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Abstract

A new approach to inexact Gauss Newton methods for the solu-
tion of underdetermined nonlinear problems is presented. It is based
on a convergence theorem being invariant under affine transforma-
tions of the domain and results in an easily implementable accuracy
matching strategy for the arising linear subproblems which guarantees
the quadratic convergence. Thanks to the weak assumptions on the
given nonlinear problem, the results provide a general framework for
multilevel Newton and continuation methods. As an example, a new
multilevel Newton h-p collocation method for boundary value prob-
lems of ordinary differential equations is developed. It combines the
inexact Newton method with a linear collocation solver using adap-
tive refinement and variable orders. The performance of the resulting
C++ class library Cocon is demonstrated by some numerical ex-
amples including singular perturbed problems. In addition, the new
method is applied to a realistic railway bogie model in which a branch
of periodic solutions emanates from a branch of fixed points at a Hopf
bifurcation.
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Introduction

It seems beyond doubt that Newton’s method (often called Newton-Raphson
method, particularly in the engineering literature) is the most successful

method for the numerical solution of nonlinear problems provided with some
differentiability. Because its idea of successive linearization is so fundamen-
tal, there are many possible applications. Consequently, any list of these

possibilities must remain incomplete. We only refer to the numerical anal-
ysis of dynamical systems regarding fixed points, periodic solutions, and
bifurcations (see e.g. Allgower and Georg [1], Doedel [35] [36], Keller [46],
Parker and Chua [52], Rheinboldt [55], Seydel [60] to name but a few) and

computational mechanics (see e.g. Crisfield [17], Zienkiewicz and Taylor [69]
and the references herein).
The huge range of applications has attracted much interest in mathemat-

ical and engineering research. Thus, many fundamental insights like the

(local) quadratic convergence are common knowlegde to be found in any
textbook about numerics. Moreover, there are dozens of variations of New-
ton’s method invented to reduce the effort expended on the classical iteration,
such as the simplified Newton method and various updating techniques for

the Jacobian.
As the convergence of these local methods is restricted to a sometimes small

neighbourhood of the solution, global generalizations have been developed.

The two most prominent are the damped Newton method and the continu-
ation methods, where the latter not only enlarge the region of convergence
but also allow new applications such as parameter studies and bifurcation
analysis. Further, continuation (in combination with some Newton process)

is widely accepted and part of many numerical software packages.
Convergence theorems for Newton’s method and its derivates mainly exist

in two kinds of formulations (mathematically almost equivalent). The more
‘classical’ formulation uses Lipschitz constants for the Jacobian and bounds

on its inverse and the initial guess. For an excellent and rather complete
collection of convergence theorems of this kind we refer to the textbook by
Ortega and Rheinboldt [51]. As an alternative, the convergence theorems
may be formulated in affine invariant terms as introduced by Deuflhard

and Heindl [32]. These formulations employ computationally available (or
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estimable) terms that rule the convergence behaviour. We shall discuss this
point in more detail in part I.

In this thesis we shall deal with inexact Newton methods. The basic idea
is simple and, of course, not new at all. Considering a large nonlinear prob-
lem, we have to solve in each step of the Newton process a (large) linear

problem. But it appears to be wasted time to solve all these linear problems
exactly, since the Newton iterates themselves are only approximations of the
solution. So, we would expect that for iterates far from the solution it is
sufficient to solve the associated linear problem rather inaccurately, whereas

we have to spend more and more effort as the Newton iterates approach
the solution. Thus, the principle of inexact Newton methods is to solve the
linear subproblems only as accurately as necessary. By a careful choice of
the accuracies for the linear subproblems it is even possible to maintain the

quadratic convergence of Newton’s method.
Although the idea is very simple and already theoretically quite well under-

stood (see e.g. Dembo, Eisenstat and Steihaug [22]), it is surprisingly hardly
ever applied. In addition, the few applications (see e.g. Bank and Rose [10],

[11], Bank and Chan [8], Bank and Mittelmann [9]) reveal a gap between
the underlying analytic results and the formulae used in the actual codes. In
our oppinion this situation has mainly two explanations. Firstly, the theo-

retical results are often not suitable for application. The crucial point for an
inexact method is that the algorithm has to be able to control itself. This
means that the theory has to provide simple formulae for the accuracies for
the linear subproblems that only depend on cheaply available information.

But the typical analytic constants used in the convergence theory cannot be
cheaply computed in the actual algorithm for the most interesting classes of
problems.
Secondly, inexact Newton methods make no sense for fixed discretizations

and direct solvers prevailing in the huge software packages in engineering.
For an inexact method to be efficient, weak accuracy requirements for the
linear subproblems must pay off in some way. One way is to employ different
discretizations which, in turn, have to be finer the more accuracy is required

which leads to more and more degrees of freedom. Alternatively, or in ad-
dition, we may use iterative solvers for the arising (large and often sparse)
linear systems.

On the other hand there are many applications where the inexactness is
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just inavoidable. As an example, the integrators used in multiple shooting
always introduce a discretization error that has to be controlled in some

way. Nonetheless many standard codes use rather crude heuristics (like 0.1
times the required accuracy for the nonlinear problem). A more satisfactory
control mechanism for multiple shooting has been developed by Bock [13] [14]

in connection with the parameter identification code Parfit. It is based on
the heuristic that the error of the inexact Newton correction has to be below
the norm of the next correction and needs estimates for the norm of the
Jacobian.

The preceding discussion leads us now to the formulation of a clear program
of what is required to fully exploit the idea of an inexact Newton method.
This may be summerized as follows:

• We have to analyze the inexact Newton method with regard to an
algorithmic realization and a wide range of applications.

• This analysis should result in an accuracy matching mechanism for the
linear subproblems based on computationally available terms.

• Moreover, we have to derive cheap and sharp estimates for the required
problem dependent constants.

• The results should be applicable to realistic (‘real life’) problems.

• In view of the wide range of applications the inexact method must
certainly be easy to embed in a continuation framework.

The first point means that we have to use weak (realistic) assumptions (like
differentiability in a weak sense) on the given problem. The last claim re-

minds us to keep an eye on parameter dependent problems which are in fact
underdetermined if viewed as nonlinear equations.
Having referred to the technique of using different discretizations to ex-

ploit the weak accuracy requirements, we already touched quite an exciting

application of inexact Newton techniques. Why not apply the results to the
infinite dimensional problem and solve the (still infinite dimensional) linear
subproblems to the accuracy prescribed by the surrounding inexact iteration?
This so-called quasilinearization or multilevel Newton approach to nonlinear

problems seems to be very attractive since it separates the linear from the
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nonlinear task. If we know how to solve linear problems of a particular kind,
the multilevel Newton method tells us how to solve nonlinear ones without

altering the linear solver. Although tempting, this idea has been infrequently
applied (see, e.g., Scott and Watts [57] who combine quasilinearization with a
shooting technique for the linear problems) which may be due to the accuracy

matching problem for inexact Newton methods. Note that in this infinite di-
mensional context, weak assumptions on the given problem are even more
important, since they decide whether the inexact method is applicable or
not.

As a class of problems to be solved by the new techniques, we have cho-
sen boundary value problems for ordinary differential equations (for short:
BVPs for ODEs). On the one hand, this class is simple enough with regard
to the programming effort needed for a new method. On the other hand, it

already has a rich structure and includes a wide range of applications. Of par-
ticular interest for our investigations were periodic boundary conditions for
autonomous ODEs since they present a natural continuation of preliminary
research concerning stationary solutions of dynamical systems (see [39]).

As discretization methods, we use multiple shooting and collocation with
variable orders and stepsizes (so-called h-p collocation). Regarding multiple
shooting we only sketch some theoretical questions since numerical results

are already available in the diploma thesis by C. Wulff [66]. The new h-p
collocation method consequently realizes a multilevel Newton method applied
to the nonlinear integral equations describing the BVP.
The thesis is divided into three parts devoted to the inexact Newton theory,

the h-p multilevel Newton collocation method and the numerical results, re-
spectively. Part I introduces the abstract framework of the inexact Newton
method. We give in particular two different formulations, affine invariant
and (as a new concept) affine contravariant . Part I also contains two exam-

ples confirming the underlying analytic results: the application of the inexact
Newton method to multiple shooting, and a very simple facility for implicit
discretization methods that increases their robustness drastically. Part II
gives a complete account of the multilevel Newton h-p collocation method:

the integral formulations of the given BVP, the rather technical computa-
tion of local and global collocation solutions, the h-p and multilevel Newton
strategies, as well as the multilevel continuation process. Part III, finally,

sketches some ideas concerning the often neglected implementation issue,
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and demonstrates the numerical impact of the new techniques. The method
was realized as a C++ class library called Cocon, incorporating the solver

for parameter dependent BVPs, the continuation method and the handling
of Hopf bifurcations. As a ‘real life’ problem, we compute the limit cycles of a
railway bogie model, presenting the classical situation of a branch of periodic

solutions emanating from a branch of equilibria at a Hopf bifurcation.

A note on notation. In order to avoid an inflation of symbols and indices
we often use the same letter (even in the same section) for different matters,
if the meaning is clear from the context. As an example, the letter b not
only denotes the right boundary of the (global or local) interval, but also the

weight vector of a Runge Kutta scheme (where we adopted the standard no-
tation from numerical integration). For convenience we listed most symbols
on page 110.
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I� Newton�s Method

Newton’s method is well accepted as the method of choice for a large variety
of nonlinear problems such as boundary value problems of ODEs (multiple

shooting or collocation) or PDEs (finite elements). In many applications it
is combined with some continuation process which not only makes it a global
method in contrast to the local convergence of Newton’s method, but also
allows the examination of the qualitative behaviour of the problem depending

on parameters.
Often the Newton correction cannot be computed directly but has to be

approximated. This may be due to the fact that the nonlinear function itself
or its Jacobian are only approximately at hand, or, because the arising linear

system is too large to be solved directly, so that an iterative method has
to be employed. Therefore, the question arises, which conditions have to
be imposed on the approximate Newton corrections in order to preserve the

good convergence properties of Newton’s method. Looking at an algorithmic
realization, we would like to know how to control the accuracy of the inexact
Newton corrections to obtain the desired speed of convergence. Thus, our
real aim is an accuracy matching for the inexact Newton method based on

algorithmically available terms.
Inexact Newton methods have been attacked by many authors, we only

mention Bank and Rose [10], Dembo, Eisenstat and Steihaug [22], Ypma
[68], Deuflhard [28] and the references therein. Dembo et. al. obtained precise

results on how to control the relative residual of the correction equation to
obtain a prescribed order 1 < q ≤ 2 of convergence. Unfortunately, they
use problem dependent constants, such as bounds for the Jacobian and its
inverse, that in many applications cannot be estimated algorithmically or

tend to grow with the dimension of the problem (e.g., for successively finer
discretizations of nonlinear PDE’s).
Deuflhard and Heindl start with a convergence theorem for Newton’s method

that is invariant with respect to linear transformations of the image space
of the nonlinear mapping and therefore only uses the norm in the domain.
Due to this affine invariant approach, it is possible to give bounds for the
relative error of the Newton correction which can be estimated algorithmi-

cally. In [28] these methods are extended to the damped (or global) Newton
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method. The main difficulty of this approach is the control of the relative
error, which is in many cases much more complicated than the control of the

relative residual.
We shall try to combine the advantages of both approaches to obtain algo-

rithmically available bounds for the relative residuals. To this end, we only

have to transfer the affine invariant theorems into results which are invariant
with respect to affine transformations of the domain and therefore only use
the norm given in the image space.
This part is organized as follows. In the first section we discuss the invari-

ance properties of Newton’s method with respect to affine transformations of
the domain and image space. This will lead us in Section 2 to so-called affine
contravariant convergence theorems which we compare to the affine invariant
formulations. In Section 3 we show how these theorems transfer to inexact

Newton methods. Both invariant formulations directly lead to computa-
tionally available estimates for the problem dependent constants. Instead
of trying to develop a damped variant of the theory for highly nonlinear
problems, we present in Section 4 a continuation process for parameter de-

pendent problems based on the inexact Newton method for underdetermined
nonlinear equations.

� Invariance Properties

We want to solve a nonlinear problem

F (x) = 0 ,

where F is a differentiable mapping. To simplify the presentation in this
section, we only consider the finite dimensional situation, i.e.,

F : Rn −→ R
m ,

although all considerations transfer to a mapping of an open subset D ⊂ X
of a Banach space X in another Banach space Y . In order to solve the

nonlinear equation we apply Newton’s method

xk+1 = xk +Δxk for k = 0, 1, . . .,
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for some initial guess x0, where the Newton correction Δxk satisfies the New-
ton equation

F ′(xk)Δxk = −F (xk) for k = 0, 1, . . .. (1.1)

If F ′(xk) is invertible, the Newton correction is uniquely determined by (1.1).

It may also occur, that the Newton equation results in an underdetermined
linear system, so that we have to choose a particular solution by an addi-
tional normalization requirement. In fact, we will meet this situation in the
continuation methods discussed in Section 4.

Before analyzing Newton’s method, we would like to draw attention to
the affine invariance properties of the nonlinear problem. To this end let
Aff(Rn) denote the ring of affine isomorphisms of Rn, i.e., each transformation
T ∈ Aff(Rn) is given by

T : Rn → R
n, T x = Ax+ b,

for some invertible linear mapping A = T ′ ∈ GL(n) and b = T (0) ∈ R
n.

Then Aff(Rm) acts on the nonlinear mappings F : Rn → R
m by the covariant

transformation
F �→ T∗F := T ◦ F for T ∈ Aff(Rm),

satisfying (ST )∗ = S∗T∗ for S, T ∈ Aff(Rm). On the other hand Aff(Rn) acts
by the contravariant transformation

F �→ T ∗F := F ◦ T for T ∈ Aff(Rn),

satisfying (ST )∗ = T ∗S∗ for S, T ∈ Aff(Rn). Obviously, the covariant trans-
formation T∗ does not alter the solution of the nonlinear problem F (x) = 0,

since
F (x) = 0 ⇐⇒ TF (x) = (T∗F )(x) = T (0) .

What is changed, is the solution’s characterization. This is different from
the contravariant transformation T ∗. Since

F (x) = 0 ⇐⇒ (T ∗F )(T−1x) = 0 ,

we do not change the nonlinear problem but the representation of its solution
x.
Now let us turn to Newton’s method and its invariance properties. Since

the method is defined in terms of the linearization of F , it is in fact invariant
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with respect to affine transformations of the domain and image space. More
precisely, if we consider the covariant transformation T∗ for T ∈ Aff(Rm) and

apply Newton’s method to the transformed equation T∗F (x)−T (0) = 0, the
Newton iterates xk remain the same, since (T∗F )

′ = T ′F ′ and hence

F ′(x)Δx = −F (x) ⇐⇒ (T∗F )
′(x)Δx = −(T∗F (x)− T (0)).

On the other hand, the iterates transform in the same way as the solution
does, if we apply the contravariant transformation T ∗ for T ∈ Aff(Rn), since

(T ∗F )′(x) = F ′(Tx)T ′ and therefore

F ′(x)Δx = −F (x) ⇐⇒ F ′(x)A(A−1Δx) = −F (x),

where A = T ′ ∈ GL(n).
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� Exact Newton Methods

Naturally, convergence theorems for Newton’s method should reflect in some
way its affine invariance properties. In other words, the characterizing quan-
tities, such as bounds on the initial guess x0 and the Jacobian F ′, should

be invariant with respect to linear transformations of the domain or image
space of F . Obviously, it is impossible to maintain both invariance proper-
ties, since the transformations change the norm of the spaces and thus the
measure of convergence. Thus, we have two points of view: affine invari-

ant and affine contravariant , preserving the invariance under the covariant
and contravariant transformations, respectively. We shall see that both in-
variant formulations automatically lead to descriptions of the nonlinearity in
computationally available terms. Accordingly, we present the convergence

theorems hand in hand with the computational estimates for the involved
characteristic constants which are used in the actual algorithms.
In the sequel, we always assume that X and Y are Banach spaces and

D ⊂ X an open convex subset of X.

2.1 Affine Invariant Approach

Deuflhard and Heindl [32] formulated a so-called affine invariant conver-

gence theorem which is invariant with respect to transformations of the im-
age space, i.e., to the covariant transformations T∗ for T ∈ Aff(Y ). In a
simplified version the result by Deuflhard and Heindl reads as follows.

theorem 1. Let F : D ⊂ X → X be a continously Fréchet-differentiable
mapping, such that F ′(x) is continously invertible for all x ∈ X. Moreover,
we require F ′ to meet the affine invariant Lipschitz condition

||F ′(y)−1(F ′(x+ t(y − x))− F ′(x))(y − x)|| ≤ tω ||y − x||2 (2.1)

for all x, y ∈ D, t ∈ [0, 1] and some ω > 0. If the initial guess x0 satisfies

ω ||Δx0|| = ω ||F ′(x0)
−1F (x0)|| < 2 . (2.2)

and the Newton iteration xk stays in the domain D, then the iteration con-

verges to a solution x of F (x) = 0. The convergence is quadratic in the sense
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that
||Δxk+1|| ≤ C ||Δxk||2 .

for some constant C ≥ 0.

Proof. For convenience we recall the proof. The whole key to almost all
convergence proofs for Newton’s method is the judicious application of the
fundamental theorem of calculus. By the definition of the Newton correction,

we have

F (xk+1) = F (xk +Δxk) − F (xk)− F ′(xk)Δxk (2.3)

=
∫ 1

0
(F ′(xk + tΔxk)− F ′(xk))Δxk dt .

Using the affine invariant Lipschitz condition (2.1), we can estimate the next
Newton correction by

||Δxk+1|| = ||F ′(xk+1)
−1F ′(xk)||

≤
∫ 1

0
||F ′(xk+1)

−1(F ′(xk + tΔxk)− F ′(xk))Δxk|| dt
≤ ω

2
||Δxk||2 . (2.4)

Introducing the so-called Kantorovitch quantities hk := ω||Δxk|| this corre-
sponds to

hk+1 ≤ 1

2
h2k . (2.5)

Requiring h1 < h0 leads to the initial condition (2.2) which implies hk+1 ≤
θhk with θ := h0/2 < 1. Hence, the Newton corrections converge quadrat-
ically to zero. This implies that the Newton iterates xk form a Cauchy
sequence converging to some x∗ := limk→∞ xk ∈ X which obviously is a
solution of F .

remark 1. Using (2.5) it is easy to see that the Newton iteration stays

in the ball of radius

ρ = ||Δx0||
∞∑
j=0

(
h0
2

)2j−1

≤ ||Δx0||
1− h0/2

with center x0. Thus, we may abandon the condition that the iteration stays

in D by the assumption that D contains this ball.
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Note that the Lipschitz constant ω for the Jacobian remains the same if
we substitute F by the transformed mapping T∗F = TF . That is why we

call it an affine invariant Lipschitz constant. The affine invariance implies
that only the norm in the domain X is used.

Computational Estimates. To verify the claimed applicability of the affine
invariant formulation, we have to derive cheap estimates for the character-

istic constants, i.e., the Kantorovitch quantities hk. According to the initial
condition (2.2), they can be used to check the convergence of the iteration
by the affine invariant monotonicity test

hk < hmax := 2 . (2.6)

In addition, they may be employed to control the surrounding method, e.g.,

the stepsize of a continuation process (see Section 4 and [24]). Using the basic
inequality (2.4) we may locally estimate ω and the Kantorovitch quantity hk

by

[ω] := 2
||Δxk+1||
||Δxk||2 ≤ ω and [hk] := 2

||Δxk+1||
||Δxk|| ≤ hk . (2.7)

Here, we follow Deuflhard [24] using brackets [b] to denote a computationally
available estimate of a quantity b.

remark 2. Note that these estimates are rather sharp since the non-
linearity is characterized by the variation of the directional derivative of F ,

where the directions are in fact the Newton corrections Δxk. This property is
lost in the affine invariant formulation of inexact methods (see Section 3.1).

Substituting the analytic quantity hk in (2.6) by its computational estimate
[hk], we arrive at the easily implementable monotonicity test

||Δxk+1|| < ||Δxk|| . (2.8)

We observe however that this monotonicity test unfortunately involves the

Newton correction Δxk+1 of the next step which is obsolete if the convergence
test fails. This fact motivated Deuflhard to introduce the so-called simplified
Newton corrections Δ̄xk+1 defined by

F ′(xk)Δ̄xk+1 = −F (xk+1) .
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If a direct solver is used, the effort to compute Δ̄xk+1 is negligible compared to
the effort expended on the Newton correction Δxk, since the decomposition

of the Jacobian F ′(xk) is already at hand. Moreover, if we suppose that
the Lipschitz condition (2.1) also holds for F ′(x)−1 in place of F ′(y)−1, the
simplified correction again meets the inequality

||Δ̄xk+1|| ≤ ω

2
||Δxk||2 .

As a consequence, we may substitute the next Newton correction Δxk+1

in the Kantorovitch estimate (2.7) and the monotonicity test (2.8) by its
simplified counterpart Δ̄xk+1 leading to the more favourable convergence
check

||Δ̄xk+1|| < ||Δxk|| . (2.9)

If this condition is violated the iteration is stopped without wasting time on

the computation of Δxk+1.

2.2 Affine Contravariant Approach

We next formulate a so-called affine contravariant convergence theorem which
preserves the invariance with respect to the contravariant transformations T ∗,
T ∈ Aff(X), of the domain. This approach implies the exclusive use of the

norm in the image space Y . In fact, we do not prove convergence of the
Newton iterates xk, but only show that the Newton residuals F (xk) converge
quadratically to zero.

theorem 2. Let F : D ⊂ X → Y be a Gâteaux-differentiable mapping.
Moreover, we assume that there is an ω > 0 such that F ′ meets the affine
contravariant Lipschitz condition

||(F ′(y)− F ′(x))(y − x)|| ≤ ω ||F ′(x)(y − x)||2 (2.10)

for all x, y ∈ D. If the initial guess x0 satisfies

ω ||F (x0)|| < 2 . (2.11)

and the Newton iteration xk stays in D, then the residuals F (xk) converge

quadratically to zero.
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Proof. The proof is almost a copy of the previous one. Using (2.3) and
the affine contravariant Lipschitz condition (2.10), we can estimate the next

residual by

||F (xk+1)|| ≤
∫ 1

0
||(F ′(xk + tΔxk)− F ′(xk))Δxk|| dt

≤ ω

2
||F ′(xk)Δxk||2

=
ω

2
||F (xk)||2 . (2.12)

We now define the residual oriented Kantorovitch quantities hk as hk :=
ω||F (xk)|| and obtain again

hk+1 ≤ 1

2
h2k .

Requiring h1 < h0 now leads to the initial condition (2.11) which implies
hk+1 ≤ θhk with θ := h0/2 < 1. Hence, the Kantorovitch quantities and
thereby the residuals converge quadratically to zero.

Analogous to Theorem 1 the affine contravariant Lipschitz constant ω as

defined by (2.10) remains as it was, if we substitute F by T ∗F = F ◦ T for a
transformation T ∈ Aff(X) of the domain. (Of course, we have to transform
the domain D at the same time.)
We would like to emphasize the rather weak differentiability assumption on

F compared to Theorem 1. We only require F to be Gâteaux differentiable
and need neither the Fréchet derivative nor its inverse. This fact becomes
important in the infinite dimensional context of a Newton multilevel method.
Furthermore, note that the Newton correction Δxk = xk+1 − xk may be any

solution of the linearized problem

F ′(xk)Δxk = −F (xk) . (2.13)

On the other hand, it may even occur that the iterates do not converge
despite the fact that the residual becomes zero.

remark 3. If the nonlinear problem F (x) = 0 is underdetermined, i.e.,
kerF ′(x) �= {0}, there is no finite ω satisfying the affine contravariant Lip-

schitz condition (2.10). But the convergence result is still valid, if we restrict
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the Newton corrections Δxk in (2.13) and the differences y − x in (2.10) to
suitable subspaces V ⊂ X with V ∩ kerF ′(x) = {0}. If X is a Hilbert space,

we may e.g. choose the orthogonal complement of the kernel kerF ′(x). By
this means we substitute the inverse of the Jacobian by its Moore Penrose
pseudo inverse (see Ben-Israel and Greville [12]) leading to the Gauss New-

ton method for underdetermined problems. In this way, theorem 2 contains
the underdetermined case without any additional effort. In fact, the image
oriented approach seems to be quite natural in this context, since we are
interested in any solution of the problem, not a particular one.

Computational Estimates. As in the affine invariant formulation, we can
easily estimate ω and the affine contravariant Kantorovitch quantity hk. This
time using the inequality (2.12), we get

[ω] := 2
||F (xk+1)||
||F (xk)||2 ≤ ω and [hk] := 2

||F (xk+1)||
||F (xk)|| ≤ hk , (2.14)

leading to the simple monotonicity test

||F (xk+1)|| < ||F (xk)|| .
Here, we observe one of the advantages of the affine contravariant approach.

We do not need the next Newton correction (or its simplified version) to check
the convergence of the iteration but only the residual at the new iterate xk+1.
This fact will become more important in the inexact case.

2.3 Example: Stepsize Bounds for Implicit Discretization Meth-

ods

A common device in linearly implicit discretization methods is a convergence
test for the (first) Newton iteration used to solve the characteristic nonlinear
equation of the implicit scheme. This test is often based on the quotient of
the Newton corrections, where the next Newton correction may be substi-

tuted by so-called simplified Newton corrections, cf. Deuflhard [27]. We will
demonstrate that it might be a good idea to substitute the quotient of the
corrections by the quotient of the residuals, as inspired by Theorem 2. At
least for the code Eulsim, based on the linearly implicit Euler discretiza-

tion with extrapolation, we obtain much better results with less effort. More
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importantly, the code becomes more robust for highly nonlinear problems
and weak accuracy requirements, which are of most importance in technical

applications, and which so far have posed a major problem for these codes.
The implicit Euler discretization for an ordinary differential equation

x′ = f(x, t)

and the stepsize τ is given by the formula

xk+1 = xk + τf(xk+1, tk+1) ≈ x(tk+1), tk = t0 + kτ .

Equivalently, we have to solve in each time step the nonlinear equation

Fk(x) := Fk(x, τ ) := x− xk − τf(x, tk + τ ) = 0 . (2.15)

The linearly implicit Euler discretization is just the first step of an inexact
Newton method for the nonlinear problem Fk(x) = 0 (or, equivalently, for
the parameter dependent problem Fk(x, τ ) = 0 with τ fixed, i.e., “fixed

parametrization”). The Jacobian

F ′
k(x) = I − τfx(x, tk + τ )

is substituted by

J := I − τA, where A := fx(x0, t0) .

For autonomous systems this is in fact the exact Jacobian for the first step.

As initial guess for the solution xk+1 of Fk(x) = 0, we take the last step xk,
finally leading to the linearly implicit Euler formula

xk+1 = xk +Δk, where Δk := −J−1F (xk) = (I − τA)−1f(xk, tk + τ ) .

One strategy to test the convergence of the Newton method, as proposed
e.g. by Deuflhard in [27], is to compute the additional simplified Newton
correction

Δ̄k+1 := −J−1F (xk+1) = −(I − τA)−1Δk +Δk+1

and to test the quotient

θk :=
||Δ̄k+1||
||Δk|| =

||J−1F (xk+1)||
||J−1F (xk)|| .
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by

θk < θmax (2.16)

for some θmax < 1. On the other hand, Theorem 2 inspires to check the
quotient of the residuals

μk :=
||F (xk+1)||
||F (xk)|| =

||Δk − τf(xk+1, tk+1)||
||τf(xk, tk+1)|| ,

(μ for “monotonicity coefficient”), which corresponds for k = 0 up to a factor
2 to the a posteriori estimate [h0] of the Kantorovitch quantity h0. According
to the monotonicity test (2.6), we require μk to satisfy

μk < μmax := 1 . (2.17)

If this condition is violated, the stepsize control developed in Section 4 tells us
how to reduce the time step τ . Since the linearly implicit Euler corresponds

to fixed parametrization, i.e., a predictor of order 1, we have to reduce the
stepsize τ in this case by

τnew = ρ
μmax

μk
· τold ,

where ρ < 1 is some safety factor, say, ρ = 0.5. Note that in contrast to
the test of the Newton correction, this simple monotonicity test involves no
additional solution of the linear system with matrix J , but only a vector

subtraction and the two norms. For non autonomous systems we have to
compute an additional right hand side f(xk+1, tk+1). Therefore, we can afford
this monotonicity test in each step, at least for autonomous equations, leading

to a surprisingly robust behavior of the resulting code.

Example. As a small but sufficiently complicated example we take the
(one cell) Brusselator (cf. for example [54]), a system of two autononous
differential equations

x′
1 = a− (b+ 1)x1 + x21x2 (2.18)

x′
2 = bx1 − x21x2

(2.19)
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Fig. 1. Solution of the Brusselator (2.18), x� and x� (dashed) versus t

Figure 1 shows the solution. We compare the old code Eulsim with the

error oriented monotonicity test to the new one with the monotonicity device
(2.17). To get comparable result, we use a relatively scaled norm in both
cases. Table 1 shows the results for different demands tol on the (relatively

scaled) absolute error. We chose the parameters a = 2 and b = 10 and

error test (2.16) residual test (2.17)

tol steps #f error steps #f error

10−5 50 1061 48 974

0.0025 41 283 0.0057 45 348 0.0027
0.005 41 268 0.012 50 272 0.0056
0.01 37 189 0.041 47 206 0.012
0.02 36 149 0.036 40 163 0.034

0.04 33 116 0.11 34 124 0.059
0.08 31 99 1.6 44 118 0.059
0.16 34 85 8.5 39 88 0.10

Table 1. Performance of Eulsim for the Brusselator (2.18)

the initial value is x = (2, 1). Integrating from t = 0 to t = 15, we used
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the solution with tol = 10−5 as the reference solution and then doubled the
required accuacy in each run beginning with tol = 0.0025. #f denotes the

numbers of function evaluations of the ODE’s right hand side.
The results show that even for an allowed error of more than 10 % the

solution obtained with the residual oriented monotonicity test is qualitively

correct. The code recognizes the nonlinearity independently from the accu-
racy demand. In fact, the nonlinearity rules the behaviour of the integrator
for accuracies tol > 0.16, so that the costs do not decrease any more. We
would also like to point out the (almost) monotonous behaviour of the error

over the whole span of 0.0025 < tol < 0.16, demonstrating the robustness
gained by the monotonicity test.

Example. As a second example consider the following system of five au-

tonomous differential equations modelling a chemical oscillator (cf. Seelig [58]
and [59]).

x′
1 = j − k1x1 − k4x1x4 + k−4(Etot − x4 − x5)

x′
2 = k1x1 − k2x2

x′
3 = k2x2 − k3x3 − k5x3(Etot − x4 − x5) + (k−5 + k6)x5 (2.20)

x′
4 = −k4x1x4 + k−4(Etot − x4 − x5) + k6x5

x′
5 = k5x3(Etot − x4 − x5)− (k−5 + k6)x5

We compute the solution for the parameters Etot = 1, k1 = k2 = k3 = 1,
k4 = k−5 = 2000, j = 100, k−4 = k5 = 100, k6 = 600, and the initial guess
xstart = (9, 7, 5, 0.01, 0.16) from t = 0 to t = 3. Table 2 presents the re-
sults. Here the two versions of the extrapolation code show quite a different

behaviour. The residual oriented monotonicity test leads to much more in-
tegration steps for the same required accuracy leading to better results (the
true error meets almost the required accuracy) but also needing more effort.
On the other hand the gained accuracy per number of function evaluations is

still comparable to the error oriented monotonicity test. Moreover, the latter
could not be called robust for tolerances tol > 0.1 and the code even fails to
produce a solution for tol = 0.15, since the number of steps exceeded 1000.

Using the original scaling, the code failes for tol = 0.08 and tol = 0.04 but
gives a result for tol = 0.16, so that its behaviour seems to be more or less
random for weak accuracy requirements.
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error test (2.16) residual test (2.17)

tol steps #f error steps #f error

10−5 17 328 59 478
0.0025 12 106 0.0051 63 176 0.0027

0.005 11 78 0.013 50 131 0.0066
0.01 10 48 0.016 37 96 0.014
0.02 9 32 0.2 34 88 0.051
0.04 6 20 0.26 38 93 0.046

0.08 9 27 0.38 37 93 0.10
0.16 failed 34 84 0.10

Table 2. Performance of Eulsim for the chemical oscillator (2.20)

� Inexact Newton Methods

In an inexact Newton method we do not solve the Newton equation exactly,
but compute an approximate solution sk and obtain the inexact Newton

iterates
xk+1 = xk + sk for k = 0, 1, . . ..

We define the inner residuals rk by

F ′(xk)sk = −F (xk) + rk for k = 0, 1, . . . (3.1)

not to be confused with the outer residuals F (xk). In many applications the
inexact Newton corrections sk result from an iterative solver for the Newton
equation, i.e., an inner iteration in contrast to Newton’s method itself as the

outer iteration. But we may also think of any other approximate solution
of the linear equation. Of particular interest are the quasilinearization or
multilevel Newton methods, where Newton’s method is defined in an infinite
dimensional setting. Here, we have to solve the arising infinite dimensional

linear subproblems by some discretization.
Obviously, the crucial point is an appropriate matching between Newton’s

method (as the outer iteration) and the linear solver (the inner iteration). We
want to spend as little effort as possible for the linear problems but without

loosing the quadratic convergence property of the Newton iteration.
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The easiest way to control the inexact Newton corrections sk is to give
upper bounds ηk for the relative residuals

||rk||
||F (xk)|| ≤ ηk . (3.2)

This requirement was used by Dembo, Eisenstat and Steihaug [22]. They
employ a Hölder condition on F ′ as well as bounds on F ′(x) and F ′(x)−1 to

achieve a convergence order 1 < q ≤ 2 for the inexact Newton method, if the
inner residuals rk tend to zero with the same order. They end up with the
accuracy matching strategy

ηk ≤ c ||F (xk)||q−1

for some constant c > 0. The choice of the constant c remains unclear due
to the fact that it is rather difficult if not impossible to apply their theorems

quantitatively in an actual code since there are in general no means to cheaply
estimate the required constants. Following Dembo et al., Bank and Rose [10]
[11] use the strategy

ηk = η0

( ||F (xk)||
||F (x0)||

)q−1

= ηk−1

( ||F (xk)||
||F (xk−1)||

)q−1

Here, the more or less heuristic choice of η0 has a major influence on the
whole iteration process.
We now turn to affine (contra-) invariant convergence theorems which are

more suitable for applications as discussed above. In order to obtain a smooth
transition from exact to inexact Newton methods, we introduce a parameter
0 ≤ β ≤ 1 describing the “exactness” of the method. Setting β = 0 corre-

sponds to the exact Newton iteration (cf. Theorems 1 and 2), while β = 1
distributes the error in equal parts on the Newton iteration and the inexact
solution of the Newton equation. Thus, β may be viewed as an embedding
parameter from exact to inexact Newton methods.

3.1 Affine Invariant Approach

We start with a rather concise form of an affine invariant convergence theorem
for the inexact Newton method which extends previous results by Deuflhard
(restricted to a class of linear perturbations of the Jacobian).
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theorem 3. Let F : D ⊂ X → X be a continously Fréchet-differentiable
mapping, such that F ′(x) is continously invertible for all x ∈ D. Moreover,

we require F ′ to satisfy the affine invariant Lipschitz condition

||F ′(x)−1(F ′(y)− F ′(z))|| ≤ ω ||y − z|| for all x, y, z ∈ D, (3.3)

for some ω > 0. Introducing the Kantorovitch quantities hk := ω ||sk||, we
assume that the error of the inexact Newton corrections sk is bounded by

||sk −Δxk|| ≤ εk ||sk|| , where εk :=
β

2

hk
1 + hk

(3.4)

for some 0 ≤ β ≤ 1. If the initial guess x0 satisfies

h0 < hmax :=
2 − β

1 + β
(3.5)

and the inexact Newton iteration xk stays in the domain D, then it converges
quadratically to a solution x∗, F (x∗) = 0.

Proof. To estimate F (xk+1) in the inexact case, we have to extend the
standard integral expression by the inner residual rk:

F (xk+1) = F (xk + sk)− F (xk) − F ′(xk)sk + rk (3.6)

=
∫ 1

0
(F ′(xk + tsk)− F ′(xk))sk dt + rk .

The Lipschitz condition (3.3) gives us the bound

||F ′(xk+1)
−1F ′(xk)|| ≤ ||F ′(xk+1)

−1(F ′(xk)− F ′(xk+1))||+ ||I ||
≤ 1 + ω ||sk||.

Applied to the inner residual rk, we get

||F ′(xk+1)
−1rk|| = ||F ′(xk+1)

−1F ′(xk)(sk −Δxk)||
≤ (1 + ω ||sk||) ||sk −Δxk|| .

Thus we obtain for the Newton correction

||Δxk+1|| = ||F ′(xk+1)
−1F (xk+1)||
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= ||
∫ 1

0
F ′(xk+1)

−1(F ′(xk + tsk)− F ′(xk))sk dt + F ′(xk+1)
−1rk||

≤
∫ 1

0
||F ′(xk+1)

−1(F ′(xk + tsk)− F ′(xk))sk|| dt + ||F ′(xk+1)
−1rk||

≤ ω

2
||sk||2 + (1 + ω ||sk||) ||sk −Δxk||

≤ hk
||sk||
2

+ εk(1 + hk) ||sk|| = (1 + β)hk
||sk||
2

.

Since εk ≤ β/2, we have

||sk|| ≤ 1

1− εk
||Δxk|| ≤ 2

2− β
||Δxk|| .

Thus, we are able to estimate the inexact Newton corrections by

||sk+1|| ≤ 2

2 − β
||Δxk+1|| ≤ 1 + β

2− β
hk ||sk|| .

Equivalently, the quatities hk satisfy

hk+1 ≤ 1 + β

2− β
h2k .

Requiring h1 < h0 leads to the initial condition (3.5). If this condition is
fulfilled, then the hk obviously converge quadratically to zero. Hence, the
inexact Newton iterates form a Cauchy sequence converging to some point

x∗ = limk→∞ xk ∈ X which immediately turns out to be a solution of F , i.e.,
F (x∗) = 0.

remark 4. For simplicity we only considered the quadratic convergence
of the inexact Newton process as the best possible order of convergence.
Thus we had to impose the Lipschitz condition (3.3) on the Jacobian F ′. A

corresponding Hölder condition

||F ′(x)−1(F ′(y)− F ′(z))|| ≤ ω ||y − z||p for all x, y, z ∈ D,

for some 0 < p ≤ 1 would lead to a convergence order of 1 + p ∈ (1, p].
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Computational Estimates. In the context of an inexact method, the Kan-
torovitch quantities are to be used threefold:

• to check the convergence by the monotonicity test

hk < hmax , (3.7)

• to control the linear solver by the accuracy requirement

||sk −Δxk|| ≤ εk ||sk||, εk =
β

2

hk
1 + hk

, (3.8)

• to control a surrounding method, e.g., the steplength of a continuation
process.

The proof of Theorem 3 offers us a basic inequality involving the inexact
Newton corrections sk and the Kantorovitch quantities hk, namely

||sk+1|| ≤ 1 + β

2(1 − εk+1)
hk ||sk|| (3.9)

or equivalently

hk+1 ≤ 1 + β

2(1 − εk+1)
h2k . (3.10)

Analogous to the estimates in Section 2, this inequality leads to the a poste-
riori Kantorovitch estimates

[hk] :=
2(1 − εk+1)

1 + β

||sk+1||
||sk|| ≤ hk . (3.11)

remark 5. Note however that this estimate may be quite rough, since
it only contains information about local directional derivatives, whereas the

convergence Theorem 3 uses global inequalities to describe the nonlinear-
ity. We shall see in Section 3.2 that this problem is resolved in the affine
contravariant formulation.

Regarding the monotonicity test (3.7) we encounter the same problem as in
the exact case. The inexact Newton corrections sk+1 involved in the estimate

(3.11) is obsolete if the convergence test fails. As proposed by Deuflhard
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[28], this problem can be circumvented by introducing the simplified inexact
Newton corrections s̄k+1 characterized by

||s̄k+1 − Δ̄xk+1|| ≤ ε̄k+1||Δ̄xk+1||
for some ε̄k+1 < β/2, say ε̄k+1 := β/4. As in the proof of Theorem 3 we get
the inequality

||s̄k+1|| ≤ 1 + β

2(1 − ε̄k+1)
||hks̄k||

leading to the a posteriori estimate

[hk] :=
2(1 − ε̄k+1)

1 + β

||s̄k+1||
||sk|| ≤ hk . (3.12)

Note that the effort to compute s̄k+1 is again almost negligible compared
to the effort expended on the next inexact correction sk+1, because we only
require a very moderate relative accuracy of ε̄k+1 = β/4. Moreover, in the

context of an iterative linear solver, the simplified correction s̄k+1 may be
exploited as initial guess for the next correction sk+1 (as realized in the code
Giant [28]) assuming that the iterative solver rewards good initial guesses.
The simplified inexact Newton correction helps us with the (a posteriori)

monotonicity test (3.7) but not with the accuracy matching (3.8), since we
have to know some estimate of hk before sk is computed. Here, we follow
again Deuflhard and employ the quadratic convergence property (3.10) to
define the a priori Kantorovitch estimate

[hk] :=
1 + β

2(1 − ε̄k−1)
[hk−1]

2 . (3.13)

Note that we cannot prove an inequality like [hk] ≤ hk as for the a posteriori
estimate. Substituting the analytic quantity hk in (3.8) by its computation-
ally available a priori estimate [hk], we arrive at the matching strategy

[εk] :=
β

2

[hk]

1 + [hk]
, (3.14)

3.2 Affine Contravariant Approach

Theorem 3 leaves us with some problems. First of all, we do not know how to

control the relative error of the inexact Newton correction sk. Considering
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a (discretized) nonlinear PDE, most iterative solvers give us in fact only
the inner residual rk, so that the only chance to obtain reliable information

about the error F ′(xk)
−1rk is to use a good (theoretically well understood)

preconditioner. Unfortunately, preconditioners of this kind so far exist only
for (almost) elliptic problems.

Furthermore, we would prefer a directional derivative in the Lipschitz con-
dition (3.3) as in Theorem 1, since we algorithmically always estimate direc-
tional derivatives. But the operator norm in (3.3) seems to be unavoidable,
since we have to estimate ||F ′(xk+1)

−1F ′(xk)||. Fortunately, the affine con-

travariant approach overcomes these difficulties, as we will see now.

theorem 4. Let F : D ⊂ X → Y be Gâteaux-differentiable, satisfying
the Lipschitz condition

||(F ′(y)− F ′(x))(y − x)|| ≤ ω ||F ′(x)(y − x)||2 for all x, y ∈ D, (3.15)

for some ω > 0. Defining hk := ω ||F ′(xk)sk||, let the inner residuals rk be
bounded by

||rk|| ≤ εk ||F ′(xk)sk|| , where εk :=
β

2
min(1, hk) (3.16)

for some 0 ≤ β ≤ 1. If the initial guess x0 satisfies

h0 < hmax :=
2 − β

1 + β
. (3.17)

and the inexact Newton iteration xk stays in D, then the residuals F (xk)
converge quadratically to zero.

Proof. We first note that (3.16) implies for εk < 1

||F (xk)|| ≤ (1 + εk) ||F ′(xk)sk|| and ||F ′(xk)sk|| ≤ 1

1− εk
||F (xk)|| . (3.18)

Using again the integral representation (3.6) of F (xk+1) and the Lipschitz
condition (3.15), we obtain

||F (xk+1)|| ≤
∫ 1

0
||(F ′(xk + tsk)− F ′(xk))sk|| dt+||rk||
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≤ ω

2
||F ′(xk)sk||2 + εk||F ′(xk)sk||

≤ ω
1 + β

2
||F ′(xk)sk||2

≤ 1 + β

2
hk ||F ′(xk)sk|| .

Since εk ≤ β/2, we have

||F ′(xk)sk|| ≤ 2

2− β
||F (xk)|| .

Therefore, the Kantorovitch quantities hk meet the same inequality as in

Theorem 3, since

hk+1 = ω ||F ′(xk+1)sk+1|| ≤ 2

2− β
ω ||F (xk+1)|| ≤ 1 + β

2− β
h2k . (3.19)

Again, the monotonicity requirement h1 < h0 leads to the initial condition

(3.17). Thereby, we force the sequence hk to converge geometrically, and, by
(3.19), even quadratically to zero. Because of (3.18) the same holds then for
the (outer) residuals.

remark 6. Note that the Kantorovitch quantity hk = ω||F ′(xk)sk|| co-
incides in the exact case β = 0 with the quantity defined in Theorem 2.

Of course, we can use (3.18) to derive a matching stategy for the relative
residuals

||rk|| ≤ ηk ||F (xk)||, where ηk :=
εk

1 + εk
,

which obviously implies (3.16). This argument also holds in what follows:

Up to O(εk) the residual norm ||F (xk)|| and ||F ′(xk)sk|| are interchangeable.

Computational Estimates. The estimates for the affine contravariant Kan-
torovitch quantities hk are derived in complete analogy to the affine invariant
approach. The only difference is that we do not need any simplified correc-

tions, because the (outer) residuals are always one step ahead. From Theorem
4 we learn the inequalities

||F (xk+1)|| ≤ 1 + β

2(1 − εk)
hk ||F (xk)|| (3.20)
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and

hk+1 ≤ 1 + β

2(1 − εk+1)
h2k . (3.21)

The first inequality (3.20) leads to the affine contravariant a posteriori Kan-
torovitch estimate

[hk] :=
2(1 − εk)

1 + β

||F (xk+1)||
||F (xk)|| ≤ hk . (3.22)

In contrast to the affine invariant approach, we only need the outer residual

of the current and the last step. Moreover, recalling the proof of Theorem
4, we observe that only local derivatives in direction of the inexact Newton
correction sk were involved. Hence, the a posteriori estimate (3.22) is de-
spite its simplicity a sharp estimate for the local Kantorovich quantity. For

the accuracy matching (3.16) we need as in Section 3.1 an estimate for hk

before the correction sk is computed. Employing the quadratic convergence
property (3.21), we derive the a priori estimate

[hk] :=
1 + β

2(1 − εk−1)
[hk−1]

2 . (3.23)

Thus, we arrive at the affine contravariant matching strategy

[εk] :=
β

2
min(1, [hk]) . (3.24)

remark 7. In the algorithmic realization, the accuracy requirements
should be coupled with a lower bound (depending on the prescribed accuracy
for the solution of the nonlinear problem) to avoid too strict conditions for
the last Newton iteration.

Discussion

We have derived two convergence theorems for the inexact Newton process
that reflect its affine invariance properties. While both points of view are
almost interchangeable for the exact Newton method, the affine contravariant
approach has some structural advantages in the inexact case that allow an

easy and precise accuracy control for the linear subproblems. The weak
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differentiability assumptions not only make it applicable to a wide range of
nonlinear problems but also lead to better estimates for the analytic constants

that rule the convergence behaviour.
Note however that our investigations aimed at well- or underdetermined

nonlinear problems, where the solution is characterized by a vanishing resid-

ual . In the overdetermined case this is no longer true: The residual at a
solution is in general different from zero, and, more importantly, not known
in advance. Here, a vanishing Newton correction indicates a solution. Not
surprisingly, this line of thought led to the affine invariant convergence the-

orems by Deuflhard and Heindl and the affine invariant monotonicity test.

3.3 Example: Accuracy Matching for Multiple Shooting

In the multiple shooting context, both the function F and the Jacobian F ′(x)
are approximated by some numerical integrator. Hence, we have to translate

the matching strategy of the inexact Newton method to appropriate accuracy
demands for the integrators used to compute the flow and the propagation
matrices. To our knowledge, the only adaptive accuracy control for shooting
methods has been developed by Bock [14] [13] for his parameter identifica-

tion code Parfit solving overdetermined nonlinear problems. It is based on
the (affine invariant) heuristic that the error ||sk−Δxk|| should be below the
norm ||Δxk+1|| of the next correction. Using an a priori estimate for ||Δxk+1||
similar to (3.13) this heuristic leads to an implementable accuracy control
mechanism. This affine invariant approach necessitates estimates for the
norm of the (pseudo) inverse of the Jacobian. Based on the affine invariant
inexact Newton Theorem 3, we developed an accuracy control for multiple

shooting applied to underdetermined problems, particularly to parameter de-
pendent problems and periodic solutions of autonomous ODEs. The resulting
strategy and numerical examples are documented in the diploma thesis by
C. Wulff [66].

Proceeding, we present the affine contravariant analogon and derive an
accuracy matching based on the control of the inner residuals. We shall see
that this strategy is much simpler and needs no information about the norm
of the Jacobian or its inverse.

We consider the two point boundary value problems given by the first order
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ODE
x′ = f(x, t) on [a, b] (3.25)

and the nonlinear two point boundary conditions

r(x(a), x(b)) = 0 , (3.26)

where f and r are continuously differentiable mapping

f : X ×R−→ X, r : X ×X −→ Z ,

with X = R
n, Z = R

m (typically n = m). The extension to multi-point
boundary conditions is straight forward. According to the multiple shooting
approach, we choose some partition

a = t1 < t2 < · · · < tk < tk+1 = b

of the basic interval [a, b], where ti are the shooting nodes. By Φt,s : X → X
we denote the flow of the ODE (3.25) from s to t, i.e.,

DtΦ
t,s(x) = f(Φt,s(x), t) and Φt,t(x) = x

for all x ∈ X. Thus, we can reformulate the BVP given by (3.25) and (3.26)
as the finite dimensional nonlinear equation F (x) = 0, where the nonlinear
function

F : Xk −→ Xk−1 × Z

is defined as

F (x) = F (x1, . . . , xk) :=

⎛
⎜⎜⎜⎜⎝

Φt2,t1(x1)− x2
...

Φtk,tk�1(xk−1)− xk
r(x1, xk+1)

⎞
⎟⎟⎟⎟⎠ ,

where xk+1 := Φtk+1,tk(xk). Its Jacobian is the cyclic matrix

F ′(x) =

⎡
⎢⎢⎢⎢⎣
W1 −I

. . .
. . .

Wk−1 −I
B1 B2Wk

⎤
⎥⎥⎥⎥⎦

where we used the common notation

Wi := DxΦ
ti+1,ti(xi) and Bi := Dir(x1, xk+1) .
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Appropriate Norms. A central point for the accuracy matching is the
choice of the correct norms on Xk and Xk−1 × Z. Standard modern ODE

solvers, such as adaptive extrapolation or Runge-Kutta methods, allow us
to control the accuracy of the approximate flow Φ̃t,s(x) in a relatively scaled
norm, i.e.

||Φ̃t,s(x)− Φt,s(x)||scal ≤ tol, where ||Φ̃t,s(x)||scal = 1 ,

for some prescribed tol > 0. Thus, aiming at an implementable accuracy

control, we provide the domain Xk with the norm

||(x1, . . . , xk)||2 := 1

k

k∑
i=1

||xi||2scal (3.27)

and the image space Xk−1 × Z with the norm

||(x1, . . . , xk−1, z)||2 := 1

k

(
k−1∑
i=1

||xi||2scal + ||z||2
)
. (3.28)

Here, ||z|| is the user defined norm on Z for the boundary values r(u, v).

remark 8. Of course, the scaled norm || · ||scal varies from step to step (of
the Newton iteration), since it is computed during the integration process.

In praxis, however, this variation is quite small due to the local character of
the Newton method.

Accuracy Control of the Flow. As starting point we take the absolute
accuracy demand for the inner residuals

||r|| ≤ δ, where r = F ′(x)s+ F (x) .

For ease of notation, we drop the index k of the Newton iteration. We first

distribute δ in equal parts on the function F and the derivative F ′(x)s and
therefore require

||F̃ (x)− F (x)|| ≤ δF (3.29)

for the approximation F̃ of the function F and

||F ′(x)s− F̃ (x)|| ≤ δA (3.30)
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for the inexact correction s, where δF = δA = δ/2. To translate the demand
(3.29) to the flow, we observe that

||F̃i(x)− Fi(x)|| ≤
{ ||Φ̃i(xi)− Φi(xi)|| for i = 1, . . . , k − 1

||B2|| ||Φ̃k(xk)− Φk(xk)|| for i = k

where we used the abbreviation Φi := Φti+1,ti. Let δΦi denote the accuracy
for the i-th flow Φi, i.e.,

||Φ̃i(xi)− Φi(xi)|| ≤ δΦi .

Due to the definition (3.28) of the norm on the image space, we meet the
accuracy requirement (3.29) by setting

δΦi :=

{
δF for i = 1, . . . , k − 1

δF/||B2|| for i = k

Accuracy Control of the Linearized Flow. To derive a matching strategy
for the linearized flow, we assume that the propagation matrices Wi are
approximated using a numerical integrator that guarantees

||W̃i −Wi|| ≤ δWi

for a prescribed absolute accuracy δWi > 0. Here, the norm is the operator
norm corresponding to the scaled norms at xi and xi+1, respectively. The

arising cyclic linear system

F̃ ′(x)s = −F̃ (x), where F̃ ′(x) =

⎡
⎢⎢⎢⎢⎢⎣
W̃1 −I

. . .
. . .

W̃k−1 −I
B1 B2W̃k

⎤
⎥⎥⎥⎥⎥⎦ (3.31)

is then solved directly either via block Gaussian elimination or using a direct

sparse solver. Compared to the discretization error of the numerical inte-
gration, the round off error of the linear system solver is negligible so that
we may suppose that the solution of (3.31) is exact. As a consequence, the
residual

r̃ := F ′(x)s+ F̃ (x)
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is given by

r̃ = F ′(x)s− F̃ ′(x)s =

⎛
⎜⎜⎜⎜⎜⎝

(W1 − W̃1)s1
...

(Wk−1 − W̃k−1)sk−1

B2(Wk − W̃k)sk

⎞
⎟⎟⎟⎟⎟⎠ .

Its norm can be estimated by

||r̃||2 ≤ 1

k

(∑
i=1

k − 1||Wi − W̃i||2 ||si||2 + (||B2|| ||Wk − W̃k|| ||sk||)2
)
.

Therefore, we meet the accuracy demand (3.30), which now reads

||r̃|| ≤ δA ,

if we set

δWi :=

{
δA/||si|| for i = 1, . . . , k − 1

δA/(||B2|| ||sk||) for i = k .
(3.32)

We observe however that (3.32) involves the yet unknown corrections si.
But remembering the a posteriori estimate [hk] in the affine invariant setting
(see Section 3.1), we can use the same trick and substitute the correction

si in (3.32) by its simplified counterpart s̄i, thereby arriving at an easily
implementable accuracy control for multiple shooting methods. This strategy
was realized as part of the Cocon package for boundary value problems of
ODEs. For periodic boundary conditions, it turns out to be almost twice as

efficient (with respect to function evaluations) as the old strategy.
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� Stepsize Control for Continuation Methods

This section extends the ideas developed in the preceding section to contin-
uation methods for parameter dependent problems

F (z, λ) = 0, where F : D ⊂ Z × Λ −→ Y , (4.1)

where Z is a Banach space isomorphic to Y and Λ is some finite dimen-

sional parameter space, dimΛ = p. We follow the implicit parametrization
idea of Deuflhard, Fiedler and Kunkel [30] and consider instead of (4.1) the
underdetermined nonlinear problem in X = Z × Λ

F (x) = 0, where F : D ⊂ X −→ Y . (4.2)

In order to obtain a well defined p-dimensional solution manifold M ⊂ D,
we have to require (see e.g. Fink and Rheinboldt [38]) that F is a Fredholm
mapping of index p with dimkerF ′(x) = p for all solutions x ∈ D, F (x) = 0.
Thus, 0 ∈ Y is a regular value of F and (4.2) defines a p-dimensional manifold

M in D ⊂ X. If x̄ ∈ M is a solution, F (x̄) = 0, we can find a local
parametrization

x : Σ −→ D ⊂ X, σ �−→ x(σ)

of M in an open neighbourhood U ⊂ X of x̄ (where the notation σ ∈ Σ was
chosen for ‘stepsize’). More precisely, Σ is an open neighbourhood of 0 ∈ Rp,
and x a differentiable mapping, such that

M∩ U = x(Σ) and x(0) = x̄ .

Observe however that this approach does not include problems that are un-

derdetermined by their very nature, e.g., due to some symmetry property.
As a prototype, we think of the periodic solutions of a parameter dependent
autonomous ODE. Here, the time invariance of the ODE leads to the S1-
symmetry of the periodic solutions and thus to an underdetermined prob-

lem with the period T as an additional implicit parameter. Analytically,
it is fairly easy to reduce this symmetry, e.g., by intoducing an appropriate
Poincaré section. Numerically, there is in general no canonical a priori choice
for such a Poincaré section so that it is more feasible to tackle the underde-

termined problem directly as proposed by Deuflhard [26]. Fortunately, the
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affine contravariant approach needs no uniqueness of the solution and thus
directly incorporates the underdetermined case.

To derive a steplength selection strategy for predictor-corrector meth-
ods in the affine contravariant setting, we define a general predictor for p-
dimensional solution manifolds as follows.

definition 1. Let x̄ ∈ D be a solution of F , F (x̄) = 0. A predictor for

the nonlinear problem F (x) = 0 at x̄ is a mapping

x̂ : Σ −→ D ⊂ X ,

defined in an open neighbourhood Σ of 0 ∈ Rp such that x̂(0) = x̄ and

||F (x̂(σ))|| ≤ Cφ(σ) for all σ ∈ Σ (4.3)

for some constant C > 0 and a continuous function φ : Σ → Rwith φ(0) = 0.
The predictor x̂ has order q > 0, if x̂ fulfills condition (4.3) for φ(σ) = ||σ||q,
i.e.,

||F (x̂(σ))|| ≤ C||σ||q .

As an example, we consider the standard tangential predictor

x̂(σ) = x̄+ σt

for p = 1, where t is a normalized tangent at x̄, i.e., F ′(x̄)t = 0 and ||t|| = 1.
For twice differentiable mappings F , it has obviously order q = 2, since

||F (x̂(σ))|| = ||F (x̄) + σF ′(x̄)t||︸ ︷︷ ︸
= 0

+σ2O(||F ′′(x̄)t2||) .

Substituting the predictor characterization (4.3) for the initial guess in
the inexact Newton Theorem 4, we can derive a bound for the maximal
feasible stepsize for which we may expect convergence of the inexact Newton

iteration.
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theorem 5. Let F : D ⊂ X → Y be a Gâteaux differentiable mapping
such that the Lipschitz condition (3.15) holds for some ω > 0 as in Theorem

4. In addition, let x̂ be a predictor for F (x) = 0 at a solution x̄ ∈ D.
Then the inexact Newton method converges for the initial guess x̂(σ) for all
stepsizes σ ∈ Σ satisfying

φ(σ) <
2 − β

2ωC
hmax , where hmax =

2 − β

1 + β
(4.4)

as in Theorem 4.

Proof. Substituting x̂(σ) for the initial guess x0 in Theorem 4 yields

h0 = ω||F ′(x0)s0|| ≤ 2

2− β
ω||F (x0)|| ≤ 2ωC

2− β
φ(σ) , (4.5)

leading to the stepsize bound (4.4).

For a predictor of order q, this leads in particular to the stepsize bound

||σ|| ≤ q

√
(2 − β)hmax

2ωC
.

As for the Kantorovitch quantities hk, we have to look for computationally

available estimates for ωC to get an implementable stepsize control. Using
the a posteriori estimate [h0] and inequality (4.5), we derive the a posteriori
estimate

[ωC ] :=
2− β

2

[h0]

φ(σ)
≤ 2− β

2

h0
φ(σ)

≤ ωC .

For order q predictors this expression simplifies to

[ωC ] =
2− β

2

[h0]

||σ||q .

Instead of constructing an additional a priori estimate for ωC (probably
using second order information like the curvature), we simply use the a pos-
teriori estimate of the last continuation step. This strategy has proven to be

sufficiently efficient in praxis.



38 4 Stepsize Control for Continuation Methods

Thus, we arrive at a stepsize control mechanism for inexact continuation
methods: Given a solution x̄ and a predictor x̂, look for a stepsize σ satisfying

φ(σ) <
(2− β)hmax

2 [ωC ]
(4.6)

and start the inexact Newton iteration with initial guess x̂(σ). If the iteration
fails, contrary to expectation, use the new Kantorovitch estimate to compute

[ωC ] and reduce the stepsize in order to satisfy (4.6). For scalar parameters,
p = 1, and an order q predictor this strategy reduces to the well known
stepsize correction formula (cf. [24], [30])

σnew = q

√
hmax

[h0]
· σold .



II� Adaptive Multilevel Newton h�p Col�

location

The two most successful approaches to the numerical solution of boundary
value problems of ODEs seem to be the local approach by multiple shoot-
ing and the global one by collocation. Probably one of the best codes using
multiple shooting is the Mulcon/Percon family by Deuflhard, Fiedler and

Kunkel [31] and the recent version by Hohmann and Wulff [66] which incor-
porates the affine invariant accuracy matching strategy based on Theorem
3. The collocation approach is best represented by the continuation code
Auto by Doedel and Kernevez [35] [36] and in particular Colcon by Bader

and Kunkel [7] which is based on the famous collocation code Colsys by
Ascher, Christiansen, Russell [2] [3] and Bader (Colnew [6]). Both collo-
cation codes, Auto and Colcon, use collocation at Gaussian nodes and a

similar adaptive mesh selection technique based on the equidistribution of
the local discretization error. The main difference is that Auto is restricted
to a fixed number of collocation points and provides no global accuracy con-
trol, whereas Colcon adaptively chooses the number of nodes necessary to

achieve the required accuracy. Due to the fixed number of degrees of freedom,
Auto is prone to effects caused by the discretization which may lead to even
qualitatively wrong results (often called spurious solutions, see e.g. [55]). In
this respect, Colcon with its fully adaptive mesh selection is much more

reliable. In addition, Bader and Kunkel transfer the Gauss Newton contin-
uation process as developed in [30] to the infinite dimensional setting of the
BVP. Despite this infinite dimensional formulation, it is then only applied
to the finite dimensional nonlinear problems obtained by the collocation dis-

cretization. In fact, they had no choice since they only considered the exact
Gauss Newton process which is not realizable in the infinite dimensional case.
Not surprisingly, the accuracy matching and continuation philosophy of the

new method to be presented below shares many ideas with the new (inexact)
versions of the multiple shooting codes Mulcon and Percon. On the other
hand, we also used collocation at Gaussian nodes but in a multilevel Newton
setting, i.e., applied to the linear subproblems arising in the inexact Gauss

Newton iteration corresponding to the infinite dimensional problem.
Another related method is the Newton multilevel continuation code PLT-
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MGC by Bank and Chan [8] (see also Bank and Mittelmann [9]) for quasilin-
ear elliptic PDEs in two dimensions. Here, the nonlinear problems obtained

after discretization are on each level solved by an approximate damped New-
ton process (already mentioned in part I, see [11]) using the nested iteration
strategy (full multigrid). The continuation method is a purely finite dimen-

sional one based on the coarse grid discretization. Thus the user has to
provide a coarse grid that is already fine enough to reflect the qualitative
structure of the solution.
Comparing multiple shooting and collocation it is useful to discern two

kinds of BVPs. Following a phrasing by Deuflhard, we call them time-like and
space-like BVPs. The former are supposed to have a distinguished direction
in the independent variable, as is the case if it really models physical time.
Conversely, we call a BVP space-like, if no such direction is marked out

or the qualitative behaviour of the solution (like stability properties, etc.)
strongly changes along the given interval. This situation typically occurs
if the independent variable models physical space, i.e., the BVP should be
interpreted as a onedimensional PDE. Although this characterization has to

remain vague, it may help to understand the different behaviour of the two
methods. It is no surprise that multiple shooting works best for time-like
problems since it depends on numerical integration of the underlying ODE

in a prescribed direction. So, it is generally accepted that multiple shooting is
an efficient method for time-like problems and strict accuracy demands, but
needs good initial data (or lots of numerical insight) to converge at all. On the
other hand, collocation (of fixed low order) is actually often used to produce

these initial data, since the Newton method belonging to it converges much
better. However, it becomes less efficient when it comes to strong accuracy
demands. Moreover, space-like BVPs are mainly the realm of symmetric
collocation methods. Here, their global point of view and the symmetry of

the discretization really pays off. As an example, it is very hard to solve a
transition layer problem (cf. example 6, 7) by the shooting method, even if
it is known where the layer occurs (cf. Maier [48]), though the method is
competitive for periodic solutions of ODEs as a typical example of a time-like

BVP (cf. Wulff [66]).
The advantage of multiple shooting methods concerning small tolerances

lies in the variable orders of the numerical integrators used to compute the

flow and to solve the variational equation. Thus, it is indeed quite natural
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to think of a collocation method with variable local orders which combines
the advantages of both methods. This line of thought has already attracted

much interest in the PDE community (cf. [40], [23], [50]), where the so-called
h-p methods become more and more popular. The same idea also led to the
very efficient numerical methods for countable systems of ODEs (so-called

CODEs, cf. [67] and the new code Medici [61]). As we will see, we can
borrow a lot from the experiences gained in these fields.
As the second main ingredient of our method, we apply the multilevel New-

ton idea, i.e., the discretization and the linearization by Newton’s method

change places. In contrast to the common approach, we first apply the inex-
act Newton method, as described in the first part, to the infinite dimensional
problem and then discretize the linear subproblems. Thus, we separate, in a
way, the nonlinear difficulties from the linear ones. The h-p collocation for

the arising linear BVPs is based on local refinement by bisection and vari-
able local orders. We preferred this standard approach from finite elements
to regridding techniques, because we can store up local information due to
the linearity of the BVP. Furthermore, the transition to BVPs in two or more

dimensions seems to be much easier. Altogether, this leads to a new method
for BVPs of ODEs that looks quite promising with regard to the problems
tested so far.

A crucial point for the method is the correct formulation of the BVP as
a nonlinear problem F (x) = 0. In Section 5 we discuss two formulations
which correspond to the two kinds of problems introduced above. Time-like
problems directly lead to a nonlinear Volterra integral equation, whereas a

Fredholm equation, which automatically incorporates the boundary condi-
tions, is more suitable for space-like problems. Unfortunately, the Fredholm
formulation relies on the existence of a particular Green’s function, so that
we have to claim non degenerate linear boundary conditions (as usual for

theoretical investigations). The formulation of the nonlinear problem gov-
erns the other parts of the method, from the local tasks down to the choice
of local basis functions and the solution of the arising global linear systems.
Although the Volterra approach is in many aspects just a special case

(corresponding to initial value boundary conditions) of the Fredholm formu-
lation, in Section 6 we start the presentation of the collocation method with
the former which is very close to the standard collocation method. Hence,

we collect a series of facts from standard collocation theory. We use in par-
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ticular Runge Kutta basis functions and discuss the recursive construction
and usage of Runge Kutta schemes of collocation type.

The next section generalizes these ideas to the Fredholm formulation of
the given BVP. Because we are confined to non degenerate linear boundary
condition in this case, we consider (in contrast to Section 6) ODEs of m-th

order so as to include the most interesting examples. The Fredholm approach
canonically leads to a new local representation of the solution (using itsm-th
derivative and the local boundary condition) that is symmetric with respect
to the boundary conditions and reduces to the Runge Kutta representation

for initial value boundary conditions (i.e., the Volterra approach). More-
over, the global linear systems are most easily solved by a new successive
elimination of local boundary conditions.
Based on this material, we present the main parts of the h-p collocation

method for linear problems like the h-p error model, the residual estimator
and the h-p (refinement and order selection) strategy. Here, only the local
problems for the Volterra and the Fredholm approach differ.

� Global Integral Formulations for BVPs

We consider a nonlinear boundary value problem for a first order ODE. For
ease of notation we restrict ourselves to two point BVPs. The generalization

to multi-point BVPs is straightforward. For the same reason we postpone
the parameter dependent case to Section 5.3. Hence, we are looking for a
solution of the ODE

x′ = f(x, t) (5.1)

subject to the (in general nonlinear) boundary conditions

r(x) = r(x(a), x(b)) = 0 , (5.2)

where f and r are continuously differentiable functions

f : X ×R−→ X, r : X ×X −→ Z

in X = R
n and Z = R

k (typically k = n).
The main task in this section is to derive an appropriate formulation of the

BVP as a nonlinear problem F (x) = 0 that goes well with the collocation ap-

proach. The multiple shooting idea (see Section 3.3) automatically leads to
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a finite dimensional nonlinear problem involving the flow of the ODE which
is then approximated by an ODE solver. This is different from collocation

as a global discretization method. The construction of a suitable grid for the
solution, which implies a finite dimensional approximation of the problem,
is part of the solution process itself. Thus, in contrast to multiple shooting,

we first have to formulate the BVP in an infinite dimensional setting and
then to discretize this problem. Actually, this line of thought leads further.
Once we have the infinite dimensional problem at hand, we may also apply
Newton’s method in its inexact version to the infinite dimensional mapping,

if it is Gâteaux differentiable. This leaves us with a sequence of linear sub-
problems (here: linear BVPs) that may be easier to solve by the collocation
discretization to an accuracy prescribed by the surrounding Newton method.

5.1 Volterra Formulation

The first idea that comes to mind is to use the differential formulation (5.1)
directly, defining

F (x) :=

(
x′ − f(x, t)

r(x)

)
.

Remember, however, that a collocation solution is only continuous in general
(e.g., for Gaussian nodes), so that x′ is not defined over the whole interval.
Hence, avoiding differentiation, we integrate the differential equation (5.1)
arriving at the nonlinear Volterra equation (of second kind)

V (x) = 0, where V (x)(t) := x(t)− x(a)−
∫ t

a
f(x(s), s) ds . (5.3)

Thus, the original BVP is equivalent (for differentiable x) to

F (x) :=

(
V (x)

r(x)

)
= 0 .

Let us look for appropriate function spaces such that F is a well defined
continuous and Gâteaux differentiable mapping. By Lp = Lp(I) we denote
the space of Lp functions I → R

n on the finite interval I = [a, b].
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lemma 1. Let f : Rn× I → R
n be a continuous function statisfying

||f(x, t)|| ≤ c(1 + ||x||p/q) (5.4)

on Rn × I for some c ≥ 0 and p > 1, where q = p/(p− 1) is the dual index.
Then, the Volterra operator

V (x)(t) := x(t)− x(a)−
∫ t

a
f(x(s), s) ds

is a continuous mapping V : Lp → Ls for all s ≤ p.

Proof. The condition at infinity (5.4) guarantees that the Nemytskii op-
erator (Nx)(t) := f(x(t), t) maps Lp continuously into Lq (cf. [20]). Since

q > 1 and Lq ⊂ L1, the operator G defined by

(Gx)(t) :=
∫ t

a
f(x(t), t) dt

is a continuous map

G : Lp N−→ Lq

∫
−→ L∞ ⊂ Ls .

Moreover, we have Lp ⊂ Ls and thus the Volterra operator is a continuous
map Lp → Ls.

The lemma tells us that we have to choose L∞ as the domain, if we want
to include all functions f which are uniformly bounded with respect to x by

some polynomial. Consequently, we assume in the sequel that f and its total
derivative f ′ are bounded in x by

||f(x, t)|| ≤ c(1 + ||x||k) and ||f ′(x, t)|| ≤ c(1 + ||x||k) (5.5)

on Rn × I for some c, k ≥ 0. On the other hand, we may choose for the
image space any Lp, 1 < p ≤ ∞. Moreover, we have to keep in mind
that the boundary function r defined in (5.2) is only continuous on C(I) ⊂
L∞. Hence, the nonlinear function F , describing the nonlinear BVP, is a
continuous function

F : C(I) −→ Lp × Z, x �−→
(
V (x)

r(x)

)
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for any 1 < p ≤ ∞. For the image space we have chosen p = 2, i.e., L2 × Z,
since many iterative solvers (such as Gmres [56] and Bicgstab [64]) are

based on a Hilbert image space. Moreover, the effort for the computation
of the corresponding norm via an appropriate quadrature formula is still
feasible.

remark 9. An alternative would have been a formulation using the
Sobolev space H1(I) as proposed by Bader and Kunkel [7]. Numerical experi-
ence has shown, however, that the differentiability imposed on the functions

should be as weak as possible. If the initial guess for the solution of the
nonlinear problem is a smooth function (e.g. a constant one), the derivatives
often become worse at the beginning of the Newton process. Furthermore,
the effort for the computation of the corresponding norm would almost dou-

ble.

Since we required f and r to be C1 functions, where Dxf is as well bounded

by some polynomial, we see by the same arguments that F is Gâteaux-
differentiable. The derivative

F ′(x) : C(I) −→ L2 × Z

at x ∈ C(I) in direction v ∈ C(I) is given by

F ′(x)v =

(
V ′(x)v

r′(x)v

)
(5.6)

where

(V ′(x)v)(t) = v(t)− v(a)−
∫ t

a
Dxf(x(s), s)v(s) ds

and

r′(x)v = D1r(x(a), x(b))v(a) +D2r(x(a), x(b))v(b) .

Hence, the nonlinear problem F (x) = 0 meets the formal assumptions of the
affine contravariant convergence theorems and thus is ready to be solved by
an inexact Newton method (in the infinite dimensional setting). Here, the

equation

F ′(x)v = −F (x)
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for the Newton correction v at x is the linear BVP given by the boundary
condition

D1r(x(a), x(b))v(a)+D2r(x(a), x(b))v(b) + r(x(a), x(b)) = 0

and the linear (non autonomous) differential equation

v̇(t) = −(ẋ(t)− f(x(t), t)) +Dxf(x(t), t)v(t) . (5.7)

Thus we are lead to linear BVPs of the form

f(x, t) = A(t)x+ g(t) (5.8)

r(x(a), x(b)) = B1x(a) +B2x(b) + d = 0

where
A ∈ C(I, L(X)), g ∈ C(I,X),

are time dependent mappings and

B1, B2 ∈ L(X,Z), and d ∈ Z .

This kind of problem is to be attacked by the h-p collocation solver. More
precisely, we have to solve linear BVPs of the form (5.8) up to a prescribed

accuracy, measured in the L2-norm of the residual.

5.2 Fredholm Formulation

The Volterra formulation has, despite its simplicity, a major drawback. By
taking the integral from the left boundary a to t, we introduce an artificial
direction, although we praised the symmetry of collocation methods (at sym-
metric node) in the introduction. We are able to maintain this symmetry by

switching over to the Fredholm formulation of the BVP which includes the
boundary conditions in a natural way. Unfortunately, this approach relies
on the existence of a Green’s function, so that we have to claim linear non

degenerate boundary conditions. In order to include the most interesting
space-like problems we now consider ODEs of m-th order. Hence, we are
looking for a solution of the differential equation

x(m) = f(x, t) on I = [a, b], where f : Rmn ×R→ R
n, (5.9)
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subject to the linear non degenerate boundary conditions

βx = B1x(a) +B2x(b) = z ∈ Z = Rmn , (5.10)

where B1, B2 ∈ Rmn×mn and the restriction of β on the space Pm−1 = kerDm

of polynomials of degree less than m induces an isomorphism

β : Pm−1

∼=−→ Z = R
mn . (5.11)

Here, we almost abuse notation denoting by x not only the functions x(t) ∈
R

n but also (depending on the context) the column vector x(t) ∈ R
mn of

the values of x and its derivatives x′, . . . , x(m−1) up to order m − 1. Hence,
equation (5.9) reads in full prose

x(m)(t) = f(x(t), x′(t), . . . , x(m−1)(t), t)

and the boundary condition looks more explicitly like

βx = B1

⎛
⎜⎜⎜⎜⎝

x(a)
x′(a)
...

x(m−1)(a)

⎞
⎟⎟⎟⎟⎠+B2

⎛
⎜⎜⎜⎜⎝

x(b)
x′(b)
...

x(m−1)(b)

⎞
⎟⎟⎟⎟⎠ .

For order m = 1 the non degeneracy condition means that the sum B1 +B2

of the boundary matrices is an invertible matrix B1 +B2 ∈ GL(n). The non

degeneracy condition comes as no surprise since it is also the basic assumption
for the analysis of collocation in the fundamental paper of de Boor and Swartz
[18]. It guarantees the existence of a Green’s function

G : [a, b]2 −→ R
n×n

for the linear differential operator L = Dm and the homogeneous boundary
conditions βx = 0 characterized by

a) ∂m
t G(t, s) = δ(t− s) on [a, b]2

b) βG(·, s) = 0 ∈ Rmn for all s ∈ [a, b].
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As above, we think of G(t, s) also as a function in Rmn×n being the column
matrix G = (G, ∂tG, . . . , ∂

m−1
t G) of G and its first partial derivatives up to

order m− 1. Following [18], we denote by

P : Cm−1(I) −→ Pm−1

the canonical projection defined by βPx = βx. Hence, we have

x(t) = (Px)(t) +
∫ b

a
G(t, s)x(m)(s) ds for all x ∈ Hm

1 (I) , (5.12)

where Hm
1 (I) is just the space of functions for which the integral is well

defined, i.e.,

Hm
1 (I) := {x ∈ Cm−1(I) | x(m−1) abs. cont. and x(m) ∈ L1(I)} .

By (5.12) and the characteristic properties of Green’s function we see at
once that the BVP given by (5.9) and (5.10) is equivalent to the nonlinear
equation Fx = 0, where F is the nonlinear Fredholm operator

(Fx)(t) := x(t)− (β−1z)(t)−
∫ b

a
G(t, s)f(x, s) ds . (5.13)

Assuming that f and its derivative are polynomially bounded, we see by the

same arguments as for the Volterra operator (cf. Lemma 1) that F is a well
defined Gâteau differentiable mapping

F : Cm−1(I) −→ L2 .

The derivative
F ′(x) : Cm−1(I) −→ L2

at x ∈ Cm−1(I) in direction v ∈ Cm−1(I) is given by

(F ′(x)v)(t) = v(t)−
∫ b

a
G(t, s)Dxf(x, s) ds (5.14)

remark 10. We would like to emphasize the fact that the Fredholm

formulation directly incorporates the boundary conditions. Thus, it avoids
the problem of choosing the correct norm on the product space L2 × Z and
R

(k−1)n × Z occuring in the Volterra and multiple shooting formulation, re-
spectively.

For convenience we give some examples of linear non degenerate boundary

conditions and the corresponding projections and Green’s functions.
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Affine transformation onto the unit interval. We first recall some trans-
formation properties with respect to the affine transformation

ψ : [a, b] → [0, 1], t �→ t− a

b− a

of an interval [a, b] onto the unit interval [0, 1] and its inverse

φ = ψ−1 : [0, 1] → [a, b], τ �→ a+ τ (b− a) .

Let β̄ denote the boundary map

β̄x := B1x(0) +B2x(1)

with respect to the unit interval [0, 1] and P̄ the corresponding projection,
i.e.,

P̄ : Cm−1[0, 1] → Pm−1, β̄P̄ x = β̄x .

Moreover, suppose that Ḡ is Green’s function for Dm and β̄ = 0. Then, we
obtain (by trivial computation) the projection and Green’s function corre-
sponding to the interval [a, b] by

Px = P̄ (x ◦ φ) ◦ ψ and G(t, s) = (b− a)m−1G(ψ(t), ψ(s)) . (5.15)

Hence, we only have to consider the unit interval and obtain the terms for
any interval [a, b] by a simple and cheap transformation (which will become
important for the algorithm).

example 1. First order BVP. The linear boundary map is of the form

βx = B1x(a) +B2x(b) ,

where B1, B2 ∈ Rn×n and kerD = P0 are the constant functions. Since

β(Px) = βx ⇔ (B1 +B2)Px = βx

the projection P : C [a, b] → P0 is given by

P = (B1 +B2)
−1βx ,
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which is well defined iff the boundary condition β is non degenerate. More-
over, Green’s function for the first order differential operator Lx = x′ and

homogeneous boundary conditions β = 0 is easily established as the locally
constant function

G(t, s) =

{
G1 for s ≤ t
G2 for s > t

where G1 = (B1 +B2)
−1B1 and G2 = G1 − I .

example 2. Second order BVP with standard boundary conditions. Let
us consider the most common two point boundary conditions for second order
problems, where the solution is fixed at the left and right boundary by given

x(a) and x(b). This corresponds to the boundary map βx = B1x(a)+B2x(b),
where

B1 =

[
I 0
0 0

]
and B2 =

[
0 0
I 0

]
∈ R2n×2n .

With respect to the unit interval [0, 1], the projection P̄ : C1[0, 1] → P1 and
Green’s function Ḡ for Lx = x′′ are given by

(P̄ x)(t) = (1− t)x(0) + tx(1)

and

Ḡ(t, s) =

{
s(t− 1) for s ≤ t

t(s− 1) for s > t

For an arbitrary interval [a, b] this yields

(Px)(t) =
b− t

b− a
x(a) +

t− a

b− a
x(b)

and

G(t, s) = (b− a)Ḡ(ψ(t), ψ(s)) =
1

b− a

{
(s− a)(t− b) for s ≤ t
(t− a)(s− b) for s > t

example 3. Initial value problem of m-th order. As a trivial case, we
think of an initial value problem for a m-th order ODE, where the left value

x(a), x′(x), . . . , x(m−1)(a) is given. By Taylor’s formula,

x(t) =
m−1∑
k=0

1

k!
x(k)(a)(t− a)k +

1

(m− 1)!

∫ b

a
x(m)(s)(t− s)m−1

+ ds
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we have

(Px)(t) =
m−1∑
k=0

1

k!
x(k)(a)(t− a)k

and

G(t, s) =
1

(m− 1)!
(t− s)m−1

+ .

Here, (t− ·)k+ denotes as usual the truncated monomial

(t− s)k+ =

{
(t− s)k for s ≤ t

0 for s > t

5.3 Parameter Dependent Problems

So far we have neglected any parameter dependence of the differential equa-

tion and/or the boundary condition, although one of our objectives is the
study of parameter dependent systems via continuation. This was mainly
due to the fact that the parameter dependence spoils the formulae with
nasty and lengthy expressions. This section gives a brief account of how to

deal with parameters. In the following more technical sections we will always
incorporate the parameter dependent case as necessary for the algorithmic
realization. So, this section also fixes some notation for the forthcoming

parts. For simplicity we only consider the Volterra approach and first order
problems; ODEs of m-th order and the Fredholm formulation are handled in
total analogy.
A parameter dependent (two point) BVP is given by a differential equation

x′ = f(x, t, λ)

and a (in general nonlinear) boundary condition

r(x, λ) = r(x(a), x(b), λ) = 0 ,

where f and r are now continuously differentiable functions

f : X ×R× Λ → X and r : X ×X × Λ → Z

defined on the product spaces with some finite dimensional parameter space
Λ = R

q. This yields the equivalent nonlinear Volterra equation

F (x, λ) =

(
V (x, λ)

r(x, λ)

)
= 0 ,
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where

V (x, λ)(t) = x(t)− x(a)−
∫ t

a
f(x(s), s, λ) ds .

In order to obtain a well defined Gâteaux differentiable mapping

F : C(I)× Λ → L2 × Z

we have again to assume that f and Dxf are polynomially bounded in x for
all λ ∈ Λ. The derivative

F ′(x, λ) : C(I)× Λ → L2 × Z

at (x, λ) in direction (v, μ) ∈ C(I)× Λ is then given by

V ′(x, λ)

(
v

μ

)
(t) = v(t)−v(a)−

∫ t

a
[Dxf(x(s), s, λ)v(s) + (Dλf(x(s), s, λ)μ] ds

and

r′(x, λ)

(
v

μ

)
= B1v(a) +B2v(b) + Cμ ,

where

Bi = Dir(x(a), x(b), λ) for i = 1, 2 and C = Dλr(x(a), x(b), λ) .

Thus, we now have to consider linear parameter dependent BVPs of the form

f(x, t, λ) = A(t)x+ P (t)λ + g(t)

r(x, λ) = B1x(a) +B2x(b) + Cλ+ d = 0 ,

where in addition to the terms in (5.8) we have P ∈ C(I, L(Λ, X)) and
C ∈ L(Λ, Z).
The rest of this section shows how free boundary value problems and in

particular periodic boundary value problems may be incorporated into the

present framework of parameter dependent BVPs.
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Free boundary value problems. To include parameter dependent free bound-
ary value problems, we use the affine transformation of [a, b] on the standard

interval [0, 1]

x(t) → z(s), where t = a+ s(b− a), s ∈ [0, 1]

Introducing the extended parameter μ = (a, b, λ) we obtain an equivalent
BVP without free boundaries consisting of the differential equation

z′(s) = g(z(s), s, μ) , where g(z, s, λ) = (b− a)f(z, a+ s(b− a), λ) ,

and the original boundary conditions

r(z(0), z(1), μ) = r(z(0), z(1), a, b, λ) = 0 .

Obviously, this transformation implies for the derivatives with respect to the
additional parameters a, b that

Dag(x, s, μ) = −f(z, t, λ) + (b− a)Dtf(z, t, λ)(1− s) (5.16)

Dbg(x, s, μ) = f(z, t, λ) + (b− a)Dtf(z, t, λ)s ,

while the other derivatives of f have to be multiplied by b − a to get the
derivatives of g. Note that the second terms in (5.16) vanish for autonomous

ODEs.

Periodic boundary value problems. Of particular interest for our investi-
gations are periodic boundary conditions

r(x(0), x(T )) = x(0)− x(T ) = 0 .

Here, the derivatives of the (linear) boundary conditions are extremely sim-
ple, B1 = I and B2 = −I , and we have no explicit dependency on the parame-

ter, i.e., C = 0. In the non autonomous case, the period T is given by the nec-
cessarily T -periodic right hand side f of the ODE, i.e., f(x, t) = f(x, t+ T ).
For autonomous equations, the period is an implicit free boundary, which we
may handle as above considering the autonomous differential equation

z′ = g(z, μ) := Tf(z, λ)

with the augmented parameter μ = (λ, T ). The resulting derivatives are

Dzg = TDxf and Dμ = [DTg,Dλg] = [f, TDλf ] .
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� Collocation� Volterra Approach

Proceeding, we consider the computation of the collocation solution on a
fixed mesh with variable orders. We define an h-p grid Δ = ({ti}, {pi}) as a
partition

a = t1 < t2 < · · · < tN+1 = b

of the basic interval [a, b] into N subintervals Ji = [ti, ti+1] of length hi =
ti+1− ti and local orders pi for 1 ≤ i ≤ N . The collocation approach consists
of two stages:

a) local collocation: On each subinterval Ji, we look for a polynomial that
satisfies the differential equation at pi inner collocation nodes, typically
Gaussian nodes.

b) global collocation: The local polynomials have to define a continuous
overall solution that satisfies the boundary condition. Hence, we have
to claim continuity at the global mesh points ti and the boundary

conditions at a, b.

Since we shall present these two aspects in seperated sections, we use almost

the same notation for the global mesh and the inner nodes, as depicted in
figure 2. In the ‘local’ sections, we denote the local interval by [a, b] and the
inner collocation nodes by t1, . . . , tp. We start our discussion of collocation

global grid Δ: r r r r r r

a

t1 t2 ti

Ji

ti+1 tN

b

tN+1

�
�
�
��

Q
Q
Q
Qs

local interval J : r r r r r

a t1 t2 t3 b

Fig. 2. Global and local collocation nodes (here: pi = 3)

methods by recalling the standard techniques based on Runge Kutta basis
functions. This standard approach, solving local initial value problems fitted

together by continuity conditions, seems to be almost ideal for the Volterra
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formulation (and thus, time-like BVPs). Since it is equivalent to multiple
shooting using single step integrators, we may even use well-known techniques

like block Gaussian elimination to solve the global linear systems. In Section
7 we derive the analogon for the Fredholm approach (hence, space-like BVPs)
using a local boundary representation of the collocation solution. Aiming at

an h-p collocation method we always keep an eye on variable orders on the
local intervals. Moreover, thinking of a multilevel Newton method, it is
sufficient to consider linear problems.

6.1 Runge Kutta Schemes of Collocation Type

A (collocation type) Runge Kutta scheme (A, b, c) of stage p ≥ 1 on the

interval [0, 1] is given by p nodes

0 ≤ c1 < c2 < · · · < cp ≤ 1 ,

and the corresponding weights b = (bj) and Runge Kutta coefficients A =

(aij) for 1 ≤ i, j ≤ p, given by

bj =
∫ 1

0
Lj(t) dt and aij =

∫ ci

0
Lj(t) dt ,

where L1, . . . , Lp ∈ Pp−1 are the Lagrange polynomials with respect to the

nodes c1, . . . , cp, i.e., Li(cj) = δij. We first discuss the so-called Runge Kutta
basis which is the most suitable polynomial basis for collocation. Here, the
general reference is [4]. Further, we present a simple recursive mechanism to
compute the corresponding Runge Kutta coefficients, which is particularly

suited for the successively increasing orders of the h-p collocation.

6.1.1 Runge Kutta basis

The Runge Kutta basis Φ = {φ0, . . . , φp} of the polynomial space Pp corre-
sponding the nodes c1, . . . , cp is defined by

a) φ0 ≡ 1

b) φj(0) = 0, φ′
j(ci) = δij for 1 ≤ i, j ≤ p.
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By condition b) the derivatives φ′
j coincide for j > 0 with the Lagrange

polynomials φ′
j = Lj. Thus, we can evaluate φj according to

φj(t) = φj(t)− φj(0) =
∫ t

0
φ′
j(t) dt =

∫ t

0
Lj(t) dt for j > 0.

For the nodes t = ci and t = 1, we recover in particular the Runge Kutta
coefficients

φj(1) =
∫ 1

0
Lj(t) dt = bj and φj(ci) =

∫ ci

0
Lj(t) dt = aij .

Considering a polynomial u ∈ Pp in its Runge Kutta representation u =∑p
j=0 ujφj , this implies (1 ≤ i ≤ p)

u(0) = u0, u(1) = u0 +
p∑

j=1

bjuj, u(ci) = u0 +
p∑

j=1

aijuj and u′(ci) = ui .

Of course, all these considerations transfer to a general interval [a, b] of length
h = b− a using the affine transformation

[0, 1] −→ [a, b], s �−→ a + sh .

The resulting nodes are ti = a + cih for 1 ≤ i ≤ p and the corresponding
Runge Kutta coefficients

b
[a,b]
j = hbj and a

[a,b]
ij = haij .

6.1.2 Computation of Runge Kutta schemes of collocation type

In this section we describe a simple recursive procedure to compute the Runge

Kutta coefficients at Gaussian points for arbitrary order.

Computation of Gaussian nodes. To start with, we recall the well known
method to compute the Gaussian points c

(n)
1 , . . . , c(n)n as the zeros of the Leg-

endre polynomials Pn ∈ Pn (transformed to [0, 1]). The Legendre polynomials
may be defined by the three term recurrence formula P0 ≡ 1, P1(x) = x, and

kPk(x) = (2k − 1)xPk−1(x)− (k − 1)Pk−2(x) for k ≥ 2.
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We consider the slightly more general case of a three term recurrence formula

α2
kPk(x) = (x− βk)Pk−1(x)− γ2kPk−2(x) for k ≥ 2. (6.1)

For the Legendre polynomials we have in particular

βk = 0, α2
k =

k

2k − 1
and γ2k =

k − 1

2k − 1
.

In matrix notation this formula (6.1) reads r = xp− Tnp, where

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
0

α2
nPn(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0(x)
...
...
...

Pn−1(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1 α2
1

γ22 β2 α2
2

. . .
. . .

. . .

γ2n−1 βn−1 α2
n−1

γ2n βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, the problem of finding the zeros of Pn is equivalent to the eigenvalue
problem of Tn, i.e.,

Pn(x) = 0 ⇐⇒ Tnp = xp .

The matrix Tn can be transformed to an equivalent symmetric matrix T̂n =
DTnD

−1 by a diagonal transformation D = diag(d1, . . . , dn), where d1 = 1
and dk = αk−1dk−1/γk for 2 ≤ k ≤ n. We thus obtain the symmetric
tridiagonal matrix

T̂n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1 α1γ2
α1γ2 β2 α2γ3

. . .
. . .

. . .

αn−2γn−1 βn−1 αn−1γn
αn−1γn βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,
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whose (real and distinct) eigenvalues may be easily calculated by a standard
QR method. Once given the zeros

−1 < x
(n)
1 < x

(n)
2 < . . . < x(n)n < 1

of Pn as the ordered eigenvalues of T̂n, we obtain the Gaussian nodes c
(n)
1 , . . . , c(n)n

with respect to the interval [0, 1] via

c
(n)
k =

x
(n)
k + 1

2
.

Computation of Runge Kutta coefficients. We now assume that the Gaus-

sian nodes c
(n)
j are given for arbitrary stages n. The Runge Kutta coefficients

are defined by

b
(n)
j =

∫ 1

0
Lj(t) dt and a

(n)
ij =

∫ c
(n)
i

0
Lj(t) dt , (6.2)

where L
(n)
1 , . . . , L(n)

n ∈ Pn−1 are the Lagrange polynomials with respect to

the nodes c
(n)
1 , . . . , c(n)n . Furthermore, we know that the Gaussian quadrature

rule

În(f) :=
n∑

j=1

b
(n)
j f(c

(n)
j ) ≈

∫ 1

0
f(t) dt

is exact for polynomials f of degree ≤ 2n − 1. Hence, we can evaluate the
integral expressions (6.2) for n > 1 using the Gaussian quadrature În−1. The

first coefficients b
(1)
1 and a

(1)
11 are of cause the trivial ones

b
(1)
1 =

∫ 1

0
L1(t)︸ ︷︷ ︸
=1

dt = 1 and a
(1)
11 =

∫ c
(1)
1

0
L1(t)︸ ︷︷ ︸
=1

dt = c
(1)
1 .

Thus, we have all coefficients for arbitrary orders at hand.

remark 11. Once we know the Gaussian Runge Kutta formulae, we
may use the same procedure to compute different Runge Kutta schemes of
collocation type like the Lobatto schemes or the collocation schemes defined

in Section 7.1.
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6.2 Local Collocation

In this section we discuss the local collocation on a interval [a, b] of length
h = b − a with the Runge Kutta scheme (A, b, c) of order p and the nodes
tj = a + cjh, 1 ≤ j ≤ p. Since we think of a Newton multilevel method, we

only consider linear problems of the form defined in (5.8), i.e.,

f(x, t, λ) = A(t)x+ P (t)λ+ g(t) .

Our task may be described as follows: For a given x0 ∈ X, compute the
coefficients uj of the polynomial u =

∑p
j=0 ujφ ∈ Pp with respect to the

Runge Kutta basis Φ = {φ0, . . . , φp} satisfying

a) u(a) = x0

b) u′(ti) = f(u(ti), ti, λ) for 1 ≤ i ≤ p.

i.e., u is a polynomial approximation of the ODE’s solution with initial value
x0 that solves the differential equation at the p nodes t1, . . . , tp. By the

definition of the Runge Kutta basis, we see that a) is equivalent to u0 = x0,
while the second condition b) reads

ui = f(u0 + h
p∑

j=1

aijuj, ti, λ)

= A(ti)u0 + h
p∑

j=1

aijA(ti)uj + P (ti)λ + g(ti)

for 1 ≤ i ≤ p. Using the common matrix notation (cf. [4]), we obtain the
linear system

Mu = Au0 + Pλ + g ,

where

M = I − h

⎛
⎜⎜⎝
a11A(t1) · · · a1pA(t1)

...
...

ap1A(tp) · · · appA(tp)

⎞
⎟⎟⎠ , u =

⎛
⎜⎜⎝
u1
...

up

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝
A(t1)
...

A(tp)

⎞
⎟⎟⎠
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and P , g are defined in the same way as A. In particular, we get the value
x1 = u(b) at the right boundary by

x1 = x0 + h
p∑

j=1

bjuj = Rx0 + Sλ + r ,

where R = I + hDM−1A, D = [b1I, . . . , bpI ], S = hDM−1P and r =
hDM−1g. In this way, we have defined for each local interval [a, b] and

order p the affine local collocation map

Ψ : X × Λ −→ X, (x, λ) �−→ Rx+ Sλ+ r ,

which in a way substitutes the flow used in multiple shooting methods, while
the linear part R replaces the propagation matrix (the linearized flow).

6.3 Global Collocation

We now consider a grid Δ = ({ti}, {pi}) given by a partition

a = t1 < t2 < · · · < tN+1 = b

of the basic interval [a, b] into N subintervals Ji = [ti, ti+1] of length hi =
ti+1 − ti and local orders pi for 1 ≤ i ≤ N . By PΔ we denote the space of
piecewise polynomials with corresponding degrees on the subintervals, i.e.,

u ∈ PΔ ⇐⇒ u|Ji ∈ Ppi for all i = 1, . . . , N .

Our global collocation task is to find a continuous piecewise polynomial
u ∈ PΔ that satisfies the boundary conditions and the local collocation con-
ditions on each subinterval Ji. Equivalently, we look on each interval Ji for

a polynomial ui ∈ Ppi such that

a) the overall solution is continous, i.e.,

ui−1(ti) = ui(ti) for i = 2, . . . , N

b) each ui satisfies the differential equation at the local collocation points,

i.e.,

u′
i(t) = f(ui(t), t, λ)

for t = ti + cjhi, 1 ≤ i ≤ N and 1 ≤ j ≤ pi,



6.3 Global Collocation 61

c) the boundary conditions are fullfilled, i.e.,

r(u(1)(a), u(N)(b), λ) = 0 .

Again, we only consider the linear problem

f(x, t, λ) = A(t)x+ P (t)λ+ g(t) and r(u, v, λ) = B1u+B2v + Cλ− z .

On each subinterval Ji we have the affine local collocation map

Ψi : xi �−→ xi+1 = Rixi + Siλ+ ri ,

derived in Section 6.2, which guarantees the pointwise collocation conditions

b). Hence, the global collocation problem is equivalent to the cyclic linear
system

⎡
⎢⎢⎢⎢⎣
R1 −I S1

. . .
. . .

...
RN−1 −I SN−1

B1 B2RN B2SN + C

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
...
xN
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎝

r1
...

rN−1

B2rN − z

⎞
⎟⎟⎟⎟⎠ ,

(6.3)
where the matrix H describes a linear mapping

H : XN × Λ −→ XN−1 × Z .

Condensing and expanding. For problems of medium difficulty the cyclic
linear system Hy = b, y = (x, λ) given by (6.3) can be solved in the same
way as in the multiple shooting context. We define a linear expansion map

R : X × Λ −→ XN × Λ, (u, λ) �−→ R(u, λ) = (x, λ)

by the recurrence formula

x1 = u and xi+1 = Rixi − bi + Siλ for i = 1, . . . , N − 1.
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By the usual blockwise Gaussian elimination we can easily show that the
original system is equivalent to a so-called condensed system . More precisely,

we have

Hy = b ⇐⇒ Hc

(
u

λ

)
= bc and y = R(u, λ) ,

where Hc = [Ec, Sc] is the condensed matrix given by Ec = B1+B2RN · · ·R1

and

Sc = C +B2(SN +RNSN−1 +RNRN−1SN−2 + · · ·+RN · · ·R2S1) ,

and bc is the condensed right hand side

bc = bN +B2(RNbN−1 +RNRN−1bN−2 + · · ·+RN · · ·R2b1) .

As in the multiple shooting context, this elimination technique becomes un-

stable if the local initial value problems are poorly conditioned and/or the
number of intervals is too large. To detect this situation we can employ the
condition estimates based on the iterative refinement sweeps according to

Deuflhard and Bader [29]. If this situation has been detected, the global col-
location systemmust be solved by a direct sparse solver such as Solverblok
by de Boor and Weiss [19] for almost block diagonal systems (requiring sep-
arated boundary conditions) or a general sparse solver like MA28, MA42

by Duff [37].
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The basic idea of the Runge Kutta basis as sketched in Section 6.2 is to
characterize the local collocation polynomials x ∈ Pp+m−1 by their m-th
derivative y = x(m) ∈ Pp−1 (in Section 6 we always had m = 1) and left

initial value x(ti) ∈ R
mn. The polynomial y ∈ Pp−1 is then represented

via its values at the p collocation nodes leading to the Lagrange basis. We
see at once that the characterization by the left initial value introduces an
asymmetry, since the local polynomials are ‘fixed’ at the left boundary of

the corresponding subinterval Ji = [ti, ti+1] as already observed by Bader
[6]. Hence, we look for a more adequate local representation, subject to the
following demands:

• It should respect the reflectional symmetry of the BVP in the indepen-

dent variable, i.e.,

[a, b] −→ [b, a], t �−→ τ := a+ b− t . (7.1)

• The evaluation of the local polynomial should be cheap.

• The representation has to be stable.

The symmetry of the representation with respect to (7.1) means that it should
make no difference whether we solve the original problem

x′(t) = f(x(t), t), B1x(a) +B2x(b) = z (7.2)

or the one obtained after applying the reflection (7.1),

x̃′(τ ) = −f(x̃(τ ), a + b− τ ), B2x̃(b) +B1x̃(a) = z . (7.3)

(For ease of notation we used an first order ODE.) Note that the boundary

matrices B1 and B2 change places.

remark 12. We would like to point out that this kind of symmetry is
different from Bader’s notion in [6], where he considers a symmetry with
respect to the values x(ti) and x(ti+1), which does not involve the boundary

condition.
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By the symmetry of the Runge Kutta formulae of collocation type, the
local collocation polynomials remain the same, if we reverse the direction of

integration. Moreover, the m-th derivative x(m) of the collocation solution
transforms canonically with the factor (−1)m. The same is true for the
characterization of x(m) by its values at the (symmetric) collocation nodes.

Furthermore, we see that we have to incorporate the boundary matrices Bi

in order to get a totally symmetric representation of the local collocation
polynomials.
Fortunately, every non degenerate linear boundary map

βix = B
(i)
1 x(ti) +B

(i)
2 x(ti+1) ∈ Rmn (7.4)

gives us an isomorphism

Pp+m−1 → Pp−1 ×Rmn, x �→ (y, z) = (x(m), βix) . (7.5)

and thus a 1−1 representation of the local polynomials x ∈ Pp+m−1 defined on

the local interval Ji = [ti, ti+1] by its m-th derivative x(m) and the boundary
value βix ∈ Rmn. Hence, the question arises which local boundary map βi is
appropriate. The three criteria for an adequate local representation lead us
to the boundary map

B
(i)
1 := B1 and B

(i)
2 := B2 (7.6)

defined by the global boundary matrices B1 and B2. First of all we see that
this characterization is symmetric, since B1 and B2 change places as we apply
the transformation (7.1). Moreover, the effort for the evaluation of the local

polynomials is still feasible, because the local boundary maps only differ
by an affine transformation of the underlying interval (see below). Finally,
numerical evidence shows that the local boundary representation is a stable

characterization of the collocation polynomials.
We call the representation (7.5) with the local boundary map (7.6) the

local boundary representation of the collocation solution.

remark 13. Obviously, this representation is strongly connected with

the necessarily non degenerate boundary conditions of the Fredholm ap-
proach. In addition, we see that the standard Runge Kutta representation
corresponds to (left) initial value boundary conditions (B1 = I , B2 = 0).
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7.1 Collocation Schemes

To describe the local collocation problem we make use of the following lifting
operators (cf. [18]). By D−m we denote the integral operator

D−m : C(I) → Cm(I), (D−my)(t) :=
∫ b

a
G(t, s)y(s) ds

corresponding to the homogeneous boundary conditions β = 0. By the char-
acteristic properties of Green’s function, y(−m)(t) = (D−my)(t) may be equiv-
alently defined by

Dmy(−m) = y and βy(−m) = 0 .

By D−m,z := β−1z + D−m we denote its inhomogeneous counterpart corre-
sponding to the boundary condition β = z, i.e., y(−m,z) = D−m,zy satisfies

Dmy(−m,z) = y and βy(−m,z) = z .

Restricted to polynomials y ∈ Pp−1, the operator D−m,z is just the inverse

of the isomorphism (7.5). Using this lifting operator, the BVP is obviously
equivalent to the nonlinear equationHy = 0 for them-th derivative y = x(m),
where

(Hy)(t) = y(t)− f(y(−m,z), t) .

This characterization of the BVP was the starting point for the theoretical

investigation in [18].
Since we are going to compute y in its Lagrange representation y =∑p
j=1 yjLj, where L1, . . . , Lp are the Lagrange polynomials for the nodes

t1, . . . , tp, we need the liftings L
(−m)
j with respect to the boundary map β.

Therefore, we introduce so-called collocation schemes which generalize the
Runge Kutta schemes of collocation type (corresponding to left initial value
boundary conditions). In addition, we define so-called boundary schemes

describing the inverse β−1 of the boundary map.

definition 2. Let β be a non degenerate linear boundary condition on

[a, b], G(t, s) the corresponding Green’s function for Dm and L1, . . . , Lp the
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Lagrange polynomials for p distinct nodes t1, . . . , tp ∈ [a, b]. We call the
functions

γj : [a, b] → R
mn×n, γj(t) := L

(−m)
j (t) =

∫ b

a
G(t, s)Lj(s) ds

collocation schemes for β and {ti} on [a, b]. By Γ(t) we denote the composed
matrix

Γ(t) := [γ1(t), . . . , γp(t)] ∈ Rmn×pn .

The boundary scheme for β on [a, b] is defined as the function

C : [a, b] → R
mn×mn

describing the inverse of the boundary map, i.e.,

(β−1z)(t) = C(t)z for all z ∈ Rmn .

We recover the Runge Kutta coefficients aij as the collocation scheme γj(ti)

evaluated at the nodes ti, if we substitute for β the initial value boundary
conditions:

aij =
∫ ti

a
Lj(s) ds =

∫ b

a
(ti − s)0+Lj(s) ds = γj(ti) .

Before we derive the local collocation equations in terms of the local bound-
ary representation, we briefly look at the transformation properties of the

collocation schemes with respect to affine transformations of the underlying
interval [a, b]. This is quite a decisive point for our algorithm, since we want
to compute the collocation schemes only once for a given boundary condi-

tion (and not for each interval). Using the notation from Section 5.2, we
denote in addition the Lagrange polynomials for the nodes ci = ψ(ti) ∈ [0, 1]
by L̄j ∈ Pp−1 and the corresponding collocation schemes by γ̄j . Using the
transformation properties of Green’s function, we have

∂k
tG(t, s) = (b− a)m−1−kDk

1Ḡ(ψ(t), ψ(s))

and ∫ b

a
∂k
tG(t, s)Lj(s) ds = (b− a)m−1−k

∫ b

a
Dk

1Ḡ(ψ(t), ψ(s))Lj(s) ds

= (b− a)m−k
∫ 1

0
∂k
t Ḡ(t, s)L̄j(s) ds .
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Hence, setting h := b− a we obtain the collocation scheme γj for [a, b] from
the scheme for the unit interval [0, 1] by the simple transformation

γj = diag(hmI, . . . , hI) γ̄j .

The transformation of the boundary schemes depends of course on the

boundary condition itself. Let us give two examples.

example 4. First order BVP (see Example 1). The inverse of the bound-
ary map βx = B1x(a) +B2x(b), where B1 +B2 ∈ GL(n), is simply

β−1 : Rmn → Pm−1 = P0 , (β−1z)(t) = (B1 +B2)
−1z .

Hence, the boundary scheme is

C(t) = (B1 +B2)
−1 ∈ Rn×n .

example 5. Second order BVP with standard boundary conditions (see
Example 2). Here, the inverse of the boundary map is given by

β−1 : Rmn → Pm−1, (β−1z)(t) =
b− t

b− a
z1 +

t− a

b− a
z2 .

Therefore, we have

C(t) = β−1(t) =
1

b− a

[
(b− t)I (t− a)I
−I I

]
∈ R2n×2n .

7.2 Local Collocation

The local callocation task for the local boundary representation is to find a
polynomial x ∈ Pm+p−1 satisfying

a) x(m)(ti) = f(x(ti), ti, λ) for i = 1, . . . , p

b) βx = z,

where t1, . . . , tp ∈ [a, b] are p distinct nodes and z ∈ Rmn the local boundary

value. Equivalently, we may look for a polynomial y ∈ Pp−1 (being the m-th
derivative y = x(m) of x) satisfying

y(ti) = f(y(−m,z)(ti), ti, λ) for i = 1, . . . , p, (7.7)
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where

y(−m,z)(t) = (β−1z)(t) +
∫ b

a
G(t, s)y(s) ds

is the lifting introduced above. Due to the multilevel Newton context we
consider again only the linear case

f(x, t, λ) = A(t)x+ P (t)λ + g(t) .

Using the collocation scheme defined above we may compute the lifting
y(−m,z) of some polynomial y =

∑p
j=1 yjLj ∈ Pp−1 explicitly by

y(−m,z)(t) = C(t)z +
p∑

j=1

γj(t)yj = C(t)z + Γ(t)y.

Here, we identify y with the column vector (y1, . . . , yp) ∈ Rpn of its Lagrange
coefficients. Since

y(ti) = A(ti)y
(−m,z)(ti) + P (ti)λ+ g(ti)

= A(ti)(C(ti)z + Γ(ti)y) + P (ti)λ + g(ti)

for i = 1, . . . , p, the local collocation equation (7.7) reads like

My = ACz + Pλ+ g ,

where

M = I −

⎡
⎢⎢⎣
A(t1)Γ(t1)

...
A(tp)Γ(tp)

⎤
⎥⎥⎦ ∈ Rpn×pn , AC =

⎡
⎢⎢⎣
A(t1)C(t1)

...
A(tp)C(tp)

⎤
⎥⎥⎦ ∈ Rpn×mn ,

P =

⎡
⎢⎢⎣
P (t1)

...
P (tp)

⎤
⎥⎥⎦ ∈ Rpn×q and g =

⎡
⎢⎢⎣
g(t1)
...

g(tp)

⎤
⎥⎥⎦ ∈ Rpn .

Accordingly, the solution y ∈ Rpn of the local collocation equation is

y = Rz + Sλ + r ,



7.3 Global Collocation 69

where R = M−1AC ∈ R
pn×mn, S = M−1P ∈ Rpn×q and r = M−1g ∈ Rpn.

To actually evaluate the lifted solution x = y(−m,z), we again have to apply

the collocation schemes to obtain

x(t) = C(t)z + Γ(t)y

= (C(t)z + Γ(t)R)z + Γ(t)Sλ + Γ(t)r .

For the values of x at the (local) boundaries this leads in particular to

x(a) = Uz + U (λ)λ + u and x(b) = V z + V (λ)λ+ v

where

U = C(a)Γ(a)R, U (λ) = Γ(a)S, u = Γ(a)r

and
V = C(b)Γ(b)R, V (λ) = Γ(b)S, v = Γ(b)r .

7.3 Global Collocation

Having derived the local collocation solutions with respect to the local bound-

ary representation, it is fairly easy to set up the global collocation system.
We consider as in Section 6.3 a grid Δ = ({ti}, {pi}) on the basic interval
[a, b] consisting of N intervals Ji = [ti, ti+1] of length hi = ti+1− ti and orders
pi. By Δ+ k we denote the grid

Δ + k := ({ti}, {pi + k})
obtained by adding the integer k to the local orders. Accodingly, PΔ+k is
space of piecewise polynomials of local degrees pi + k, i.e.,

u ∈ PΔ+k ⇐⇒ u|Ji ∈ Ppi+k for all i = 1, . . . , N .

7.3.1 Derivation of the global collocation system

Includingm-th order problems, we require the solution x ∈ PΔ+m−1 to bem−
1 times continuously differentiable. Therefore, we are looking for polynomials
xi ∈ Ppi+m−1 on Ji such that

a) the overall solution is in Cm−1[a, b], i.e.,

xi−1(ti) = xi(ti) ∈ Rmn for i = 2, . . . , N
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b) the local collocation conditions

x
(m)
i (t) = f(xi(t), t, λ) = A(t)xi(t) + P (t)λ + g(t)

are satisfied for t = ti + cjhi, 1 ≤ i ≤ N and 1 ≤ j ≤ pi,

c) the (global) boundary condition is fullfilled, i.e.,

B1x1(a) +B2xN(b) = z .

We are going to compute the global solution in terms of the local boundary
representation

xi = y
(−m,zi)
i

where yi ∈ Ppi−1 are the m-th derivatives and zi ∈ Rmn the local boundary
values with respect to the local boundary conditions

βix = B1x(ti) +B2x(ti+1) .

As a consequence, we have to substitute xi in the global collocation conditions

by y
(−m,zi)
i and obtain in particular the local collocation equations

yi(t) = f(y
(−m,zi)
i (t), t, λ)

as in Section 7.2. Using the results of the last section, the continuity condition
a) is equivalent to

Vi−1zi−1 + V
(λ)
i−1λ+ vi−1 = Uizi + U

(λ)
i λ + ui ∈ Rmn

for i = 2, . . . , N . Here, the indices refer of course to the local intervals Ji.
Similarly, the global boundary condition c) reads

B1(U1z1 + U
(λ)
1 λ+ u1) +B2(VNzN + V

(λ)
N λ + vN) = z .

Thus, we arrive at the following global collocation system in terms of the
local boundary values z1, . . . , zN ∈ Rmn:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1 −U2 V
(λ)
1 − U

(λ)
2

V2 −U3 V
(λ)
2 − U

(λ)
3

. . .
. . .

...

VN−1 −UN V
(λ)
N−1 − U

(λ)
N

B1U1 B1VN B1U
(λ)
1 +B2V

(λ)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
...
...
...
zN
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
...
...
...

bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
...
...

bN−1

bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2 − v1
...
...

uN − vN−1

z − B1u1 − B2vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

7.3.2 Solution by elimination of local boundary values

The global collocation system can be solved using an appropriate sparse
solve. This is, in particular, true for separated boundary conditions leading
to the ‘almost block diagonal’ form of the global collocation matrix as for the
standard approach using Runge Kutta basis functions (care has to be taken

in the parameter dependent case, especially near turning points, e.g., using
some deflation technique, cf. [15]).
Since we are going to construct the collocation grid via local refinement

and order increasing, the following method may provide an efficient alterna-

tive. We exploit the hierarchical structure of the collocation grid using an
elimination of local variables (here, local boundary values) up to the coarse
grid, whose collocation system is then solved directly. One advantage of this

approach, in the context of the adaptive h-p collocation to be described be-
low, is that we only have to update the local collocation and elimination
matrices where some refinement or change of order has taken place. More-
over, the elimination process may be interpreted to have successively solved

local boundary conditions up the global one.
For the local elimination we only have to consider two intervals (obtained

by bisection in the h-p algorithm), i.e., the case N = 2, which reads as

[
V1 −U2

B1U1 B2V2

]
︸ ︷︷ ︸

=: W

(
z1
z2

)
=

(
0

z

)
+

(
V

(λ)
1 − U

(λ)
2

B1U
(λ)
1 +B2V

(λ)
N

)
︸ ︷︷ ︸

=: N

λ+

(
u2 − v1

−B1u1 − B2v2

)
︸ ︷︷ ︸

=: w

For the local elimination we requireW to be invertible (else we stop the local
elimination and leave the intervals to the global solver) leading to(

z1
z2

)
= W−1

(
0

z

)
+W−1Nλ+W−1w .
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Setting

W−1 =

[
W11 W12

W21 W22

]
=

[
W1

W2

]

this yields

z1 = W12z +W1Nλ +W1w and z2 =W22z +W2Nλ+W2w .

As a consequence, we obtain the values at left and right boundaries by

x(a) = U1z1 + U
(λ)
1 λ + u1

= U1(W12z +W1Nλ +W1w) + U
(λ)
1 λ+ u1

= U1W12︸ ︷︷ ︸
= U

z + (U1W1N + U
(λ)
1 )︸ ︷︷ ︸

= U (λ)

λ+ U1W1w + u1︸ ︷︷ ︸
= u

and

x(b) = V2z2 + V
(λ)
2 λ+ v2

= V2(W22z +W2Nλ +W2w) + V
(λ)
2 λ + v2

= V2W22︸ ︷︷ ︸
= V

z + (V2W2N + V
(λ)
2 )︸ ︷︷ ︸

= V (λ)

λ+ V2W2w + v2︸ ︷︷ ︸
= v

.

and thus eliminated z1, z2. Concerning the computational effort note that we
have to invert an 2n × 2n matrix in each elimination step meaning roughly

8n3 multiplications. If the grid was constructed from a single interval by
successive bisection (N = 2k for some k ∈ N) this has to be done N −1 times
leading to an effort of O(Nn3). Because every direct solver has at least to

touch the N dense blocks of size n×n using some O(n3) elimination process,
our new successive elimination method is up to a constant factor optimal for
a direct method. As already mentioned above, the situation is actually much
better in the context of the h-p collocation, since we only have to update the

local matrices changed by refinement or order increasing.
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8.1 Residual Estimation

In the framework of the inexact Newton method, we have to be able to
compute the norms ||F (xk)|| and ||rk|| of the outer and inner residuals, re-

spectively. Obviously, the computation of the residual norms of the linear
subproblems is a special case of its nonlinear counterpart. In our particular
situation, we have either the nonlinear function

F : C(I) −→ L2 × Z, x �−→
(
V (x)

r(x)

)
,

defined by the Volterra operator

V (x)(t) := x(t)− x(a)−
∫ t

a
f(x(s), s) ds (8.1)

and the boundary function

r(x) := r(x(a), x(b)) ,

or the Fredholm formulation F : C(I)→ L2, where

(Fx)(t) = x(t)− (β−1z)(t)−
∫ b

a
G(t, s)f(x(s), s) ds . (8.2)

For ease of notation, we ignore the parameter λ in this section. The norm

||r(x)|| poses no problem, since it is the (problem dependent) norm in the
finite dimensional space Z = R

m. However, it is impossible to compute
the L2-norm of the Volterra or Fredholm integral exactly using only discrete
information about the nonlinear function f . Since the Volterra integral is

only a special case of the Fredholm integral (with Green’s function G(t, s) =
(t− s)m−1

+ ), we consider in this section only the latter.

8.1.1 Local residuals

The residuals are not only necessary for the inexact Newton method but
also needed to control the local adaptive refinement and order selection.

Accordingly, we begin with the simpler task to estimate the L2 norms of



74 8 Adaptivity Issues

the local residuals Fx, where x ∈ Pp+m−1 and the expression in (8.2) is to
be understood locally as in Section 7.2. To derive the residual estimate,

we first reformulate the local collocation task in terms of some interpolation
operators.

definition 3. For given p distinct nodes t1, . . . , tp ∈ [a, b] we denote the
interpolation operator by

πp : C(I) → Pp−1 , (πpy)(ti) = y(ti) for i = 1, . . . , p.

Moreover, we define the lifted interpolation operator π(−m)
p by

π(−m)
p : Cm(I) → P

(0)
p+m−1 , π(−m)

p x = Dm(πpx
(m)) ,

where P
(0)
p+m−1 is the subspace of polynomials satisfying the homogeneous

boundary conditions, i.e.,

P
(0)
p+m−1 = {x ∈ Pp+m−1 | βx = 0} .

More explicitly, the operator π(−m)
p looks like

(π(−m)
p x)(t) =

∫ b

a
G(t, s)(πpx)(s) ds .

Using this operator, we can reformulate the local collocation task for a given
local boundary value z ∈ Rmn as follows: look for a polynomial x ∈ Pp+m−1,
such that

β(Fx) = 0 and π(−m)
p (Fx) = 0 .

Note that
Dm(Fx) = x(m) − fx and β(Fx) = βx− z .

Regarding this characterization, it might be a good idea to approximate the
residual Fx by the lifted interpolant π

(−m)
k (Fx) at different nodes ti. In other

words, we introduce new collocation points and use these to approximate

the residual. We will see that this approximation results in a fairly good
residual estimate. In what follows, let π̂k denote the interpolation operator
corresponding to distinct nodes t̂1, . . . , t̂k. We first show that for certain
polynomial like right hand sides of the differential equation and k big enough,

the approximation of the residual Fx by π̂
(−m)
k (Fx) is even exact.



8.1 Residual Estimation 75

lemma 2. Let f(x, t) be of the form

f(x, t) = A(t)x+ g(t)

for some polynomials A ∈ Pl and g ∈ Pp+l+2(m−1), where l ≥ 0. If in addition
k ≥ p+ l +m, then

π̂
(−m)
k (Fx) = Fx

for all x ∈ Pp+m−1 satisfying βx = 0.

Proof. The particular form of f guarantees that the Nemytskii operator

(fx)(t) := f(x(t), t) mapsPp+m−1 in Pp+l+m−1. Hence, the integral expression
is in Pp+l+2m−1. The boundary condition βx = z yields β(Fx) = 0. Since

π̂
(−m)
k is the identity on P

(0)
k+m−1 and k ≥ p+ l +m, we have the result.

This result justifies the residual estimate

εk := [||Fx||L2] := ||π̂(−m)
k (Fx)||L2 . (8.3)

Note that we had to require f to be polynomially bounded in x anyway for
the integral operator to be well defined. Since π̂

(−m)
k (Fx) is a polynomial,

the L2 norm can be computed exactly, e.g., using an appropriate quadrature

formula.
For linear problems we may also exploit the fact that π (−m)

p (Fx) vanishes
and us a saturation property to derive the common inequalities for this kind
of estimates:

lemma 3. Let f be linear and let x ∈ Pp+m−1 be the local collocation
solution. Moreover, assume that the saturation property

||π̂(−m)
k (Fx)− Fx|| ≤ θ ||π(−m)

p (Fx)− Fx||
is satisfied for some 0 ≤ θ < 1. Then we have

(1− θ) ||Fx|| ≤ ||π̂(−m)
k (Fx)|| ≤ (1 + θ) ||Fx|| .

Proof. We use nothing but the triangle inequality to obtain

||π̂(−m)
k (Fx)|| ≤ ||Fx||+ ||π̂(−m)

k (Fx)− Fx||
≤ ||Fx||+ θ ||π(−m)

p (Fx)︸ ︷︷ ︸
=0

−Fx|| = (1 + θ) ||Fx|| .
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The left inequality follows in the same way.

Let us briefly depict the actual algorithmic realization of the residual esti-

mate. We restrict ourselves to the most important cases m = 1, 2. For linear
problems we use k = p+ 2 and the nodes

{t̂1, . . . , t̂k} := {a, t1, . . . , tp, b} ,
i.e., we simply add the local boundaries to the (Gaussian) nodes of the col-
location scheme. Thus, we only have to evaluate the linear right hand side

f of the ODE at the nodes of the global grid Δ. Moreover, the computation
of the L2 norm ||π̂(−m)

k (Fx)|| becomes rather cheap, since π(−m)
p (Fx) = 0.

For nonlinear problems we use the nodes of the collocation scheme of order
p+m, i.e., take π̂k = πp+m leading to a very reliable residual estimate. The

numerical tests actually showed that the residual estimate is very accurate
as soon as the grid contains any information about the solution.

8.1.2 Global residuals

We now consider the approximation of the global residual. To this end we

have to transfer the local notions of the last section to the global situation.
Thus, we define the global interpolation operator

πΔ : CΔ → PΔ−1 , (πΔy)i = πpiy ∈ Ppi for i = 1, . . . , N

and the lifted interpolation operator

π
(−m)
Δ : Cm

Δ → P
(0)
Δ+m−1 , π

(−m)
Δ x = D−m(πΔx

(m)) .

Here, Cm
Δ denotes the space of piecewise m times continuously differen-

tiable maps on the grid Δ and P
(0)
Δ+m−1 the space of piecewise polynomials

x ∈ PΔ+m−1 satisfying the global homogeneous boundary conditions βx = 0.
Using this operator, the global collocation task means to look for a polyno-
mial x ∈ PΔ+m−1 ∩ Cm−1(I) such that

β(Fx) = 0 and π
(−m)
Δ (Fx) = 0 .

As in the local case this formulation inspires the approximation of the residual
Fx by the lifted interpolant π̂

(−m)
Δ+k (Fx) for some k ≥ 1 and local nodes

t̂1, . . . , t̂pi+k. As above we obtain the following exactness result.
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lemma 4. Let f(x, t) be of the form

f(x, t) = A(t)x+ g(t)

for some polynomials A ∈ Pl and g ∈ Pp+l+2(m−1), where l ≥ 0 as in lemma
2. If in addition k ≥ l +m, then

π̂
(−m)
Δ+k (Fx) = Fx

for all x ∈ PΔ+m−1 ∩ Cm−1(I) satisfying βx = 0.

This justifies the global residual estimate

εk := [||Fx||L2] := ||π̂(−m)
Δ+k (Fx)||L2

being exact under the assumptions of lemma 4. For linear problems we

may again employ π
(−m)
Δ (Fx) = 0 and a saturation property to derive the

corresponding inequalities for the global residual estimate.
Let us sketch the algorithmic realization. For the additional local nodes

we choose the same as for the local residuals. Now, we have to evaluate

(F̂x)(t) := x(t)− (β−1z)(t)−
∫ b

a
G(t, s)(π̂Δ+kfx)(s) ds

at the local quadrature points needed for the computation of the L2 norm.

Obviously, it is much to costly to compute the global integral expression for
each evaluation. Hence, we first evaluate F̂x at the left boundary

(F̂x)(a) := x(a)− (β−1z)(a)−
∫ b

a
G(a, s)(π̂Δ+kfx)(s) ds

and then use the Volterra integral to evaluate F̂x at any t from left to right
by

(F̂x)(t) := x(a) +
∫ t

a
(s− t)m−1(π̂Δ+kfx)(s) ds .

Although this formula violates the symmetry of the Fredholm formulation it
seems to excusable since it is only employed for the global residual estimate
and neither for the actual solution nor the local residual estimate that rules

the h-p mechanism.
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8.2 H-p Strategy

So far we are able to compute the global collocation solutions of a linear

BVP on a fixed grid Δ = ({ti}, {pi}) and to estimate the local as well as the
global residuals. We now consider one of the crucial points of any adaptive
h-p method: How should the algorithm decide which grid is appropriate to

achieve the required accuracy? Of course, we would like to obtain the result
with as little effort as possible. Here, we adopt the standard strategy that
already led to very efficient codes for PDEs and CODEs (cf. Babuška and
Rheinboldt [5]). The main difference is that our objective is the minimization

of the residual (as required by the surrounding Newton iteration) rather than
the error. Looking at an adaptive mesh selection, the local residual has the
advantage that it is big where errors are created , in contrast to the local error
which may also become large due to transport effects. Thus, a large local

residual indicates the neccessity for a local improvement, e.g., by refinement
or higher order.
Starting with a coarse initial grid and low orders, we try to equidistribute

the local residual by locally choosing a higher order or subdividing a subin-

terval by bisection (see figure 3), leading to a sequence of nested grids, the

b r r r b

J , p = 3

�
�
�
��

Q
Q
Q
Qs

b r r b r r r b

J1 J2

Fig. 3. Bisection of a local interval with new orders p� = 2 and p� = 3

so-called levels . To obtain the optimal partition of the main interval [a, b] (h
strategy) and orders (p strategy), we use a priori residual estimates based on
an h-p error model and minimizework per accuracy measured by the product
of the residual estimates and the corresponding amounts of work . Roughly,

we proceed for each level as follows:

algorithm 1.



8.2 H-p Strategy 79

1. Compute the local collocation matrices.

2. Compute the global collocation solution.

3. Compute the local residual estimates.

4. Check for convergence (overall residual estimate less than the required
accuracy)

5. Compute the local coefficients of the error model. (For it may be nec-
cessary to compute a local solution of lower order.)

6. Choose for each subinterval the optimal refinement and order.

7. Compute a threshold value which is to be the biggest local residual of
the next level.

8. Apply the optimal refinement and order (chosen in step 6.) to all subin-
tervals whose current residual estimate is bigger than the threshold.

Steps 6 to 8 are responsible for the equidistribution of the local residual. We
only refine a subinterval or increase its order, if the residual is still too big.
Observe that the local collocation matrices are kept, if the corresponding

subinterval (inclusive its order) remains unaltered. Thus, we directly use
information computed on the previous levels. Proceeding further, we give
the notions mentioned above a more precise meaning.

Amount of work. To start, we have a look at the amount of work needed
for the local collocation on a subinterval (see Sections 6.2 and 7.2). We only

count multiplications in terms of O(pn2), where n is the dimension of the
state space X. Accordingly, we have to consider the following operations:

1. Evaluation of A(t1), . . . , A(tp) needing an effort of about Cpn2, where
the constant C depends on the given problem.

2. Computation and LR-decomposition of W : 1
3
(pn)3

3. Computation of W−1A and W−1c: mn+1
2

(pn)2
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Alltogether, we end up with an amount of work of

A(p) =
1

3
(pn)3 +

mn+ 1

2
(pn)2 + Cpn2

for the local collocation on a single interval of order p. For the elimination

of a local boundary condition (in case of the Fredholm formulation) we need
26(mn)3/3 multiplications which has to be taken into account for refinement.

Error model. Given a subinterval J of length h̄ and order p̄, we would
like to know the local residual obtained for different stepsizes h and orders
p. To this end, we construct a local h-p error model ε(h, p) that depends on
three parameters to be estimated in the algorithm. By standard collocation

theory we know that the error of the collocation solution with respect to the
norm || · ||∞ is O(hp) for sufficiently smooth solutions. By continuity, the
same estimate holds for the residual measured in the L2-norm, i.e.,

||Fx|| ≤ Chp ,

where F is the Fredholm operator as defined in Section 5.2. Of course, the

constant C contains bounds for the higher derivatives depending on p so that
the error model ε(h, p) = Chp with the single parameter C is not realistic.
The standard choice for fixed order methods (e.g. linear finite elements) is

ε(h) = Chγ

including a second parameter γ > 0. Combining this approach with a third
term describing the variable order, we are lead to the h-p error model

ε(h, p) = Chγαp (8.4)

depending on the three parameters C, α, γ ≥ 0. The stepsize coefficient
γ characterizes the influence of refinement while the order coefficient α is

responsible for order variations. Once we know the coefficients α and γ, we
obtain the desired estimate for the local residuals by

ε(h, p) = ε(h̄, p̄)

(
h

h̄

)γ

αp−p̄ .
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To compute the order coefficient α, we use the residual estimate for the order
p = p̄− 1 leading to

α = p�p̄

√√√√ε(h̄, p)

ε(h̄, p̄)
=

ε(h̄, p̄)

ε(h̄, p̄− 1)
.

Using this estimate for α, we may employ any other residual estimate to
compute γ by

γ = logh/h̄

(
ε(h, p)

ε(h̄, p̄)
αp̄−p

)
.

Optimal order and refinement. Now we have the main tools at hand to
choose an optimal order and refinement for the next level. Since the error
model is only feasible in a neighbourhood of the current stepsize and order

(h̄, p̄), we only consider pairs (h, p) from a so-called order-stepsize window
(cf. the order window in [25])

W (h̄, p̄) := {(h̄, p̄ + 1} ∪
{
(h̄, p) | p̄/2 + 1 ≤ p ≤ p̄

}
.

In other words, we either increase the order by one or refine the interval and
choose a new order p̄/2 + 1 ≤ p ≤ p̄. We call an h-p pair (h, p) ∈ W (h̄, p̄)

optimal , if it minimizes the work per accuracy measured by the amout of
work times the error model (as the expected residual), i.e.,

ε(h, p) · A(p) · h̄
h

= min! (8.5)

Here, we have to take into account that the local amount of work doubles if
we subdivide a subinterval. Moreover, we add the effort for the elimination of

the local boundary values in that case. Nonetheless, we neglect the increased
effort neccessary to solve the rest of the global system, if more subintervals
are present. This is part of our quite conservative strategy to use high orders
only if they really pay off. We have seen in Section 8.1 that high orders

may be very efficient but could also become dangerous if the problem is not
sufficiently smooth. Therefore, we prefer refinement to higher orders.
Note that (8.5) is by far not the only choice for a measure of the work per

accuracy. The expected residual ε(h, p) in (8.5) may be substituted by any

φ(ε(h, p)), where φ is a monotonously increasing function. As an example,
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we may consider the number of binary digits locally gained from one level to
the next, i.e.,

log2(εlast/ε(h, p))

and thus try to maximize

log2(εlast/ε(h, p)) ·
h

h̄
· 1

A(p)
= max! (8.6)

Here, we assume that the code may be viewed as a (linear) encoding machine
(cf. Deuflhard [25] for the ODE case). In fact, we tried several optimality
functions such as (8.6) and got almost identical final h-p grids. What is

changed, is the history of the adaptive mesh selection. The simplest strategy
(8.5) was the winner requiring less levels to arrive at the final grid that
represents the solution.

Refinement and order selection. Our refinement and order selection is

based on the principle to change only subintervals whose residual estimate is
greater than the maximal residual that we expect for the optimal refinement
and order pair. Moreover, we want the local residual of the next level to be
at least reduced by the quotient of the required accuracy tol and the current

global residual ε. The latter strategy is employed to avoid too many levels.
Accordingly, we define a threshold value εcut for the local residuals by

εcut := min

(
tol

ε
max

J
ε(J), max

J
εopt(J)

)

and apply the optimal refinement and order to all subintervals J satisfying

ε(J) > εcut .

8.3 Multilevel Newton Method

The last sections give us a black box solver for the solution of a linear BVP up
to a prescribed residual. The result is a collocation solution on an adaptively
chosen h-p grid. As the final task, we have to fit this linear solver into
the framework of the inexact Newton method (in the infinite dimensional

setting). In particular, we have to answer the following questions:
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a) Which grid should represent the solution of the nonlinear problem?

b) Which initial coarse grids should be given to the linear solver?

c) How can a solution be transferred to another grid?

d) What does it mean to add solutions of different grids?

e) How to implement the multilevel continuation method?

We will see that the answers to these questions are quite obvious if we con-
sequently follow the inexact Newton approach.

Initial Grid for the Linear Solver. To start with the second question, we
consider each linear subproblem of the surrounding Newton method as a
completely new linear BVP. Accordingly, we leave the selection of an appro-

priate grid to the adaptive collocation and start all linear subproblems with
the same coarse grid, the basic grid . In general, this basic grid will be a
uniform partition of the main interval into a small number of subintervals

and a common initial order, say p = 1 or p = 2.

Lifting Solutions on Finer Grids. We may define the following partial
ordering on the set of grids. Let Δ1 and Δ2 be to h-p grids on [a, b]. We say

that Δ1 is coarser than Δ2, in symbols Δ1 ⊂ Δ2, if

a) each subinterval of Δ2 is included in a subinterval of Δ1

b) the order of any subinterval J of Δ1 is less than or equal to the smallest

order of all subintervals of Δ2 that are subsets of J .

Equivalently, we say that Δ2 is finer than Δ1. Obviously, this ordering was
chosen in order to obtain the inclusion

PΔ1 ⊂ PΔ2

of the corresponding spaces of piecewise polynomials, if Δ1 ⊂ Δ2. Hence, a

solution on Δ1 may be lifted to a finer grid Δ2.
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Addition of Solutions of Different Grids. To add to piecewise polynomials
on the same grid (with the same orders), we only have to add the local

coefficients. Now consider two piecewise polynomials u1 ∈ PΔ1 and u2 ∈ PΔ2

living on grids Δ1 and Δ2 that result from a common coarse grid by bisection
and increasing of local orders. Then, there is a coarsest grid Δ that is finer

than Δ1 and Δ2, i.e.
Δ1 ⊂ Δ and Δ2 ⊂ Δ .

To construct Δ, we simply have to locally choose the smallest subintervals

and highest orders of Δ1 and Δ2. Thanks to the common coarse grid and the
bisection, there are no overlaps. Hence, the sum of u1 and u2 is a piecewise
polynomial u = u1+u2 ∈ PΔ living on Δ whose coefficients may be obtained
as the sum of the coefficients of the ui lifted to Δ.

H-p Grid for the Solution of the Nonlinear Problem. Now the first ques-
tion is already answered, since the Newton iterates uk are computed as the
sum of the initial solution u0 and the solutions sk of the linear subproblems.

Hence, the solution of the nonlinear problems is defined on the coarsest grid
which is finer than the grid of the initial solution u0 and all grids needed
to solve the linear subproblems. To be consistent with the linear solver, the
initial solution should be defined on a grid obtained from the basic grid by

bisection.

MultilevelContinuation Method. In the context of a continuation method,
the multilevel h-p collocation offers us at each continuation point a colloca-

tion solution x ∈ PΔx and an h-p tangent t ∈ PΔt being the normalized
solution of the homogeneous linearized BVP. The grids Δx and Δt are the
(in general different) grids obtained by the nonlinear process for x and the
linear h-p collocation for t. The tangential continuation

x̂ = x+ st ∈ PΔ

gives us an initial guess x̂ ∈ PΔ for the next Gauss Newton iteration defined
on the union Δ = Δx ∪ Δt of these two grids. However, taking x̂ directly
as the initial guess would lead to finer and finer grids in the coarse of the
continuation process. In order to avoid this, we adopt a technique developed

by Wulkow [67] for time dependent problems. We interpolate the prediction
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x̂ on the grid obtained by merging every two sons of the fine grid. On the
resulting intervals we choose the minimum of the orders of the subintervals.

Thereby, we avoid too many intervals without loosing much information from
one continuation step to the next.



III� Implementation and Numerical Exam�

ples

� Object Oriented Implementation

As is common in the scientific computing field, a large portion of time has
been consumed in the implementation of the numerical ideas and as usual
this is not reflected in this paper, since a full documentation of the program

would be too costly (the whole package presently consists of some 300 pages
of source code). As we presented not a single algorithm but a basic method
with lots of applications, several numerical tools were needed. The following
list does not claim completeness.

• basic matrix and vector operations including some numerical linear

algebra, in particular the computation of the Moore Penrose pseudoin-
verse for the solution of underdetermined linear equations

• integrators for ODEs (and the corresponding variational equations used

in multiple shooting), where we used adaptive extrapolation codes

• h-p collocation for linear problems using

– Runge Kutta and collocation schemes

– hierarchical h-p grids

– h-p control mechanism

• abstract inexact Newton method (including the accuracy matching
along the lines of Section 3)

• continuation methods for different types of solutions

– equilibria (finite dimensional nonlinear problem)

– Hopf points (additional computation of the subspace of the ema-

nating periodic branch)

– periodic solutions (computed by the multilevel Newton h-p collo-
cation)
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In our oppinion, it is almost impossible to combine all these modules in
an acceptable time span if not using an object oriented programming envi-

ronment. The well-known principles of ‘good’ programming like modularity,
data encapsulation, efficiency, simplicity and compactness are most easily
achieved using the abstract data and inheritance concepts of object oriented

programming. Thus, a large part of the traditional programming task is left
to the compiler.
Although these ideas are already widely used and accepted in computer

science, object oriented programming is still in its developing stages in sci-

entific computing. This fact is mainly due to the overwhelming variety of
very efficient (procedural) Fortran libraries, which so far present simply
the best numerical codes one can get. Another reason, in our opinion, is that
the standardization of object oriented languages like C++ is still in progress

and has come to a satisfactory state only recently (say, by the definition of
C++ 3.0), a fact which is reflected in the available compilers.
This situation is going to change soon as already well established object

oriented numerical class libraries like Rogue Wave’s Linpack.h++ (based on

the famous Linpack Fortran-based library) show. We have chosen C++
which seems to be the most widespread object oriented programming lan-
guage as the language of implementation. It also has the advantage that it

includes C (with lots of numerical codes available) and shares some very use-
ful features for numerical applications (like built-in complex numbers) with
Fortran. One of the most outstanding features of C++ for scientific com-
puting is the operator overloading mechanism, which enables us to implement

complex algorithms in an abstract way employing almost the mathematical
language used to describe it. As an example, we may define arithmetic op-
erators like ‘+’ on grids representing functions in an appropriate adaptively
defined function space. Last, but no least, I acted on a personal affinity which

I developed for giving ‘life’ to abstract mathematical objects (e.g., efficiently
working C++ classes) which is really good fun.
The whole package is based on a matrix vector library which was developed

during the last two years including linear algebra functions like LR and QR

decomposition. We did not use commercial libraries like Linpack.h++, since
theses libraries were not fully available at the beginning of the project and
because the resulting code should be public domain. Some classes use ideas

from the well-known ’Numerical Recipes in C’ [53] by Press et al., while the
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QR decomposition and the computation of the pseudoinverse is based on [34]
(see also [33]).

The integration classes are based on a new implementation of the adaptive
extrapolation codes Eulsim, Eulex, and Difex in C (cf. [45]) which are
now available as C++ classes (cf. [44]) incorporating the improved stepsize

control and some added functionality like continuous output according to
Hairer and Ostermann [41]. The latter is used in the multiple shooting code
for the solution of variational equations along a given trajectory.
The continuation module uses data structures developed for a two dimen-

sional continuation algorithm (cf. [43]) which are also used in the new ver-
sions of Percon ([66]) and Alcon ([47]). The collocation part of the pro-
gram was developed in the course of the mathematical derivation of the h-p
collocation method.

As an example we document here the class for the abstract inexact Newton
method from which all Newton methods in the package are derived. We hope
that this example illustrates the improved structural clarity and readability
(even for someone not used to the C++ syntax) of the object oriented imple-

mentation. Compared to the actual code we only excluded the print options.
The following header is used by the other modules:

class Newton {

public:

Newton();

void Accuracy(Real val) { tol = val; }

void Exactness(Real beta);

Real Accuracy() const { return tol; }

Int Iterations() const { return k; }

void InitialResidual(Real val) { fFirst = val; }

void InitialMonotonicity(Real val) { hFirst = val; }

Real ConvergenceFactor() const;

protected:

virtual Bool Function(Bool first, Real& norm) = 0;

virtual Bool Solver() = 0;

virtual void AddCorrection() = 0;

Bool Start();
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Bool Step();

Bool Solve();

Real RelativeAccuracy() const { return eps; }

Real AbsoluteAccuracy() const { return delta; }

private:

Real tol, beta, eps, delta;

Real hMin, hMax, hFirst, fFirst, rhoEnd;

Int k, kMax, red, redMax;

Bool converged;

RealVec f, h;

void PrepareNextStep();

};

The pure virtual functions Function, Solver and AddCorrection realize the
function evaluation, the (inexact) solution of the linear Newton equation and
addition of the Newton correction, respectively. These functions have to be

provided by the ‘user’, i.e., the derived Newton methods. So, the multilevel
Newton h-p collocation realizes the linear solver as an h-p collocation oper-
ating on grids, whereas the Newton method for finite dimensional problems

simply uses an LR or QR decomposition. On the other hand, the user sup-
plied function may employ the relative and absolution accuracy requirements
RelativeAccuracy and AbsoluteAccuracy provided by the abstract method.
The implementation of the inexact Newton method would look like the

following:

Newton::Newton() :

kMax(30), r(0, kMax-1), h(-1, kMax+1), redMax(10)

{

tol = 10 * sqrtEpsMach;

beta = 1;

hMax = (2-beta)/(1+beta);

hMin = 1e-3;

fFirst = 1;

hFirst = 0.1;

rhoEnd = 0.5;

}

void Newton::Exactness(Real val) {

beta = val;
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hMax = (2-beta)/(1+beta);

}

Real Newton::ConvergenceFactor() const {

return (converged || k==0) ? hMax/h(0) : hMax/h(k);

}

Bool Newton::Start() {

k=0;

h.Clear();

f.Clear();

h(0) = hFirst;

f(0) = fFirst;

eps = beta * h(0) / 2; // first required relative accuracy

delta = eps * f(0); // first required absolute accuracy

Bool done = Function(true, f(0));

if (done) {

PrepareNextStep();

if (converged) h(0) = hMin;

}

return done;

}

Bool Newton::Solve() {

Bool done = Start();

while (done && !converged) done = Step();

return done;

}

Bool Newton::Step() {

if (k>kMax) return false;

if (!Solver()) return false;

AddCorrection();

if (!Function(false, f(k+1)) return false;

h(k) = hMax * f(k+1) / f(k);

if (h(k) < hMax) return false;

h(k+1) = sqr(h(k)) / hMax : hFirst;

k++;

PrepareNextStep();

return true;

}

void Newton::PrepareNextStep() {

converged = r(k)<=tol; // check convergence
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f(k+1) = f(k) * h(k) / hMax; // a priori residual

eps = beta * h(k) / 2; // required relative accuracy

delta = eps * f(k+1); // required absolute accuracy

delta = Max(delta, rhoEnd*tol); // soften requirement for last step

}
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�� Illustrative Examples

In this section we give some examples for the new multilevel Newton h-
p collocation algorithm, illustrating the adaptive process of the linear and
nonlinear iterations. Due to the completely different approach to accuracy

control and error (here: residual) estimation, it is hard to compare the new
code to the well established collocation codes such as Colsys and Colnew.
As an example, the required accuracy is not comparable, since these codes

estimate the error in a maximum norm, whereas the new h-p collocation
method controls the residual of the nonlinear integral equation in the L2-
norm. Moreover, we meet the problem of comparing an h-p method versus
a regridding technique with fixed order. We can always find a situation in

which one code beats the other one. We only have to start the regridding
methods with a small order for a scalar equation and small tolerances in order
to make h-p collocation look superior. This seems unfair. On the other hand,
choosing a higher initial order, we lose the main advantage of the h-p method

which automatically takes the appropriate local orders. Another problem lies
in the different types of problems tackled by the codes. The new code directly
solves parameter dependent underdetermined problems (periodic solutions of
autonomous ODEs being the prototype), whereas the standard codes do not

consider the underdetermined case.
Another problem is posed by the new implementation of the numerical

algorithm in C++. In the preceeding section we discussed the impact of the

advanced features of modern programming languages on the development
of highly abstract adaptive algorithms. The main result was that it takes
much less time to implement a new adaptive method in an object oriented
environment. But on the other hand, this advantage has its price in that an

organizational overhead follows. Obviously, programming languages lacking
these features (such as dynamical data structures, operator overloading, etc.)
do not need this overhead. This fact particularly pays off for small examples.
Thus, a C++ code relies more on the underlying libraries and a posteriori

optimization which we have not employed as yet.
Nonetheless, the new code is already competitive for the problems tested

so far. This is most significantly demonstrated by the h-p grids obtained
in the adaptive process. In particular, the code performs equally well for

difficult space-like problems such as singular perturbed equations as well as
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for time-like problems such as periodic solutions of autonomous ODEs. Due
to the problems discussed above, we do not provide an explicit comparison

(e.g. Cocon versus Colsys or Colcon) in terms of CPU time, but give
the absolute times for the new code for the examples. In our experience, the
new package is at most three times slower than Colsys.

All calculation were run on a Sun Sparc 10 workstation using the Spar-
cworks 3.0 C++ compiler without optimization. For the graphical presen-
tation we used the invaluable Matlab system.
We start to examine the numerical results by looking at some model prob-

lems that illustrate the performance of the main elements of the new method,
the h-p collocation for linear problems and the multilevel Newton method
for nonlinear problems based on the Fredholm (Example 7) and the Volterra
formulation (Example 8).

example 6. Linear transition layer. We consider the second order bound-

ary value problem given by

εx′′ + tx′ = −ε cos(πt)− πt sin(πt) on [−1, 1] (10.1)

x(−1) = −2 and x(1) = 0 .

This is a well-known test problem (see e.g. [4] Example 9.2) whose solution
has a rapid transition layer at t = 0 for small 0 < ε� 1. Figure 4 shows the
solution for ε = 10−6 (as computed by the h-p collocation). In figure 5 we
illustrate the adaptive solution process by a series of h-p grids automatically

constructed by the algorithm for ε = 10−4 and a required residual of tol =
10−6. The left column shows the approximate collocation solution on the
indicated level while the right column displays the corresponding h-p grid.

Here, we plotted the local orders versus the midpoints of the intervals. As
expected, the algorithm chooses high orders for the scalar problem and the
mesh points collect near the boundary layer. The whole solution process
takes 2 seconds. Starting with a finer grid of ten intervals, it is less than a

second.

example 7. Nonlinear transition layer. Our second example is again a

a well-known test problem taken from [4] (Example 9.8). We consider the
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Fig. 4. Solution of (10.1) for ε = 10��

scalar nonlinear BVP given by

εx′′ + xx′ − x = 0 on [0, 1] (10.2)

x(0) = x(1) =
1

2
.

Here, the solution has for small 0 < ε � 1 a rapid transition layer at t = 0.
Figure 6 shows the solution for ε = 10−4 which we obtained without con-
tinuation and ten initial intervals. Figure 7 present the solution process for

ε = 10−3 and a required residual of tol = 10−6. We display the iterates of
the multilevel Newton method together with the corresponding h-p grids,
i.e., the successively finer grids obtained by adding the inexact Newton cor-

rections. Again, high orders are very efficient, since we consider a scalar
problem. Moreover, the transition layer at t = 0 is easily recognized by the
multilevel Newton method. Figure 8 displays the corresponding Newton cor-
rections obtained as the h-p collocation solutions of the linear subproblems.

Here we see that the grids for the linear subproblems may be much coarser
then the resulting grid of the nonlinear solution (obtained as the union of the
correction grids). Hence, the linear systems are much easier to solve than
the linear problems obtained by the standard approach ‘linearization after

discretization’.
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Fig. 5. Adaptively chosen grids for (10.1) with ε = 10�� and tol = 10��

example 8. Chemical Oscillator. Next, we return to the chemical oscil-

lator which we already introduced as a stiff system of five ordinary differential
equations (see Section 2, Equation (2.20)). We now want to compute a peri-
odic solution using the multilevel Newton collocation. Since the independent
variable models physical time, the Volterra approach is the appropriate for-

mulation. Figure 9 shows the four Newton iterates necessary for a required
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accuracy tol = 10−3. Here, we plotted x5 versus x4. As initial guess we took
the linear interpolant at 5 points which we obtained by an integration from

t = 0 to t = 3 using the extrapolation code Eulsim. The initial value was
x = (9, 7, 5, 0.05, 0.1) and as initial guess for the period we set T = 3. The
first picture clearly shows that this initial guess is far away from the peri-
odic solution. Using multiple shooting (without damping) we would stand

no chance in obtaining a solution. Figure 10 presents the development of
the grids in the solution process. The left column displays the component
x4 versus the normalized time and the right column shows the corresponding
grids.
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Fig. 7. Adaptively chosen grids for (10.2) with ε = 10�� and tol = 10��

�� Limit Cycles of a Railway Bogie

In this section we analyze the dynamical behaviour of a model describing the
motion of a bogie on rails. The model was originally proposed by Cooper-
rider [16]. Our calculations are based on the model used by True and Kaas-

Petersen ([63], [62]). For a discussion of different models see also Moelle [49].
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Fig. 8. Newton corrections for (10.2) with ε = 10�� and tol = 10��

Mathematically speaking, we meet the classical situation of a periodic solu-

tion emanating from a branch of (trivial) fixed points at a Hopf bifurcation.
Figures 11 sketches the bogie model schematically. The Cooperrider model

describes a bogie running with constant speed v on a perfect, stiff, level and
straight track. We use the coordinate systemmoving along the track with the

constant speed of the vehicle. The wheels, axles and the bogie are assumed
stiff and friction is only included in the wheel-rail forces. Table 3 explains the
parameters used in the model. The coupling of the frame and the wheelset is
described by linear string and damper forces. The nonlinearity is due to the

creep forces which are modelled as proposed by Vermeulen and Johnson [65].
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If x, y are the normalized creep terms x = ξx/ψ and y = ξy/φ, the radial
creep force is given by

G(ξR) =
FR

ξR
= μNkR

{
1/u for u ≥ 3

1− 1
3
u+ 1

27
u2 for u < 3

(11.1)

where

kR =
Gπab

μN
, u = kRξR

and ξR =
√
x2 + y2 is the radial creep term. This results in the axial creep
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Fig. 10. Adaptively chosen grids for the chemical oscillator

forces
Fx = xG(ξR) and Fy = yG(ξR) .

Due to the linear term in the Vermeulen-Johnson model, the creep force
term G is not differentiable with respect to (x, y) in (x, y) = (0, 0). This fact
necessitates some smoothing procedure near the origin. This might either be
done by using the creep force

G̃(ξ) = tanh u

instead of G as in [63] or by smoothing the norm in the radial creep term

by some polynomial approximation near the origin. We follow the latter
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Fig. 11. Model of the railway bogie

approach which seems to be more flexible since the approximation is easily
controlled by a small parameter ε. We substitute the squareroot f(x) =

√
x

by the continuously differentiable function f̃ ∈ C1[0,∞) defined by

f̃(x) :=

{
g(x) for x ≤ ε√
x for x ≥ ε

,
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a = 0.716m half of track gauge

b = 1.074m half of axle gauge
d1 = 0.620m distance spring to center of gravity
d2 = 0.680m
h1 = 0.0762m distance damper to center of gravity

h2 = 0.6584m
λ = 0.05 wheel conicity
μ = 0.15 friction coefficient
δ = 0.0091 clearance between flange and railhead

r0 = 0.4572m centered wheel rolling radius
k1 = 1.823MN/m spring constant, see figure 11
k2 = 3.646MN/m
k3 = 3.646MN/m

k4 = 0.1823MN/m
k5 = 0.3333MN/m
k6 = 2.710MN/m

D1 = 20.0 kN s/m damper constant
D2 = 29.2 kN s/m
mw = 1022 kg mass of wheel axle
mf = 2918 kg mass of frame

Iwy = 678 kg m2 moment of inertia for yaw motion of wheel axle
Ify = 6780 kg m2 moment of inertia for yaw motion of frame
Ifr = 6780 kg m2 moment of inertia for roll motion of frame
ψ = 0.54219 values obtained from Hertz contact theory

φ = 0.60252
Gπab = 6.563 · 106N
μN = 10000N

Table 3. Table of parameters used in the bogie model

where g ∈ P3 is a cubic polynomial g(x) =
∑3

i=0 aix
i satisfying the interpo-

lation conditions

g(0) = g′(0) = 0 , g(ε) = f(ε) =
√
ε and g′(ε) = f ′(ε) =

1

2
√
ε
.



103

The resulting coefficients ai are

a0 = a1 = 0 , a2 =
5

2
ε−

3
2 , a3 = −3

2
ε−

5
2 .

Figure 12 displays the squareroot and its approximation for ε = 0.5 and
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Fig. 12. Smoothing the squareroot near the origin (ε = 0.5 dotted, ε = 0.1 dashed)

ε = 0.1. For the numerical experiments we used ε = 10−3.
The flange forces are modelled by stiff linear springs with a dead band

leading to the (continuous but not differentiable) flange force

F (u) =

⎧⎪⎨
⎪⎩
k0(U − δ) for U > δ

0 for −δ ≤ U ≤ δ
k0(U + δ) for U < −δ

.

In contrast to [63] we do not need to smooth the flange force (e.g., by some

exponential expression), since it poses no problem for the algorithm. We end
up with seven second order ODEs for the seven degrees of freedom q1, . . . , q7.

0 = mwq
′′
1 + A1 + 2Fxf + F (q1)

0 = Iwyq
′′
2 + A3 + 2aFyf

0 = mwq
′′
3 + A2 + 2Fxr + F (q3)

0 = Iwyq
′′
4 + A4 + 2aFyr

0 = mfq
′′
5 − A1 − A2 + A5

0 = Ifyq
′′
6 − bA1 + bA2 − A3 − A4 + A6
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0 = Ifrq
′′
7 − h1A1 − h2A2 − h2A5 + A7

where

A1 = 2k1(q1 − q5 − bq6 − h1q7)

A2 = 2k1(q3 − q5 + bq6 − h1q7)

A3 = 2k2d
2
1(q2 − q6)

A4 = 2k2d
2
1(q4 − q6)

A5 = 2D2(q
′
5 − h2q

′
7) + 2k4(q5 − h2q7)

A6 = k6q6

A7 = 2D1d
2
2q

′
7 + 2k5d

2
2q7 + 4k3d

2
1q7

Here, Fxf and Fyf are the creep forces for the front axle corresponding to the
creep terms

ξx = q′
1/v − q2 and ξy = aq′

2/v + λq1/r0

whereas Fxr and Fyr are the creep forces for the rear axle obtained from the
creep terms

ξx = q′
3/v − q4 and ξy = aq′

4/v + λq3/r0 .

Considered as a first order system, we are lead to a dynamical system of 14

autonomous first order ODEs depending on the speed v as a scalar parame-
ter. This formulation is the starting point for the fully automatic numerical
simulation. Beginning with some fixed point (here: the trivial stationary
solution at low speed) the algorithm follows the branch of equilibria, looks

for Hopf bifurcations (via the standard eigenvalue criterium), computes the
approximate periodic solution near the Hopf point and uses this to follow the
branch of periodic solutions by the h-p collocation method.
For the results presented below we considered the velocity range v ∈

[50, 190]. We first require an accuracy of tol = 5 · 10−3 on the (relatively
scaled) residual. In figure 14 we display the corresponding bifurcation dia-
gram, where the amplitude of the first component q1 is plotted versus the
velocity v. The actually computed periodic solutions are marked by a circle.

The algorithm detects and computes a Hopf bifurcation at v = 68.6m/s.
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Fig. 14. Bifurcation diagram for the bogie model (tol = 5 · 10��)

Using the periodic solution of the linearization near the Hopf point as initial
guess, the code follows the branch of periodic solution to the right bound-

ary of the given parameter interval. Next, the second Hopf bifurcation at
v = 173m/s is detected and computed, followed by the calculation of the
new path of periodic solutions. The computation of the whole diagram takes
less than two minutes.

In figure 13 we show the first nine periodic solutions on the first branch.
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Since the trajectories become more and more complicated, we use in figure
15 a three dimensional presentation of the whole branch of periodic solutions.

Here, we display the components q1 and q3 versus the velocity v. It definetely
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Fig. 15. Periodic solutions of the bogie model, q� and q� versus v (tol = 5 · 10��)

documents the large continuation steps due to large convergence radius of
the multilevel Newton method. There was only one steplength reduction.

Next we required an accuracy of tol = 5 · 10−4. The associated bifurcation
diagram is shown in figure 16. Due to the smaller tolerance we obtain a
better resolution of the qualitative change of the solution at v ≈ 130m/s

which is also reflected in the three dimensional representation in figure 17.
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Fig. 16. Bifurcation diagram for the bogie model (tol = 5 · 10��)
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Fig. 17. Periodic solutions of the bogie model, q� and q� versus v (tol = 5 · 10��)



Conclusions

We presented a new and complete framework for inexact Gauss Newton
methods applied to underdetermined nonlinear problems. Starting with
Deuflhard’s fundamental insight that there is a close relationship between

invariance properties and the algorithmical realizability, we were led to affine
invariant and affine contravariant convergence theorems for the inexact New-
ton method that directly resulted in easily implementable accuracy matching

strategies for the linear subproblems. In addition, these characterizations of
the nonlinearity allow an embedding of inexact Gauss Newton methods into a
general continuation framework including estimates for the optimal preditor
stepsizes.

While the error oriented affine invariant approach is appropriate whenever
the error of the linear solver is cheaply available, conversely the new affine
contravariant approach appears to be the natural concept for underdeter-
mined problems. One of its features is its weak differentiability assumption,

so that it only requires a Gâteaux differentiable mapping satisfying a direc-
tional Lipschitz condition. Furthermore, the demands on the inner residuals
of the linear subproblems translate very easily to almost any linear solver.
This was demonstrated by the application within an existing multiple shoot-

ing code and the full derivation of a new adaptive h-p collocation code for
BVPs of ODEs.
The latter code was developed as a prototype for the most attractive ap-

plication of inexact Gauss Newton methods: The quasilinearization or multi-
level Newton methods. We have seen that the crucial point lies in the correct
formulation of the nonlinear problem. For space-like BVPs the nonlinear
Fredholm equation is the most suitable formulation which directly incorpo-

rates the (necessarily non degenerate) boundary conditions. For time-like
problems and more general boundary conditions the Volterra formulation
represents an alternative. Once the nonlinear problem is well defined, we
can concentrate on the linear subproblems. With this linearity we can save

up local information so that the standard adaptive mesh selection techniques
for PDEs transfer efficiently to collocation. Thus we were led to the new h-p
collocation using local refinement and variable local orders, the new local
boundary representation which respects the symmetry of the BVP, and the

local elimination process. The resulting multilevel Newton h-p collocation
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method, although only meant as an easy application of the multilevel Newton
idea, is already competitive with the well established collocation codes based

on regridding. More importantly, the algorithm has no difficulties in deter-
mining boundary layers anywhere on the given interval without any special
treatment and is equally efficient for space-like and time-like problems.

Last but not least, the resulting class library Cocon shows that mod-
ern software technology such as object oriented programming languages is
able to cut the costs for the developement of advanced numerical algorithms
drastically.

Of course this is not the end of the story but just the beginning. We
think that the results are reason enough to think of more applications and
enhencements. Thus, we would like to draw attention to some perspectives.

• So far, we have only used the multilevel Newton method for one-
dimensional BVPs. The next step would be to tackle 2D and 3D prob-

lems and to combine efficient linear solvers (like, e.g., the Cascade

code for elliptic problems) with the inexact Gauss Newton method.

• Moreover, we used different discretizations for the linear subproblems
but direct (sparse) solvers for the linear systems. If the number of

degrees of freedom becomes very large, they have to be substituted by
iterative methods. Fortunately, the embedding in the inexact Newton
context poses no problems since the residual is easily available for most
iterative solvers.

• Another extension of the method will be its combination with simplified
and updating methods. This may again increase the efficiency since
most effort is spent in the last Newton step. We have taken this problem
into account by imposing a lower bound on the absolute accuracy, but

a simplified approach for example might be even better.

• Unfortunately the symmetry issue was beyond the scope of this work.
Obviously, most reduction techniques known from finite dimensional
nonlinear systems (see e.g. Dellnitz and Werner [21], Healey [42], or

Gatermann and H. [39]) can be transferred to the new situation. This
applies to the symmetry of equilibria as well as to symmetric periodic
solutions.
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R real numbers

R
m×n real m× n matrices

L(X, Y ) space of continuous linear maps from a Banach space X in
another Banach space Y

(A, b, c) Runge Kutta scheme of collocation type, see page 55

γj(t),Γ(t) collocation scheme, see page 65

C(t) boundary scheme, see page 65

β linear non degenerate boundary condition, see page 47

M ∈ Rpn×pn local matrix of the implicit Runge Kutta discretization, see
pages 59, 68

Bρ(x) open ball {y | ||x− y|| < ρ} of radius ρ and center x

B̄ρ(x) closure of Bρ(x)

Cn(U) n-times continuously differentiable maps f : U → R

Cn[a, b] n-times continuously differentiable maps on [a, b]

GL(n) invertible n× n matrices {A ∈ Rn×n | det(A) �= 0}
A+ Moore Penrose pseudo inverse of a matrix A ∈ Rm×n

N(A), kerA kernel of a linear map, N(A) = {x | Ax = 0}
R(A), imA range of a linear map

Pn polynomials of degree less or equal to n (with coefficients in

some Banach space)

Li Lagrange polynomials

[ε] estimate for ε

Δ, Δ + k h-p grids Δ = ({ti}, {pi}) and Δ + k = ({ti}, {pi + k}), see
page 69

PΔ, PΔ+k corresponding spaces of piecewise polynomials Δ and Δ + k,

see pages 69

D−m lifting operator w.r.t. the homogeneous boundary conditions

β = 0, see page 65
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D−m,z lifting operator w.r.t. the boundary conditions β = z, see page
65

πk interpolation operator at k nodes

π
(−m)
k lifted interpolation operator at k nodes, see page 74
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