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Abstract

This paper presents an algorithm called surfseek for selecting surfa-
ces on the most visible features in direct volume rendering (DVR). The
algorithm is based on a previously published technique (WYSIWYP) for
picking 3D locations in DVR. The new algorithm projects a surface patch
on the DVR image, consisting of multiple rays. For each ray the algo-
rithm uses WYSIWYP or a variant of it to find the candidates for the
most visible locations along the ray. Using these candidates the algorithm
constructs a graph and computes a minimum cut on this graph. The mi-
nimum cut represents a very visible but relatively smooth surface. In the
last step the selected surface is displayed. We provide examples for the
results in real-world dataset as well as in artificially generated datasets.

1 Introduction

Direct volume rendering (DVR) [Sab88] is the state-of-the-art method for dis-
playing complex volumetric data in medicine, engineering, and natural sciences
[PB07]. DVR gives an excellent overview of the data, but sometimes the percep-
tion of distinct features can be hard. Features might cover themselves partly, and
the sometimes foggynature of DVR impedes the perception of depth. Motivated
by these problems, the goal of this paper is to provide an effective technique
that allows the user to select and highlight surfaces of features appearing most
visible to the user.

In the following we will introduce an effective algorithm that computes a
surface on the most visible features by casting multiple rays through the da-
ta. This mimics the original DVR creation process. For each ray the algorithm
detects feature boundary points using WYSIWYP [WVFH12] or a similar crite-
rion. Using the detected boundaries, the algorithm constructs a weighted graph
and computes its minimal cut, from which it reconstructs the desired surface.
We do not aim to replace surface determination techniques acting on the scalar
data itself like, e.g. [ONI05], but rather see (surfseek) presented here as a com-
plementary method that allows the user to intuitively select the surface that is
most visible with the chosen transfer function.
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2 Related Work

The visibility criterion of our approach are based on the single point picking
technique WYSIWYP by Wiebel et al. [WVFH12]. While WYSIWYP detects
the single location belonging to the most visible feature along one ray, surfseek
computes a surface using the information about visually prominent features
along multiple rays. A technique that can be considered to be a step in between
the two approaches is VisiTrace [WPVH13], which determines a 3D line from a
2D stroke on a DVR image. The line is constructed such that it runs either on
top of or inside the most visible features of the DVR. Other related techniques
also extracting features from strokes are those by Yu et al. [YEII12], Owada et
al. [ONI05][ONI∗08] and Liu et al. [LSS09]. These techniques aim at selecting
or segmenting objects in the scalar data itself whereas our technique works on
what will be used for rendering after applying the DVR transfer function.

Li et al. [LWCS06] present a surface segmentation using a non-trivial graph
construction. Similar to our approach, a min-cut encoding the desired surface
is computed on the graph. The skeleton of the graph exhibits a highly regular
structure (reflecting voxel columns of the dataset). The positions of surface
vertices along the columns can be constrained by a user-chosen smoothness
parameter. Thus the smoothness of the computed surface can be controlled very
easily, but the algorithm neglects all surfaces, that do not fulfill the prescribed
constraint. Moreover, the algorithm does not work with irregular graphs. The
latter, however, is needed for the approach we propose. Although also working
with graphs, Grady [Gra06] proposes a different approach. His algorithm takes
closed contours, computed in 2D slices, as input. Using linear programming
he then computes the minimal surface. The drawback of this approach is the
isolated treatment of individual 2D slices.

With surfseek we take an approach that is different to these methods. Instead
of constructing a graph from all sample points along a ray, we only use the
detected feature boundary points as nodes in the graph. This is advantageous
as the result is a significantly smaller graph. Furthermore, our approach does
not require a regular distribution of nodes.

3 Surfseek

The purpose of the surfseek algorithm is to find surfaces on top of the most
visible features in a DVR image. The algorithm searches for greatest influences
to the resulting DVR pixels in the opacity values of the samples on the rays
used for performing the DVR. It consists of the following steps:

1. The user selects an area on the screen. The selected pixels are transformed
into world coordinates and parallel viewing rays are cast for each of the
stored coordinates.

2. Along each ray the algorithm detects feature boundary points using the
WYSIWYP [WVFH12] algorithm (or a similar algorithm). All points and
the opacity contributions αacc of the corresponding features are stored.

3. Using the stored values, the algorithm constructs a network-graph with
the boundary points being the nodes and constructs the edges according
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to specific criteria. All edges receive certain weights that depend on the
stored opacity contribution αacc and position values. The details of this
step are explained in section 3.1.

4. The max-flow algorithm of Boykov and Kolmogorov [BK04] as implemen-
ted in the boost library [Die06] is applied to the graph to compute the
maximal flow. Using the max-flow-min-cut theorem [EFS56], the minimal
cut is computed afterwards.

5. A surface is reconstructed using the nodes of the minimal cut, by creating
triangles of adjacent nodes.

6. The computed surface is displayed.

The third step is the heart of surfseek, thus we will in the following concentrate
on this particular step.

3.1 Graph Construction

In the description below we use the following objects: A vertex set V , an edge set
E and an edge weight function w(e): E → R. The weight function consists of two
components: The first component wop reflects the opacity contribution and the
second component wdist ensures the smoothness of the surface. When selecting
a weight function we have to balance those components. If the influence of the
opacity weight is too strong the computed surface becomes jaggy, since always
features with the largest opacity contribution are selected and not the surface
of one single feature. On the other hand, if the opacity weight is insignificant
the algorithm neglects curved or irregular surfaces.

We assume the rays to be ordered by indices in x and y direction because
they start at pixels of the rendered DVR image. As vertex set V we define the
set of all positions lying on the front boundary of a detected feature along a
ray. A virtual vertex ṽx,y is added to V after the last detected feature on each
ray rx,y. We explain the definition and the purpose of ṽx,y when describing the
surface construction. Finally, one source vertex S and one sink vertex T vertex
are added to V . Edges in E can be subdivided into two categories: intra-ray-
edges and inter-ray-edges. Intra-ray-edges connect vertices that lie on the same
ray, inter-ray-edges connect vertices on adjacent rays. Rays are adjacent if they
differ in one index by one, i.e. ray rx,y is adjacent to rx±1,y and rx,y±1.

The construction of intra-ray-edges is simple: We connect each vertex vx,y,k
on a ray rx,y with the following one vx,y,k+1, up to ṽx,y. In order to obtain a
connected graph we connect every first vertex vx,y,0 of a ray with the source
S and all ṽx,y with the sink T . Each intra-ray-edge ex,y,k = (vx,y,k, vx,y,k+1)
receives the weight wop(ex,y,k) = wop(vx,y,k), where

wop(vx,y,k) = 1− αacc“ of k-th feature on rx,y” . (1)

Note that this is only a first reasonable approximation that will be refined later
(see Eq. (2)). The edges that connect S and T with any other vertices of the
graph receive an infinite weight. Up to this point the graph looks like shown in
Fig. 1(a). The black vertices denote the vertices computed from the boundary
position, the blue vertices are the virtual ṽx,y at the end of each ray. The bigger
vertices represent the source S and the sink T .
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Fig. 1: Examples of a possible graph built up to the intra-ray-edges (a) and
inter-ray-edges (b). The marked regions represent different features in the data,
seen from the side.

The construction of inter-ray-edges requires more effort. The inter-ray-edges
will receive a combined weight of opacity contribution and the Euclidean distan-
ce of the edge vertices. For an edge e = (vx,y,k, vx′,y′,k′) we denote the weight
of the opacity contribution as wop(e) and compute it as

wop(e) =
wop(vx,y,k) + wop(vx′,y′,k′)

2
,

with ray rx,y being adjacent to rx′,y′ . The distance weight is

wdist(e) = ||vx,y,z − vx′,y′,z′ ||.

We normalize all weights at the end. The final weight is then

w(e) =
(
wdist(e)

)m · wop(e)

where we have chosen m = 3 throughout this paper. Hereby we gave the distance
weight a greater leverage in order to increase the smoothness of the computed
surfaces. Using this definition we can now construct the inter-ray-edges: For
each vertex vx,y,k on a ray rx,y find for each adjacent ray a vertex vx′,y′,k′ that
minimizes the edge weight, that is

w(ek,k′) = w(vx,y,k, vx′,y′,k′) = min
j
{w(vx,y,k, vx′,y′,j)}.

This ensures the vertices on the adjacent rays to lie deeper in the volume (farther
from the observer), otherwise they will be ignored. Additionally, if the vertex
vx′,y′,k′ is already connected to a vertex with vx,y,k̄ and k̄ < k on ray rx,y,
compare the weights w(ek,k′) and delete the edge with the bigger weight. If the
vertex vx′,y′,k′ is not connected to ray rx,y, add the edge e = (vx,y,k, vx′,y′,k′+1)
to the graph and assign it the weight w(ek,k′). An example of a possible graph
is shown in Fig. 1(b). The green edges denote the inter-ray edges, the dotted
green edges represent the removed inter-ray edges.
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When a ray does not cross any features, the only vertex on this ray, i.e.
the virtual vertex, is removed. At this point the graph has the desired vertices
and edges. However there may be vertices with no adjacent inter-ray-edges, i.e.
only two intra-ray-edges. Clearly, the min-cut algorithm would favour to cut
the edges between those vertices, since it would stop the flow. To avoid this, we
have to adjust the weights of the intra-ray-edges defined in Eq. (1) to

w(ek) =
1− wop(vk)

con(vk) + 1
, (2)

where con(vk) = “# of edges from vk to adjacent rays”.

3.2 Surface Computation

After the graph is ready, the minimal edge-cut is computed using the Boykov-
Kolmogorov algorithm [BK04]. The desired surface is reconstructed by going
along each ray until an edge ek,k+1 is found that is cut. The vertex vk is then
added to the surface vertices. Here the virtual vertices ṽx,y come into play. They
result in edges behind the back-most features. Thus making also the vertices of
the back-most features available for the surface. A surface can be computed by
triangulation of surface vertices lying on adjacent rays.

4 Results

In the following we will show a few examples of surfaces computed by our algo-
rithm. We distinguish between experimental data (CT, computed tomography
scans) and synthetic datasets. Note that the views showing the surfaces are ro-
tated from the original view in which the 2D area was specified. This allows to
get an impression of the three-dimensional nature of the surfaces which would
be impossible in the original view. We use rectangular areas in all our examples
because it makes the figures easier to understand, although the method works
for any connected 2D region of pixels. To demonstrate the superiority of surfseek
we will compare its results to surfaces computed using the WYSIWYP criterion
only, i.e. without graph optimization.

The running time of the algorithm is bounded from above by the worst case
complexity of the Boykov-Kolmogorov max-flow algorithm with the pseudo-
polynomial bound O(n2mC) [BK04]. Where n is the number of nodes and m
the number of edges. For all examples presented in this paper the computation
time lay in the order seconds.

4.1 Synthetic Datasets

We consider two different synthetic datasets: A simple ball with and without
noise, and a “synthetic torso” dataset consisting of two balls in a volume with
slightly lower density than the balls. The synthetic torso dataset was perturbed
with Gaussian noise and subsequently smoothed to imitate perturbations that
occur CT acuqisition.

The dataset with the simple ball serves only as a validation that the algo-
rithm in fact can detect a surface. The ball was created with the a diameter
of 1 and constant density. The result of the algorithm on this ball is shown in
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(a) (b) (c)

Fig. 2: Examples of surfaces computed with surfseek on a simple ball without
noise (a) and with a random perturbation of 35 % of the ball density (b), and
a surface computed without the graph optimization (c).

Fig. 2(a). If we add noise to the dataset, the algorithm starts to detect some
non-existing features inside of the foggy area, thus the direct picking jumps bet-
ween those spurious features, see Fig. 2(c). The additive Gaussian noise has a
maximal amplitude of 35 percent of the ball density and a standard deviation
σ = 1 (5% of density). The surface obtained using surfseek can be observed
in Fig. 2(b). The ball is covered in a thick foggy area but it is still the only
recognizable feature in the dataset.

The “synthetics torso” can be observed in Fig. 3(a). In this dataset we used
similar density values as the human bone and kidney tissue to simulate the
backbone and the kidney. The torso was simulated using the average density
of the internal organs. The dimension of the torso is 50cm × 35cm × 25cm.
Furthermore we added Gaussian noise with a maximal amplitude of 1, ca. 20 %
of the bone density, and σ = 1 mm. Afterwards the dataset has been blurred
with σ = 2 mm. The surface computed by surfseek can be observed in Fig. 3(b).
A surface computed without graph optimization is depicted in Fig. 3(c). We
conclude that surfseek handles synthetic data very well.

(a) (b) (c)

Fig. 3: An example of an artificially created dataset inspired by the human
torso with noise and blurring (a) and a surface computed in this dataset: (b)
computed with surfseek and (c) computed without graph optimization.
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(a) (b) (c)

Fig. 4: Example of DVR image of a CT-scan of a human skull (a) with a com-
puted surface: (b) computed with surfseek and (c) computed without graph
optimization.

4.2 Experimental Datasets

We discuss results for two experimental datasets from volvis.org: A CT of a
human skull anda torso of a male human. The datasets are shown in Figs. 4(a)
and 5(a). We marked the thinner bone tissue of the lower jaw in the skull dataset
(see circle in Fig. 4(a)). Since this area is significantly thinner, compared to
the surrounding bone tissue, it is harder to detect. The resulting surface can
be observed in Fig. 4(b). Looking closely, one can see that the surface has
a miscalculated point on the lower right border of the surface patch. In this
particular ray the jaw was not detected as a feature. This can happen in a
foggy dataset when the features have low or changing density. We will come
back to this type of problem in the discussion. In the torso dataset we tried
to select the surface of the right kidney. Here, the challenge is that the rib
behind the kidney is visible through the kidney, and that the kidney has small
regions that are almost completely transparent. The computed surface is shown
in Fig. 5(b). The reader can observe that the surface lies on the kidney. It
reveals the shape of the kidney in a clearer way than it was possible with just
the DVR image. Without the graph optimization the selected surfaces will look

(a) (b) (c)

Fig. 5: Example of DVR image of a CT-scan of a human torso (a) with a
computed surface: (b) computed with surfseek and (c) computed without graph
optimization.
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like in Fig. 4(c) for the skull dataset. The two peaks in this surface are good
representations of the challenges the graph construction had to overcome. The
one peak, showing to the user, arises of a small feature with a high opacity
contribution and thus is immediately selected by WYSIWYP. The other peak
lies in an areas of the kidney that has relatively small opacity contribution,
thus the algorithm WYSIWYP selects correctly the better visible bone for this
particular ray.

5 Discussion: Limitations and Outlook

In this paper we presented an effective algorithm that allows the users to intui-
tively select surfaces on the features that appear most visible to them in a DVR.
We showed that the algorithm can handle both Gaussian noise and blurring very
well, and showed its application to experimental data.

While the algorithm introduces a completely new type of user interaction for
DVR, its applicability is limited as follows: First, when the opacity of a feature
becomes very low or the feature becomes very thin, the algorithm may fail to
detect its boundary. This can cause the surface to jump to features behind or
in front of the desired feature. This may be undesired by some users but it
reflects the fact that the feature in the back is more visible. There is always
a compromise between selecting the most visible and the smoothest surface.
Second, although the algorithm is robust against noise, very “foggy” dataset
can cause problems. When we try to compute a surface patch for a vaguely
visible feature with a very “foggy” area in front of it, the algorithm can detect
some false points. Sometimes the algorithm does not detect the beginning of a
feature because the foggy area reaches up to the wanted feature. Finally, if there
are strong density changes inside a feature, it is questionable if the feature can
be considered a connected “whole”. The differences influence the opacity values
of the feature. The result is that the algorithm divides the feature into several
sub-features and thus computes a surface that can lie on top of a sub-feature
instead of on the “whole” feature. A detailed demonstration of the method’s
tolerance to noise and a discussion of possible alternatives to the WYSIWYP
criterion (e.g. [KBKG09]) can be found in a Master’s thesis on the topic [Sto13].
The thesis also discusses possible post-filtering methods.

Acknowledgments All visualizations were produced with Amira [SWH05].
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