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Abstract

We investigate spectral deferred correction (SDC) methods for time step-
ping and their interplay with spatio-temporal adaptivity, applied to the solu-
tion of the cardiac electro-mechanical coupling model. This model consists
of the Monodomain equations, a reaction-diffusion system modeling the car-
diac bioelectrical activity, coupled with a quasi-static mechanical model de-
scribing the contraction and relaxation of the cardiac muscle. The numerical
approximation of the cardiac electro-mechanical coupling is a challenging
multiphysics problem, because it exhibits very different spatial and tempo-
ral scales. Therefore, spatio-temporal adaptivity is a promising approach
to reduce the computational complexity. SDC methods are simple iterative
methods for solving collocation systems. We exploit their flexibility for com-
bining them in various ways with spatio-temporal adaptivity. The accuracy
and computational complexity of the resulting methods are studied on some
numerical examples.

1 Introduction

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process is quantitatively described by a mathematical model
called electro-mechanical coupling. The electrical model consists of the Mono-
domain system (a reduction of the Bidomain model), which is a reaction-diffusion
equation describing the evolution of the transmembrane voltage. The PDE is cou-
pled through the reaction term with a stiff system of ordinary differential equations
(ODEs), the so-called membrane model, describing the flow of the ionic currents
through the cellular membrane. The mechanical model consists of quasi-static
finite elasticity, coupled with a system of ODEs modeling the development of bio-
chemically generated active stress.

The numerical approximation of the cardiac electro-mechanical coupling is a
challenging multiphysics problem, because the space and time scales associated
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with the electrical and mechanical models are very different. Therefore, spatial
and temporal adaptivity is a promising approach to reduce the computational com-
plexity [2, 3]. However, spatial adaptivity by local mesh refinement incurs a sub-
stantial overhead for error estimation, grid manipulation, repeated integration until
spatial accuracy is achieved, and reassembly of mass and stiffness matrices, which
reduces the performance gain.

In this work, we investigate the use of spectral deferred correction (SDC) meth-
ods for time stepping and their interplay with spatial and temporal adaptivity. SDC
methods are simple iterative methods for solving collocation systems. Their flexi-
bility allows to combine them in various ways with spatio-temporal adaptivity. We
explore interleaving mesh refinement with SDC iterations for improved conver-
gence and local time stepping. In particular, we develop SDC methods for strong
electro-mechanical coupling including mechano-electrical feedback and their po-
tential for multi-rate integration. The properties of the resulting methods in terms
of accuracy and computational complexity are discussed at a simple numerical ex-
ample.

2 Mathematical models

Mechanical model Let us denote the material coordinates of the undeformed
or reference cardiac domain by X = (X1,X2,X3)

T , the spatial coordinates of the
deformed cardiac domain by x = (x1,x2,x3)

T and the region occupied by the un-
deformed and deformed, at time t, cardiac domains by Ω̂ and Ω(t), respectively.
We denote by Div and Grad the material divergence of a vector and gradient of a
scalar field, respectively. From a mechanical point of view, the cardiac tissue is
modeled as a non-linear elastic material. Let us denote by F and J the deformation
derivative tensor and its determinant, respectively. The Cauchy-Green deformation
tensor C and Lagrange-Green strain tensor E are C = FT F and E = 1

2(C− I), with
identity matrix I.

We first assume that the time-dependent inertial term in the governing elastic
wave equation may be neglected, see e.g. [9, 14]. Thus, the steady-state force
equilibrium equation reads

Div(FS) = 0, X ∈ Ω̂, (1)

where S is the second Piola-Kirchoff stress tensor. We close the quasi-static me-
chanical model (1) by imposing a prescribed displacement on a Dirichlet boundary
x(X) = x̂(X), X ∈ ∂ Ω̂D and no traction force on a Neumann boundary FSN =
0, X ∈ ∂ Ω̂N .

The tensor S = Spas +Svol +Sact is given by the sum of a passive elastic com-
ponent Spas, a volumetric component Svol and a biochemically generated active
component Sact , cf. [8, 9, 13].

The passive component Spas is computed from a suitable strain energy function

2



W pas and the Green Lagrange strain E as

Spas
i j =

1
2

(
∂W pas

∂Ei j
+

∂W pas

∂E ji

)
i, j = 1,2,3.

In this paper, the myocardium is modeled as a transversely isotropic hyperelastic
material, with the exponential strain energy function introduced in [13]. The near-
incompressibility of the myocardium is modeled by an additive volume change
penalization term.

The contraction of the ventricles results from the active tension generated by
the model of myofilements dynamics activated by calcium. We assume that the
generated active force acts only in the direction of the fiber, as in the other works
[12, 14], hence, according to [7, Ch. 10], the second Piola-Kirchhoff active stress
component is given by

Sact = J F−1
σ

actF−T = Ta
âl⊗ âl

âl
T Câl

.

The biochemically generated active stress Ta is modeled as stretch and stretch-
rate independent. Thus, we assume as in [6, 11] that the dynamics of Ta depends
only on the transmembrane potential v according to a simple twitch-like rule, see
[6, 11] for details.

Electrical model As electrical model we consider the monodomain model using
the Aliev-Panfilov membrane model [1] on the reference cardiac domain Ω̂ [11,
12,14]. Given an applied current per unit volume Iapp : Ω̂× (0,T )→ R, and initial
conditions v0 : Ω̂ → R, w0 : Ω̂ → R, find the transmembrane potential v : Ω̂×
(0,T )→ R and the gating variable w : Ω̂× (0,T )→ R such that

cm
∂v
∂ t
− J−1 Div(JF−1DmF−T Gradv)+ Iion(v,w) = Iapp in Ω̂× (0,T ), (2)

∂w
∂ t
−R(v,w) = 0 in Ω̂× (0,T ), (3)

where F is the deformation gradient tensor and the functions Iion(v,w), R(v,w) are
given by the Aliev-Panfilov membrane model [1]. Insulating boundary conditions
on v are prescribed.

The computation of the tensors F−1(X)Dm(x)F−T (X) must be performed on
the reference configuration Ω̂. Denoting by âl(X) the unit vector parallel to the
local fiber direction in the reference configuration, it holds

(F−1DmF−T )(X) = σ
m
t C−1(X)+(σm

l −σ
m
t )

âl(X)âT
l (X)

âT
l (X)C(X)âl(X)

, (4)

where σm
l,t are the Monodomain axisymmetric conductivities, see e.g. [4].
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3 Numerical methods

Spectral deferred correction methods Spectral deferred correction methods [5]
are simple iterative methods for solving ODE collocation systems, where each it-
eration consists of a sequence of time steps with a low order scheme, most often
an Euler scheme. For simplicity of notation, we consider an initial value problem
u̇ = f (u) with initial value u(0) = u0 and exact solution u∗. On a time step [0,τ]
we define a collocation time subgrid 0 = τ0 < · · · < τn = τ and a polynomial ap-
proximate solution u0 ∈ Pn with values uk

i = uk(τi) at the collocation points τi. The
defect u∗−uk satisfies the Picard equation

d
dt
(u∗−uk)(t) =

∫ t

s=0
( f (u∗)− u̇k)ds. (5)

Linearizing f around uk, integrating the implicit term in (5) approximately with
the right-looking rectangular rule and the explicit terms by a quadrature rule on the
collocation time grid gives approximate defect values

δuk
i+1 = δuk

i +(τi+1− τi)

(
n

∑
j=0

S j f (uk
j)+ f ′(uk

i+1)δuk
i+1

)
− (uk

i+1−uk
i ) (6)

at the collocation nodes, which in turn define a polynomial defect approximation
δuk by interpolation. Note that (6) is a linearly implicit Euler scheme on the collo-
cation time grid. Updating the approximation by uk+1 = uk+δuk yields an iteration
the fixed point of which satisfies the collocation condition f (ui) = u̇i. In lack of
better initialization, the starting iterate is the constant initial value: u0

i = u0.

Interleaved SDC and mesh refinement Popular diagonally linearly implicit Run-
ge-Kutta schemes, such as Rosenbrock methods, can be combined with spatial
adaptivity in two different ways. Error estimation and refinement can be performed
either for the final result, or for the very first stage (essentially a linearly implicit
Euler step) only. The first option is more conservative, but requires the recompu-
tation of all stages from scratch, since order and accuracy of Rosenbrock schemes
deteriorate when the stages are computed on different spatial grids. The second op-
tion is more efficient, as only the first stage is recomputed on mesh refinement, but
assumes a sufficient similarity of Euler step and final Rosenbrock step to produce
suitable meshes for the latter. As demonstrated in Section 4, this assumption can
be quite wrong.

In contrast to Rosenbrock methods, SDC methods compute an independent
correction in every sweep, wherever the approximation error originates, may it
be the SDC iteration error or a spatial discretization error. Hence, spatial mesh
refinement can be performed in between any SDC sweeps, creating meshes adapted
to the final SDC step, and nevertheless the previously computed values can be
reused.
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Applied to the electromechanical model described in Section 2 above, the SDC
iterations are performed for the transmembrane voltage (2), the gating variables (3),
and the active stress generation in turn. After each sweep, the elastic displacement
is updated at all collocation points by a simplified Newton method, followed by
error estimation both for the spatial discretization error and the SDC iteration er-
ror. If the spatial error exceeds the iteration error, adaptive mesh refinement is
performed.

Multi-rate integration As the dynamics in the active stress generation and hence
the mechanical displacement is slower than in the transmembrane voltage, a coarser
time discretization of the displacement can be used. We exploit the continuous in
time representation of approximate solutions by polynomial interpolation, using
a finer collocation grid for the transmembrane voltage than for the displacement.
Additionally, as after an SDC sweep the electrical state is still only an approxi-
mation, an exact solution of the nonlinear mechanic model is not required. The
number of Newton steps can therefore be reduced. Finally, less than one Newton
step per sweep effort can be achieved by solving for the elasticity part just every
other SDC sweep. The induced inaccuracy in the displacement will have an impact
on the convergence of the transmembrane voltage due to the mechano-electrical
feedback.

4 Numerical results

We study the effect of the algorithmic variants in detail at a particularly simple
example, the spread of an excitation wave in the 2D domain Ω̂ = ]0,2[2 with an
excitation current in [0.5,0.55]2 for 1 ms. For simplicity, the time step size is
fixed to 1.5 ms on a Radau(4) collocation time grid, using cubic finite elements
for the transmembrane voltage and linear FE for the displacement. Errors in uh are
quantified by the norm difference ‖uh‖L2(Ω̂)−‖u‖L2(Ω̂) to the space-continuous col-
location solution u, which is closely related to the error in the average conduction
velocity.

Interleaved mesh refinement Here we study the performance impact of inter-
leaving mesh refinement and SDC iterations. To this extent, we simulate the non-
interleaving mode of operation by initializing the solution at all collocation points
to the initial value after mesh refinement, in effect starting the SDC method only
after a suitably refined grid has been constructed for the Euler solution. This mim-
ics the approach used in some Rosenbrock schemes [10], where mesh adaptation
is performed for the first stage only.

As shown in Fig. 1 left, the interleaved scheme is more efficient, roughly by a
factor of two for large tolerances. The non-interleaved mode does not achieve high
accuracy at all, independent of the tolerance. Fig. 1 right gives an explanation for
this bad performance. It turns out that at the chosen time step size the first sweep
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Figure 1: Left: Wall clock time vs. achieved error for different tolerances. Right:
Grid maladaptation by mesh refinement based on the first sweep. Front position is
marked.

results in a rather poor approximation of the front, in particular a too slow front
speed and a significant overshoot. This leads to mesh refinement behind, and an
insufficient refinement at the actual front position.

Multi-rate integration for electromechanical coupling With a fixed tolerance
for spatial discretization error and SDC iteration error, we reduce the accuracy
of displacement computation in each time step by reducing the collocation nodes
from 4 to 1 (lines a), the number of simplified Newton steps from 10 to 1 (lines
b), additionally skipping the displacement computation for up to 7 SDC sweeps
(lines c), and report the deviation from the non-reduced reference solution in Fig. 2.
The error of this reference solution is roughly 2 · 10−3. Apparently, reduction of
Newton iteration count and collocation points for the displacement computation
introduce a coupling error well below the overall error tolerance. Additionally
omitting the displacement computation during the first SDC sweeps exceeds this
limit, without substantial run time reduction. Neglecting the mechano-electrical
feedback completely yields an unacceptably large error (point d).
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