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Abstract

In the framework of time series analysis with recurrence networks, we introduce
SAIMeR, a heuristic self-adapted method that determines the elusive recurrence thresh-
old and identifies metastable states in complex time series. To identify metastable states
as well as the transitions between them, we use graph theory concepts and a fuzzy par-
titioning clustering algorithm. We illustrate SAIMeR by applying it to three real-world
time series and show that it is able to identify metastable states in real-world data with
noise and missing data points. Finally, we suggest a way to choose the embedding pa-
rameters used to construct the state space in which this method is performed, based
on the analysis of how the values of these parameters affect two recurrence quantitative
measurements: recurrence rate and entropy.

Keywords. Time series analysis, application in statistical physics, recurrence quan-
tification analysis, threshold, metastability, non-linear dynamics

AMS subject classifications. 37M10, 62H30, 46N55

1 Introduction

The need to understand the dynamics of complex data coming from the biological, the fi-
nancial, the environmental or the medical fields, has promoted the development of many
visualization and analysis methods.

Some of the main problems these methods face arise from the high-dimensionality, non-
linearity, noise or sparsity of measurements of the real-world data they analyze. As mentioned
by van der Maaten and van den Herik [1], some of the linear methods — such as PCA or
Classical Multi-dimensional Scaling — and non-linear methods — such as Stochastic Neighbor
Embedding or Isomaps — used for this purpose, can have some drawbacks, like not preserving
both local and global scale properties of complex data or depending on many undetermined
parameters. These problems can lead to leaving large part of the analysis open to subjective
interpretation.

One approach that gives information about the local, medium and global scales in high-
dimensional, non-linear time series, is recurrences analysis.

The study of recurrences in measure preserving dynamical systems dates back to Poincaré’s
studies at the end of the nineteenth century. Such phase space studies led to the develop-
ment of the concept of recurrence plot by Eckmann et al. in 1987 [2], which focused on
high-dimensional phase space trajectories. Over the years, the study of recurrences moved
from the qualitative to the quantitative analysis, which in turn led to the introduction of
recurrence quantitative analysis by Zbilut and Webber in 1992 [3]. This allowed the analysis
of non-linear, non-stationary time series data and broadened the concept of recurrence.
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One of the problems of recurrence plots analysis is the selection of the parameter necessary
to compute them: the recurrence threshold. The recurrence threshold controls how close two
phase space trajectories, or state space vectors, should be in order to consider them as
neighbors. Therefore, it determines the size of neighborhoods in phase space that can be
associated with the existence of stable dynamical states.

More recently, Krishnan et al. in 2008 [4, 5] made the analogy of recurrence plots with
graph theory and introduced the concept of recurrence network. In 2012, Donges et al. [6]
introduced some graph theory concepts to the study of recurrence networks in order to
address the problem of selecting a recurrence threshold appropriate to analyze time series
with uniform probability density distributions. For these cases, they set bounds in terms of
the critical edge density of a recurrence network.

However, selecting an appropriate recurrence threshold for real-world time series is still an
open problem [7,8], due to some properties of these time series, like: a non-necessarily uniform
probability distribution, frequently having noise or missing some measurement points, and
showing metastability — a property of physical phenomena with multiple time scales in which
some time scales are in equilibrium and produce the so called metastable states, while others
are not.

In this paper we introduce a heuristic method, based on recurrence network analysis,
which identifies different metastable states in real-world time series data. This method is
called the Self-adapted method for the identification of metastable states in real-world time
series (SAIMeR).

The main components of SAIMeR are: computing an appropriate recurrence threshold for
the analysis of real-world time series with recurrence networks theory, identifying metastable
states in real-world time series, and providing the possibility of identifying the transitions
between these states due to the use of the MSM clustering algorithm [9–12].

This paper contains the detailed explanation of the construction of this method and
illustrates its performance in the following way:

Section 2 presents the theoretical foundations of recurrence plots and recurrence networks:
it explains the construction of the state space and the problem of selecting a recurrence
threshold. Furthermore, it contains a brief review of network clustering theory.

Section 3 explains the two parts in which SAIMeR is divided (summarized in Algorithms
1, 2 and 3).

Sections 4 and 5 validate the ability of this method to identify metastable states in real-
world time series in a robust way.

Section 4 illustrates the performance of SAIMeR in application to three time series show-
ing metastability. The time series analyzed are: (1) the one-dimensional movement of a
particle under the gradient of a double well potential and a random force, (2) the two-
dimensional molecular dynamics of Trialanine, and (3) the one-dimensional real-world time
series containing the average daily temperatures in Berlin from 1937 to 2010.

Fig. 1 contains the results of applying SAIMeR to the time series containing the average
daily temperatures of Berlin, in the period from January 1st, 1942 to December 31st, 1943.
Temperature time series are likely to have trends, possibly associated to climate change,
and several missing measurement points during some periods of time (non-equally spaced
measurements), possibly related to historical events. In Fig. 1, the gray-scale color code
indicates three different groups of time points. Two of them, the metastable states, indicating
broadly a warm and a cold season. The third group indicates the transition regime between
warm and cold seasons.

The validation of the robustness of SAIMeR is contained in Section 5. For this purpose,
we measure the similarity between the results obtained from two different time series: a
control time series and a time series produced (a) by adding a percentage of noise or (b)
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Figure 1: This figure shows the time series containing the daily average temperatures in Berlin (Tempelhof)
from January 1, 1942 to December 31, 1943. The grayscale color code represents the different metastable
states identified using ε∗ ' 0.2933, τ = 2 and m = 2. For more details see Sections 4.3 and 2.

by removing a percentage of data measurements from the control time series. These two
features (noise and missing data points) are called artifacts.

Finally, in appendix A we suggest a way to determine the better suited embedding pa-
rameters for the construction of state space based on two RQA measurements: recurrence
rate and entropy.

2 Background

The method introduced in this paper, SAIMeR, is based on recurrence analysis and network
clustering analysis. Therefore, we will briefly introduce the main concepts of both theories.

2.1 Overview

Recurrence Plots were introduced by Eckmann et al. in 1987 [2] with the aim of understanding
the dynamics of complex data sets. These are inspired by Poincaré’s phase space studies [13].
A phase space, or state space, contains all the dynamical states of a system. Therefore,
recurrence plots are computed in state space.

A recurrence plot is a tool to obtain meaningful empirical information from high-dimen-
sional data sets which depends on few parameters. It is given by a square binary matrix,
Rij(ε), which contains information about the recurrences of phase space trajectories, or state
space vectors, to neighborhoods that can be associated with the existence of stable dynamical
states. The size of these neighborhoods is given by the Recurrence Threshold, ε. This way,
variations in the recurrence threshold will reveal different scales of structure in the state
space.

In order to obtain not only empirical but quantitative information from a recurrence plot,
Zbilut and Webber [3] introduced in the mid-nineties the so called Recurrence Quantitative
Analysis (RQA) measurements. These measurements are computed from the recurrence plot
of a given system and give information about its local, medium and global scales.
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About a decade ago, Marwan et al. [14, 15] started studying the similarities between the
geometry of the phase space and the RQA measurements. Their results identified recurrence
plots as a convenient tool to analyze non-linear data [16].

In 2008, Krishnan et al. in 2008 [4, 5] introduced Recurrence Networks (RN), the graph
representation of recurrence plots, which improved the intuitive and quantitative understand-
ing of the dynamics of complex systems [17].

It is worth to notice that, since the structure of a recurrence plot depends on the recurrence
threshold, the structure of a recurrence network will also do.

In a recurrence network, variations in the recurrence threshold will produce changes in its
connectivity, modifying this way the size and number of its dense groups of interacting nodes,
also known as clusters [11]. There are several algorithms that identify clusters in networks,
focusing in different network’s properties.

Recently, Donges et al. [6] introduced some graph theory concepts to the study of recur-
rence networks to address the problem of selecting an appropriate recurrence threshold. They
set boundaries for the recurrence threshold in terms of the critical edge density of a recurrence
network for the analysis of time series with uniform probability density distributions.

However, selecting an appropriate recurrence threshold for real-world time series is still
an open problem [7,8] and the search for boundaries for the recurrence threshold in this case,
led to the development of SAIMeR.

Keeping the previous considerations in mind, let us proceed to a more detailed explanation
of the concepts behind SAIMeR.

2.2 The State Space

It is know that, when the time series of a dynamical system is embedded or mapped into a
space of adequate dimension, this space contains all the dynamical information of the system,
preserves determinism and creates a diffeomorphism for the attractors [18]. Therefore, the
state space can be reconstructed with the appropriate embedding space for the time series.

The recurrence analysis of a time series is performed in state space. Therefore, construct-
ing the state space is fundamental for a good recurrence analysis. But, how to do it?

The embedding space can be constructed either with the m time derivatives of the time
series. However, when the computation of the time derivatives of the time series is not
possible, one of the most common ways to build the state space is using the time delay
embedding method or delay mapping.

The time delay embedding method is based on Taken’s theorem of embedding [19] and
requires the setting of two parameters: the embedding delay, τ , and the embedding dimension,
m [18,20,21]. For a time series ui of length N , the N∗ = N−τ(m−1) state space trajectories
−→xi resulting from the time series are given by:

−→xi = (ui, ui+τ , ..., ui+(m−1)τ ), for i = 0, ..., N∗ (1)

Time delay and embedding dimension can be determined through the geometrical, dy-
namical and topological analysis of a time series data [22].

In order to set the embedding delay, one must guarantee that the vector built with all
the i-th entries of the state space trajectories is linearly independent from the vector built
with all j-th entries of the state space trajectories, for all i 6= j. For periodic time series the
embedding delay can not be a multiple of the period, in order to guarantee that the state
space constructed does not contain more dimensions than necessary and therefore the state
space trajectories do not intersect between each other.

The embedding delay can also be chosen in terms of the linear autocorrelation function
or in terms of the average mutual information, which is a non-linear generalization of the
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first and tells us how much information about ui+τ we get when we observe ui. Since two
measurements are completely independent when the mutual information is zero, the time
delay τ can be chosen as the one for which we obtain the first minimum in average mutual
information. However, for some systems, the mutual information might not have a minimum.
In these cases, a deeper analysis is required. For an extended discussion on how to determine
the embedding time delay, see the article of Abarbanel in 1996 [21].

To set the embedding dimension, different geometrical, dynamical and topological tests
can be used. The geometrical tests indicate the variations in distance between two close
points when the embedding dimension increases, e.g. the computation of fractal dimensions
or false nearest neighbors. The dynamical tests are used to select the embedding that provides
a unique future for every data point, e.g. the implementation of predictability tests or the
estimation of Lyapunov exponents. The topological tests look for the embedding dimension
m that avoids intersections of stable periodic orbits. One-dimensional chaotic data, for
example, have embedding dimension m ≥ 3. Generally, for n-dimensional dynamical systems
with fractal dimension dA, the embedding dimension is m > 2dA. Another general estimation
given by Whitney et al. [20] states that m < 2n.

Different selections of embedding parameters will reconstruct state spaces with differ-
ent dynamical information quality. The recurrences in these spaces will also vary and the
structure of recurrence plots and networks will differ as well.

2.3 Recurrence Plots

The recurrence states of the state space reconstructed from complex, high-dimensional data
sets can be identified with recurrence plots. A recurrence plot is defined in terms of a square
binary matrix Rij(ε) containing information about the recurrences of state space trajectories
−→xi to a set of states:

Rij(ε) = Θ (ε− d(−→xi ,−→xj))− δij (2)

In this expression, Θ(·) is a Heaviside function, d(−→xi ,−→xj) = dij is a metric and ε is the re-
currence threshold – a cutoff distance that determines the size of a recurrence neighborhood – .
Throughout this article, we will use the adequately scaled Euclidean metric, so that every
variable of a time series is min-max normalized. The selection of norm implies that recur-
rence neighborhoods are hyperspherical. For a detailed explanation of the effects of choosing
a different metric, see article of Donner et. al from 2010 [23].

In a recurrence plot, rows represent each of the state space vectors associated to the time
series. This way, every entry (column) j of row i represents the closeness between state space
vectors i and j.

2.4 Recurrence Networks

Every recurrence plot, Rij(ε), has an associated recurrence network, Gij(ε). In a recurrence
network, every node represents one of the state space vectors associated to the time series
and every edge represents the belonging of a pair of state space vectors to a same recurrence
neighborhood. Due to the symmetry of recurrence plots, recurrence networks are unweighted,
undirected and have the same number of nodes as the number of state space vectors built
from the data set.

The information about the local, medium and global geometric properties of a system, can
be recovered from the recurrence network through measurements based on neighborhoods or
on paths. Donner et al. [24] have provided a summary of the definition and meaning of path-
and neighborhood-based measurements for recurrence networks.
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(a) Recurrence Plot (b) Recurrence Network

Figure 2: The left figure shows a recurrence plot, Rij(ε), in which every column corresponds to a different
state space vector. If the distance between state space vectors i and j is less than the recurrence threshold
ε, then Rij(ε) = 1. Otherwise, Rij(ε) = 0. Half of the plot is shown because Rij(ε) = Rji(ε). The right
figure shows a recurrence network, Gij(ε), in which every node represents a state space vector and an edge
between nodes i and j indicates that Rij(ε) = 1.

Since the structure of a recurrence network depends on the closeness between state space
vectors, we suggest that the regions that phase space trajectories visit the most, or recurrence
regions, should originate clusters in a recurrence network.

2.5 The Problem of Selecting an Appropriate Recurrence Threshold

The recurrence threshold, ε, determines whether two state space vectors are close or not and,
therefore, it also determines the structure – its size and number of clusters – of the recurrence
network associated to a time series. This way, an adequate recurrence threshold could reveal
structures in different scales within the state space, provide good estimations of the network’s
properties and assure a better understanding of a complex system.

The problem of selecting an appropriate recurrence threshold has been largely studied.
A summary of the problems associated to the selection of the recurrence threshold is given
in an article of Donner et al. from 2010 [7].

Initially, the recurrence threshold was set “using rules of thumb” [23,24] over some dynam-
ical measurements such as the correlation integrals [25], correlation dimensions [26], second
order Rènyi entropy [27,28] or attractor dimensions [7].

Generally, the recurrence threshold was kept as small as possible. Recurrence networks
with low edge densities were preferred because higher edge density values tend to hide im-
portant dynamical structures. Additionally, it was desired that a small variation in the
recurrence threshold did not produce noticeable differences in the dynamical analysis results.

Recently, Donges et al. [6] introduced an analytical framework, based on random geomet-
ric graphs (RGGs) theory, to analyze recurrence networks. For an extended discussion on
random graphs, see the article of Dall and Christensen form 2002 [29].

Considering RGG theory, the recurrence threshold for one-dimensional, non-noisy time
series with uniform probability density distribution, is determined in terms of the percolation
threshold εc, which points out the limit in which the network’s giant component breaks down
and makes impossible to recover information about mesoscopic and path-based measures [30].

For too large ε, the recurrence network becomes too dense, and for too small ε, the
recurrence network’s giant component breaks down into smaller disconnected components.
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In both cases the fine geometry of the time series is not well represented by the neighborhood-
and path-measurements. This way, Donges et al. focused on the study of the average path
length, which relates to the network’s giant component, to set a range of values for the
recurrence threshold.

Some approaches to the analysis of recurrence networks constructed from time series with
non-uniform distributions are the study of changes in connectivity by Hsing and Rootzé [31],
and more recently by Cooper and Frieze [32]. On the other hand, Kong and Yeh [33] have
investigated the problem of characterizing the critical density and critical mean degree of
random geometric graphs with non-uniform probability distributions and, based on prob-
abilistic methods and clustering analysis, they have provided lower bounds for the critical
density of a Poisson RGG in an m-dimensional Euclidean space.

2.6 Clustering Analysis

As we mention before, we are interested in identifying different metastable states in real-
world time series. Thus, we combine the idea that there is a recurrence threshold for which
a recurrence network’s giant component breaks down into smaller disconnected components,
with the idea that recurrence network’s clusters correspond to metastable states.

This way, we suggest to look at the results of performing clustering analysis on a recurrence
network in order to determine the recurrence threshold that allows the identification of all
relevant metastable states in a system.

As mentioned before, the problem of finding clusters, or modules, in complex networks has
been approached in several ways and many clustering algorithms exist for this purpose [11].
However, we use the Markov State Model (MSM) clustering algorithm introduced by Sarich,
Djurdjevac and collaborators [9, 12].

The MSM clustering algorithm is based on spectral analysis of random walks on modular
networks and identifies modules as the metastable states in the random walker and a transi-
tion region, composed with the nodes that do not belong to metastable states of the random
walker or outliers.

In computational terms, this algorithm scales linearly with the size of the network, making
it also useful for analyzing large networks.

Since the MSM clustering algorithm gives more refined information about a network, we
suggest that using it to analyze a recurrence network will allow us to perform a more refined
quantitative analysis of recurrences in state space. And this, in turn, will help us to set
boundaries for a recurrence threshold.

3 SAIMeR: Self-adapted method for the identification
of metastable states in real-world time series

Summarizing, SAIMeR is a method for the identification of metastable states in complex real
wold time series. It is based on the theories of recurrence analysis and network clustering
and is therefore divided in two parts, each one focused on one of these theories. This method
is described in Algorithms 1, 2 and 3, given below.

The recurrence analysis part of SAIMeR is divided in two steps: (a) the reconstruction
of state space from a time series and (b) the definition of a set of recurrence thresholds and
the construction of its associated recurrence networks.

The clustering part of SAIMeR is divided in three steps: (a) the clustering of the set of
recurrence networks previously obtained, (b) the selection of a subset of recurrence networks
with “similar characteristics” and the recurrence thresholds producing them, and (c) the
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Table 1: Recurrence Analysis Algorithm

• Construct the state space
Construct N∗ = N − (m− 1)τ state space vectors with specific embedding parameters τ and
m as in Eq. 1 from min-max normalized time series containing N data points.

• Define set of recurrence thresholds and its associated networks
Compute initial recurrence threshold ε0 as in Eq. 4.
for ν = 0 to ν = νf do

. Compute recurrence threshold εν as in Eq. 5.

. Compute its associated recurrence plot Rν .

. Compute its associated recurrence network Gν .
end for
return Sets of recurrence thresholds {εν} and recurrence networks {Gij(εν)}

computation of a final recurrence threshold from the subset of recurrence thresholds producing
such subset of networks and the identification of metastable states (and transition region) in
a time series.

3.1 Part I: recurrence analysis

As mentioned above, the first part of SAIMeR is divided in two steps. These are explained
in Algorithm 1.

The first step consists on the construction of state space from a time series. The second
step consists on the definition of a set of recurrence thresholds – based on basic statistical
analysis of the data set – and the construction of its associated recurrence networks. Let us
look at these steps more carefully.

3.1.1 Constructing the state space

The first step in the recurrence analysis part of SAIMeR is the construction of the state
space from a given time series normalized to the maximum in an interval going from zero to
one. We reconstruct the state space using the time delay embedding method, mentioned in
Section 2.2.

The time delay embedding method requires setting two parameters: the embedding de-
lay and the embedding dimension. Different selections of embedding parameters lead state
spaces containing different dynamical information. Thus, the recurrence regions identified in
state spaces constructed with different embedding parameters will vary. Consequently, its
recurrence quantitative information will vary as well.

This way, we suggest that the analysis of RQA measurements can be used to determine the
embedding parameters that better describe the dynamics of a time series. In Appendix A we
analyze the changes in entropy and recurrence rate of the recurrence plots associated to the
same time series but in state spaces constructed with different embedding parameters. There,
we suggest a way to choose the embedding parameters. This suggestion is used throughout
this paper to determine the embedding parameters in each of the examples used to illustrate
SIMeR.
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3.1.2 Defining a set of recurrence thresholds

The second step in the recurrence analysis part of SAIMeR is the definition of a set of
recurrence thresholds. For this purpose, we require some knowledge about the time series
analyzed.

One of the distinctive features of real-world time series is the presence of artifacts such as
noise, missing or wrong measurement points, or non-uniform probability distributions. Due
to these artifacts, the results of the recurrence analysis of real-world time series can be very
different from the results obtained when analyzing time series without artifacts.

We suggest to compute the recurrence threshold, ε, in terms of the second moment of the
time series distribution. However, we do not use the standard deviation of the time series, σ,
but assume that our data is a sample of a larger distribution and therefore use the standard
error of the mean SEx = σ√

N
. The standard error of the mean measures the probability

of a sample’s mean to be close to the data set’s mean. Even for non-uniform probability
distributions, the standard error of the mean defines boundaries for the uncertainty in the
value of a random variable with finite variance.

We determine the recurrence threshold to be equal to a fraction α of the smallest standard
error of the mean SEx of the data sample. This way, an initial guess for a recurrence threshold
ε0, considering the previous restrictions, is given by:

ε0 = α
σ√
N

(3)

Varying the fraction α implies varying the size of the minimum number of recurrences.
This can also be understood as varying the number of nodes required for a neighborhood to
be recurrent. We set α = 0.05N since this corresponds to the 5% error usually accepted as
error in accurate statistical analyses. This way the initial guess for the recurrence threshold
is:

ε0 = 0.05
√
Nσ (4)

For multi-dimensional data we compute the standard error of the mean for every variable,
or dimension, and take the largest value to compute the initial recurrence threshold, using
the same expression as for one-dimensional data. Selecting the largest standard error of
the mean from all variables, we lose smaller scale information. This could be overcome by
previously normalizing all variables to the value of the smallest standard deviation.

Another possible treatment could involve computing a different recurrence threshold for
every variable of the time series. This way we would compute a matrix of standard errors of
the mean. However, we decide to focus in the dynamics of the variable that varies the most.

Once we have computed the initial recurrence threshold, we compute a set of thresholds
{εν}. Every element of {εν} is given by:

εν = (1.5− 0.1ν) ε0, for ν = [0, νf ] (5)

The size of set {εν} is determined by νf . We set νf = 14 in order to vary the recurrence
threshold from 0.005N to 0.075N times the standard error of the mean. We suggest that,
this way, small variations in fraction α in Eq. 3 will not affect dramatically our results.

Finally, with every recurrence threshold εµ ∈ {εν} we will compute a recurrence plot,
Rµ = Rij(εµ), and an associated recurrence network, Gµ = Gij(εµ), as described in Sections
2.3 and 2.4. This way, we obtain the set of recurrence networks, {Gν}, computed with each
of the recurrence thresholds in set {εν}.
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Table 2: Clustering analysis algorithm (Part 1)

• Cluster set of recurrence networks
for ν = 0 to ν = νf do

. Perform clustering analysis of the associated recurrence network Gij(εν).

. Compute number of clusters C(εν) and number of nodes in each cluster |Ck(εν)| of
Gν .

end for

• Select subset of similar networks
Select subset of thresholds {εν}− such that conditions in Eq. 6 hold.
for χj = [χ0, χj∗ ] and χj as in Eq. 8 do

for all ελ ∈ {εν}− do
if |Ck(ελ+1)| − |Ck(ελ)| < χj , as in Eq. 8 then

Add recurrence threshold ελ to subset {εν}χj

end if
end for
if {εν}χj 6= ∅ then

if j 6= j∗ then
Continue

else
return {εν}∗ = {εν}χj

end if
else

χj! = χ(j−1)

return {εν}∗ = {εν}χj!

end if
end for

3.2 Part II: clustering analysis

The second part of SAIMeR has three steps. These are explained in Algorithms 2 and 3.
The first step is the clustering analysis (number and size of clusters) of the recurrence

networks, obtained in the previous part.
The second step consists on the selection of the subset of networks with similar number

and size of clusters. The set of recurrence thresholds producing such set is denoted by {εν}∗.
Finally, the third step consists on computing the final recurrence threshold ε∗, as the

average value of recurrence thresholds in {εν}∗.
The clustering analysis of the recurrence network produced with the final recurrence

threshold, G∗ = Gij(ε∗), leads to the identification of metastable states (and transition
region) in the time series.

3.2.1 Clustering analysis of the set of associated recurrence networks

Every recurrence network in the set {Gν} of all recurrence networks associated to recurrence
thresholds in set {εν}, will have a different structure.

The clustering analysis of a recurrence network Gµ ∈ {Gν} will indicate the number of
clusters in the network and the number of nodes in each cluster.
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Table 3: Clustering analysis algorithm (Part 2)

• Identify Metastable States
. Compute ‘final recurrence threshold’, ε∗, as the average value from subset {εν}∗.
. Perform clustering analysis of the associated recurrence network G∗ = Gij(ε∗).
. Classify time points into different dynamical states as in Section 3.2.3, according to

their belonging to a particular cluster in the recurrence network G∗.

Every cluster identified in a recurrence network will represent a different metastable state
in the time series producing such network. When we also want to know the number of
nodes identified as part of the transition region (using the MSM clustering algorithm), we
assign them to an extra cluster. What we obtain with this extra cluster is that the sum
of all nodes in a cluster for every recurrence network Gµ ∈ {Gν} is the same and equal to
N∗ = N − τ(m− 1).

A comparison of the clustering results for every recurrence network in {Gν} can be rep-
resented with Sankey diagrams. A Sankey diagram is a flow diagram showing the change in
clustering results between networks. For an example of a Sankey diagram, see Fig. 17 in
Appendix C.

In a Sankey diagram, every network is represented as a column and every column is
divided into blocks. The number of blocks in a column represents the number of clusters
identified in a network. The size of a block in a column is determined by the number of nodes
such cluster contains. This way, if a group of nodes in network A are assigned to a different
cluster in network B, the Sankey diagram of these networks will show, as an arrow, the flow
of such nodes from one block in column A to a different block in column B. The thickness of
such arrow will be determined by the amount of nodes flowing.

3.2.2 Tuning the Final Recurrence Threshold

Analyzing the different clustering results of recurrence networks in {Gν}, we will obtain a
final recurrence threshold, ε∗. The way to compute this final recurrence threshold constitutes
the self-adaptive part of SAIMeR.

The first step to obtain the final recurrence threshold is to identify in {Gν} a subset of
recurrence networks with the same number of clusters, {Gν}−. From such set of recurrence
networks one can define the subset of recurrence thresholds {εν}−.

Given two recurrence networks Gµ and Gµ+1 ∈ {Gν}, the number of clusters in them is
the same if the following conditions hold:

C(εµ+1)− C(εµ) = 0
C(εµ)− C(εµ−1) = 0

C(εµ) > 1 (6)

Where C(εµ) is the number of clusters in recurrence network Gµ ∈ {Gν}
The next step consists of selecting from {Gν}− a subset of recurrence networks with

clusters of similar sizes, {Gν}χj . Here, χj is a value, or tolerance, measuring the similarity
between the size of clusters. The set of recurrence thresholds producing the networks with
clusters of similar sizes, is denoted by {εν}χj .

For Ck(ελ) denoting the k-th cluster of recurrence network Gλ ∈ {Gν}−, and |Ck(ελ)|
denoting the number of nodes in such cluster. Then, the size of every cluster in a pair of
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consecutive recurrence networks Gλ, Gλ+1 ∈ {Gν}− varies less than a specified tolerance χ0,
if:

|Ck(ελ+1)| − |Ck(ελ)| < χ0, for ελ ∈ {εν}− (7)

In Eq. 7, the tolerance depends on the number of nodes in a recurrence network, N∗, so
that χ0 = χ0(N∗). Initially, two k-th clusters in Gλ, Gλ+1 ∈ {Gν}− will have similar size if
the number of nodes they contain is different in no more than ten percent the total number
of nodes in the recurrence network, or χ0(N∗) = 0.1N∗.

Initial tolerance χ0 is later decreased in order to restrict the condition of similarity between
clusters. The extreme of similarity will be reached with tolerance χj∗ , when the number of
nodes in the k-th clusters of Gλ, Gλ+1 ∈ {Gν}− is different in no more than one percent the
total number of nodes in the recurrence network, or χj∗(N∗) = 0.1N∗.

The reduction of tolerance we propose consists of only ten steps, which implies that
j∗ = 9. This way, every reduced tolerance χj ∈ [χ0, χj∗ ], is given by:

χj = χ0(1− j), for j = [0, j∗] (8)

If the subset of recurrence thresholds sufficing the maximum decrease of tolerance χj∗ is
not empty, then {εν}∗ = {εν}χj∗ .

However, this will not always occur, since not all the sets of recurrence networks associated
to {εν}− will suffice the maximum tolerance decrease. If the subset of recurrence thresholds
sufficing the decrease of tolerance is empty for a j > j!, then {εν}∗ will be the last subset of
recurrence thresholds that suffices Eq. 7, it means the average of {εν}χj! .

The final recurrence threshold, ε∗, will be the average of thresholds in {εν}∗.

3.2.3 Identification of Metastable States in the Time Series

Once that the final recurrence threshold ε∗ has been computed, we generate the recurrence
network associated to it, G∗ = Gij(ε∗). We identify the different metastable states in the
time series by clustering this recurrence network.

As we mentioned in Section 2.4, each node in a recurrence network represents a state
space vector in the state space reconstructed from the time series. Since we use the delay
mapping to obtain the state space from the time series, each component of a state space
vector corresponds to a data point in a time series. Therefore, each node in a recurrence
network represents a collection of time point measurements, and the size of this collection
depends on the embedding dimension.

In this paper, for simplicity, if node i of G∗ has been assigned to a specific cluster Ck,
the data point ui in the first component of state space vector −→x i is assigned to the k-th
metastable state.

This metastable state assignment approach is näıve since, for an embedding dimension
m, every data point ui appears in up to m+ 1 state space vectors. The total number M(ui)
of state space vectors in which a data point appears ui, is variable.

Therefore, the metastable state to which data point ui is assigned, should be determined
from the cluster assignment of M(ui) nodes in the final recurrence network. This means that
the metastable state of data point ui is given in terms of an average cluster number Ci and
a threshold θ∗ by:

Ci =
1

M(ui)

∑
{−→x j}

Cj

c(ui) = δ(Ci − θ) (9)
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Given that the state space vectors are computed using time delay embedding, M(ui) for
data points ui such that βτ ≤ i ≤ (β + 1)τ , for β ∈ N, 0 ≤ β < m, is equal to β + 1. For
data points ui with N − (m− α)τ ≤ i ≤ N − (m− α− 1)τ , for α ∈ N, 0 ≤ α < m− 1, then
M(ui) = m− α+ 1. Any other data point has M(ui) = m+ 1.

4 Examples

To illustrate the ability of SAIMeR to identify metastable states in complex time series, we
present and analyze three cases. We identify the different metastable states in each of these
time series.

The first example corresponds to the one-dimensional time series describing the motion
of a particle under the gradient of a double well potential and a random force. This is one
of the simplest systems showing metastability.

The second example corresponds to a two-dimensional time series describing the molecular
dynamics of trialanine, i.e. the variation of two of the three torsion angles describing its
conformation (see Fig. 6), in order to identify its main molecular conformations.

In the third example we analyze a one-dimensional real-world time series containing the
average daily temperatures of Berlin from June 12th, 1936 to January 9th, 2008. This time
series is likely to have trends, possibly associated to climate change, and several missing mea-
surement points during some periods of time (non-equally spaced measurements), possibly
related to historical events.

As the results of these three examples suggest, having more accurate data improve the
identification of metastable states in the time series with SAIMeR.

4.1 Double Well Potential

The double well potential is a simple one-dimensional system showing metastability. For this
reason, this is the initial example to illustrate SAIMeR.

The time series analyzed in this section corresponds to the simulated motion of a particle,
in a heat bath with temperature T , under the gradient of a double well potential and a random
force. Such motion can be modeled with the following equation:

dXt = −∇V (x)dt+
√

2εdBt (10)

In this equation, Bt is a Brownian motion, ε = νT , ν > 0 is a friction parameter and T
is the temperature of the heat bath. V (x) = (x2 − a2)2, is a double well potential with two
local minima at x1 = a and x2 = −a. In this case we set a = 1.

The double well potential model in Eq. 10 is one of the first models for metastability. It
was proposed by Kramer in 1949 [34], during his studies on chemical reactions. Fig. 3 shows
a representation of the double well potential V (x) = (x2− 1)2. In this figure, ∆V is the trap
depth difference between the potential wells which controls how metastable the system is.

The double well potential time series is shown in Fig. 4 and results from integrating the
double well potential’s Langevin dynamical equations. For this, we use the Euler Maruyama
integrator with lag time λ = 0.001, 7500 iterations, initial positions qinit = (0, 1) and tem-
perature T = 100. Additionally, we sample this time series every 10 time points.

In this time series, we expect to find two main dynamical states and a transition region.
Every metastable state should correspond to each of the wells in the potential and the
transition region should indicate the moments of transition between potential wells. We
want to stress that, for the purposes of this article, the transition region is represented as
another cluster, named ‘cluster 2’.
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Figure 3: Scheme representing a double well potential V (x) = (x2 − 1)2, with two wells centered in x = −1
and x = 1, and with ∆V = 1 the trap depth difference between them. This is a simple system showing
metastable behavior.

As mentioned in Sec. 3.1, SAIMeR starts by constructing the state space from the time
series. In this case, the state space is built with embedding parameters τ = 7 and m = 2.
Embedding parameters are determined as explained in Appendix A.

The next step consists on defining a set of recurrence thresholds, using Eq. 4 and Eq.
5, and performing the clustering analysis of the recurrence networks associated to each of
the recurrence thresholds in this set. The clustering results for this example are shown in
the Sankey diagram of Fig. 17 in Appendix C. In this figure, the size of the clusters (and
transition region) do not vary too much for recurrence thresholds ε < ε10. For details about
the tolerance in variation see Section 3.2.2.

Then, as mentioned in Sec. 3.2, the clustering results of every recurrence network are
used to compute the final recurrence threshold, ε∗. The final recurrence threshold computed
for this time series is ε∗ ' 0.29035.

Finally, clustering the recurrence network computed with the final recurrence threshold
leads to the identification of metastable states in the time series. Clustering results are shown
in Fig. 5, where clusters 0 and 1 can be associated to the two expected metastable states, one
for every potential well. Cluster 2 is where the transition paths between metastable states
are allocated.

4.2 Molecular Conformations of Trialanine

In this section we analyze with SAIMeR the second time series example, which corresponds
to the simulation of molecular configurations of trialanine. Trialanine is one of the simplest
systems that exhibits the typical features of biomolecules, such as having a backbone with
various stable conformations. A ball-and-stick diagram of this molecule and its torsion angles
are shown in Fig. 6.

The conformation of a molecule is a mean geometric structure which is conserved on a
large time scale compared to the fastest molecular motions, such that the associated subset
of configurations is metastable. Characterizing a molecule with its central peptide dihe-
dral angles, or torsion angles, has the advantage of producing a reference system invariant
to translations and rotations of the molecule, reducing this way the dimensionality of the
description.

At low temperatures, for example T = 300K, the different molecular conformations of
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Figure 4: Time series for a particle in a double well potential. This time series result from normalizing
and sampling every 10 time points the time series computed by integration of its Langevin equations using
an Euler Maruyama integrator with lag time λ = 0.001, 7500 iterations, initial positions qinit = (0, 1) and
temperature T = 100.

trialanine can be sufficiently characterized by the two central peptide dihedral angles: φ and
ψ. At higher temperatures, for example T = 700K, one should also take into consideration
changes of the peptide bond angle Ω. According to Prei et al. [35] and Metzner, Putzig and
Horenko [36], clustering the state space of trialanine at higher temperatures results in the
identification of five metastable states.

The time series analyzed in this section is simulated with JGromacs [37], in which triala-
nine is represented by 21 united atoms. It is simulated with 5000 steps, in vacuum and at
constant temperature T = 300K, to produce time series that can be considered stationary.
Additionally, we sample such time series with rate ∆t = 10, which does not hide transitions
between states for any torsion angle. For more details about the simulation, see the article
of Prei et al. from 2004 [35].

Since the time series is simulated at T = 300K, the following analysis considers only the
two central peptide dihedral angles, φ and ψ.

The molecular conformations of trialanine can be shown in a two-dimensional plot, called
the Ramachandran plot, which contains the dependency between φ and ψ only.

The state space associated to trialanine’s molecular conformations is constructed using
the time delay embedding, with embedding dimension m = 2 and embedding delay τ = 7
(see Appendix A).

As mentioned above, the state space of trialanine at higher temperatures has resulted in
the identification of five metastable states [35, 36]. For this reason, we guess the number of
clusters MSM should identify (see Section 2.6).

This way, the final recurrence threshold computed for this time series is ε∗ ' 0.2796
and the clustering analysis of the recurrence network associated to this ε∗, results in the
identification of the five clusters shown in Fig. 8.

In Fig. 8, we see three larger sets of points and two smaller sets. Due to their location in
the Ramachandran plot, one can identify the three main sets with the three main molecular
conformations for trialanine mentioned by Fischer et al. in 2006 [38]. The two smaller sets
could be a consequence to the way we assign every time point data to a metastable state, as
mentioned in Section 2.6.
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Figure 5: Metastable states identified with SAIMeR on the time series from Fig. 4. The grayscale color code
shows the different metastable states identified. The state space associated to such time series is built with
the delay mapping using embedding delay τ = 7 and embedding dimension m = 2. The metastable states
are identified as the clusters found in the recurrence network computed from the state space using recurrence
threshold ε∗ ' 0.29035.

Figure 6: Ball-and-stick representation of a trialanine dipeptide molecule and its torsion angles φ, ψ and
Ω. At low temperatures, its stable molecular conformations can be sufficiently characterized by the central
peptide dihedral angles φ and ψ, but at higher temperatures one should also consider the peptide bond angle
Ω.

4.3 Weather data

The last example corresponds to the observations of the average daily temperatures in Berlin-
Tempelhof weather station (located near Tempelhof Airport) from June 12, 1936 to January
9, 2008.

The Berlin-Tempelhof measuring station is located in N 52◦47’, E 13◦40’, at 49m a.m.s.l.
The time series is taken from the Rimfrost database [39], which collects information from the
German Weather Service [40] (Deutscher Wetterdienst) and the NASA Goddard Institute
for Space Studies [41] (NASA-GISS).

This time series has several periods without measurements, as is shown in Fig. 9. We
will refer to it as the complete time series. The relationship between some of these periods
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Figure 7: Ramachandran plot containing a sample of the molecular conformations of trialanine, simulated
in vacuum at T = 300K (for details go to the text). Conformations are given by the dependency between
torsions angles φ and ψ.

without measurements and historical events, will be addressed in Appendix D.
Due to the large amount of missing data points in this time series data, its analysis

illustrates how SAIMeR can identify metastable states in complex time series.
To start our analysis, we ignore the data points in which no measurements were taken

and produce this way a merged time series. This merged time series, shown in Fig. 10, has
a measurement for every time point.

To simplify the computations, we sample the merged time series every 14 time points to
produce a coarse time series. In the periods in which measurements are regularly taken, this
sampling rate corresponds to taking the daily temperature every second week and therefore
we suggest that season transitions could be sufficiently represented. Evidently, this is not
the case in the periods in which measurements are irregular and we can not guarantee the
appropriate representation of seasons. For this reason, we use the coarse time series to
compute a final recurrence threshold but later identify metastable states in different sections
of the merged time series.

Using the coarse time series, we reconstruct the state space, using embedding parameters
τ = 2 and m = 2 (see Appendix A). This way, the final recurrence threshold we compute is
ε∗ ' 0.2933.

Now, we use the same final recurrence threshold (ε∗ ' 0.2933) and embedding parameters
(τ = 2 and m = 2) to analyze three segments of the merged time series, which were produced
by ignoring time points in which no measurements were taken. The results from such analysis
is then used to reconstruct the analysis of the complete time series in the same periods of
time, by adding the missing time points to the time series.

The three segments of the merged time series we mention, correspond to three periods of
time: 1937 and 1938, 1942 and 1943, and 1991 and 1992. In these time series we expect to
identify yearly seasons and the transit between them.

The first period of time we analyze goes from January 1, 1937 to December 31, 1938. The
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Figure 8: Ramachandran plot containing a sample of the molecular conformations of trialanine simulated
at T = 300K (for details go to the text). Time series for φ and ψ are normalized. The grayscale color
code identifies the five different metastable states (or main molecular conformations) identified with SAIMeR
(using ε∗ ' 0.2796, τ = 7 and m = 2). In the plot, every metastable state is called a cluster. For each cluster
we show an example of molecular conformation of trialanine belonging to it.

Figure 9: Daily average temperatures in Berlin - Tempelhof measuring station from June 12, 1936 to January
9, 2008. Measurements are irregularly taken before August 31, 1939 and measuring techniques previous to
1943 are not provided. Empty spaces in the plot correspond to periods in which no measurements were taken,
due to historical or technical reasons.

result of this analysis is shown in Fig. 11 (a).
This period has several missing measurements – around 30% of the time points – and there

is no information about the way in which measurements were taken. In this time series
we identify one metastable state corresponding to a colder season (cluster 0 in the figure),
which lasts around six months. A second metastable state (cluster 1 in the figure) and
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Figure 10: Merged time series. Obtained from the time series in Fig. 9 (containing the daily average
temperatures in Berlin-Tempelhof measuring station from June 12, 1936 to January 9, 2008) by ignoring the
time points in which no measurements were taken.

the time points associated to the transition region (cluster -1 in the figure) do not seem to
correspond to any yearly season. These results might originate from the large amount of
missing measurement points in the time series, which would require a different recurrence
threshold and embedding dimensions to be analyzed. Another reason for these results might
be the dispersion of the temperature measurements data, which might originate from a non-
systematic measuring technique. A suggestion to improve the identification of metastable
states in this time series is to analyze it with different recurrence threshold and embedding
parameters, specific for these data and not for the coarse time series.

The second period of time we analyze goes from January 1, 1942 to December 31, 1943.
The result of this analysis is shown in Fig. 11 (b).

This period does not have many missing measurements – less than 1% of the time points – .
The temperature measureents data in this region are less disperse than in the previous region,
which suggests a more systematic measuring technique. In this time series we identify one
metastable state (cluster 0 in the figure) corresponding to a colder season, which lasts around
six months, and another metastable states (cluster 1 in the figure) corresponding to a warmer
season that also lasts around six months. Cluster -1 indicates points in between the warmer
and the colder seasons coming from the transition region in the final recurrence network
associated to this period of measurements. Time points in cluster -1 relate to the periods of
transition between the colder and the warmer seasons.

The third period of time we analyze goes from January 1, 1991 to December 31, 1992.
The result of this analysis is shown in Fig. 11 (c).

This period does not have missing measurements. Additionally, temperature data in this
region were obtained with a more systematic measuring technique. In this time series we
identify one metastable state (cluster 0 in the figure) corresponding to a colder season, which
lasts around six months, and another metastable state (cluster 1 in the figure) corresponding
to a warmer season that also lasts around six months. Cluster -1 indicates the periods of
transition between the colder and the warmer seasons.

To the best of our knowledge, the time series data analyzed in this section has not been
previously analyzed in any similar fashion. However statistical analysis and interpretations
of such analysis have been performed [42].
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(a) January 1, 1937 to December 31, 1938.

(b) January 1, 1942 to December 31, 1943.

(c) January 1, 1991 to December 31, 1992.

Figure 11: The grayscale color code in these figures represents the different metastable states (clusters 0 and
1) and transition region (cluster -1) identified with SAIMeR (using ε∗ ' 0.2933, τ = 2 and m = 2) in different
periods of the time series containing the daily average temperatures measured in Berlin-Tempelhof from June
12, 1936 to January 9, 2008. Time points with missing temperature measurements are assigned temperature
T = 0◦F and indicated by cluster -2. In (a), temperature measurements are irregularly taken and there is no
information about the measuring technique. In (b) and (c), the measuring technique is specified and there
are few or none missing measurements.
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5 Robustness

In this section we measure the robustness of SAIMeR. We define robustness as the similarity
between the metastable states identified in a (original) time series and in the same time
series when some artifacts have been added. By artifacts we understand noise or missing
data points.

We measure robustness with the Adjusted Rand Index [43] (ARI), developed by Hubert
and Arabie in 1985. The ARI is a measurement of agreement between two (clustering)
partitions that ranges from 0 – when the partitions are not similar at all – to 1 – when the
partitions are the same – . This can be used even if the number of clusters in the two partitions
compared is different, assigns a constant value of zero to the expected value of agreement
between two random partitions and does not get affected when comparing partitions with a
high number of clusters. The expression of this index can be found in Appendix B.

Since we use the MSM clustering algorithm in SAIMeR, we need to adapt the measure-
ment of similarity in order to account for the different partition of the networks into modular
and transition regions. This treatment is based on the work of Hueffner et al. from 2013 [11],
in which every node identified as part of the transition region of a recurrence network is
assigned to an independent cluster in order to create a full partition, in which the ARI is
computed. In the following analysis, we will use this type of partitioning.

In our case, the two clustering partitions used to compute the ARI are the ones coming
from the MSM clustering analysis of the final recurrence networks associated to a time series
and the same time series with added artifacts.

We analyze the robustness of SAIMeR in two cases: when a time series has a percentage
of noise added and when a percentage of time points has been removed from a time series.
For these analysis, we take as example a double well potential time series.

5.1 Noisy time series

To test the robustness of SAIMeR to analyze time series with noise, we measure the simi-
larity between (a) the clustering partition obtained from analyzing a time series and (b) the
clustering partition obtained from analyzing a noisy time series. We compare two different
types of noisy time series, whose construction we describe below.

The results we show in the following two sections, suggest that SAIMeR is able to identify
metastable states in time series with noise of amplitude up to 20% the amplitude of the
original time series or with amplitude up to 200 times the minimum variation (different to
zero) in consecutive measurement points in the time series.

Our results also confirm Zbilut’s statement of inflation of the embedding dimension when
reconstructing the state space from noisy time series [3]. Thus, the ARI is higher when
selecting different embedding parameters (as explained in Appendix A) to reconstruct the
state space from noisy time series.

5.1.1 Noise as a fraction of minimum change between consecutive measurement
points

The first definition of noisy time series we use is the one indicated by Hassona [44] for the
analysis of variations of RQA measurements when adding noise to time series data. In this,
a noisy time series is computed by adding Gaussian white noise (mean µ = 0 and standard
deviation σ = 1) with amplitude equal to a multiple, α, of the minimum variation different
to zero in consecutive measurement points to the time series. We vary the amplitude of noise
from α = 1 to α = 100 in intervals ∆α = 10. For every increase in the amplitude of noise,

21



we compute 10 different time series, in order to get rid of the bias produced by the selection
of noise.

We simulate a time series for the double well potential, as described in Section 4.1, and
analyze it with SAIMeR. The recurrence threshold and the embedding parameters used in
this case are ε ' 0.3922, τ = 3 and m = 2.

Using the same recurrence threshold and embedding parameters for the construction of
the state space associated to each noisy time series, we obtain the results shown in Fig. 12.
In this plot, the ARI indicating the similarity between the original and the noisy partitions
is lower than 0.6 for α < 25.

Figure 12: Similarity, measured with the Adjusted Rand Index (ARI), between the metastable states identified
in the original time series and in the time series where white Gaussian noise has been added. In this case, the
amplitude of noise is equivalent to a fraction, α, of the minimum change between consecutive measurement
points. All partitions are computed with the same recurrence threshold ε ' 0.3922 and embedding parameters
τ = 3 and m = 2.

As mentioned by Zbilut in 1992 [3], having noise in a time series has an effect of inflation
of the embedding dimension when reconstructing the state space. The low resistance to
noise shown in Fig. 12 could indicate the necessity to increase the embedding dimension as
we increase α. To confirm this suggestion, we perform a second experiment where every
noisy time series is analyzed with different recurrence threshold and embedding parameters.
In this case we vary α from 1 to 200, in intervals ∆α = 10. The results we obtain are shown
in Fig. 13.

As Figs. 12 and 13 suggest, adapting a recurrence threshold and embedding parameters
to every noisy time series, increases the ARI measured with the noisy and the original time
series. Without adapting the analysis parameters, ARI < 0.6 for α < 30, but adapting them,
the ARI does not drop lower than 0.6 even for α equal to 200.

5.1.2 Noise as a percentage of the amplitude of the time series

The second definition of noisy time series we use also corresponds to the addition of Gaussian
white noise to the time series (mean µ = 0 and standard deviation σ = 1), but with amplitude
equal to a percentage, α′, of the amplitude of the original time series. In this case, the
amplitude of noise varies from α′ = 0 to α′ = 100 in intervals ∆α′ = 10. Once more, in order
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Figure 13: Similarity, measured with the Adjusted Rand Index (ARI), between the metastable states identified
in the original time series and in the time series where white Gaussian noise has been added. In this case, the
amplitude of noise is equivalent to a fraction, α, of the minimum change between consecutive measurement
points. Every partition is computed with different embedding parameters and recurrence thresholds. The
range of α is larger than in Fig. 12, showing that this approach provides more similar results (ARI > 0.6).

to get rid of the bias produced by the different noise introduced, we try 10 different noisy
time series for every increase in the amplitude of noise analyze each of them with different
recurrence threshold and embedding parameters.

We simulate a time series for the double well potential, as described in Section 4.1, and
analyze it with SAIMeR. According to the results obtained in Section 5.1.1, the recurrence
threshold and embedding parameters we use are different for every noisy time series analyzed.
In Fig. 14 we observe the similarity in clustering results between (a) the noisy and (b) the
original time series.

The ARI measuring the similarity between the clustering partitions for the noisy and for
the original time series, is higher than 0.6 for α′ ≤ 20. ARI values remain higher than 0.9
for α′ ≤ 10.

These results suggest that, when adapting a recurrence threshold and embedding param-
eters to every noisy time series, SAIMeR enables the identification of metastable states in the
system even for time series with noise with amplitude given by α = 20, or 20% the amplitude
of the original time series.

5.2 Removing data points

One of the typical features of real-world time series is having observations irregularly taken.
This irregularity can be understood as if a percentage of measurement points, randomly
distributed in the time series, had been removed from a time series containing a set of
measurements regularly taken.

To analyze this type of irregular time series, we produce a time series with regularly
spaced measurements, called the original time series, and assign to a percentage of randomly
distributed data points a “null” value. We refer to the time series resulting from this process
as the trimmed time series. Since we are not ignoring time points but only assigning a new
value to some time points, the length of the original and the trimmed time series is the same.
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Figure 14: Similarity, measured with the Adjusted Rand Index (ARI), between the metastable states identified
in the original time series and in the time series where white Gaussian noise has been added. In this case,
the amplitude of noise is equivalent to a percentage α′ of the amplitude of the original time series. Every
partition is computed with different embedding parameters and recurrence thresholds.

We vary the percentage of time points being removed from 0% to 19%, in intervals of 1%.
For every percentage of data points being removed, we compute 10 different time series, in
order to get rid of the bias produced by the selection of data points to remove.

We compare the partition obtained by analyzing the original time series and the partition
obtained by analyzing the trimmed time series.

All the clustering partitions associated to the trimmed time series are computed using the
same recurrence threshold originally computed with the complete time series, ε ' 0.3678.

However, we interpret the case of removing measurement points from the time series as
another case of noise and therefore we use different embedding parameters for the reconstruc-
tion of the the state space from every time series with artifacts. Every recurrence network
associated to a trimmed time series is computed with different embedding parameters. Fig. 15
shows the ARI values obtained.

In Fig. 15 we see that the ARI has values higher than 0.9 for time series with up to 5%
of time points removed. The ARI does not have values lower to 0.6 even for time series with
up to 19% of time points being removed. These results suggest that the recurrence threshold
computed with SAIMeR enables the identification of the metastable states even for time
series with up to 19% of randomly distributed missing points.

We believe that these results could be improved by selecting a different recurrence thresh-
old for every time series with missing points with which the comparison is performed. How-
ever, since the results obtained by using the same recurrence threshold already allow a good
identification of the metastable states, we maintained this methodology due to its simplicity.
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Figure 15: Similarity, measured with the Adjusted Rand Index (ARI), between the metastable states identified
in the original time series and the trimmed time series, which contains a percentage of randomly distributed
missing data points. All partitions are computed with different embedding parameters but with the same
recurrence threshold ε ' 0.3678.

6 Conclusions

In this paper, we present SAIMeR, a self-adapted method for the identification of metastable
states in real-world time series based on recurrence networks analysis.

SAIMeR uses particular statistical information of the time series analyzed in order to pro-
duce a recurrence threshold. Clustering the recurrence network associated to such recurrence
threshold results in the classification of time points into different metastable states.

We use three examples to illustrate the performance of SAIMeR, where we identify
metastable states that correspond to the different dynamical behaviors in such time series.
The first example is a double well potential, where we identify two metastable states, which
correspond to moments in which the simulated particle is in each of the potential wells, plus
a region of transition between such states. The second example is the molecular confor-
mations of trialanine. We identify five main metastable states in this data, which seem to
correspond to the different conformation states of the molecule mentioned by Fischer et al.
in 2006 [38]. The third example corresponds to the daily average temperature measured in
Berlin-Tempelhof between June 12, 1936, and January 9, 2008. In this time series, despite
the several missing data points in some regions of the time series, we identify two main
metastable states, corresponding to the warmer and the colder seasons.

Additionally, we show that SAIMeR gives similar results (measured with the Adjusted
Rand Index [43] [ARI]) when identifying metastable states on time series with artifacts (where
noise have been added or data points have been removed). Similarity is measured for time
series where a percentage of data measurements have been removed, where ARI > 0.6 even
for time series with 19% of data points removed. It is also measured for time series with
Gaussian white noise added. We consider two definitions of noise. In the first, the amplitude
of noise is expressed as a multiple, α, of the minimum variation different to zero between
consecutive measurements in the time series. In this case, ARI is higher than 0.6 even for
α = 200. In the second definition, the amplitude of noise is expressed as a percentage, α′,
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of the amplitude of the original time series. In this case, ARI is higher than 0.6 even for
α′ = 20.

Finally, since any recurrence analysis requires the reconstruction of the state space and
since we use the delay mapping for this purpose, we propose a methodology to determine
appropriate embedding parameters (delay and dimension). We propose that the embedding
parameters must provide the first minimum of entropy and maximum of recurrence rate dur-
ing the recurrence analysis of the time series with SAIMeR. The selection of these parameters,
prior to the recurrence analysis, is still an open problem that we aim to approach in future
work.

All the results of the experiments mentioned above suggest that SAIMeR is an efficient
tool for the analysis of real-world time series.

A Comments about Taken’s embedding parameters.

Recurrence quantitative analysis (RQA) measurements are sensitive to variations in the re-
currence threshold and embedding parameters. Here, we analyze the sensitivity of two quan-
titative measurements when varying the embedding parameters for SAIMeR on the double
well potential time series in Fig 4: the entropy (Eq. 12) and the recurrence rate (Eq. 11).

A.1 Recurrence rate

The recurrence rate [3, 45], RR, is a recurrence measurement that indicates the percentage
of recurrence points in a recurrence plot. In terms of the recurrence network, it indicates
the relative frequency of edges a node contributes to [24]. This way, higher values in this
measurement indicate that the nodes are more connected. Or, in other words, that a larger
number of state space vectors are inside a same state space neighborhood.

RR =
1
N2

N∑
i,j=1

Rij(ε∗) (11)

A.2 Entropy

Entropy, S(ε∗), refers to the Shannon entropy and indicates the probability to find a diagonal
line of length l in a recurrence plot Rij(ε∗). In other words, it indicates the complexity
of a recurrence plot, with respect to its diagonal lines. As a recurrence plot depends on
the recurrence threshold, variations in this parameter will modify the value of the entropy.
Variations in the embedding parameters will also modify this value [46].

Being Rij(ε∗) a recurrence plot computed from N∗ state space vectors and P (l) = P (ε∗, l)
its histogram of diagonal lines of length l, the relative frequency of diagonal lines with length
l is given by p(l) = P (l)/Nl. This relative frequency is equal to the number of diagonal lines
with length l divided by the total number of state space vectors. This way, according to
Marwan et al. [16], entropy is given by:

S = −
N∗∑
lmin

p(l) log p(l) (12)

In Eq. 12, lmin is the minimum length of the diagonal lines in a recurrence plot. This
length can be defined for a recurrence plot computed from non-noisy time series. However,
we want to work with real-world time series data and expect to have noise.
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According to Marwan et al. [16], entropy is small for recurrence plots computed from
noisy time series. This is expected because noisy time series produce recurrence plots with
many short and thin diagonal lines and single points. Since we wand to distinguish noise from
the rest of our time series data, we would like to remove short diagonals from the entropy
computation. Therefore, we compute a new minimum length of the diagonal lines, l∗min, as:

l∗min =
∑N∗

l=0 lp(l)∑
l=0 p(l)

(13)

In general, a lower value in entropy indicates that a recurrence plot has thinner diagonal
lines, which in turn indicates less time intervals with similar evolution in the time series
originating such recurrence plot. This way, a minima in entropy could indicate the recovery
of more dynamical structure in the associated recurrence plot. For this reason, we would like
to find a recurrence threshold and embedding parameters that produce recurrence plots with
a lower value of entropy.

A.3 Embedding parameters

We suggest that selecting the embedding parameters that first provide a simultaneous lo-
cal minima in entropy and local maxima in recurrence rate, and that also give the lowest
minimum in entropy, construct a state space in which more nodes are closer for smaller
neighborhoods. This kind of space would provide more structure in the associated recur-
rence networks produced when analyzing recurrences in the state space.

To illustrate our suggestion, we use the time series for a double well potential. Determining
a selection of embedding delay and embedding dimension, we can construct the state space
associated to this time series and compute a final recurrence threshold. With this recurrence
threshold and the state space constructed with the selected embedding parameters, we can
compute the recurrence plot associated to the time series. In this recurrence plot we measure
the recurrence rate and the entropy.

Graphs in Fig. 16 show the different recurrence rate and entropy values obtained for
different selections of embedding parameters when analyzing a double well potential time
series. Embedding parameters that first provide a simultaneous local minima in entropy and
local maxima in recurrence rate, are pointed in circles. From these combination, we select
those that produce the recurrence plot with minimum entropy and use them in SAIMeR in
order to identify metastable states.

B The Adjusted Rand index

This index measures the agreement between any two (clustering) partitions, even if the
number of clusters in each of them is different. It assigns a constant value of zero to the
expected value of agreement between two random partitions and ranges between zero and
one.

Let us imagine S = {O1, ..., ON}, a set of objects. The number of combinations of pairs
that are possible to make from set S is

(
N
2

)
. Set P = {p1, p2, ..., pA} and Q = {q1, q2, ..., qB}

two partitions (or collections of subsets) of S such that ∪Aa=1pa = ∪Bb=1qb = S, pa ∩ pa′ = ∅
for any a 6= a′, and qb ∩ qb′ = ∅ for any b 6= b′. If tab represents the number of objects in
S that were classified in the a-th subset of P and in the b-th subset of Q, then the ARI, as
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(a) Entropy (b) Recurrence rate

Figure 16: Plot showing the variation in the entropy (computed as in Eq. 12) and recurrence rate (computed
as in Eq. 11) for the different recurrence plots associated to the same time series of a double well potential
resulting from constructing different state spaces with different embedding parameters (embedding delay and
dimension). The circles in the plot point at the combination of embedding dimension and delay for which we
find a simultaneous local minimum in entropy and a first local maximum in recurrence rate.

defined by Santos [47], can be expressed as the quotient F1/F2, where:

F1 =
(
n

2

) A∑
a=1

B∑
b=1

(
tab
2

)
−

A∑
a=1

(
ta·
2

) B∑
b=1

(
t·b
2

)

F2 =
1
2

(
n

2

)[ A∑
a=1

(
ta·
2

)
+

B∑
b=1

(
t·b
2

)]
−

A∑
a=1

(
ta·
2

) B∑
b=1

(
t·b
2

)

C Sankey diagram for two well potential time series
analysis.

Sankey diagrams are a visual tool that shows the number of clusters as well as the nodes
distribution for each of the different recurrence networks computed from the tuning set {εν}.

In these diagrams, each network is represented as a column, the number of clusters in a
network is represented as sections of the column whose size corresponds to the number of
nodes each cluster has. The amount of nodes whose correspondence to a cluster varies from
one network to another, is represented as a flux between columns, and the width of such flux
corresponds to the number of nodes whose classification differs between two networks.

Fig. 17 shows the Sankey diagram used for the two well potential time series analysis of
Section 4.1. In this particular diagram, we observe a group of networks (columns) with the
same number of clusters (size of sections of a column), for which the number of nodes in each
cluster is almost the same (low flux of nodes from one column to another). This is the set
of networks with which we compute the final recurrence threshold used for the identification
of metastable states in the two well potential time series. Recurrence networks fulfilling
conditions 6 and 7, have a similar number and size of clusters identified. We suggest that
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these networks define a set of recurrence thresholds giving robust results about the dynamics
of the time series analyzed.

Figure 17: Sankey diagram showing the subgroup of recurrence networks (columns) with the same number
of clusters (see eq. 6) and similar number of nodes (see eq. 7). Networks are computed from tuning set {εν}
(see eq. 5) on the state space constructed from a two well potential time series and embedding parameters
τ = 7 and m = 2. We suggest that this group of networks determines the recurrence threshold giving robust
results about the dynamics of the time series analyzed.

D Weather data: Specifications

The time series mentioned in Section 4.3 has several periods of time without temperature
measurements. Before August 31, 1939 measurements are irregular. After that day, temper-
ature is taken daily, even though the measuring technique is not specified. Measurements
continue until December 31, 1943, after a short interruption from August 29, 1942 to Septem-
ber 5, 1942.

During the three decades after December 31, 1943 There are no measurements. An
exception are the seven months from February 1, 1949, to August 27, 1949. These decades
include the end of the war, on 1945 and the Cold War.

Measurements start again on January 1, 1973 and are uninterrupted until December 31,
1992. However, after that date, measurements are scarce. Temperature was measured in 2003
only from May 18 to June 28, and from August 10 to August 16. During 2005, temperature
was measured from May 16 to May 31. The last measurements we consider in our analysis
were taken from December 3, 2007 to January 9, 2008.
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