [k] = [i]}, i.e., τ(v, i) is the number of non-zero
coefficients in v supported by rows equivalent to row i. We define [v] ∈ R[I] to be the coarse
vector or coarsening of v using coarse coefficients

[v][i] := ([v][i]1, [v][i]2) := (min {vk | k ∈ I : [k] = [i]},max {vl | l ∈ I : [l] = [i]}) · τ(v, i).

Note that [v][i] is a pair of numbers, namely, the minimal and the maximal coefficient in the set
of rows equivalent to row i, multiplied by the number of non-zeros. Let ([A·j ])j=1,...,|J| be the
bimatrix of coarse column vectors of A. Typically, this bimatrix contains identical columns
caused by the coarsening projection, see Example 3. We chose exactly one representative for
a set of identical columns and denote the resulting bimatrix by [A] with columns [J ]. Further,
we define the coarse objective coefficient [cj ] := mini∈J{ci | [i] = [j]} for column j ∈ J .

Let π ∈ RI be an optimal dual solution vector of (MP) and let aj , j ∈ J , be a column vector
with objective coefficient cj . For ease of notation, the coarse reduced cost [d] is defined via
coefficients [dj ] := [cj ] − [π]T · [aj ], j ∈ J , where we define the multiplication of pairs as
(a1, b1) · (a2, b2) := max {a1b1, a1b2, a2b1, a2b2} for two pairs (a1, a2) ∈ R2 and (b1, b2) ∈ R2.
Note that the coarse reduced cost is not the coarsening of the reduced cost vector d. The
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Algorithm 1: Coarse-To-Fine column generation iteration for linear programs.
Data: (RMP) given by {A, b, c} and coarsening projection [·]
Result: a set of columns J∗ to be added to (RMP)

1 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
2 compute coarse dual solution vector [π∗] defined by [·];
3 compute [J∗] := {[j] ∈ [J ] | [dj ] < 0} ; /* pricing loop in coarse layer */
4 compute J? ⊆ {j ∈ J | [j] ∈ [J∗], dj < 0};
5 compute optimal solution of (R) and R?;
6 compute J? := J? ∪ {j ∈ J | [j] ∈ R?} ; /* column selection rule */

coarse reduction of the master (MP) is

(R) min [d]Tx s.t.[A]x[=][b], x ∈ R[J]
+ ,

where we define

[A]x[=][b] :⇔ [b][i]1 ≤
∑

j∈J

[A·j ][i]2xj ,
∑

j∈J

[A·j ][i]1xj ≤ [b][i]2 ∀[i] ∈ [I].

That is, the coarse reduction (R) approximates every equation of the master LP by two
extreme case constraints arising from the minimum and maximum coefficients in equivalent
rows. Note that the objective function of the coarse reduction is to minimize [d] (and not c);
the reason for this will become clear in the sequel. Let R? ⊆ [J ] be all coarse columns that
have a non-zero primal solution value in the optimal solution of the coarse reduction (R).
We also address the coarse reduction as coarse LP and the master LP as fine LP.

The polytope associated with (MP)(J) is denoted by P(MP)(J). Coarsening has the following
simple but important properties.
I Lemma 1. The coarse polytope associated with (R) includes the fine polytope associated
with (MP), i.e., P(R) ⊇ P(MP).

Proof. Every row in (R) is a relaxation of an original row of (MP). J

I Lemma 2. The coarse reduced cost can be used to underestimates the reduced cost, i.e.,

[dj ] = [cj ]− [π]T · [aj ] ≤ cj − πT · aj = dj .

Proof. By definition we have [cj ] ≤ cj and each summand in πT · aj is overestimated by a
summand of [π]T · [aj ]. J

Lemma 1 shows that the coarse reduction (R) provides an approximation of the fine master
LP which has fewer rows and thus is probably easier to solve. We want to take advantage
of this approximation in a column generation algorithm (CGA) for the fine master LP by
shifting the pricing loop to the coarse reduction. A naive way to do this is to solve the coarse
reduction by a CGA in a first step, producing a set of columns J? ⊆ J , and then to solve
the fine master LP in a second step, starting from the restriction (MP)(J?) to the set of
columns J?. However, this simplistic procedure is unlikely to work well because of a lack of
information exchange between the coarse and the fine linear programs. Also the quality of
the polyhedral approximation of the coarse reduction is unclear.
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Lemma 2 proposes an alternative to simply price in the coarse reduction using the coarsened
reduced cost from the fine master LP. This generic idea is formalized in Algorithm 1 that
illustrates one iteration within a CGA.

The coarse-to-fine column generation algorithm solves the fine master LP by a CGA that
iterates though a coarse-to-fine pricing loop. In this loop an optimal dual solution (step 2)
of the restricted fine master LP is computed and coarsened. Afterwards, we compute the
coarse reduced cost in the coarse layer that defines the set J∗ of coarse columns with negative
coarse reduced cost and select some of them in step 4. By Lemma 2 we can not miss any
columns in the fine layer with negative reduced cost. That shows that the preselection by J∗
is exact. There is one more ingredient that is crucial for the performance of our coarse-to-fine
approach, namely, a column selection rule to restrict the set of coarsely priced columns. We
propose to compute a reasonable combination of (hopefully) improving columns by solving
the coarse reduction in step 5 and 6. Using the coarse reduced cost as an objective aims at a
“good combination” of improving columns of negative reduced cost and further columns of
positive reduced cost that are “necessary” to complete the construction of the solution. This
iteration is performed until convergence. This is the general method that we propose. It
works particularly well when the coarse reduction turns out to be a simple combinatorial
optimization problem such as a network flow problem. We will discuss an example of this
type in the context of our RSRP application in Section 4.
I Example 3. Consider the following matrix and coarsening projection:

A =
(

1 0 0 −4
0 1 2 0

)
and [i] :=

⌊
i

2

⌋
.

Then we have [A] = ((0, 1) (0, 2) (−4, 0)).

Example 3 shows that coarsening typically produces many identical columns, in particular,
for matrices arising from combinatorial optimization problems. As defined, identical columns
are reduced, keeping only the copy with the smallest objective coefficient. This a desirable
effect that can produce a substantial speed-up of the coarse-to-fine pricing loop.

3 The Rolling Stock Rotation Problem

In this section we consider the Rolling Stock Rotation Problem (RSRP) and state a hypergraph
based integer programming formulation, see [7]. We apply the ideas of Section 2 to the
LP-relaxation of this formulation. We focus here on the main modeling ideas and refer
the reader to our paper [7] for technical details including the treatment of maintenance
and capacity constraints. The extension of the following problem description and model to
include maintenance constraints is straight forward and does not affect the content nor the
contribution of the paper.

We consider a cyclic planning horizon of one standard week. The set of timetabled passenger
trips is denoted by T . Let V be a set of nodes representing timetabled departures and arrivals
of vehicles operating passenger trips of T , let A ⊆ V × V be a set of directed standard arcs,
and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard arcs. The
RSRP hypergraph is denoted by G = (V,A,H). The hyperarc h ∈ H covers t ∈ T if each
standard arc a ∈ h represents an arc between the departure and arrival of t. We define the
set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs appropriately,
vehicle composition rules and regularity aspects can be directly handled by our model. We
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define sets of hyperarcs coming into and going out of v ∈ V in the RSRP hypergraph G

as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)},
respectively.

The RSRP is to find a cost minimal set of hyperarcs H0 ⊆ H such that each timetabled trip
t ∈ T is covered by exactly one hyperarc h ∈ H0 and

⋃
h∈H0

h ⊆ A is a set of rotations, i.e.,
a packing of cycles (each node is covered at most once).

Using a binary decision variable for each hyperarc, the RSRP can be stated as an integer
program as follows:

min
∑

h∈H

chxh, (MP)

∑

h∈H(t)

xh = 1 ∀t ∈ H, (1)

∑

h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (2)

xh ∈ {0, 1} ∀h ∈ H. (3)

The objective function of model (MP) minimizes the total cost of the chosen hyperarcs.
For each trip t ∈ T the covering constraints (1) assign one hyperarc of H(t) to t. The
equations (2) are flow conservation constraints for each node v ∈ V that define a set of cycles
of arcs of A. Finally, (3) states the integrality constraints for our decision variables.

The RSRP is NP-hard, even without maintenance and base constraints and if constraints (1)
are trivially fulfilled, i.e., |H(t)| = 1 for all trips t ∈ T , see [4].

4 Three Layers for the RSRP

The mixed integer programming formulation for the RSRP defined in Section 3 only depends
on a hypergraph and a cost function. It is therefore natural to define the layers to be used in
our coarse-to-fine approach as projections of node sets. Such projections induce hypergraphs
themselves. The layers, namely, a composition layer G = (V,A,H), a configuration layer
[G] = ([V ], [A], [H]), and a vehicle layer [[G]] = ([[V ]], [[A]]), are motivated by our application
at Deutsche Bahn Fernverkehr AG. In this application the RSRP must be solved for the
composition layer, but many technical rules only apply to the configuration layer, which is
much smaller w.r.t. the size of the set of hyperarcs. In addition, we define a vehicle layer to
set up a super-coarse RSRP that provides a reasonable description of the major problem
characteristics (i.e., the total number of rolling stock vehicles used in a solution) and that is
solvable in polynomial time. We discuss in the following the detailed combinatorial aspects
of vehicle composition that motivate our layers.

A fleet is a basic type of rail vehicles. For example, the slightly more than 220 Intercity-
Express rail vehicles of Deutsche Bahn Fernverkehr AG are partitioned into several structurally
identical sets of vehicles named fleets. Let F be the set of fleets.

An orientation is an element of the set O = {Tick, Tack}. Orientation describes the two
options of how vehicles can be placed on a railway track. At Deutsche Bahn Fernverkehr AG
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Figure 1 Vehicle compositions of size two for two fleets. The trees indicate the driving directions.

this is distinguished by the position of the first class carriage of the vehicle w.r.t. the driving
direction. Tick (Tack) means that the first class carriage is located at the head (tail) of the
vehicle w.r.t. the driving direction.

A (vehicle) composition c of size n ∈ N+ is an n-tuple of the form

c = ((f1, o1), (f2, o2), ..., (fn, on)) ∈ (F ×O)n.

A sub-index p ∈ {1, . . . , n} of c is called a position of an individual vehicle in a vehicle
composition. In rolling stock rotation planning, a vehicle composition has to be chosen for
each departure of a timetabled trip.

For example, if we consider the set of fleets F = {Red,Blue} we get the following vehicle
compositions of size one: (Red, T ick), (Red, Tack), (Blue, T ick), (Blue, Tack). Figure 1
illustrates the 16 possibilities for such vehicle compositions of size two. The fleet Red is
represented by the red vehicle, while the blue vehicles represent the fleet Blue. Each gray
vehicle has orientation Tack and each white vehicle has orientation Tick w.r.t. the driving
direction indicated by the blue tree.

A (vehicle) configuration is a multiset of fleets. We say that the configuration k is realized
by the vehicle composition c = ((f1, o1), (f2, o2), ..., (fn, on)) if k = {f1, ..., fn}, i.e., if the
multi-set of fleets used in the composition c is equal to the configuration k. In the above
example the configurations {Red}, {Blue}, {Red,Red}, {Red,Blue}, and {Blue,Blue} are
realized by the 20 compositions.

We define an event as a triple e = ({d, a}, t, p) defining the departure (d) or the arrival (a)
of an individual vehicle at position p ∈ N+ in a vehicle composition operating trip t ∈ T .

We define the composition layer as the hypergraph G = (V,A,H); here, each hyperarc
h ∈ H identifies a vehicle composition, as shown in Figure 2. A node v ∈ V is a four-tuple
v = (e, k, f, o) defining an event e, the vehicle configuration k, the fleet f , and an orientation
o ∈ O.

A discussion of the detailed reasons for defining the composition layer on the proposed form
is out of the scope of this paper. It relies on experience of how the arising requirements in
rotation planning for rolling stock can be handled.

Consider the following projections:



8 A Coarse-To-Fine Approach to the RSRP

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

fl
ee
t
A

fl
ee
t
A

fl
ee
t
B

v
eh
icle

A
1

v
eh
icle

A
2

v
eh
icle

B

co
n
fi
g
u
ra
ti
o
n

{A
,
A

,
B

} co
n
fi
g
u
ra
tio

n
{
A

,
A

,
B

}

tr
ip

1

trip
2

Figure 2 Possible hyperarcs for vehicle compositions of two trips operated with vehicle configura-
tion {A, A, B}.

[v] := (e, k) for v = (e, k, f, o) ∈ V,
[a] := ([v], [w]) for a = (v, w) ∈ A,
[h] := {[a] | a ∈ h} for h ∈ H,

[V ] := {[v] | v ∈ V }, [A] := {[a] | a ∈ A}, and [H] := {[h] |h ∈ H}.

Given a composition layer with G = (V,A,H), we define the configuration layer as the
hypergraph [G] := ([V ], [A], [H]). The projection omits the orientation and the fleet and
therefore the hyperarcs of [H] can be interpreted as connections of timetabled trips with
vehicle configurations.

Consider the following further projections:

[[v]] := e for [v] = (e, k) ∈ [V ],
[[a]] := ([v], [w]) for a = (v, w) ∈ A,

[[V ]] := {[v] | v ∈ V }, and [[A]] := {[a] | a ∈ A}.

For the sake of a uniform notation, we also define a set of hyperarcs [[H]] as follows. Let
t ∈ T and let [H](t) be the set of hyperarcs that cover t in [G]. We define h(t) := {[[a]] ∈
[[A]] | ∃[h] ∈ [H](t) : [a] ∈ [h]} as the unique hyperarc that covers t in the vehicle layer.
Finally, we denote by [[H]] :=

⋃
t∈T h(t) ∪ {{[[a]]} | [[a]] ∈ [[A]]}) the set of unique hyperarcs

that cover the trips combined with all standard directed arcs of [[A]] denoted as hyperarcs.

Given a configuration layer with [G] = ([V ], [A], [H]), we define the vehicle layer as [[G]] :=
([[V ]], [[A]]); note that [[G]] is a standard directed graph. Moreover, the coarse reduction
w.r.t. the vehicle layer [[G]] is solvable in polynomial time. In fact, each timetabled trip is
uniquely covered by the hyperarcs of [[H]]. Therefore, constraints (1) are trivially fulfilled.
The remaining problem is defined by the flow conservation constraints (2) and the integrality
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constraints (3) for a standard directed graph, i.e., this problem is a standard network flow
problem. In our application the total number of rail vehicles used is of major importance. In
our computations, we observed that it can be approximated reasonably well by considering
only the RSRP on the vehicle layer.

With respect to the applicatiom, our layers are motivated as follows. Rail vehicles are not very
flexible w.r.t. shunting operations, e.g., it is difficult to change the orientation. In addition,
there are technical constraints stipulating dedicated orientations at locations. One reason for
these constraints are the indicator tables that are used in Germany at passenger platforms;
they show the position and orientation of individual carriages to provide informations w.r.t.
seat reservations to the passengers. Those tables can not be changed easily in operation.
Hence, these tables imply a lot of constraints w.r.t. position and orientation of individual
vehicles within vehicle compositions. Moreover, some vehicle compositions are forbidden. For
a dedicated fleet f the single vehicle composition ((f, Tack), (f, T ick)) results in a reduction
of the maximal speed to 80 km/h. Because of these (and many other) detailed technical
requirements we need to consider the composition layer in our application.

Nevertheless, the concept of vehicle configurations plays an essential role in our application.
Most of the time-dependent constraints, e.g., the minimal time needed for cleaning or
refueling, refer “only” to the configuration layer, i.e., they are independent of the concrete
vehicle composition that is realized.

To compare the size of the composition and configuration layer we consider a vehicle
configuration k that consists of the fleets {f1, ..., fl} ⊆ F such that fleet fi appears mi ∈ N+
times in k. Let C be the set of all possible vehicle compositions that realize k. Each
composition of c ∈ C must be of size n :=

∑l
i=1 mi. We have 2n possibilities of different

combinations of orientations in C. Furthermore, we have n! possible permutations of fleets.
A fleet that appears m times reduces this number by m! equal permutations. In summary
we have |C| = 2n · n!/(

∏n

i=1
mi!). For one fleet we have |C| = 4, for two different fleets we

get |C| = 8, for three different fleets we get |C| = 48. Hence, the cardinality of the set of
hyperarcs in the composition layer G is exponential in the size of the set of hyperarcs in the
configuration layer.

5 Application and Computational Study

We study the integer programming formulation for the RSRP of Section 3 as a prototype
application for our coarse-to-fine approach proposed in Section 2 using the three layers
introduced in Section 4.

Algorithm 2 summarizes our specialization of the general coarse-to-fine method for the RSRP.
We are given a restricted master problem (RMP) that only includes columns for a sub-set H
of hyperarcs that are already priced. The set H∗ of new hyperarc variables is found by two
strategies. First, we enumerate hyperarcs of the composition layer with negative reduced
cost. If a node has n outgoing hyperarcs with negative reduced cost we add the d 3

√
ne “best”

ones to H∗, see line 7. This enumeration, i.e., the pricing loop, is performed by using a
pruning strategy, i.e., we only have to consider hyperarcs h ∈ H of the composition layer that
have negative reduced cost [dh] (denoting the reduced cost of the column that corresponds
to h in model (MP)) in the configuration layer, see Lemma 2. The second strategy is to
solve the flow problem (see Section 4) defined by the vehicle layer and the objective function
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Algorithm 2: Coarse-To-Fine column generation iteration for the RSRP.
Data: (RMP) given by (MP) from Section 4 for G = (V,A,H),

G = (V,A,H) as composition layer,
[G] = ([V ], [A], [H]) as configuration layer, and

[[G]] = ([[V ]], [[A]], [[H]]) as vehicle layer
Result: a set of hyperarcs H∗ ⊆ H\H to be added to (RMP)

1 set H∗ := ∅;
2 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
3 compute [π∗] defined by model (MP) for [G];
4 compute [d] as reduced cost defined by model (MP) for [G] and [π∗];

/* PRICE by enumeration in COMPOSITION LAYER and */
/* PRUNE enumeration by [d] of CONFIGURATION LAYER */

5 foreach v ∈ V do
6 compute h1, h2, . . . , hn, . . . , h|H(v)out| such that dhi ≤ dhj < 0 for i < j < n;
7 set H∗ := H∗ ∪

{
h1, . . . , hd 3√ne

}
;

/* PRICE by solving the flow problem in VEHICLE LAYER */
8 set (FP) as flow problem defined by model (MP) for [[G]] = ([[V ]], [[A]], [[H]]) with
objective function

[[c]] : [[A]] 7→ R : [[c]]([[a]]) := min
{

[dh]
|h|

∣∣∣∣ [a] ∈ [h] ∈ [H]
}

9 compute optimal solution [[A]]∗ ⊆ [[A]] of (FP);
10 set H∗ := H∗ ∪

{
h ∈ H | ∃a ∈ h : [[a]] ∈ [[A]]∗

}
;

[[c]] (line 8 of Algorithm 2). This is a canonical way to approximate the reduced cost of
the configuration layer to be used in the vehicle layer. We add all hyperarcs to H∗ that
correspond to an arc of the optimal solution of the flow problem, see line 10 of Algorithm 2.
This strategy is our interpretation of the coarse reduction (R) introduced in Section 2 for
the RSRP and acts as an efficient column selection strategy.

In our computational study we ”only“ focus on the linear relaxation of model (MP) to highlight
the impact of the coarse-to-fine feature. The interior point solver (without crossover) of
the commercial software Cplex 12.1 is used to solve the linear programs arising during our
CGA. All our computations were performed on computers with an Intel(R) Xeon(R) CPU
X5672 with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. We remark
that we could have reported results for the algorithm proposed in [7] to generate integer
feasible solutions for the RSRP as well, because our method clearly also applies to integer
programming. This algorithm, however, is not completely exact. Therefore, the effect of our
approach can become blurred.

A notable implementation detail is how we handle the hypergraphs. We only store the
hypergraph associated with the configuration layer in memory. Given a hyperarc [h] ∈ [H] we
can enumerate all fine hyperarcs that map to [h] by an iterator routine for the composition
layer on the stack of the computer program. This can be seen as a dynamic graph generation
approach, since by using our pruning strategy we do not have to handle or enumerate
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the whole fine hypergraph at any time (but we do this once to count the total number of
hyperarcs).

We run four different algorithmic variants for each instance of our test set to show the
relevance of all algorithmic ingredients we introduced:

Variant 1: The first variant is exactly as described in Algorithm 2.

Variant 2: This variant is defined by Algorithm 2 excluding lines 8 to 10, i.e., we omit our
column selection strategy.

Variant 3: This variant is defined by lines 5 to 7 Algorithm 2 without our column selection
strategy and without our pruning strategy by [d].

Variant 4: We solve the RSRP for the composition layer from scratch, i.e., without any
column generation.

Table 1 reports major characteristics of the considered instances of the RSRP, namely the
number |T | of trips to cover, the number |V | of nodes, and the number |H| of hyperarcs for 14
of our 147 test instances for the RSRP. These instances were chosen to form a representative
test set; the remaining results can be found in the Appendix of the corresponding technical
report [8]. The columns of Table 2 denote the number of columns, rows, and non-zeros that
were generated as well as the maximal memory usage in Megabytes, that was allocated by
the executing process of the algorithm. The last two columns report the running time of
the algorithm and the time to resolve the generated model from scratch (which is essential
when the algorithm is used within an integer programming method). The rows of Table 2
correspond to each run of the four variants for a single RSRP instance in the canonical order
(the first row corresponds to variant 1 for RSRP_010, the last one to variant 4 for RSRP_140).
A row showing no results indicates an ”out of memory“-run.

Table 1 Characteristics of instances.

instance |T | |V | |H|
RSRP_001 310 620 805482
RSRP_002 310 620 1163370
RSRP_003 310 620 436534
RSRP_004 884 1830 4085542
RSRP_005 884 1830 5868584
RSRP_006 884 1830 2212292
RSRP_007 884 1830 4085386
RSRP_008 884 1830 5868428
RSRP_009 884 1830 2212136
RSRP_010 884 1768 6508938
RSRP_011 884 1768 9385210
RSRP_012 884 1768 3521040
RSRP_013 884 1830 4100410
RSRP_014 884 1830 2212292
RSRP_015 277 1464 757340
RSRP_016 277 1464 1110078
RSRP_017 277 1464 389980
RSRP_018 277 1464 757514

Continued on next page
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Table 1 – continued from previous page
instance |T | |V | |H|
RSRP_019 277 1464 1110208
RSRP_020 277 1464 390110
RSRP_021 277 980 549264
RSRP_022 277 980 1079526
RSRP_023 277 980 1589436
RSRP_024 277 980 549442
RSRP_025 174 898 139442
RSRP_026 146 828 114058
RSRP_027 277 980 1079526
RSRP_028 277 980 1589436
RSRP_029 277 980 549442
RSRP_030 310 620 805482
RSRP_031 310 620 1163370
RSRP_032 310 620 436534
RSRP_033 310 620 805482
RSRP_034 310 620 436534
RSRP_035 2030 4910 16101438
RSRP_036 2030 4910 23413966
RSRP_037 2030 4910 8464864
RSRP_038 2030 4910 16101438
RSRP_039 2030 4910 23413966
RSRP_040 2030 4910 8464864
RSRP_041 1126 4696 14335774
RSRP_042 1126 4696 7507040
RSRP_043 1126 4696 14335774
RSRP_044 1126 4696 7507040
RSRP_045 1126 4696 14335774
RSRP_046 1126 4696 7507040
RSRP_047 1126 4696 14335774
RSRP_048 1126 4696 7507040
RSRP_049 1126 4696 14335774
RSRP_050 1126 4696 20963280
RSRP_051 1126 4696 7507040
RSRP_052 1126 4696 14335774
RSRP_053 1126 4696 7507040
RSRP_054 277 1464 757340
RSRP_055 277 1464 1110078
RSRP_056 277 1464 389980
RSRP_057 277 980 1079104
RSRP_058 277 980 1588922
RSRP_059 277 980 549264
RSRP_060 174 898 271794
RSRP_061 174 898 398192
RSRP_062 174 898 139442
RSRP_063 146 828 222958

Continued on next page
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Table 1 – continued from previous page
instance |T | |V | |H|
RSRP_064 146 828 326288
RSRP_065 146 828 114058
RSRP_066 1126 4593 13572721
RSRP_067 1126 4593 7102630
RSRP_068 277 1443 732152
RSRP_069 277 1443 1072828
RSRP_070 277 1443 377056
RSRP_071 2186 8630 17525972
RSRP_072 1060 3934 18612816
RSRP_073 1060 3934 10018932
RSRP_074 1126 4696 14335774
RSRP_075 1126 4696 7507040
RSRP_076 4194 13222 48530881
RSRP_077 4194 13222 26124420
RSRP_078 4216 13354 48182502
RSRP_079 4216 13354 70055918
RSRP_080 4216 13354 25521577
RSRP_081 4216 13354 49069226
RSRP_082 4216 13354 70942642
RSRP_083 4216 13354 26408301
RSRP_084 277 1464 994532
RSRP_085 277 1464 1347270
RSRP_086 277 1464 627172
RSRP_087 277 1464 1347270
RSRP_088 277 1464 627172
RSRP_089 277 1464 994532
RSRP_090 277 1464 1347270
RSRP_091 277 1464 627172
RSRP_092 277 1464 993868
RSRP_093 277 1464 1346606
RSRP_094 277 1464 626508
RSRP_095 277 1464 994532
RSRP_096 277 1464 1347270
RSRP_097 277 1464 627172
RSRP_098 1126 4696 19234394
RSRP_099 1126 4696 12405660
RSRP_100 1126 4696 19234364
RSRP_101 1126 4696 12405642
RSRP_102 77 154 47214
RSRP_103 77 154 69594
RSRP_104 77 154 24370
RSRP_105 77 154 47926
RSRP_106 77 154 70880
RSRP_107 77 154 24746
RSRP_108 73 146 42692

Continued on next page
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Table 1 – continued from previous page
instance |T | |V | |H|
RSRP_109 73 146 63412
RSRP_110 73 146 21796
RSRP_111 75 150 44718
RSRP_112 75 150 66506
RSRP_113 75 150 22730
RSRP_114 336 672 934018
RSRP_115 336 672 1363482
RSRP_116 336 672 498576
RSRP_117 854 1708 3597182
RSRP_118 854 1708 5155568
RSRP_119 854 1708 1961760
RSRP_120 1033 3106 8407556
RSRP_121 1033 3106 12213320
RSRP_122 1033 3106 4487388
RSRP_123 5600 14278 39649900
RSRP_124 5600 14278 57480718
RSRP_125 5600 14278 21205982
RSRP_126 5593 14250 21218266
RSRP_127 1488 2976 8049988
RSRP_128 1488 2976 4362772
RSRP_129 1488 2976 8050512
RSRP_130 1488 2976 11670716
RSRP_131 1488 2976 4363296
RSRP_132 1806 4610 13937042
RSRP_133 1806 4610 20209896
RSRP_134 1806 4610 7421090
RSRP_135 167 486 355108
RSRP_136 167 486 459034
RSRP_137 167 486 191534
RSRP_138 805 9810 29049302
RSRP_139 805 9810 15819548
RSRP_140 987 16790 75274348
RSRP_141 987 16790 48378460
RSRP_142 805 2928 9081282
RSRP_143 805 2928 4944614
RSRP_144 21 126 11292
RSRP_145 21 126 5720
RSRP_146 183 586 328922
RSRP_147 183 586 175398

Our results show that the running time of our algorithm, namely variant 1, is competitive
with the running time of variant 4. Moreover, the size of the generated model, i.e., the set
of generated columns indicated by column 2 to 5 is dramatically reduced by variant 1 in
comparison to variant 4. The most drastic improvement was achieved for the resolving time
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(that is equal to the solving time for variant 4), since an integer programming algorithm
often resolves the linear program that is slightly changed by perturbation (for heuristics)
and branching.

The results for variant 2 and variant 3 demonstrate that each of our two additional layers for
the RSRP is needed to be competitive to a ”from scratch“ approach if we only restrict to
the linear programming relaxation. Nevertheless, some of the instances, e.g., RSRP_140 with
more than 7 · 107 hyperarcs could only be solved using the new technique.
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Table 2 Computational results (time format is dd:hh:mm:ss).

instance columns rows non-zeros memory time resolving time
RSRP_001 85383 12345 470571 187 00:00:02:48 00:00:00:05
RSRP_001 257135 27787 1420861 468 00:00:13:50 00:00:00:13
RSRP_001 257135 27787 1420861 476 00:00:17:50 00:00:00:12
RSRP_001 901749 97387 5243971 1206 00:00:01:19
RSRP_002 119975 22735 898973 292 00:00:04:57 00:00:00:09
RSRP_002 345387 51611 2613647 775 00:00:41:06 00:00:00:28
RSRP_002 345387 51611 2613647 736 00:00:47:48 00:00:00:30
RSRP_002 1354853 193223 10618161 2069 00:00:02:32
RSRP_003 48359 1551 165511 101 00:00:00:53 00:00:00:00
RSRP_003 141743 1551 468095 208 00:00:02:58 00:00:00:01
RSRP_003 141743 1551 468095 210 00:00:04:48 00:00:00:01
RSRP_003 437585 1551 1659099 443 00:00:00:40
RSRP_004 290764 40568 1558757 737 00:00:17:46 00:00:00:35
RSRP_004 1144115 122273 6271640 2324 00:02:23:37 00:00:01:52
RSRP_004 1144115 122273 6271640 2324 00:02:53:52 00:00:01:53
RSRP_004 4568917 486701 25820552 5905 00:00:11:25
RSRP_005 405696 75100 2909432 1050 00:00:33:36 00:00:01:09
RSRP_005 1234284 180082 8944070 2724 00:05:04:51 00:00:04:50
RSRP_005 1234284 180082 8944070 2780 00:05:25:29 00:00:04:07
RSRP_005 6832284 968856 51216464 10257 00:00:32:15
RSRP_006 162908 4546 576982 416 00:00:02:25 00:00:00:07
RSRP_006 574678 4546 1978986 778 00:00:13:23 00:00:00:14
RSRP_006 574678 4546 1978986 800 00:00:22:17 00:00:00:16
RSRP_006 2215342 4546 8470520 2089 00:00:02:05
RSRP_007 356045 46805 1989130 881 00:00:33:47 00:00:01:03
RSRP_007 527917 60539 2806022 1165 00:01:03:37 00:00:01:33
RSRP_007 527917 60539 2806022 1178 00:01:24:21 00:00:01:26
RSRP_007 4568709 486649 25819328 5998 00:00:14:08
RSRP_008 516261 91183 3850315 1243 00:01:10:10 00:00:01:49
RSRP_008 711975 114347 5176105 1623 00:02:54:23 00:00:03:28
RSRP_008 711975 114347 5176105 1652 00:03:07:24 00:00:03:09
RSRP_008 6832024 968752 51214536 10379 00:01:01:33
RSRP_009 179794 4546 651944 439 00:00:03:22 00:00:00:11
RSRP_009 340458 4546 1099354 605 00:00:11:19 00:00:00:18
RSRP_009 340458 4546 1099354 601 00:00:20:06 00:00:00:18
RSRP_009 2215186 4546 8470000 2325 00:00:03:19
RSRP_010 309538 42208 1691612 1032 00:00:23:56 00:00:01:06
RSRP_010 1451027 151613 7917223 2869 00:04:51:01 00:00:04:02
RSRP_010 1451027 151613 7917223 2849 00:05:29:36 00:00:03:30
RSRP_010 7272961 767255 41617693 9354 00:00:16:51
RSRP_011 452530 81240 3295538 1494 00:01:06:29 00:00:01:51
RSRP_011 1761390 247774 12875538 3948 00:11:16:46 00:00:09:01
RSRP_011 1761390 247774 12875538 4069 00:12:25:37 00:00:08:15
RSRP_011 10910299 1530089 82603147 16105 00:00:45:22

Continued on next page
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_012 163153 4421 573519 600 00:00:02:52 00:00:00:08
RSRP_012 773527 4421 2680837 1047 00:00:19:59 00:00:00:23
RSRP_012 773527 4421 2680837 1035 00:00:31:03 00:00:00:25
RSRP_012 3523997 4421 13589537 3303 00:00:03:09
RSRP_013 286903 39909 1540812 726 00:00:14:40 00:00:00:31
RSRP_013 1114914 119420 6077741 2118 00:02:12:39 00:00:01:41
RSRP_013 1114914 119420 6077741 2057 00:02:45:55 00:00:01:57
RSRP_013 4584355 487271 26119048 5938 00:00:10:30
RSRP_014 162908 4546 576982 418 00:00:02:27 00:00:00:07
RSRP_014 574678 4546 1978986 786 00:00:13:17 00:00:00:15
RSRP_014 574678 4546 1978986 790 00:00:22:15 00:00:00:15
RSRP_014 2215342 4546 8470520 2095 00:00:02:04
RSRP_015 99251 16873 530734 230 00:00:03:27 00:00:00:10
RSRP_015 332480 40098 1695561 604 00:00:26:12 00:00:00:28
RSRP_015 332480 40098 1695561 630 00:00:25:14 00:00:00:23
RSRP_015 847139 92457 4244930 1085 00:00:01:32
RSRP_016 145887 30633 1040655 342 00:00:11:12 00:00:00:28
RSRP_016 447287 68645 3163729 864 00:01:00:56 00:00:01:02
RSRP_016 447287 68645 3163729 937 00:01:05:26 00:00:01:03
RSRP_016 1287795 181669 8968791 1906 00:00:04:45
RSRP_017 52525 3245 181041 99 00:00:00:54 00:00:00:01
RSRP_017 135365 3245 408177 200 00:00:02:29 00:00:00:03
RSRP_017 135365 3245 408177 203 00:00:03:33 00:00:00:03
RSRP_017 391861 3245 1170085 376 00:00:00:43
RSRP_018 106044 17696 570473 235 00:00:03:32 00:00:00:10
RSRP_018 319773 38649 1643900 602 00:00:21:42 00:00:00:29
RSRP_018 319773 38649 1643900 573 00:00:22:27 00:00:00:25
RSRP_018 847332 92476 4245967 1086 00:00:01:43
RSRP_019 135288 28912 976326 358 00:00:07:56 00:00:00:24
RSRP_019 409801 65721 2881935 812 00:00:51:09 00:00:00:55
RSRP_019 409801 65721 2881935 833 00:00:53:28 00:00:00:58
RSRP_019 1287963 181707 8969857 1902 00:00:03:56
RSRP_020 49359 3245 170109 96 00:00:00:56 00:00:00:01
RSRP_020 129539 3245 394285 185 00:00:02:25 00:00:00:03
RSRP_020 129539 3245 394285 188 00:00:03:19 00:00:00:02
RSRP_020 391991 3245 1170461 380 00:00:00:38
RSRP_021 65101 2825 191401 106 00:00:01:12 00:00:00:01
RSRP_021 130541 2825 380281 197 00:00:02:44 00:00:00:03
RSRP_021 130541 2825 380281 191 00:00:04:07 00:00:00:02
RSRP_021 551053 2825 1537641 538 00:00:00:44
RSRP_022 100678 14586 506079 204 00:00:03:05 00:00:00:08
RSRP_022 271444 30032 1399113 513 00:00:18:41 00:00:00:20
RSRP_022 271444 30032 1399113 531 00:00:21:06 00:00:00:18
RSRP_022 1200569 122889 5879184 1495 00:00:02:08
RSRP_023 137587 25007 945879 309 00:00:06:32 00:00:00:17

Continued on next page
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_023 357519 51231 2543771 763 00:00:36:09 00:00:00:43
RSRP_023 357519 51231 2543771 764 00:00:41:41 00:00:00:48
RSRP_023 1829733 242953 12617863 2578 00:00:04:44
RSRP_024 64039 2825 187013 109 00:00:01:09 00:00:00:01
RSRP_024 129211 2825 376021 195 00:00:02:44 00:00:00:03
RSRP_024 129211 2825 376021 189 00:00:04:03 00:00:00:02
RSRP_024 551231 2825 1538113 541 00:00:00:47
RSRP_025 21982 2010 70430 67 00:00:00:42 00:00:00:00
RSRP_025 46534 2010 128846 78 00:00:00:53 00:00:00:00
RSRP_025 46534 2010 128846 76 00:00:01:07 00:00:00:00
RSRP_025 140594 2010 408602 152 00:00:00:31
RSRP_026 14155 1821 45501 66 00:00:00:39 00:00:00:00
RSRP_026 33831 1821 93105 66 00:00:00:51 00:00:00:00
RSRP_026 35931 1821 99125 66 00:00:00:59 00:00:00:00
RSRP_026 115083 1821 330217 116 00:00:00:31
RSRP_027 105428 14760 531571 212 00:00:03:15 00:00:00:07
RSRP_027 290178 30646 1493229 558 00:00:20:23 00:00:00:20
RSRP_027 290178 30646 1493229 548 00:00:24:03 00:00:00:22
RSRP_027 1200575 122895 5879214 1501 00:00:02:02
RSRP_028 132525 24361 915111 302 00:00:05:43 00:00:00:17
RSRP_028 347214 49550 2489330 763 00:00:35:41 00:00:00:41
RSRP_028 347214 49550 2489330 745 00:00:40:59 00:00:00:39
RSRP_028 1829739 242959 12617893 2580 00:00:04:50
RSRP_029 68085 2831 199491 117 00:00:01:16 00:00:00:01
RSRP_029 140061 2831 405815 214 00:00:02:52 00:00:00:02
RSRP_029 140061 2831 405815 207 00:00:04:31 00:00:00:02
RSRP_029 551237 2831 1538143 525 00:00:00:41
RSRP_030 86385 12523 485291 188 00:00:02:57 00:00:00:04
RSRP_030 266931 29065 1493851 542 00:00:21:05 00:00:00:17
RSRP_030 266931 29065 1493851 515 00:00:24:13 00:00:00:16
RSRP_030 901805 97443 5265727 1223 00:00:01:34
RSRP_031 124000 23420 935526 287 00:00:05:59 00:00:00:11
RSRP_031 370940 54000 2826618 732 00:00:41:25 00:00:00:37
RSRP_031 370940 54000 2826618 770 00:00:48:26 00:00:00:41
RSRP_031 1354909 193279 10639917 2097 00:00:02:33
RSRP_032 41419 1607 141859 99 00:00:00:51 00:00:00:00
RSRP_032 131411 1607 435607 206 00:00:02:31 00:00:00:01
RSRP_032 131411 1607 435607 198 00:00:04:15 00:00:00:01
RSRP_032 437641 1607 1659155 449 00:00:00:43
RSRP_033 86047 12485 483285 188 00:00:03:04 00:00:00:05
RSRP_033 233396 25530 1301546 430 00:00:12:20 00:00:00:15
RSRP_033 233396 25530 1301546 441 00:00:15:38 00:00:00:16
RSRP_033 901805 97443 5265727 1209 00:00:01:38
RSRP_034 41419 1607 141859 97 00:00:00:57 00:00:00:00
RSRP_034 131411 1607 435607 194 00:00:02:37 00:00:00:01

Continued on next page
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_034 131411 1607 435607 198 00:00:04:25 00:00:00:01
RSRP_034 437641 1607 1659155 457 00:00:00:51
RSRP_035 820487 122610 4353957 2054 00:01:42:10 00:00:04:14
RSRP_035 2736604 334345 15052302 5652 00:23:18:51 00:00:16:10
RSRP_035 2736604 334345 15052302 5559 01:00:53:54 00:00:12:16
RSRP_035 18061706 1969831 91908216 22623 00:02:42:53
RSRP_036 1066358 214189 7592519 2983 00:03:40:24 00:00:08:34
RSRP_036 2937722 505270 21429752 6926 01:20:28:17 00:00:24:19
RSRP_036 2937722 505270 21429752 6765 02:00:29:56 00:00:24:54
RSRP_036 - - - - - -
RSRP_037 412359 13080 1433948 1001 00:00:08:34 00:00:00:34
RSRP_037 1648117 13080 5449094 2251 00:01:04:22 00:00:01:09
RSRP_037 1648117 13080 5449094 2271 00:01:38:02 00:00:01:10
RSRP_037 8473291 13080 26999090 7288 00:00:06:14
RSRP_038 821692 121907 4381962 2062 00:01:44:54 00:00:03:46
RSRP_038 2791331 334418 15095147 5564 00:20:46:28 00:00:11:31
RSRP_038 2791331 334418 15095147 5572 00:23:21:28 00:00:13:07
RSRP_038 18061706 1969831 91908216 22621 00:02:36:38
RSRP_039 1093157 219206 7770222 2984 00:04:35:03 00:00:10:29
RSRP_039 2982385 516429 21689739 7086 01:16:27:16 00:00:33:40
RSRP_039 2982385 516429 21689739 6931 01:18:52:52 00:00:34:09
RSRP_039 - - - - - -
RSRP_040 412359 13080 1433948 995 00:00:08:21 00:00:00:32
RSRP_040 1648117 13080 5449094 2212 00:01:05:24 00:00:01:08
RSRP_040 1648117 13080 5449094 2258 00:01:35:45 00:00:01:11
RSRP_040 8473291 13080 26999090 7321 00:00:07:07
RSRP_041 737691 101282 4008161 1737 00:02:45:11 00:00:07:24
RSRP_041 2409872 262217 12833058 4809 00:20:37:50 00:00:17:44
RSRP_041 2475704 264501 13134132 4956 00:23:13:11 00:00:20:45
RSRP_041 15782220 1454449 78231950 18988 00:02:10:52
RSRP_042 433263 11284 1462369 822 00:00:15:40 00:00:01:11
RSRP_042 1267417 11284 3960081 1926 00:01:46:01 00:00:02:45
RSRP_042 1188727 11284 3725575 1786 00:01:45:53 00:00:02:07
RSRP_042 7514485 11284 22174685 7178 00:00:11:05
RSRP_043 746813 101500 4032833 1740 00:02:45:38 00:00:07:58
RSRP_043 2326587 253120 12265965 4699 00:19:31:32 00:00:20:55
RSRP_043 2519261 268068 13409995 4869 00:23:17:27 00:00:21:01
RSRP_043 15782220 1454449 78231950 18830 00:02:29:09
RSRP_044 444511 11284 1448959 828 00:00:16:57 00:00:01:07
RSRP_044 1128653 11284 3603929 1679 00:01:07:39 00:00:02:21
RSRP_044 1176097 11284 3666079 1744 00:01:43:01 00:00:02:13
RSRP_044 7514485 11284 22174685 7125 00:00:12:28
RSRP_045 746970 101705 4023396 1712 00:02:32:36 00:00:06:55
RSRP_045 2298944 242577 12050002 4626 00:18:17:13 00:00:22:22
RSRP_045 2298944 242577 12050002 4534 00:17:23:53 00:00:18:12
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RSRP_045 15782220 1454449 78231950 18988 00:02:37:09
RSRP_046 444363 11284 1446351 858 00:00:16:39 00:00:01:11
RSRP_046 1208035 11284 3799205 1866 00:01:18:01 00:00:02:02
RSRP_046 1208035 11284 3799205 1826 00:01:47:34 00:00:02:06
RSRP_046 7514485 11284 22174685 7153 00:00:10:55
RSRP_047 726568 99633 3935016 1699 00:02:41:22 00:00:07:16
RSRP_047 2468176 264953 12978446 4760 00:20:25:45 00:00:28:46
RSRP_047 2468176 264953 12978446 4988 00:21:30:38 00:00:26:39
RSRP_047 15782220 1454449 78231950 18974 00:02:22:15
RSRP_048 456313 11284 1515217 841 00:00:17:22 00:00:01:13
RSRP_048 1148581 11284 3611229 1861 00:01:17:45 00:00:02:08
RSRP_048 1148581 11284 3611229 1758 00:01:46:26 00:00:02:17
RSRP_048 7514485 11284 22174685 7134 00:00:11:01
RSRP_049 745333 101264 3957631 1744 00:02:30:19 00:00:07:42
RSRP_049 2235730 253395 11760276 4352 00:16:20:03 00:00:16:50
RSRP_049 2160922 245241 11294526 4387 00:16:59:09 00:00:18:33
RSRP_049 15782073 1454302 77811783 18900 00:02:21:01
RSRP_050 1002933 180804 7369383 2605 00:05:25:32 00:00:13:56
RSRP_050 2981197 440050 21510641 6561 01:19:15:26 00:00:43:16
RSRP_050 3232294 463437 23487090 7263 02:00:47:44 00:00:42:45
RSRP_050 - - - - - -
RSRP_051 463396 11137 1525026 859 00:00:17:18 00:00:01:14
RSRP_051 1176802 11137 3701010 1752 00:01:16:49 00:00:02:15
RSRP_051 1148434 11137 3611082 1788 00:01:49:16 00:00:02:10
RSRP_051 7514338 11137 22174538 7345 00:00:11:14
RSRP_052 676677 93120 3627671 1649 00:02:27:43 00:00:06:54
RSRP_052 2374729 255070 12498829 4734 00:19:47:54 00:00:18:18
RSRP_052 2519795 263706 13224155 5099 00:23:17:14 00:00:20:50
RSRP_052 15781552 1454475 78210996 18825 00:02:04:27
RSRP_053 409317 11310 1335819 818 00:00:17:40 00:00:01:19
RSRP_053 1141361 11310 3552699 1746 00:01:25:54 00:00:02:18
RSRP_053 1141361 11310 3552699 1776 00:01:55:53 00:00:02:23
RSRP_053 7513817 11310 22162781 7232 00:00:11:27
RSRP_054 86089 15659 452662 208 00:00:03:59 00:00:00:11
RSRP_054 270079 33993 1397476 523 00:00:18:40 00:00:00:26
RSRP_054 276311 34649 1421048 505 00:00:21:31 00:00:00:27
RSRP_054 847248 92618 4273807 1091 00:00:01:42
RSRP_055 109402 24904 787212 278 00:00:06:53 00:00:00:24
RSRP_055 305420 50194 2175698 640 00:00:35:25 00:00:01:02
RSRP_055 317953 51211 2248775 659 00:00:39:36 00:00:00:50
RSRP_055 1287904 181830 8996604 1902 00:00:04:23
RSRP_056 34378 3406 112818 76 00:00:00:51 00:00:00:01
RSRP_056 102774 3406 309282 158 00:00:02:11 00:00:00:02
RSRP_056 94346 3406 284238 152 00:00:02:54 00:00:00:02
RSRP_056 391970 3406 1168850 377 00:00:00:43
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RSRP_057 93264 14182 473327 193 00:00:03:51 00:00:00:09
RSRP_057 273935 30541 1411708 543 00:00:23:53 00:00:00:24
RSRP_057 273935 30541 1411708 547 00:00:28:09 00:00:00:27
RSRP_057 1200195 122977 5915962 1510 00:00:03:14
RSRP_058 120808 22926 847472 280 00:00:06:34 00:00:00:18
RSRP_058 348184 49078 2504134 730 00:00:51:50 00:00:01:00
RSRP_058 348184 49078 2504134 740 00:00:52:40 00:00:00:48
RSRP_058 1829236 243010 12652228 2570 00:00:05:40
RSRP_059 59624 2944 178680 101 00:00:01:09 00:00:00:01
RSRP_059 119820 2944 354032 175 00:00:02:27 00:00:00:02
RSRP_059 119820 2944 354032 178 00:00:03:38 00:00:00:02
RSRP_059 551132 2944 1536764 493 00:00:00:44
RSRP_060 46462 9000 239702 110 00:00:01:40 00:00:00:03
RSRP_060 116000 15810 579422 208 00:00:04:08 00:00:00:06
RSRP_060 116000 15810 579422 213 00:00:04:43 00:00:00:06
RSRP_060 305740 35630 1521254 421 00:00:00:48
RSRP_061 56338 14394 390724 151 00:00:02:20 00:00:00:08
RSRP_061 173121 29289 1201993 359 00:00:09:41 00:00:00:17
RSRP_061 173121 29289 1201993 351 00:00:10:06 00:00:00:16
RSRP_061 464797 69089 3213253 690 00:00:01:16
RSRP_062 20049 2171 66197 67 00:00:00:37 00:00:00:00
RSRP_062 42825 2171 119205 74 00:00:00:54 00:00:00:00
RSRP_062 42825 2171 119205 74 00:00:01:04 00:00:00:00
RSRP_062 140729 2171 408073 153 00:00:00:32
RSRP_063 36642 7766 189201 88 00:00:01:13 00:00:00:02
RSRP_063 99219 13783 490770 193 00:00:03:52 00:00:00:06
RSRP_063 99219 13783 490770 192 00:00:04:07 00:00:00:06
RSRP_063 251423 30011 1245694 356 00:00:00:45
RSRP_064 45390 12222 318136 131 00:00:01:57 00:00:00:06
RSRP_064 134092 23660 930172 281 00:00:07:11 00:00:00:14
RSRP_064 134092 23660 930172 280 00:00:07:22 00:00:00:14
RSRP_064 382059 58047 2631215 591 00:00:01:11
RSRP_065 16249 1975 55177 67 00:00:00:37 00:00:00:00
RSRP_065 32017 1975 87825 67 00:00:00:47 00:00:00:00
RSRP_065 32017 1975 87825 67 00:00:00:58 00:00:00:00
RSRP_065 115217 1975 329849 121 00:00:00:31
RSRP_066 643292 93147 3462409 1618 00:01:55:22 00:00:05:59
RSRP_066 2443982 280537 12795215 4906 00:23:14:29 00:00:21:10
RSRP_066 2448736 270464 12812521 4899 00:22:25:16 00:00:18:51
RSRP_066 15018374 1454269 74250269 18009 00:02:00:56
RSRP_067 398986 11104 1301225 802 00:00:19:14 00:00:01:00
RSRP_067 1234496 11104 3837206 1913 00:01:31:12 00:00:02:11
RSRP_067 1234496 11104 3837206 1924 00:02:00:53 00:00:02:07
RSRP_067 7109282 11104 20969742 6913 00:00:09:33
RSRP_068 87420 16252 473534 210 00:00:03:33 00:00:00:11
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RSRP_068 272324 35284 1407469 514 00:00:17:01 00:00:00:27
RSRP_068 320975 40691 1650592 596 00:00:24:05 00:00:00:31
RSRP_068 822040 92576 4148099 1063 00:00:01:39
RSRP_069 138231 29711 991303 360 00:00:08:08 00:00:00:25
RSRP_069 409227 65467 2896716 798 00:00:45:38 00:00:01:01
RSRP_069 460820 72230 3250242 900 00:00:53:22 00:00:01:08
RSRP_069 1250634 181788 8723238 1847 00:00:03:57
RSRP_070 48698 3364 168309 98 00:00:01:01 00:00:00:01
RSRP_070 119940 3364 364469 183 00:00:02:23 00:00:00:03
RSRP_070 121100 3364 370291 185 00:00:03:23 00:00:00:02
RSRP_070 379026 3364 1133345 386 00:00:00:40
RSRP_071 859228 21188 2853217 1747 00:00:43:14 00:00:02:42
RSRP_071 2364752 21188 7757783 3443 00:03:19:07 00:00:04:49
RSRP_071 2364752 21188 7757783 3364 00:04:19:12 00:00:04:42
RSRP_071 17538956 21188 53333011 16299 00:00:27:57
RSRP_072 652058 91161 3591004 1713 00:01:58:45 00:00:05:03
RSRP_072 2048934 250919 11376228 4099 00:10:30:08 00:00:11:02
RSRP_072 2092519 258292 11584461 4176 00:12:45:01 00:00:12:00
RSRP_072 20393573 1787866 102713615 24340 00:01:36:16
RSRP_073 400640 9913 1376955 858 00:00:12:35 00:00:00:49
RSRP_073 1105266 9913 3842375 1520 00:00:59:48 00:00:01:19
RSRP_073 1164588 9913 4064191 1604 00:01:43:55 00:00:01:15
RSRP_073 10025174 9913 31170265 8397 00:00:08:25
RSRP_074 710008 96181 3817396 1680 00:02:44:52 00:00:06:07
RSRP_074 2440348 261033 12774648 4845 00:20:18:45 00:00:15:37
RSRP_074 2342453 250966 12246455 4742 00:19:05:46 00:00:19:39
RSRP_074 15781526 1454449 78210922 18828 00:02:12:38
RSRP_075 422453 11284 1354517 816 00:00:18:09 00:00:01:15
RSRP_075 1140007 11284 3518927 1797 00:01:20:24 00:00:02:15
RSRP_075 1204827 11284 3685315 1885 00:01:46:40 00:00:02:15
RSRP_075 7513791 11284 22162705 7114 00:00:11:51
RSRP_076 2101712 306563 11568458 5487 00:08:43:22 00:00:21:57
RSRP_076 - - - - - -
RSRP_076 - - - - - -
RSRP_076 - - - - - -
RSRP_077 1228243 33975 4339601 2894 00:00:57:08 00:00:03:16
RSRP_077 3442746 33975 11976036 5171 00:04:59:23 00:00:06:45
RSRP_077 3442746 33975 11976036 5286 00:06:46:28 00:00:05:53
RSRP_077 26145192 33975 89351525 25583 00:00:58:34
RSRP_078 1993105 294444 10816502 5346 00:10:16:59 00:00:24:46
RSRP_078 - - - - - -
RSRP_078 - - - - - -
RSRP_078 - - - - - -
RSRP_079 2740552 542018 19993611 7893 00:23:07:53 00:00:56:48
RSRP_079 - - - - - -
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RSRP_079 - - - - - -
RSRP_079 - - - - - -
RSRP_080 1303150 34288 4305082 2838 00:01:01:08 00:00:03:19
RSRP_080 3910682 34288 12948542 5716 00:05:27:09 00:00:06:13
RSRP_080 3910682 34288 12948542 5687 00:07:48:10 00:00:05:54
RSRP_080 - - - - - -
RSRP_081 2035475 297927 11246994 5435 00:09:12:58 00:00:20:26
RSRP_081 - - - - - -
RSRP_081 - - - - - -
RSRP_081 - - - - - -
RSRP_082 2758776 541800 20281403 8040 00:23:42:09 00:01:12:16
RSRP_082 - - - - - -
RSRP_082 - - - - - -
RSRP_082 - - - - - -
RSRP_083 1233754 34309 4332590 2860 00:00:54:05 00:00:03:21
RSRP_083 3566001 34309 12261824 5459 00:05:38:45 00:00:07:31
RSRP_083 3566001 34309 12261824 5429 00:07:20:07 00:00:06:29
RSRP_083 - - - - - -
RSRP_084 107536 16638 659109 249 00:00:05:30 00:00:00:12
RSRP_084 357661 36907 2227860 644 00:00:28:29 00:00:00:30
RSRP_084 357661 36907 2227860 670 00:00:35:52 00:00:00:28
RSRP_084 1084482 92660 7201243 1465 00:00:02:32
RSRP_085 133194 26936 1027288 344 00:00:10:22 00:00:00:25
RSRP_085 410714 58876 3199104 842 00:00:58:48 00:00:01:00
RSRP_085 410714 58876 3199104 846 00:01:07:56 00:00:01:03
RSRP_085 1525138 181872 12410680 2308 00:00:04:50
RSRP_086 42916 3448 200846 94 00:00:01:11 00:00:00:01
RSRP_086 128708 3448 626426 209 00:00:03:33 00:00:00:02
RSRP_086 128708 3448 626426 213 00:00:06:35 00:00:00:03
RSRP_086 629204 3448 3609646 695 00:00:01:01
RSRP_087 121974 26232 943030 302 00:00:09:27 00:00:00:23
RSRP_087 380082 55912 2951626 777 00:00:45:04 00:00:01:06
RSRP_087 380082 55912 2951626 753 00:00:53:00 00:00:01:09
RSRP_087 1525138 181872 12410680 2302 00:00:04:32
RSRP_088 41400 3448 197718 94 00:00:01:07 00:00:00:01
RSRP_088 126116 3448 588550 196 00:00:03:20 00:00:00:03
RSRP_088 126116 3448 588550 209 00:00:06:25 00:00:00:03
RSRP_088 629204 3448 3609646 700 00:00:00:55
RSRP_089 84754 14932 509923 212 00:00:04:21 00:00:00:11
RSRP_089 332923 34197 2070604 628 00:00:24:03 00:00:00:28
RSRP_089 332923 34197 2070604 617 00:00:31:43 00:00:00:29
RSRP_089 1084482 92660 7201243 1466 00:00:02:28
RSRP_090 121974 26232 943030 302 00:00:09:43 00:00:00:25
RSRP_090 380082 55912 2951626 775 00:00:46:06 00:00:01:11
RSRP_090 380082 55912 2951626 754 00:00:52:15 00:00:01:02
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RSRP_090 1525138 181872 12410680 2307 00:00:05:08
RSRP_091 41400 3448 197718 94 00:00:01:12 00:00:00:01
RSRP_091 126116 3448 588550 196 00:00:03:27 00:00:00:03
RSRP_091 126116 3448 588550 209 00:00:06:26 00:00:00:03
RSRP_091 629204 3448 3609646 695 00:00:01:03
RSRP_092 105125 16535 644280 241 00:00:04:22 00:00:00:13
RSRP_092 351198 37240 2157259 674 00:00:29:10 00:00:00:34
RSRP_092 351198 37240 2157259 656 00:00:36:35 00:00:00:35
RSRP_092 1083818 92660 7192995 1460 00:00:02:28
RSRP_093 131454 27220 995558 326 00:00:09:43 00:00:00:26
RSRP_093 407461 61603 3116841 826 00:00:50:06 00:00:01:16
RSRP_093 407461 61603 3116841 815 00:00:56:45 00:00:01:09
RSRP_093 1524474 181872 12401104 2365 00:00:05:30
RSRP_094 51104 3448 257274 100 00:00:01:25 00:00:00:01
RSRP_094 131320 3448 631362 206 00:00:03:29 00:00:00:03
RSRP_094 131320 3448 631362 215 00:00:06:47 00:00:00:03
RSRP_094 628540 3448 3602726 690 00:00:01:05
RSRP_095 95930 15480 590971 231 00:00:04:45 00:00:00:12
RSRP_095 323587 35093 1920904 594 00:00:25:32 00:00:00:29
RSRP_095 287186 31928 1693425 535 00:00:26:55 00:00:00:26
RSRP_095 1084482 92660 7201243 1466 00:00:02:35
RSRP_096 127144 26134 980270 346 00:00:08:47 00:00:00:32
RSRP_096 381077 57659 2895407 753 00:01:00:11 00:00:01:13
RSRP_096 335687 51493 2556523 686 00:00:56:42 00:00:01:07
RSRP_096 1525138 181872 12410680 2294 00:00:05:09
RSRP_097 52596 3448 260126 104 00:00:01:20 00:00:00:02
RSRP_097 124808 3448 574914 200 00:00:03:28 00:00:00:03
RSRP_097 124808 3448 574914 205 00:00:06:39 00:00:00:03
RSRP_097 629204 3448 3609646 697 00:00:01:01
RSRP_098 786951 93798 5153133 1968 00:03:14:27 00:00:08:05
RSRP_098 2667454 241215 17391668 5433 00:21:32:06 00:00:22:51
RSRP_098 2667454 241215 17391668 5723 01:04:47:41 00:00:27:34
RSRP_098 20680319 1454622 140691311 26634 00:02:49:11
RSRP_099 528808 11457 2798718 1108 00:00:32:04 00:00:01:28
RSRP_099 1384206 11457 7302492 2341 00:02:15:41 00:00:02:36
RSRP_099 1293454 11457 6935478 2199 00:03:46:50 00:00:03:07
RSRP_099 12412584 11457 74508432 14163 00:00:22:41
RSRP_100 749426 91325 4988934 1876 00:03:03:44 00:00:07:01
RSRP_100 2819827 255646 18306921 5801 01:04:35:17 00:00:28:35
RSRP_100 2717973 248122 17483355 5735 01:05:01:23 00:00:22:33
RSRP_100 20680283 1454616 140691067 26817 00:03:15:58
RSRP_101 518362 11457 2746542 1084 00:00:30:28 00:00:01:18
RSRP_101 1349658 11457 7292312 2273 00:02:13:16 00:00:02:42
RSRP_101 1349658 11457 7292312 2322 00:04:06:19 00:00:02:43
RSRP_101 12412566 11457 74508320 14220 00:00:23:59
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RSRP_102 17263 2727 95812 68 00:00:00:37 00:00:00:00
RSRP_102 29276 3880 162671 71 00:00:00:54 00:00:00:00
RSRP_102 29276 3880 162671 72 00:00:01:02 00:00:00:00
RSRP_102 53553 6613 304506 87 00:00:00:30
RSRP_103 25262 4874 187656 68 00:00:00:55 00:00:00:00
RSRP_103 36570 6112 273818 88 00:00:01:25 00:00:00:01
RSRP_103 36570 6112 273818 88 00:00:01:22 00:00:00:01
RSRP_103 82006 12840 624188 148 00:00:00:44
RSRP_104 8170 386 28522 68 00:00:00:32 00:00:00:00
RSRP_104 13864 386 46626 68 00:00:00:39 00:00:00:00
RSRP_104 13864 386 46626 68 00:00:00:42 00:00:00:00
RSRP_104 24636 386 91088 67 00:00:00:29
RSRP_105 16799 2665 92678 67 00:00:00:38 00:00:00:00
RSRP_105 31296 4088 173229 72 00:00:00:57 00:00:00:00
RSRP_105 31296 4088 173229 73 00:00:01:01 00:00:00:00
RSRP_105 54342 6690 308201 90 00:00:00:31
RSRP_106 27295 5127 203501 73 00:00:00:49 00:00:00:00
RSRP_106 39950 6558 299838 92 00:00:01:15 00:00:00:01
RSRP_106 39950 6558 299838 93 00:00:01:24 00:00:00:01
RSRP_106 83446 12994 633190 152 00:00:00:36
RSRP_107 7760 386 27450 67 00:00:00:32 00:00:00:00
RSRP_107 14152 386 47444 67 00:00:00:36 00:00:00:00
RSRP_107 14152 386 47444 67 00:00:00:41 00:00:00:00
RSRP_107 25012 386 92364 67 00:00:00:30
RSRP_108 16100 2534 88875 67 00:00:00:36 00:00:00:00
RSRP_108 29000 3852 159513 71 00:00:00:56 00:00:00:00
RSRP_108 29000 3852 159513 69 00:00:00:59 00:00:00:00
RSRP_108 48501 6067 275348 84 00:00:00:29
RSRP_109 24997 4745 185671 67 00:00:00:49 00:00:00:00
RSRP_109 36955 6037 277809 88 00:00:01:10 00:00:00:01
RSRP_109 36955 6037 277809 90 00:00:01:20 00:00:00:01
RSRP_109 74776 11768 568806 140 00:00:00:33
RSRP_110 7284 366 25694 67 00:00:00:39 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:42 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:34 00:00:00:00
RSRP_110 22050 366 81276 67 00:00:00:38
RSRP_111 17052 2686 94827 67 00:00:00:40 00:00:00:00
RSRP_111 29862 3914 168115 73 00:00:00:57 00:00:00:00
RSRP_111 29862 3914 168115 72 00:00:01:04 00:00:00:00
RSRP_111 50821 6371 293730 85 00:00:00:32
RSRP_112 25807 4897 192097 71 00:00:00:49 00:00:00:00
RSRP_112 44132 7050 333734 104 00:00:01:27 00:00:00:01
RSRP_112 44132 7050 333734 104 00:00:01:39 00:00:00:01
RSRP_112 78454 12366 603484 139 00:00:00:31
RSRP_113 8068 376 29058 67 00:00:00:32 00:00:00:00
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RSRP_113 13424 376 45904 67 00:00:00:34 00:00:00:00
RSRP_113 13424 376 45904 67 00:00:00:39 00:00:00:00
RSRP_113 22988 376 87978 67 00:00:00:30
RSRP_114 124985 17057 721339 260 00:00:04:11 00:00:00:06
RSRP_114 370297 40891 2082439 766 00:00:26:20 00:00:00:18
RSRP_114 370297 40891 2082439 747 00:00:29:19 00:00:00:14
RSRP_114 1047083 114311 6242293 1417 00:00:01:31
RSRP_115 199024 34156 1508358 435 00:00:07:55 00:00:00:16
RSRP_115 578242 83066 4353940 1290 00:01:18:47 00:00:00:45
RSRP_115 578242 83066 4353940 1269 00:01:29:16 00:00:00:44
RSRP_115 1588505 226941 12383177 2464 00:00:02:32
RSRP_116 59193 1681 231433 122 00:00:01:06 00:00:00:01
RSRP_116 156299 1681 507035 269 00:00:04:42 00:00:00:02
RSRP_116 156299 1681 507035 250 00:00:08:12 00:00:00:02
RSRP_116 499683 1681 2052117 473 00:00:00:43
RSRP_117 278166 38488 1502250 668 00:00:13:27 00:00:00:25
RSRP_117 869820 89826 4668662 1678 00:01:31:58 00:00:01:14
RSRP_117 869820 89826 4668662 1675 00:01:44:20 00:00:01:14
RSRP_117 4019632 425538 22487680 5144 00:00:06:14
RSRP_118 390611 71475 2845889 963 00:00:29:26 00:00:00:56
RSRP_118 1028853 147469 7486497 2190 00:02:43:29 00:00:02:21
RSRP_118 1028853 147469 7486497 2173 00:03:02:27 00:00:02:38
RSRP_118 5997576 846804 45004718 8889 00:00:19:07
RSRP_119 145780 4272 499960 361 00:00:02:02 00:00:00:05
RSRP_119 526890 4272 1773436 730 00:00:11:21 00:00:00:13
RSRP_119 526890 4272 1773436 739 00:00:18:22 00:00:00:13
RSRP_119 1964652 4272 7305604 1853 00:00:01:59
RSRP_120 491219 76767 2754706 1058 00:00:40:04 00:00:02:23
RSRP_120 1079795 144509 5931178 2251 00:03:01:27 00:00:04:44
RSRP_120 1079795 144509 5931178 2208 00:03:21:02 00:00:04:25
RSRP_120 9414973 1012971 46583640 11235 00:00:36:03
RSRP_121 633184 134790 4712924 1572 00:01:27:36 00:00:04:29
RSRP_121 1552020 303838 11547114 3326 00:10:16:47 00:00:11:19
RSRP_121 1552020 303838 11547114 3421 00:10:06:08 00:00:10:09
RSRP_121 14222924 2018264 96853296 19599 00:01:22:11
RSRP_122 264140 7678 998446 478 00:00:04:51 00:00:00:19
RSRP_122 759500 7678 2619430 1017 00:00:27:11 00:00:00:40
RSRP_122 703134 7678 2458620 935 00:00:36:32 00:00:00:31
RSRP_122 4492618 7678 13826816 3845 00:00:04:16
RSRP_123 1930201 302840 11487017 5271 00:03:10:40 00:00:07:42
RSRP_123 - - - - - -
RSRP_123 - - - - - -
RSRP_123 - - - - - -
RSRP_124 2749024 566930 21739579 7810 00:06:20:10 00:00:17:14
RSRP_124 - - - - - -
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_124 - - - - - -
RSRP_124 - - - - - -
RSRP_125 1068522 36097 4101705 2963 00:00:28:00 00:00:01:06
RSRP_125 3695301 36097 13285947 5195 00:03:05:06 00:00:02:23
RSRP_125 3695301 36097 13285947 5144 00:05:23:13 00:00:02:43
RSRP_125 21229194 36097 74930609 18364 00:00:15:07
RSRP_126 1059202 36013 4051951 2962 00:00:29:10 00:00:01:04
RSRP_126 3554657 36013 12870029 5117 00:03:01:16 00:00:02:33
RSRP_126 3554657 36013 12870029 5030 00:05:08:38 00:00:02:48
RSRP_126 21241420 36013 74965569 18375 00:00:16:45
RSRP_127 497295 67727 2761327 1370 00:00:34:12 00:00:01:29
RSRP_127 2253795 233513 12689019 4170 00:07:34:13 00:00:07:22
RSRP_127 2253795 233513 12689019 4436 00:08:53:35 00:00:07:29
RSRP_127 8995503 950837 51398533 11484 00:00:24:49
RSRP_128 276947 7445 940049 748 00:00:04:51 00:00:00:18
RSRP_128 1122935 7445 3668453 1625 00:00:51:06 00:00:01:01
RSRP_128 1122935 7445 3668453 1658 00:01:15:25 00:00:00:57
RSRP_128 4367871 7445 15888297 4082 00:00:05:48
RSRP_129 514961 69863 2866831 1332 00:00:37:49 00:00:01:31
RSRP_129 2153442 220964 12157414 3961 00:07:39:17 00:00:06:21
RSRP_129 2153442 220964 12157414 4327 00:08:49:10 00:00:08:20
RSRP_129 8996180 950990 51401912 11509 00:00:25:55
RSRP_130 753109 131693 5721831 1921 00:01:08:04 00:00:03:27
RSRP_130 2348603 329385 17919703 5024 00:11:58:58 00:00:13:14
RSRP_130 2348603 329385 17919703 5032 00:12:41:50 00:00:13:00
RSRP_130 13556953 1894535 104249717 19983 00:01:02:15
RSRP_131 269791 7445 912631 743 00:00:04:56 00:00:00:18
RSRP_131 1193183 7445 4001539 1641 00:00:47:30 00:00:01:05
RSRP_131 1193183 7445 4001539 1611 00:01:08:59 00:00:01:02
RSRP_131 4368395 7445 15890053 4076 00:00:05:44
RSRP_132 782929 109247 4359000 2132 00:02:02:09 00:00:05:36
RSRP_132 3236915 344271 17630182 6355 00:23:59:38 00:00:21:17
RSRP_132 3236915 344271 17630182 6143 01:02:01:29 00:00:21:14
RSRP_132 15607844 1679214 84464781 19415 00:01:44:24
RSRP_133 1056449 196397 8004125 2993 00:04:22:19 00:00:11:51
RSRP_133 3718902 538010 27889234 7898 01:16:44:40 00:00:32:21
RSRP_133 3718902 538010 27889234 8179 01:18:27:16 00:00:33:19
RSRP_133 - - - - - -
RSRP_134 413532 11252 1395266 1044 00:00:13:24 00:00:00:56
RSRP_134 1776942 11252 5676828 2530 00:01:33:54 00:00:02:39
RSRP_134 1776942 11252 5676828 2550 00:02:04:32 00:00:02:29
RSRP_134 7428540 11252 24569568 6602 00:00:10:42
RSRP_135 51019 8541 290876 114 00:00:01:18 00:00:00:02
RSRP_135 85476 12322 480371 163 00:00:03:07 00:00:00:03
RSRP_135 85476 12322 480371 173 00:00:03:33 00:00:00:03
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_135 399562 45392 2088657 514 00:00:00:42
RSRP_136 74055 17531 562573 166 00:00:02:27 00:00:00:06
RSRP_136 96744 23190 723134 212 00:00:04:42 00:00:00:09
RSRP_136 96744 23190 723134 207 00:00:05:07 00:00:00:08
RSRP_136 547069 89459 3923685 816 00:00:01:10
RSRP_137 31383 1325 115433 75 00:00:00:38 00:00:00:00
RSRP_137 54755 1325 183293 90 00:00:01:02 00:00:00:00
RSRP_137 54755 1325 183293 89 00:00:01:17 00:00:00:00
RSRP_137 192407 1325 600533 197 00:00:00:33
RSRP_138 1570890 87038 8904560 4934 00:12:22:26 00:00:33:23
RSRP_138 - - - - - -
RSRP_138 - - - - - -
RSRP_138 - - - - - -
RSRP_139 826057 20427 2898185 2672 00:00:21:48 00:00:01:02
RSRP_139 2618183 20427 8739899 3847 00:01:32:48 00:00:01:55
RSRP_139 2618183 20427 8739899 3668 00:02:39:31 00:00:01:56
RSRP_139 15831937 20427 60454981 14291 00:00:15:18
RSRP_140 3639659 103609 31758855 8721 01:17:04:26 00:02:50:51
RSRP_140 - - - - - -
RSRP_140 - - - - - -
RSRP_140 - - - - - -
RSRP_141 3377672 35114 16993798 6519 00:12:59:52 00:00:56:15
RSRP_141 - - - - - -
RSRP_141 - - - - - -
RSRP_141 - - - - - -
RSRP_142 477436 65106 2647128 1563 00:02:03:05 00:00:03:36
RSRP_142 1653420 168196 9056088 3172 00:07:15:27 00:00:06:59
RSRP_142 1653420 168196 9056088 3311 00:07:57:09 00:00:07:03
RSRP_142 10140411 1064455 58089051 13173 00:00:43:41
RSRP_143 231149 6663 809849 833 00:00:06:00 00:00:00:31
RSRP_143 973537 6663 3330957 1368 00:00:39:04 00:00:01:06
RSRP_143 973537 6663 3330957 1381 00:00:56:58 00:00:01:02
RSRP_143 4948879 6663 18926709 4618 00:00:05:53
RSRP_144 5562 1024 27351 68 00:00:00:32 00:00:00:00
RSRP_144 8852 1238 44505 68 00:00:00:34 00:00:00:00
RSRP_144 8852 1238 44505 68 00:00:00:34 00:00:00:00
RSRP_144 12688 1610 63509 67 00:00:00:29
RSRP_145 2809 297 7859 68 00:00:00:32 00:00:00:00
RSRP_145 3965 297 10887 67 00:00:00:30 00:00:00:00
RSRP_145 3965 297 10887 67 00:00:00:29 00:00:00:00
RSRP_145 5901 297 16295 67 00:00:00:30
RSRP_146 71458 10210 403617 158 00:00:02:10 00:00:00:03
RSRP_146 104750 12916 578923 209 00:00:03:34 00:00:00:05
RSRP_146 104750 12916 578923 205 00:00:04:37 00:00:00:05
RSRP_146 367857 39989 2093736 502 00:00:00:50
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Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_147 37148 1394 130814 71 00:00:00:52 00:00:00:00
RSRP_147 59000 1394 195166 93 00:00:01:12 00:00:00:00
RSRP_147 59000 1394 195166 95 00:00:01:39 00:00:00:00
RSRP_147 176296 1394 630006 191 00:00:00:46
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