TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

MATTHIAS NOACK

HAM - Heterogenous Active Messages
for Efficient Offloading on the
Intel Xeon Phi

Preprint

Z1B-Report 14-23 (June 2014)

Herausgegeben vom

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Takustrafle 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

HAM - Heterogenous Active Messages for
Efficient Offloading on the Intel Xeon Phi

Matthias Noack

Abstract

The applicability of accelerators is limited by the attainable speed-up
for the offloaded computations and by the offloading overheads. While
GPU programming models like CUDA and OpenCL only allow to optimise
the application code and its speed-up, the available low-level APIs for
the Intel Xeon Phi provide opportunity to address the overheads, too.
This work presents an Heterogeneous Active Message (HAM) layer that
minimises software overheads for offloading on Intel’s Xeon Phi. It provides
the basis for an offload API with similar semantics as the Intel Language
Extensions for Offload (LEO). In contrast to LEO, HAM works within the
C++ language and needs no additional compiler support. We evaluated
HAM on top of SCIF and MPI as communication backends. While the
SCIF backend offers the best performance, the MPI backend allows for
inter-node offloads which are not possible with other offload solutions.
Benchmark results show that the cost for offloading a function call can be
decreased by a factor up to 18 compared with LEO.

1 Introduction

Offloading is the standard programming model for accelerators such as GPGPUs
and Intel’s Xeon Phi. It is implemented in frameworks like CUDA, OpenCL,
OpenACC, and also in the recently released OpenMP 4.0. Their common
abstraction is a kernel, i.e. a region of code, whose execution is offloaded to
the accelerator. Whether or not it is worthwhile to offload a computation is
determined by the attainable speed-up and by the overhead costs for offloading.
Assuming a computation runs faster on an accelerator, then there is a minimal
amount of work that needs to be offloaded for the overheads to amortise. This
minimal amount of work imposes a lower bound on the granularity of offloaded
computations and thus limits the range of applications that can benefit from
accelerators.

The offload frameworks mentioned above only allow to optimise the appli-
cation code, i.e. the speed-up. The overheads are out of reach, hidden in the
runtime environment. The Intel Xeon Phi, which is an x86 many-core copro-
cessor, has changed this situation. While GPGPUs are only accessible through
their offload frameworks, the Xeon Phi runs a Linux operating system and offers
low-level APIs for communication between host and coprocessor. This new level
of flexibility opens new opportunities for research and allows to develop novel
mechanisms for heterogeneous programming.

Preliminary benchmarks of Intel’s offload implementation show a gap between
the achieved performance and its theoretical optimum which is bounded by
the latency and bandwidth of the communication channel between host and
coprocessor. Especially latency-critical offloads, that do not involve large data
transfers, could benefit from a reduced overhead.

That is the starting point of this work, which tries to reduce software over-
heads that currently limit the use of accelerators. We developed an Heterogeneous
Active Message (HAM) layer that introduces minimal overheads while still offer-
ing a high-level of abstraction. This layer is the base for an alternative offload
API, to which we refer to as HAM-Offload. It offers the same functionality as
existing solutions and thus allows for a direct comparison. We evaluate HAM-
Offload with MPT and Intel’s Symmetric Communications InterFace (SCIF) as
communication backends. The results show: overheads for an empty function
call can be reduced by a factor of up to 18 compared with Intel’s Language
Extensions for Offload [1].

Besides the reduced overhead, HAM-Offload offers some additional advan-
tages. For instance, the implementation uses standard C++ without the need of
compilers-specific language extensions. With MPI as backend, remote offloading
between different nodes is possible. Reverse offloading [2], where the main
programme runs on the coprocessor and offloads tasks that cannot be accelerated
to the host, is another option. In fact, the main programme can run on any
host or coprocessor and offload to any host or coprocessor within the same node
(SCIF) or across nodes (MPI).

The rest of this paper is structured as follows. Section 2 gives background
information on the Xeon Phi, offloading overheads and Intel’s offload solution. In
Section 3, we present HAM, the offload API on top of it, and the communication
backends. Benchmark results are presented and discussed in Section 4. Related
work is listed in Section 5. The work closes with conclusions and future work in
Section 6.

2 Background
2.1 Intel Xeon Phi

The Intel Xeon Phi is an x86-compatible many-core coprocessor that is based on
the Intel Many Integrated Cores (MIC) Architecture. It offers up to 61 in-order
cores with 512 bit wide SIMD units. Each core exposes 4 hardware threads,
of which at least 2 are generally needed to fully utilise the device. The Intel
Xeon Phi 7120 series provides 1.2 TFLOPS double precision performance and a
memory bandwidth of 352 GB/sec at 300 W. Host and Xeon Phi are connected
via PCle 2.0. The coprocessor runs a Linux operating system that is fully
accessible by the user. The Intel Manycore Platform Software Stack (MPSS)
contains the software to work with the Xeon Phi. There are multiple high-level
programming models available, e.g. MPI, Intel Language Extensions for Offload
(LEO), OpenMP, and the Intel Math Kernel Library (MKL). Applications can
either run on the host and offload computations to the coprocessor, run in
a symmetric mode on host and coprocessor (using MPI), or run natively on
the coprocessor only. Libraries like the MKL also offer automatic offloading,
such that the coprocessor becomes transparent to the application programmer.

An extensive guide to programming the Xeon Phi can be found in [1]. The
low-level communication API, which is used directly or indirectly by most other
components of the software stack, is the Symmetric Communication InterFace
(SCIF). An InfiniBand Verbs implementation on top of SCIF (IB-SCIF) provides
compatibility with existing code.

2.2 OfHoading Overheads

Offloading overheads comprise everything that has to be done in order to
perform a calculation on an accelerator that would not have been necessary,
if the computation would be carried out on the host instead. This includes
data transfers for operands, results, and possibly programme code, as well as
coordination and synchronisation between host and accelerator. These overheads
are inevitable, but they can be minimised up to some lower bound that is
determined by hardware characteristics like latencies and bandwidths of buses
and network connections. A more realistic definition for this bound also includes
the software overheads of the vendor software stack for the communication
devices.

The offload overhead can be quantified by comparing the ofload implemen-
tations performance with the corresponding values for the raw communication
API. The round-trip time corresponds to an empty offload call which takes at
least one round-trip plus any further overhead. The time for transferring an
amount of data via the communication API can be directly compared with the
time for transferring the same amount of data via the offload API.

2.3 Intel Language Extensions for Offload

This section provides some insights into the mechanisms behind Intel’s Language
Extensions for Offload (LEO). A more detailed description of the offload compiler
runtime used by LEO can be found in [3]. Another source for details are
the Intel Coprocessor Offload Infrastructure (COI) sources which come with
documentation and examples as part the MPSS package. LEO is part of the
Intel compiler and is not open source.

LEO provides pragma directives for offloading code regions to Xeon Phi
coprocessors and to transfer data between host and coprocessors. The compiler
translates those directives into calls to the COI library. Offloaded code regions
are thereby expanded into uniquely named functions that contain additional
helper code (e.g. for unpacking input data). The unique names of the offload
functions, together with their addresses, are collected in a look-up table. The
executable binary contains the host code and the Xeon Phi code for offloaded
code regions.

At runtime, the initialisation of COI creates a process on the coprocessor from
a generic start-up image that performs further initialisation at the coprocessor
side. The embedded coprocessor code from the host binary is transferred to
the device and then loaded like a shared library by the coprocessor process.
COI also resolves dependencies with additional shared libraries by copying their
coprocessor version to the Xeon Phi.

The invocation of offloaded code is basically performed by passing the unique
name of the corresponding offload function, along with input data, to a thunk
object via COTI’s invocation mechanism. The communication between host

HAM-Offload API
HAM Comm. Interface
MPI LEO
42 IB-SCIF COI
E g SCIF (intra-node) SCIF

(a) (b)

Figure 1: The layer architectures of a) HAM-Offload, and b) Intel LEO.

and coprocessor works via a FIFO command pipeline. On the coprocessor,
the invocation is then carried out by the thunk object that uses the compiler-
generated look-up table to translate the unique function name into an address
which is called subsequently. This invocation mechanism contains avoidable
overheads, like transferring function names as strings and using them as keys for
table look-ups.

Memory allocation, deallocation and transfer is also performed via a set
of COI routines. Internally, COI uses RMA via SCIF (see Section 3.3) for
communication. For the best performance it is necessary to align source and
target buffer at cache-line boundaries (64 byte). Figure 1(b) depicts LEO
and its underlying layers. Intel’s OpenMP 4.0 implementation uses the same
mechanisms, but lacks some of LEO’s flexibility, like keeping allocated memory
across offloaded code regions. Hence, the results regarding LEO also apply to
OpenMP.

3 Heterogeneous Active Messages for OfHoad-
ing

This section describes the architecture of HAM, the HAM-Offload mechanism,
and the communication backends. Figure 1(a) depicts the layer architecture of
the whole system.

3.1 HAM

HAM is a C++ template library that provides the means to create type-safe
heterogeneous active messages that can be transferred via any reliable commu-
nication channel. Although it is motivated by efficient offloading for the Xeon
Phi, HAM is designed as an independent software layer and can be used in any
context where such functionality is needed.

In conventional message passing systems, messages are passive pieces of data.
Active messages instead, are units of execution. That is, active messages process
themselves. A common and efficient way to implement this concept is to include
the code address of a handler function into the message. When a message is
received, the code at the embedded handler address is executed. The address of
the message’s payload is passed as an argument to its handler. In object-oriented
active message systems, where messages are callable objects, the handler’s job is

ActiveMsgBase ’L]i)eiril/efﬂilsig‘:
void operator(void* msg) Q—t ActiveMsg DerivedMsg
key_t handler_key void operator() ki—— void operator()
static void handler(void* msg)
MsgHandlerRegistry static key_t handler_key

handler_t get_handler(key_t key) l

map: key_t — handler_t

Figure 2: This simplified class diagram of the Heterogeneous Active Message
implementation depicts the basic active message type structure.

to perform a type conversion from the typeless bytes of a network buffer back to
an object of the actual message type, which can then be called like a function.

The problem here is to know the remote handler address when sending a
message. The TACO framework [4] for example, solves this by using the exact
same binaries for all processes. This way, the handler addresses are the same on
every node and can be safely transferred and executed without any further effort.
With the Xeon Phi in the picture, this approach is no longer viable because
coprocessor and host use different binaries with differing addresses. The question
now is, how to translate between the handler addresses of those heterogeneous
binaries — with minimal cost. This problem is solved by HAM. The basic idea is
to add a level of indirection by sending some reference to the handler inside each
message that can be converted to the respective address by the receiver. This
obviously requires some kind of look-up table or map. The technical novelty is
the way this mechanism is efficiently implemented in pure C++ without the need
for a language extension.

Figure 2 provides a simplified image of HAM’s architecture. The basic
components are a class template that all active messages have to inherit from, a
registry for message handlers, and execution policies (not in the figure). The
latter contain the actual handler function. The default policy simply executes
the message. A framework on top of HAM can add new policies as needed, for
instance to execute each message in a new thread, to interact with a runtime
environment, or to handle some kinds of messages differently than others.

The message handler registry encapsulates the translation process and acts
like a map from a key to a handler address. At programme initialisation, the
registry must be filled with entries on all processes. Instead of transferring an
actual handler address, each active message contains the key for its handler. The
handler key must be set at the sending side and must be translated back into
a handler address at the receiving side. The difficult part here is to do both
steps with a time complexity of O(1). Each instantiation of the active message
template registers its handler via static member initialisation. This happens
in an undefined order before the programme’s main(). The handler address is
registered together with the handler’s C++ typeid-name. The typeid-name is not
defined by the C++ language standard, but is usually defined within the ABI.
Both, host [5] and coprocessor [6] ABI refer to the Intel IA-64 ABI [7] for C++. It
defines the typeid-name as the mangled type name whose format is also defined
by this ABI. This guarantees identical handler names on host and coprocessor.

At the beginning of each processes main() function, an initialisation call
to HAM performs the second part of the initialisation. The handler addresses
are now written into an array in lexicographical order of their typeid-name. At
this point, each process has an ordered array of its handler addresses where
the handler order is the same for all processes — without any communication.
The handler key is an index to this array and is defined by the handler address
position in the array. This way, the translation from handler key to address on
the receiving side is a simple array element access, which is O(1). Still during
initialisation, a connection between handler key and active message type is
established by writing the key into a static member variable of its message type.
Now each time an active message is constructed on the sending side, the handler
key is simply copied into a non-static member — in O(1).

3.2 HAM-Offload API

The HAM-Offload API is a thin layer on top of HAM. It offers the same basic
functionality as LEO’s offload pragma directives. This allows a direct comparison
of their offload efficiency. Listings 1 and 2 illustrate the most important offload
operations in LEO and HAM-Offload.

The different methods of the HAM-Offload APT use a set of predefined active
message templates, for offloading function calls, memory allocation/deallocation,
and for initiating data transfers. The £2f() functor generator (f2f is short
for function-to-functor) provides a convenient way to create functor types for
offloading function calls. It works similar to std: :bind() and takes the address
of a function, and a list of arguments. The difference is, that the generated
functor object provides the means to be bit-wise transferred. Therefore, the
contained arguments are wrapped by a Migratable template which can be
constructed from and converted to the wrapped object’s type. This offers the
necessary hooks for serialisation and deserialisation. A specialised Migratable
instance can be provided for any type (e.g. strings, or containers) and also be
used to flag types as not offloadable. This allows to safely handle arbitrary
types which is not possible with LEO or OpenMP. Internally, the functor type
is used to instantiate an active offload message that, when executed, calls the
functor and handles the transfer of its return value. The address of the function
inside an f£2f ()-generated functor is part of the functor type not its value, so
it is translated implicitly in the process of message execution. Once the type
of the received message is restored by its handler, the local function address is
automatically used. Figure 3 visualises the offload mechanism.

Listing 1: Intel LEO Offload examples

// tell the compiler to generate coprocessor code for fun_mul()
__attribute__ ((target (mic)))
float fun_mul(float a, float b) { ... }

float result = ..., a = .. b = 5

// offload a call to fun mul() to dev1ce 0

#pragma offload target(mic:0) in(a, b) out(result)
{ result = fun_mul(a, b); }

// allocate cache-line aligned memory (64 byte) on host

size_t n = ...; floatx buffer = ...;

// allocate memory on coprocessor

#pragma offload target(mic:0) nocopy(buffer:length(n) alloc_if (1)
free_if (0))

// free memory on coprocessor

#pragma offload target(mic:0) nocopy(buffer:length(n) alloc_if (0)
free_if (1))

// copy data from host to coprocessor into a pre-allocated buffer

#pragma offload target(mic:0) in(buffer:length(n) alloc_if (0)
free_if (0))

// copy data from coprocessor to host from a coprocessor buffer

#pragma offload target(mic:0) out(buffer:length(n) alloc_if (0)
free_if (0))

Listing 2: HAM-Offload examples

// create a functor that binds fun_mul() with arguments
auto functor = f2f (&fun_mul, a, b);

// perform the offload to device 1

float result = 0ffload::sync(l, functor);

// allocate cache-line aligned memory (64 byte) on host

size_t n = ...; float* buffer_host = ...;

// allocate memory on coprocessor

auto buffer_mic = 0ffload::allocate<float>(1, n);

// free memory on coprocessor

Offload::free(1, buffer);

// copy data from host to coprocessor into a pre-allocated buffer
Offload::write(1, buffer_mic, buffer_host, n);

// copy data from coprocessor to host from a coprocessor buffer
Offload::read(1, buffer_mic, buffer_host, n);

It would be easily possible to enhance the offload API to support more
object-oriented constructs which are not part of LEO. For instance, object
construction could be offloaded to directly allocate objects on the coprocessor
and to subsequently offload method calls on those objects. This basically leads
to a global object space across host and coprocessors.

In contrast to LEO, all processes run a complete binary of the programmes
source code and are created during programme start-up. The programme’s
main() only runs on the first process, all others receive and execute offload
messages. Like LEO, HAM-Offload does not offer the means for parallelism
and relies on the use of other frameworks inside the offloaded code. Of course,
it is possible to create multiple processes on the coprocessors. In fact, offload
processes can be created on the host too. Also roles can be switched for reverse
offloading, such that a coprocessor runs the main() and offloads are processed
by the host. This might be useful when the host is merely needed for I/O tasks.

- - -network | _ msg_ buffer
! transfer
I
: l cast()
fun(') f2f() Functor F)fﬂoag OffloadMsg |- -
args sisync ActiveMsgBase
J/ handler()
OffloadMsg
cast res__buffer k- _network __
return transfer I call()
I
Lo Result

Figure 3: This figure illustrates how offloading a function call works in HAM-
Offload.

3.3 Communication Backends

We have implemented two communication backends, one using MPI, the other
one using SCIF. Each communication backend presents the same interface to
the HAM-Offload layer which includes the means to address other processes,
to transfer active messages, and to transfer data. The interface also offers the
means to allocate memory which is already registered for RMA. Data transfers
are initiated and synchronised via active control messages.

MPI

The MPI backend implementation is very straight-forward, since MPI already
offers everything that is needed. Transferring active messages as well as trans-
ferring data is performed via point-to-point operations. Internally, any MPI
implementation uses SCIF either directly or indirectly via the IB-SCIF InfiniBand
Verbs interface. In contrast to SCIF, MPI also offers inter-node communication
which allows for offloading to remote Xeon Phis.

SCIF

SCIF is the fastest, but also the most low-level API for intra-node communication.
It offers a sockets-like API for establishing connections and simple send/receive
operations. Additionally, there is a set of RMA operations which allow to register
memory for DMA, to perform read and writes, and to map remote memory into
the virtual address space of a process.

For performance reasons, the implemented SCIF backend mainly uses RMA.
The send and receive operations are only used during initialisation to exchange
the offsets of registered RMA buffers. Since the active message size typically
ranges from less than a hundred byte up to a few KiB (if multiple arguments of
complex types are involved), latency is the critical factor. The best latency over
SCIF can be achieved by writing into mapped remote receive buffers.

Figure 4 shows the protocol our SCIF backend uses for active message transfer.
The receiver polls on a flag, which is written by the sender after the receive
buffer. Accesses to mapped remote memory must be ordered by memory fences
which also ensure the visibility of changes by flushing the write-combining buffer

sender receiver

memecpy —- - - - - ‘
mapped
zecglve T\A receive
uffer
write fence— - - - - - ! buffer
set flag—- - - - - - ‘
mapped |
i R
;lecelve % receive
ag q
write fence— - - - - - ! ag
poll flag
|__copy/process
receive buffer
oo I—set flag
mapped
send {% send
flag I flag
14 o8 E----- — write fence
poll flag

Figure 4: The RMA-based protocol that is used for message transfers over SCIF
in HAM-Offload. Polling the send flag makes sure that the corresponding receive
buffer can be safely re-used. This can also be deferred up until the next send to
the same buffer.

of the host. Once the receive buffer can be safely re-used by the sender, the
receiver sets the corresponding flag on the sending side.

4 Evaluation

All measurements were taken on a 2-socket system with Intel Xeon E5-2670 CPUs
and 64 GiB RAM that was equipped with two Intel Xeon Phi 7120P coprocessors
(16 GiB, 1.238 GHz, 61 cores). The test system was running CentOS 6.3 with
the Intel C++ compiler in version 14.0.1. Intel MPSS was installed in version
2.1.6720-19. The MPI benchmarks were performed with Intel MPI in version
4.1.1. For all measurements, threads were pinned on both sides. The function
call benchmarks were performed 100000 times, the bandwidth benchmarks for
at least 1000 times depending on the message size.

In order to quantify the software overhead for offloading code regions, we
measured the time for offloading an empty function call and the round-trip times
for SCIF and MPI between the host and a local Xeon Phi. An offload requires at
least one round-trip from host to coprocessor and back, so everything above the
round-trip time is overhead introduced by the offload framework. Figure 5 shows
the measured times. Table 1 contains the framework overhead as percentage of
the overall offload cost, as percentage of the round-trip time, and the speed-up
of HAM compared to LEO.

The framework overhead measured for LEO is 95 %. HAM is able to reduce
this to less than 13 %. With respect to the overall offload cost, a single offload
with LEO causes as much overhead as roughly 18 offloads with HAM. The
absolute overhead for HAM with SCIF is around 300 ns. Even with MPI, that
has a 10 times higher round-trip time than SCIF, the overall offload overhead
nearly halves compared to LEO. One reason for this difference is the efficient

Offload cost vs. network RTT

O round trip time O framework overhead

sciF [1.9 s

LEO w/SCIF [| | 391w
HAM w/SCIF [] 22 s
MPI | | 20.1 ps

HAM w/ MPI | |] 223 s
I T T T T 1

0 10 20 30 40 50

Figure 5: The measured times for offloading an empty function call compared
to the round-trip time of the communication channel (SCIF and MPI). The
difference is the overhead introduced by the offload framework.

framework overhead relative to speed-up

offload cost RTT vs. LEO

LEO w/ SCIF 95.1% 1922.0% 1.0x
HAM w/ SCIF 12.9% 14.8% 17.6x
HAM w/ MPI 9.8% 10.9% 1.8x%

Table 1: The first tow columns shows the software overhead relative to the
overall offload cost (see Figure 5) and relative to the round-trip time (RTT).
The third column contains the speed-up of an empty offload relative to LEO.

active message mechanism of HAM that optimises the code invocation on the
coprocessor (see Section 3). Also, the HAM-Offload runtime is extremely thin
compared to COI. The latter might change when we investigate real-world
applications and extend HAM-Offload, e.g. by introducing additional threads
for message receiving and processing.

While latency is the critical factor for offloading code execution, bandwidth
is important for transferring input and output data before and after executing a
kernel. We measured the bandwidth for data transfers with LEO, HAM (with
SCIF and MPI), and pure MPT using the Intel MPI benchmark. For SCIF, there
is no standard benchmark. The results for data transfers between host and
coprocessor and vice versa are plotted in Figure 6.

LEO shows the best performance for small buffers up until 1 MiB at which
point the performance drops, probably due to switching protocols for larger
buffers. Our SCIF backend does not show this behaviour and hence is faster for
a buffer sizes from 2 to 16 MiB. At that point, LEO becomes faster again while
our SCIF backend stagnates around 5 GiB/s without saturating the hardware.
A look into the source code of the COI layer between LEO and SCIF revealed
no obvious difference, that would explain the measured bandwidth differences.
Both COI and HAM’s SCIF backend use the same RMA operations provided by
SCIF. However, a detailed analysis of the protocols employed by COI should
provide an answer. It also might be possible, that LEO defers parts of the actual
operation by buffering data on the host. Improving the achievable bandwidth of
the SCIF backend is an important issue with respect to applications. Otherwise,
the reduced kernel invocation overhead might be (over-)compensated by the

10

Host to Coprocessor, small Host to Coprocessor, large

T T T T T — L
&= M LEO w/sclF - - —6 LT E»/{EX -
= 012 F HAM w/ SCIF ---+4--- h -~ - R e AN
o HAM w/ SCIF * 25 I x N
3 01 | MPI g/ 3 ol
= 008 | HAMw/MPI —-s—- / | T A AR]
5 53 r AR ANTY 1
g 006 A A 2 VAR |

| B s 2 L /,\.’) m 4
T oo R SR
2 002 r . ¥ A a1 < x g)

0 e —t,én;:"ﬂ-";%'/ i 0 é:ii;»i/a/\ T T R T S B | Ll
4 16 64 256 2K 16K 256K 4AM 64M
data size [byte] data size [byte]
Coprocessor to Host, small Coprocessor to Host, large
T T T T T T T T T T T T T T T T T T ‘,ﬁ Ei
_. 014 F 1 6 L ex e
< 012 | , Z LR
=) a5 P
@] 0.1 7 O 4
< 0.08 b =
e} / e} 3 | J
2 006 | P et
Z i N B -
: oom O :
8 o002 f BRI e g1 .
0 — A -——-_':—"ﬁi";:‘%'; i 0
4 16 64 256 2K 16K 256K AM 64M
data size [byte] data size [byte]

Figure 6: Bandwidths for data transfers from and to the coprocessor via offload
and direct use of the communication channel.

reduced bandwidth — depending on the buffer size.

A major difference between host-to-coprocessor and coprocessor-to-host band-
width only emerged with the MPI backend. In this transfer direction, it even
outperforms the SCIF backend for buffer sizes larger than 256 KiB for coprocessor-
to-host transfers. The faster bandwidth of the MPI backend compared with the
Intel MPI benchmark (IMB) can be explained as follows. The IMB PingPong
benchmark always measures symmetrically by sending the same amount of data
in both directions. Hence, the IMB results have to be interpreted as the average
between both transfer directions.

5 Related Work

To the best of our knowledge, this work is the first that directly attends to offload
overhead minimisation for the Xeon Phi. The functor-based active message
concept of HAM is inspired by the TACO framework [4] in whose continuous
development the author is involved. TACO implements a Global Object Space
(GOS), but does not support heterogeneous systems. With some modifications,
HAM could be used to substitute TACO’s own active message layer. Another
active message based framework that offers the abstraction of an Active Global
Object Space (AGAS, which is synonymous with GOS) is HPX [8]. It supports
the Xeon Phi since version 0.9.6 and it seems possible to implement functor based
offloading similar to HAM-Offload with HPX. In [9], HPX is used as backend

11

for LibGeoComp (a library for geometric decomposition) and also evaluated on
the Xeon Phi. However, the results focus on the parallel efficiency and hence
cannot be compared with our results.

Results on leveraging SCIF for efficient intra-node communication for the
MVAPICH MPI implementation can be found in [10]. For improved inter-node
communication, a proxy-based framework for MVAPICH is presented in [11].
The MPI communication between two Xeon Phi coprocessors is addressed
n [12]. All three works contain improvements over Intel MPI which we used.
So HAM-Offload over MPI can be expected to benefit from advances in MPI
implementations for local and remote offloads between any combination of hosts
and coprocessors. The Intel Offload Compiler Runtime which, is used by LEO
and the offload primitives in Intel’s OpenMP 4.0 implementation, is described
in [3] and in Section 2.3.

6 Conclusion

We have introduced Heterogeneous Active Messages (HAM) as means for efficient
offloading to Intel’s Xeon Phi. Our approach effectively reduces offload overheads
while it offers a high-level C++ API that, unlike existing frameworks, is not a
language extension. We evaluated offloading via HAM with MPI and SCIF
as a communication backend and compared the results with Intel’s Language
Extensions for Offloading (LEO). The overall overhead per offload is reduced
by a factor of up to 18 compared with LEO, i.e. the minimal amount of work
that benefits from being offloaded is also reduced by a factor of up to 18.
This is a big step towards fine-grained offloading which makes heterogeneous
computing accessible to new applications. The achieved bandwidth for data
transfers between host and coprocessor is not yet satisfying. While there are
buffer sizes for which our backends outperforms LEO, the latter is significantly
faster for small buffers. Since Intel’s COI is open source, an analysis of the
employed protocols should reveal how to use SCIF in order to reproduce the
same performance results as LEO. There is further potential in the exploration
of efficient hybrid MPI implementations to narrow the gap between MPI and
SCIF for intra-node communication [10, 11].

As a next step, we plan to investigate HAM with real-world applications
and to further develop the HAM-Offload API in the process. We plan to add
runtime components to address parallelism on the coprocessor as well. Using
the MPI-backend, we will evaluate remote offloading to multiple Xeon Phis,
as well as less common offload patterns like reverse offloading, or host-to-host
and Phi-to-Phi offloading. The offload layer is just one possible abstraction for
programming the Xeon Phi via Heterogeneous Active Messages. Lifting the
distinction between host and offload-target would maximise flexibility and allow
for arbitrary application patterns build from processes that exchange and process
active messages.

Acknowledgements

The Intel Xeon Phi nodes and Intel TrueScale Fabric are kindly donated by Intel
for the "Research Center for Many-core High-Performance Computing" at ZIB.
This work was partly supported by the North German Supercomputer Alliance

12

HLRN. We would also like to thank Thorsten Schiitt for fruitful discussions and
valuable suggestions for improving this document.

References

[1]

2]

[10]

[11]

Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance
Programming. Elsevier Science (2013)

Pakin, S., Lang, M., Kerbyson, D.: The reverse-acceleration model for
programming petascale hybrid systems. IBM Journal of Research and
Development 53(5)

Newburn, C., Deodhar, R., Dmitriev, S., Murty, R., Narayanaswamy, R.,
Wiegert, J., Chinchilla, F., McGuire, R.: Offload compiler runtime for the
intel xeon phi coprocessor. In: Supercomputing. Springer Berlin Heidelberg
(2013)

Nolte, J., Ishikawa, Y., Sato, M.: TACO: prototyping high-level object-
oriented programming constructs by means of template based programming
techniques. SIGPLAN Not. 36 (December 2001) 35-49

Matz, M., Hubika, J., Jaeger, A., Mitchell, M.: System V Application
Binary Interface, AMD64 Architecture Processor Supplement, Draft v0.99.6

Lu, H., Girkar, M., Matz, M., Hubika, J., Jaeger, A., Mitchell, M.: System
V Application Binary Interface, KIOM Architecture Processor Supplement,
v1.0

Intel et al.: Itanium C++ ABI, v1.86

Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel
execution model for scaling-impaired applications. In: Parallel Processing
Workshops, 2009. ICPPW ’09. International Conference on. (Sept 2009)
394-401

Heller, T., Kaiser, H., Schéfer, A., Fey, D.: Using hpx and libgeodecomp
for scaling hpc applications on heterogeneous supercomputers. ScalA 13,
New York, NY, USA, ACM (2013) 1:1-1:8

Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, D.: Efficient
intra-node communication on intel-mic clusters. In: CCGrid 2013 13th
IEEE/ACM International Symposium on. (2013) 128-135

Potluri, S., Bureddy, D., Hamidouche, K., Venkatesh, A., Kandalla, K., Sub-
ramoni, H., Panda, D.K.D.: Mvapich-prism: A proxy-based communication
framework using infiniband and scif for intel mic clusters. In: Proceedings
of SC13. SC 13, New York, NY, USA, ACM (2013) 54:1-54:11

Si, M., Ishikawa, Y., Tatagi, M.: Direct mpi library for intel xeon phi
co-processors. In: IPDPSW, 2013 IEEE 27th International. (May 2013)
816-824

13

	1 Introduction
	2 Background
	2.1 Intel Xeon Phi
	2.2 Offloading Overheads
	2.3 Intel Language Extensions for Offload

	3 Heterogeneous Active Messages for Offloading
	3.1 HAM
	3.2 HAM-Offload API
	3.3 Communication Backends

	4 Evaluation
	5 Related Work
	6 Conclusion

