
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Andreas Hohmann

An Implementation of Extrapolation
Codes in C��

TR 93-8 (November 1993)

An Implementation of Extrapolation Codes in C++

Andreas Hohmann
∗

Abstract

This report describes the new object oriented implementation of
extrapolation codes (Eulex, Eulsim, Difex) for ordinary differen-
tial equations. The resulting C++ class library provides a simple and
flexible interface to these methods and incorporates advanced features
like continuous output and order-stepsize freezing. The interface of the
ODE classes allows in particular a user-defined solver for the linear
systems occuring in the linearly implicit discretization scheme. The
library also provides some classes for numerical objects such as vec-
tors and (full) matrices. Due to the underlying data-view concept it is
possible to access substructures without copying. In addition, we in-
cluded several utility classes such as a timer and a minimal command
language that may be useful in other contexts, too.

Contents

Introduction 2

I. Numerical Preliminaries 2

1 Order and Stepsize Control for Evolutional h-p Methods 3

1.1 Prediction of Optimal Orders and Stepsizes 4

1.2 A Priori Error Estimates . 5
1.3 Convergence Monitor . 6

1.4 Possible Order Increase . 8

∗Konrad–Zuse–Zentrum Berlin, Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Ger-
many. hohmann@sc.zib-berlin.de

1.5 Order Window . 8

1.6 Determination of a Feasible Maximal Order 9

2 Application to Extrapolation Methods 10

2.1 Discretization Schemes . 10

2.2 Order and Stepsize Control in the Extrapolation Context . . . 11

2.3 Additional Order and Stepsize Restrictions 13

3 Norms and Scaling 14

II. Description of the Class Libraries 16

4 General Design and Style Conventions 16

4.1 Identifier . 16

4.2 Header Files . 16

4.3 Order of Function Arguments 16

4.4 Usage of the const Qualifier 17

4.5 Type Definitions . 17

4.6 Message and Error Handling 17

5 The Matrix Vector Library 18

5.1 The Base Class MyObject . 19

5.2 The List Template . 21

5.3 The Minimal Command Language 22

5.4 Matrix and Vector Classes . 24

5.5 Index Ranges . 26

5.6 The Data-View Concept . 26

6 The ODE Library 33

6.1 The Class Ode . 34

6.2 The Ode Solver Classes . 35

6.3 The Trajectory Classes . 37

6.4 The Protocol Classes . 38

References 40

1

Introduction

This paper presents an update of the report ‘Modular Design of Extrapo-
lation Codes’ [HW92] on the modular implementation of extrapolation codes

for ordinary differential equations in C. Based on these codes, we have de-
veloped a C++ class library for ODEs and the associated solvers, which not
only simplifies the usage of the whole package by its object oriented inter-
faces, but also incorporates new features such as continuous output [HO90],

freezing of order-stepsize sequences, and other protocol facilities. Regarding
the numerical ingredients, we simplified the stepsize restrictions for linearly
implicit discretizations. The tests used in the former codes were replaced by

a single residual oriented monotonicity test that increases the robustness of
the codes for weak accuracy requirements.
The report is organized as follows. In the first part we recall the order and

stepsize control for evolutional h-p methods (cf. Deuflhard [Deu83]) which

is then applied to the standard extrapolation discretizations. Moreover, we
describe in Section 3 a standard scaling strategy. The main purpose of this
part is to collect the numerical methods and to introduce the notation used in
the codes. If the reader is already familiar with these techniques or only wants

to use the integrators without knowing the algorithmical details, he/she may
skip this part.
The second part is devoted to the C++ class libraries. Starting with some

conventions which we employed throughout the whole package, we describe

the basic library for vectors and matrices of integers and real numbers. It
provides the standard functionality like element access, arithmetic operators
and linear solvers for full matrices. The following section concentrates on the

ODE and integrator classes. Most classes are presented with some illustrative
examples which are also included in the package. For a better understanding
it might be helpful to study the header files while reading this part.
All classes are available via anonymous ftp from

elib.ZIB-Berlin.de (130.73.108.11)

in the directory pub/ode++. Here, the reader may also find more information
about some implementational details and the latest version of this report.

2

I� Numerical Preliminaries

� Order and Stepsize Control for Evolutional h�

p Methods

H-p methods, which may be characterized as methods that make use of lo-
cally varying orders and stepsizes, occur in two rather different situations.

On one hand, variable orders and stepsizes are exploited to construct global
discretizations for boundary value problems via local refinement (or regrid-
ding) and order adjustment (see e.g. [GB86] for finite elements, [Hoh93] for

collocation). On the other hand, h-p methods are used to solve initial value
problems by successively choosing appropriate local orders and stepsizes for
the next step of the integration process (see e.g. [HNW87], [Deu83]). We
shall deal with the latter which may be called evolutional h-p methods to

distinguish them from the former.
Let us consider an initial value problem

x′ = f(x, t), x(t0) = x0

of a first order ordinary differential equation. By Φt,s we denote the associ-

ated flow from s to t which we assume to exist for all s, t ∈ R in question.
Our task is to compute

x1 = Φt1,t0(x0)

up to a prescribed accuracy tol. We shall present the order and stepsize
control according to Deuflhard [Deu83] in an abstract setting independent of

extrapolation methods. To this end, we consider a family

{(Tk, Ek) | kmin ≤ k ≤ kmax}

of discretization schemes T t+H,t
k approximating the flow Φt+H,t and corre-

sponding error estimators Et+H,t
k approximating the error T t+H,t

k − Φt+H,t.

We call (Tk, Ek) an h-p scheme of basic order p ∈ N, if Tk and Ek are of order
pk and pk + 1, respectively. More precisely, we assume that the error of Tk

behaves according to

εt+H,t
k (x) := ||Φt+H,t(x)− T t+H,t

k (x)|| .
= γ(x, t)Hpk+1 (1.1)

3

for some proportionality factor γ(x, t) depending on x and t only, and the

error estimator Ek satisfies

Et+H,t
k (x) = Φt+H,t(x)− T t+H,t

k (x) +O(Hpk+2) . (1.2)

In what follows, we will call k the order of the approximation, although this
is not true but for the basic order p = 1. For ease of notation, we shall often

drop the arguments t and x in the local situation and use the stepsize H as
the main argument. So, we write for example Tk(H) instead of T t+H,t

k (x).
In the extrapolation context the approximations Tk are the subdiagonal

entries Tk = Tk+1,k of the extrapolation tableau {Tik} corresponding to the
subproblem Φt+H,t(x) with the outer stepsize H (see [Deu83] and Section
2 below). The error estimator is the subdiagonal error criterion, i.e., we
compare the subdiagonal entries with the diagonal ones, which are of higher

order and get Ek = Tk+1,k+1 − Tk+1,k.
For the final approximation for a particular k, we may use the error esti-

mator to refine the approximation Tk and take Tk + Ek as the subproblem’s
solution. In an extrapolation method this is just the diagonal entry Tk+1,k+1.

1.1 Prediction of Optimal Orders and Stepsizes

It is the task of an adaptive order and stepsize control to divide the main

problem Φt1,t0(x0) into appropriate subproblems Φt+H,t(x) with (varying)
stepsizes H and to choose the orders k in order to solve the main problem
up to the prescribed local accuracy tol, i.e.

εt+H,t
k (x) ≤ tol .

Substituting the norm of the error estimator Ek for the unavailable error εk,
we require

||Et+H,t
k (x)|| ≤ tol . (1.3)

If this error criterion is fulfilled, we say that the method converged for the
subproblem Φt+H,t(x) and call k the convergence order . Of course, this should
be achieved with the least possible effort. To this end, we have to minimize
the work per unit step in each step from t to t+H. Since we have to decide in

advance which order and stepsize to take, we need a priori information about
the stepsizes Hk required for the accuracy tol employing the discretization

4

Tk. Using the formula (1.1) for the approximation error of the discretizations

Tk and the error εk, we know a posteriori which stepsize Hk would have been
optimal in the sense that εk(Hk) = tol:

εk(Hk) = tol =⇒ Hk = pk+1

√
tol

εk(H)
H

Since in reality we only have the error estimates Ek at hand instead of the
true error εk, we multiply the accuracy tol with a safety factor ρ := 1/4 and

define

Hk :=
pk+1

√
ρ tol

||Ek(H)|| H (1.4)

as the expected optimal stepsize for Tk. Assuming that the proportionality
coefficient γ(x, t) does not vary much, it is feasible to use the a posteriori

stepsize estimate Hk also as an a priori estimate for the next step.
If Ak measures the amount of work to compute the approximation Tk

together with its error estimator Ek, we now have to minimize the work per
unit step

Wk = Ak/Hk , Ak = amount of work to compute Tk and Ek.

Hence, the predicted optimal order kopt for the next step has to satisfy

Wkopt = min
k

Wk

and we obtain the corresponding predicted optimal stepsize as Hopt := Hkopt .

1.2 A Priori Error Estimates

While successively computing the approximation T1, T2, . . . and error esti-

mates E1, E2, . . ., we would like to control whether the method behaves as
expected or not. Therefore, we need a convergence monitor for the family of
approximations, or, more precisely, a model of comparison αk for the error

εk. By means of this model we may check our approximation by

||Ek(H)|| ≤ αk .

Deuflhard proposed in [Deu83] a simple model based on Shannon’s informa-
tion theory, which works in a rather general context (not only extrapolation

5

methods). We regard the approximations Tk as encoding machines trans-

ferring function values into an approximation of the solution of the initial
value problem. The input entropy E

(in)
k is supposed to be proportional to

the number Bk of function evaluations needed for Tk,

E
(in)
k = αBk, Bk = number of f evaluations for Tk,

while the output entropy E
(out)
k is the number of significant binary digits

E
(out)
k = − log2 εk(H)

of the approximation Tk. To obtain estimates αk for the errors εk, we assume
that there is a linear relationship

E
(out)
k = βE

(in)
k

for some proportionality factor β, or, equivalently,

− log2 εk(H) = cBk (1.5)

for some constant c. Now, assume that we know a single error εq for some q.

Then we may use (1.5) to define estimates α
(q)
k for all errors εk by

α(q)
q = εq and − log2 α

(q)
k = cBk

for some constant c. Eliminating c, we obtain

α
(q)
k := α

(q)
k (εq) := εBk/Bq

q .

These a priori estimates α
(q)
k constitute the base of the convergence monitor.

1.3 Convergence Monitor

Suppose that we have predicted an optimal order kopt and the corresponding
stepsize Hopt, forecasting

εkopt(Hopt) = ρ tol . (1.6)

Using the information theoretic model, we obtain from (1.6) the (a priori)

error estimates
εk(Hopt) = α

(kopt)
k (ρ tol) (1.7)

6

for arbitrary k. As already mentioned above, we will use these a priori

estimates to control the convergence behaviour. We require the error estimate
Ek to be at least smaller than the estimates α

(kopt+1)
k (ρ tol) that we would

expect for convergence order kopt + 1, i.e.,

||Ek(Hopt)|| ≤ α
(kopt+1)
k (ρ tol) . (1.8)

For an easy formulation (and realization) of the stepsize mechanism, we do
not use the error estimates and stepsizes directly, but the corresponding
stepsize factors. We define the stepsize factor βk(ε) for a given error ε as

βk(ε) :=
pk+1

√
ρ tol

ε
.

If we apply βk to the a posteriori error estimates ε = ||Ek(H)|| and the a

priori estimates ε = α
(q)
k (ρ tol), we obtain the stepsize factors

λ(k,H) := βk(||Ek(H)||) and α(k, q) := βk(α
(q)
k (ρ tol)) .

Using this notation, the predicted optimal stepsize (1.4) for order k reads

Hk = λ(k,H) H . (1.9)

Moreover, the convergence monitor (1.8) is equivalent to

λ(k,H) ≥ α(k, kopt + 1) . (1.10)

If (1.10) is violated for order k, we have to reduce the stepsize by a factor

λred < 1 using the latest available information. According to (1.7) we want
the new stepsize Hred = λred H to meet the condition

||Ek(Hred)|| = α
(kopt)
k (ρ tol) ,

or equivalently
λ(k,Hred) = α(k, kopt) (1.11)

in order to achieve convergence for order kopt. Since for any scalar c �= 0

λ(k, cH) = c−1λ(k,H) ,

we derive from (1.11) the reduction factor

λred = α(k, kopt) /λ(k,Hopt) .

7

1.4 Possible Order Increase

So far we choose the optimal order kopt by minimizing the work per unit step
in the range from kmin to the convergence order kconv of the last step. To

check whether a higher order k > kconv would be cheaper, we employ again
the a priori estimates as derived from the information theoretic model: We
are looking for the stepsize Hk such that convergence is achieved for order k,
that is, εk(Hk) = ρ tol. Therefore we expect

||Ekconv(Hk)|| = α
(k)
kconv(ρ tol) ,

or, equivalently,

λ(kconv, Hk) = α(kconv, k) ,

Since for the optimal stepsize Hkconv for order kconv we have λ(kconv , Hkconv) =

1, we obtain for the stepsize quotient Hkconv/Hk

Hkconv

Hk
=

Hkconv

Hk
λ(kconv, Hkconv) = λ(kconv, Hk) = α(kconv, k) .

Thus, regarding the work per unit step, we may test an order k > kconv by

Wk < Wkconv ⇐⇒ Ak α(kconv, k) < Akconv .

1.5 Order Window

Both, the convergence monitor as well as the possible order increase should
not be applied to all orders k. First, the information theoretic model is only

valid for an optimal code, i.e., at most around the optimal order and stepsize.
Second, it is a good numerical practice not to change the order too rapidly
to get a “smooth” behaviour of the algorithm. Therefore, we introduce a
so-called order window

{k ∈ N | max(kmin, kopt − 1) ≤ k ≤ min(kmax, kopt + 1)}

around the predicted optimal order kopt. The accuracy check (1.3) as well as

the convergence monitor (1.10) are only applied inside this range. Moreover,
we choose the next optimal order from this set.

8

If the accuracy check (1.3) failed for all orders k inside the order window,

we reject the given stepsizeHopt, even if the convergence monitor was not vio-
lated. Again using the latest information, i.e., the error estimate Ek(t, Hopt),
and the formula (1.9) for the optimal stepsize for order kopt, we take

Hred = λ(k,Hopt)Hopt

as the new stepsize in order to meet ||Ekopt(Hred)|| = ρ tol.

1.6 Determination of a Feasible Maximal Order

Based on the information theoretic model, we can determine a maximal order
kfea ≤ kmax for which we expect computational profit. More precisely, we

compute the smallest order k such that using the next order would be more
expensive, that is, Wk+1 > Wk, or, equivalently,

Ak+1

Ak
>

Hk+1

Hk
.

Obviously, we have no stepsizes Hk at hand, but we can derive an estimate
of the quotient Hk+1/Hk. If Hk+1 is the stepsize to obtain

εk+1(t, Hk+1) = ρ tol,

then, using the information theoretic model, we expect

εk(t, Hk+1) = α
(k+1)
k (ρ tol).

The optimal stepsize Hk for convergence order k can be computed by

Hk = βk(εk(t, Hk+1))Hk+1 = βk(α
(k+1)
k (ρ tol))Hk+1 = α(k, k + 1)Hk+1

Therefore we get an estimate for the stepsize quotient by

Hk+1

Hk
= α(k, k + 1)−1

Thus, we define the feasible maximal order kfea as the smallest order kmin ≤
k ≤ kmax satisfying

Ak+1

Ak
> α(k, k + 1)−1 .

9

� Application to Extrapolation Methods

In this section we shall apply the rather general order and stepsize control
to extrapolation methods. The base of such an method is a discretization

scheme depending on a stepsize h which allows an asymptotic expansion in
hp.

2.1 Discretization Schemes

To fix notation, we denote the result of n steps of such a basic discretization
scheme by Dt+H,t

n (x), where x and t are the initial value and time, and H
the outer stepsize. In the following examples, xn = Dt+H,t

n (x) is recursively

defined by a sequence x0, . . . , xn. By h we denote the inner stepsize h := H/n.

example 1. Explicit Euler discretization (code Eulex).

a) x0 := x, t0 := t

b) xi+1 := xi + hf(xi, ti), ti+1 := ti + h for i = 0, . . . , n− 1.

example 2. Linearly implicit Euler discretization (code Eulsim).

a) x0 := x, t0 := t

b) xi+1 := xi + h(I − hfx(x, t))
−1xi, ti+1 := ti + h for i = 0, . . . , n− 1.

example 3. Explicit mid-point rule (code Difex). The explicit mid-
point rule b) as a two step discretization is combined with an initial explicit

Euler step a) and Gragg’s final step c) to obtain the result Dt+H,t
n (x) = xn.

a) Explicit Euler start step:

x0 := x, t0 := t, x1 := x0 + hf(x0, t0), t1 := t0 + h,

b) Explicit mid-point rule:

xi+1 = xi−1 + 2hf(xi, ti), ti+1 = ti + h for i = 1, . . . , n

c) Gragg’s final step: xn = 1
4
(xn−1 + 2xn + xn+1).

10

2.2 Order and Stepsize Control in the Extrapolation Con-

text

As already mentioned in Section I the main application of the rather general
order and stepsize control are extrapolation methods. We denote by {Tik}
the extrapolation table corresponding to the discretization schemeDt+H,t

n (x).
More precisely, let

0 < n1 < n2 < · · ·
be a subdivision sequence, ni ∈ N, and define {Tik} by the well-known formula
for polynomial extrapolation with respect to hp:

Ti,1 = Dt+H,t
ni

(x) for i = 1, . . .

Ti,k = Ti,k−1 +
Ti,k−1 − Ti−1,k−1(

ni

ni�k+1

)p − 1
for k = 2, . . . , i

Since the subdiagonal entries Tk+1,k are of order pk, they constitute a family
Tk of approximations as defined in section I. Moreover, the diagonal entries
Tk+1,k+1 are of order p(k + 1) and may be used to define an error estimator,
namely the subdiagonal error criterion. Thus, we have

Tk = Tk+1,k and Ek = Tk+1,k+1 − Tk+1,k .

To use the order and stepsize control in this particular context, we have to
compute the sequences {Ak} and {Bk} measuring the amount of work for Tk

and Ek and the “information” employed for Tk, respectively. In the extrap-
olation framework, Ak is the amount of work to compute the extrapolation

table up to row k+1. Therefore, neglecting the effort for the recursive com-
putation of the Tik for k ≥ 2, we have to measure the cost for T1,1, . . . , Tk+1,1,
i.e. for Dt+H,t

ni
(x) for i = 1, . . . , k + 1.

example 1. Explicit Euler discretization (code Eulex). The subdivi-

sion sequence used in Eulex is the harmonic sequence given by ni = i for
i = 1, 2, The amount of work sequence {Ak} is recursively defined by

A0 := n1 and Ai = Ai−1 + ni − 1 for i = 1, 2,

Since f(x0, t0) is computed only once at the beginning of the extrapolation
process, we must subtract 1 in the last formula.

11

example 2. Linearly implicit Euler discretization (code Eulsim). The

subdivision sequence of Eulsim is again the harmonic sequence. For the
linearly implicit Euler discretization we have to take into account the cost for
an evaluation of the Jacobian and the solution of the arising linear equations.
Therefore we have to introduce the following work coefficients:

Cf cost of an f -evaluation
CJ cost of an evaluation of the Jacobian fx(x0)
CLU cost of a decomposition of I − hfx(x0)
Csubst cost of the forward/backward substitutions for the

decomposed matrix

Using this information, we get the amount of work sequence

A0 = CJ + n1(Csubst + Cf)

Ai = Ai−1 + CLU + niCsubst + (ni − 1)Cf for i = 1, 2, . . .

In the present implementation of Eulsim the default values are

Cf = 1, CJ = nCf and CLU = Csubst = 0 ,

where n is the dimension of the problem.

example 3. Explicit mid-point rule (code Difex). The subdivision se-
quence used in Difex is the double harmonic sequence ni = 2i, i ≥ 1. The

sequence Ak is given by

A0 = n1 + 1, Ai = Ai−1 + ni+1 for i ≥ 1.

Note that due to Gragg’s final step one additional f -evaluation is needed for
the computation of Ti,1 for i ≥ 1.

Concerning the second sequence Bk, the approximation Tk = Tk+1,k only
contains information from T2,1, . . . , Tk+1,1, as easily derived from the extrapo-

lation table. Thus, Bk measures the information necessary for T2,1, . . . , Tk+1,1,
i.e., for the basic discretizations Dt+H,t

ni
(x) for i = 2, . . . , k + 1. Let Āk de-

note the information needed to compute T2,1, . . . , Tk+1,1. Then, in the ODE
context, the sequences Āk and Bk are related by

Bk = Āk − Ā0 + 1 .

12

In Eulex and Difex the information Āk can be measured by the number

of necessary f -evaluations. Thus, Āk equals Ak in these codes. In Eulsim

the information contained in the terms (I − hfx(x0))
−1 f(x) may be counted.

Therefore {Āk} and {Ak} differ. Here, {Āk} is given by

Ā0 = n1, Āi = Āi−1 + ni − 1 for i = 1, 2,

2.3 Additional Order and Stepsize Restrictions

Proceeding, we describe the residual oriented monotonicity test that replaces

the stepsize restrictions as described in [HW92] and [Deu89]. The implicit
Euler discretization for an ordinary differential equation

x′ = f(x, t)

and the stepsize h is given by the formula

xk+1 = xk + hf(xk+1, tk+1) ≈ x(tk+1), tk = t0 + kh .

Equivalently, we have to solve in each time step the nonlinear equation

Fk(x) := Fk(x, h) := x− xk − hf(x, tk + h) = 0 . (2.1)

The linearly implicit Euler discretization is just the first step of an inexact
Newton method for the nonlinear problem Fk(x) = 0. Equivalently, we solve
the parameter dependent problem Fk(x, h) = 0 with h fixed, that is, using
“fixed parametrization”. The Jacobian

F ′
k(x) = I − hfx(x, tk + h)

is replaced by

J := I − hA, where A := fx(x0, t0) .

For autonomous systems this is in fact the exact Jacobian for the first step.
As initial guess for the solution xk+1 of Fk(x) = 0, we take the last step xk,
finally leading to the linearly implicit Euler formula

xk+1 = xk +Δk, where Δk := −J−1F (xk) = (I − hA)−1f(xk, tk + h) .

13

The convergence of this Newton method may be checked using the the mono-

tonicity test
μk < μmax := 1 , (2.2)

where

μk :=
||F (xk+1)||
||F (xk)|| =

||Δk − hf(xk+1, tk+1)||
||hf(xk, tk+1)||

is quotient of the residuals (μ for “monotonicity coefficient”). If condition
(2.2) is violated, the stepsize should be reduced (cf. [Hoh93]) by

hnew = ρ
μmax

μk
· hold ,

where ρ < 1 is some safety factor, say, ρ = 0.5. This simple monotonicity
test is very cheap since it only requires an additional vector subtraction
and the two norms. For non autonomous systems we have to compute an

additional right hand side f(xk+1, tk+1). As demonstrated in [Hoh93], this
stepsize reduction facility increases the robustness of the linearly implicit
extrapolation codes drastically.

� Norms and Scaling

In our description of the extrapolation method we used an abstract norm

|| · || to measure the error estimate Ek. The choice of a suitable norm plays
an important role for the performance of the algorithm. First of all, we
recommend a smooth norm, since the behaviour of the order and stepsize
control depends on the given norm. The most common choice is the Euclidean

norm || · ||2. On the other hand, we require the algorithm to be scaling
invariant, i.e., independent of the units chosen for the components xi of the
state variable x. To this end, we introduce a scaled norm

||x||2scal :=
1

n
||D−1x||22 =

1

n

n∑
i=1

(
xi

si

)2

,

where D = diag(s1, . . . , sn) is the current scaling matrix. Using a scaled
norm in the accuracy check (1.3) also allows us to control the relative (local)
error of the solution rather than the absolute one. The current scaling D

may depend on all solutions computed so far. Thereby, we want the scaling
factors si to meet the following requirements:

14

1) The algorithm should be scaling invariant.

2) The accuracy check ||Ek(H)|| < tol should (in principle) control the
relative error.

3) If a component becomes too small (regarding the modulus), the ac-
curacy requirement should be softened to control the absolute error
(absolute lower bound).

4) The scaling must not change abruptly. In particular, a zero component
in a single step should not alter the scaling.

5) As in 3), a component which is relatively small with respect to the
maximal value over all time steps computed so far should be controlled
using its absolute error (relative lower bound).

These claims lead to a standard scaling strategy. We use the following infor-
mation:

x current solution vector
xlast last accepted solution (last time step)
xmax maximum over all solutions accepted so far
sabs absolute lower bound for the scaling factors

srel relative lower bound for the scaling factors

The scaling consists of two phases. At the beginning we have to initialize
the scaling factors taking into account the initial value and the lower scaling
bound given by the user. After each integration step we have to rescale

the norm using the already accepted steps. All vector operations are to be
understood componentwise.

• Initialization: s := xmax := xlast := max{|xstart|, sabs}
• Rescaling:

nonstiff case: s := max{|x|, |xlast| , srel xmax , sabs}
stiff case: s := max{|x|, xmax , sabs}
both: xmax := max{xmax, |x|} and xlast := x

15

II� Description of the Class Libraries

� General Design and Style Conventions

The whole class library was realized in C++ on a SUN SPARC 10 work-
station. As compilers we employed the the GNU gcc 2.5.4 compiler and the
Sun C++ compiler Sparcworks 3.0 (based on AT&T’s cfront 2.1). For a
consistent style we use the following conventions.

4.1 Identifier

• Multi-word names capitalize each word but possibly the first one.

• Classes, types, member functions and procedures start with a capital
letter.

• Variables start with a small letter.

4.2 Header Files

Each header file includes all headers the compiler needs to understand it. To

prevent multiple inclusions, we employ the standard preprocessor strategy:

#ifndef _<filename>_h

#define _<filename>_h

...

#endif /* _<filename>_h */

To save parsing time and to avoid unnecessary dependencies, header files are
only included if really needed. Sometimes, this strategy is accomplished by
handles to private data, i.e., pointers to user unknown classes. As an example,
the Timer class uses a handle TimerData *data to avoid the inclusion of

time.h and types.h in the header file Timer.h .

4.3 Order of Function Arguments

The arguments of procedures are ordered according to the following rules:

16

• Input or input/output arguments are posed in front of output argu-

ments.

• More complex arguments are posed in front of less complex ones, i.e.,
classes before reals before integers.

4.4 Usage of the const Qualifier

We use the const qualifier in the original C++ sense. This means that an
argument or a member function is declared const whenever the corresponding

class is not changed in a stronly bitwise sense. More precisely, the class
variables have to remain unaltered, whereas ‘pointed to objects’ may be
changed. As an example, the assignment operator (see section 5.6.2) for

mathematical container classes such as RealVec is a const operator, since
the structure (size, index range) of the object is not changed, although its
elements may contain new values afterwards.

4.5 Type Definitions

The following standard types and constants are used:

typedef double Real;

typedef int Int;

typedef int Bool;

const Bool false = 0, true = 1;

extern Real epsMach, sqrtEpsMach, pi;

Here, epsMach is the relative machine precision for Real and sqrtEpsMach
its square root. These constants are set automatically.

4.6 Message and Error Handling

We distinguish three types of messages:

• Messages: providing information about the regular behaviour of the
program

• Warnings: providing information about some irregular behaviour of
the program (recoverable errors)

17

• Errors: not recoverable errors leading to the termination of the pro-

gram

A typical not recoverable error is a bound error in a matrix or vector class
or a similar bad argument in a procedure. Since the use of such a bad data
would lead to a logic error, the program is aborted. Corresponding to the

three types of messages, we provide the functions Message, Warning and
Error .

extern void Message(char *format ...);

extern void Warning(char *format ...);

extern void Error(char *format ...);

They are called with a printf -like format string and variable argument list.
These functions print the type of the message followed by the message itself
on the current error stream cerr .

� The Matrix Vector Library

The last few years gave birth to an almost exponentially increasing number
of C++ class libraries for the basic mathematical objects of vectors and
matrices. We would like to mention Rogue Wave’s rather complete and
efficient Linpack.h++ library and the new C++ front end Lapack++ of

the Lapack numerical linear algebra library. Regarding these libraries it
seems to be completely superfluous to develope one’s own. Nonetheless, we
use our own classes. The main reason for that is that we are still looking for
a C++ class library that meets all our demands. It should

• have an easy and consistent interface

• allow a flexible access to substructures avoiding copying

• be highly efficient concerning storage and speed

• provide arbitrary lower index bounds

• be public domain

• offer support

18

For the first three points, Linpack.h++ is definitely the standard which

seems to be also met by Lapack++ (being still under development). Both
packages are based on the BLAS libraries and thus may exploit the architec-
ture of the actual platforms. The Lapack++ library has the advantage that
it is public domain and thus satisfies the most restrictive demand. The fourth

requirement is more of aestetical nature. Using arbitrary index ranges (e.g.,
from −5 to 5) allows to implement a mathematical algorithm in its most
natural notation. Since this feature is easily accomplished in C, we would

give up this point only reluctantly.
In this situation our strategy was to define a C++ interface for vectors and

matrices that may serve as a placeholder for any other library. Hence, the
package presented here is definitely not meant as a substitute for the general

purpose libraries mentioned above. Its main objective is to simplify and
unify the usage of vectors and matrices in the context of the ODE package.
Accordingly, we tried to restrict the functionality to the major functions
provided by almost all linear algebra class libraries such as element access,

arithmetic operators, assignment and solver classes. Fortunately, the design
of the libraries seems to converge in the sense that most libraries use similar
semantics and even the same storage schemes (see the data-view concept
below).

Naturally, our decision for using our own classes was influenced by the fact
that we only had to implement the C++ interface, since we already had the
modular C library at hand which the extrapolation codes in C (cf. [HW92])

are based on.

5.1 The Base Class MyObject

Table I sketches the class hierarchy of the libraries. At the top of the class

hierarchy we have defined a class MyObject which provides

• Standardized input and output via the virtual members ReadFrom and

PrintOn. Overloading these functions automatically defines the stream
operators >> and << in a suitable way. Thus, we avoid the corre-
sponding operator friends in the derived classes.

• The message and error handling for classes. Calling the functions Mes-
sage, Warning, or Error inside a member function, these functions

19

Range
MathData
MyObject Command

MathView VecView IntVec
RealVec
ComplexVec

MatView IntMat
RealMat
ComplexMat

MatrixSolver LRSolver
QRSolver

ListNodeBase ListNode
ListIterBase ListIter
ListBase List
Shell MiniTcl
ExtObject Ode BrussOde

ChemOszOde
VarOde

Integrator HpIntegrator ExMethod Eulsim
Eulex

IntegrationProtocol HpProtocol
HpStep EulsimStep

Table I. Class hierarchy of the libraries

20

print the type of the message followed by the class name defined by the

virtual function Name and the message itself.

• A control facility counting the instances ofMyObjects . The static mem-
ber function MyObject::Count should return zero at the end of a pro-

gram (if there are no MyObjects left).

As an example regard the following piece of code:

class A : public MyObject {

public:

char *Name() const { return "A"; }

void F(Real x) {

if (x<0) Warning("F: x=%f less than zero", x);

}

}

main() {

A a;

a.F(-1);

}

Calling main will print the warning:

warning: A::F: x=-1 less than zero

5.2 The List Template

The class List is the only template class in the whole package. It supports
the typical functions of lists like insertion, removal, and access, and it is

implemented as a doubly linked list of pointers to objects of the given type
(cf. Stroustrup [Str91]). Loops through a list are implemented via the usual
iterator class. The following example contains some of the features.

List<RealVec> list;

RealVec x, y, *p;

list.AppendHead(&x);

list.AppendTail(&y);

list.InsertBefore(&x, &y);

21

list.InsertAfter(&x, &y);

ListIter<RealVec> iter(list);

for (iter.First(); p=iter(); iter++) cout << *p << ’ ’;

for (iter.First(); iter; iter++) cout << *iter() << ’ ’;

cout << "list: " << list << ’\n’;

cout << "remove " << *list.Remove(&a) << endl;

Here, we consider a list of vectors of real numbers. The first list commands
show how to put new objects at the head or tail of the list and before or

after a given object. The next lines demonstrate two different ways to use
the iterator class. Finally, we show the output procedure (based on the
PrintOn function) and the removal of a single element from the list. The
function Remove returns the pointer to the removed object so that it can

be deleted by the user afterwards. To remove all elements, call the method
EmptyList . The function DeleteAll not only removes all elements from the
list but also deletes the pointed to objects.

5.3 The Minimal Command Language

The package contains a minimal object oriented interface to a command lan-
guage tool such as the well-known tcl (tool command language) by Ouster-
hout. We only make use of user-defined commands and variables of integer,

double or string type. This minimal subset of functions of a command lan-
guage is encapsuled in the abstract class Shell .

typedef int (*CommandProc)(void *data, int argc, char **argv);

class Shell : public MyObject {

public:

virtual void MainLoop() = 0;

virtual void Prompt(char*) {}

virtual void CreateCommand(

char* name, // name of the command

void* clientData, // pointer to user data

CommandProc proc // pointer to user procedure

) = 0;

virtual Real GetReal(char *name, Real defaultValue) = 0;

22

virtual Int GetInt(char *name, Int defaultValue) = 0;

virtual char *GetString(char *name, char *defaultValue) = 0;

virtual void Result(char *) {}

char *Name() const { return "Shell"; }

};

A user defined command procedure has to be of type CommandProc. A
new command for a shell is defined using the method CreateCommand . The
shell should at least know the command exit to leave the command shell and

the commands set and unset to define and undefine variables. The abstract
virtual methods Get<type> should give the value of the corresponding vari-
able, if it is set and of the corresponding type. Otherwise, the default value

should be returned. The function MainLoop starts the command shell and
thus gives the control to the command language.
An implementation of this minimal command language is given by the

class MiniTcl . Due to the intensive use of the list structure, it comprises

only a few pages of source code. The following example demonstrates most
of the features.

static int CmdPrint(void *data, int argc, char **argv) {

Shell *shell = (Shell *) data;

Bool done;

if (done = argc==2) {

if (strcmp(argv[1], "tol") == 0) {

cout << "tol = " << shell->GetReal("tol", 1e-4);

}

else {

done = false;

shell->Result("error: unknown parameter");

}

}

else shell->Result("usage: print <parameter>");

return done;

}

main() {

Shell *shell = new MiniTcl();

23

shell->CreateCommand("print", shell, CmdPrint);

shell->Prompt("main>");

shell->MainLoop();

delete shell;

}

We define a command procedure print that may be used to print all the
variables which correspond to parameters of a program. Here, we only con-

sider the single real accuracy parameter tol. The command procedures are
called in the standard C format with the number of arguments followed by
the array of argument strings. If the argument of print is different from tol,
we print an error message. Otherwise, we print the value of the variable tol.

Since we used the pointer to the shell as client data, we know the calling
shell and are able to look for the variable tol. If it is not defined or if it is no
real number, the default value 10−4 is printed.
Observe that there may be arbitrary many command shells, each with its

own list of commands and variables. This may be used to implement several
command levels, where a main shell gives control to a subshell, etc.

5.4 Matrix and Vector Classes

So far, the package only contains classes for full matrices and vectors of Reals

and integers as well as classes for LR and QR decomposition.

remark 1. The class library will be extended by complex matrices and
vectors (which already exist but are not yet contained in the public library),
symmetric and antisymmetric matrices and the computation of eigenvalues.

The matrix and vector classes are supplied with the standard arithmetic oper-

ators (=, +=, -=, *=, +, -, *). Moreover, we defined for vectors and matrices
of Real the (scaled) Euclidian product and norm, and the (componentwise)
functions abs, min and max .

For the algebraic solvers, we employ the standard interfaces as used by
most object oriented linear algebra packages. For each solver, such as LR
and QR decomposition, there is an associated class derived from a base
class Solver . A preparatory method called Decompose should contain the

decomposition step. If this step has been successful, calling

24

Solve(const RealVec& b, const RealVec& x)

computes the solution of the linear system Ax = b. Here, x has to be well

sized. The following example shows a typical usage of the LR solver class.

Int n=3;

RealMat A(n);

RealVec b(n), x(n);

LRSolver solver(A);

Set A and b.

if (!solver.Decompose()) Warning("LR decomposition failed");

else {

solver.Solve(b, x);

cout << "solution x = " << x << endl;

}

The solution may be equivalently obtained from Solution(const RealVec& b)

as is the following example.

Int n=3;

RealMat A(n);

RealVec b(n);

LRSolver solver(A);

Set A and b.

if (!solver.Decompose()) Warning("LR decomposition failed");

else {

cout << "solution x = " << solver.Solution() << endl;

}

25

5.5 Index Ranges

While many packages use a fixed lower index (in most cases 0 as in C),
we prefer arbitrary index ranges of contiguous integers corresponding to the
mathematical formulation. As an example,

RealVec x(-5, 5);

defines a vector of Reals having 11 elements indexed from −5 to 5. Similarly,

RealMat A(0, m, 1, n);

defines a matrix of Reals with m + 1 rows (form 0 to m) and n columns,
where m and n are some positive integers. The default lower index is always

1 (as in the mathematical literature) so that

IntVec v(10);

is synonymous to IntVec v(1, 10) and similarly

IntMat A(m, n), B(n);

means IntMat A(1, m, 1, n), B(1, n, 1, n).

5.6 The Data-View Concept

A widely accepted concept for the design of linear algebra classes is the
distinction between the data and the different ways to access these data in
terms of mathematical objects such as vectors and matrices. Following Rogue

Wave’s Linpack.h++, we call this principle the data-view concept (which
coincides with the concept of ‘virtual vectors and matrices’ as developed by
M. Wulkow and the author). The data are thought of as contiguous block of
memory, a view as a pointer to some block of data and a description of the

view’s structure (size, index ranges, etc.). Since the same block of data may
be accessed by different views, copying is reduced to a minimum. Moreover,
the allocation and deallocation of memory, which produces at least 50% of
all C errors, is confined to the single class defining the block of data. The

memory is freed properly by simply counting the views on the data (via
constructor/destructor) and deallocating the block if no view is left.

26

5.6.1 Realization

The implementation of the data-view concept is based on two classes, Math-
Data and MathView . The former organizes the allocation and deallocation

of contiguous blocks of data, whereas the latter is the base class for all kinds
of views on these data. Although the class MathData is hidden to the user,
it seems to be useful to regard its very simple definition.

class MathData {

friend class MathView;

private:

MathData(Int n, size_t size);

~MathData();

char *s;

Int refs;

};

MathData::MathData(Int n, size_t size) : refs(1) {

s = new char [n*size];

}

MathData::~MathData() {

delete s;

}

By definition, MathData may be used by its friend MathView only.

class MathView : public MyObject {

public:

MathView();

MathView(Int n, size_t size);

MathView(const MathView& x);

virtual ~MathView();

protected:

void Reference(const MathView&);

void *Data();

MathData *data;

};

27

MathView::MathView() : data(0) {}

MathView::MathView(Int n, size_t size) {

if (n<1) Error("negative length %d", n);

data = new MathData(n, size);

}

MathView::MathView(const MathView& x) {

data = x.data;

if (data) data->refs++;

}

MathView::~MathView() {

if (data) if (--data->refs == 0) delete data;

}

Its main constructor MathView(Int, size t) initializes the MathData pointer

data with an appropriate block of data, thereby setting its references counter
to 1. The copy constructor MathView(const MathView&) constructs a new
view to the data of the given MathView argument. Accordingly, only the

MathData pointer is copied and its reference counter incremented by 1. To
free the data block properly, the MathView destructor decrements the refer-
ence counter of its data and deletes the data only if no view to these data is
left.

5.6.2 Assignment and Copy Constructor

A crucial point for a consistent and efficient structure of the mathemat-
ical matrix-vector classes are the semantics of the copy constructor and
the assignment operator. For an easy migration to the (commercial) Lin-

pack.h++ package, we follow the semantics of this matrix-vector library.

• Assignment: The assignment operator of a mathematical container
class (derived from MathView) is realized as elementwise copy, i.e., the
values of the elements of the right hand side are copied to the elements

of the left hand side. Both objects have to be of the same structure
(size, index range). Otherwise, an error occurs.

28

• Copy constructor: A copy constructor creates a new view on the data

of the given MathView argument. Thus, the new object refers to the
same block of data.

Since the assignment operator does not change the structure of the left hand

side, the view remains unaltered in the bitwise sense. Hence, assignment is
a const operator.

5.6.3 Access to Substructures

Let us consider the following example for the copy constructor. The lines

RealVec x(5);

RealVec y = x;

first construct a vector x of five real components and then let y be a vector

pointing to the same data. At first sight it appears rather dangerous to permit
two objects to point to the same data. And, obviously, we would hardly use
two different names for an identical view on the same data as in the example
above. The definition of the copy constructor allows us, however, a very

flexible access to substructures of mathematical objects without copying. As
a more useful example, regard the following sequence:

RealVec x(5);

RealVec y(x, Range(1, 3)), z(x, Range(4, 5));

We create three different views on the same data. The helper class Range

describes a range of integers, here from 1 to 3 and from 4 to 5, respectively.
The constructor

RealVec::RealVec(const RealVec& x, const Range&, Int l=1);

creates a view on the the given range of the data of the argument vector x
with l as the new lower index bound (default 1). Consequently, y is a vector
pointing to the first three elements of x and z to the last two components of

x. Mathematically speaking, the data are viewed either as the single vector
x ∈ R5 or the pair (y, z) ∈ R3×R2. The assignment

z(1) = 5;

29

for example, sets the fourth component of x to 5.

Obviously, this is only the simplest example of a substructure. The package
allows vector type substructures of arbitrary contiguous blocks of data. Since
we store matrices columnwise, we may for instance view a column of a matrix
as a vector:

RealMat A(4, 5);

RealVec x = A.Column(2);

Here, x is a view on the second column of the matrix A.

remark 2. In contrast to the Linpack.h++ library, vectors have to
point to contiguous blocks of data. Otherwise, we would have to use variable

increments to access vector components. For small to medium sized vectors
this is a major drawback, since the direct access v[i] for a pointer Real *v is
2-7 times faster than the access v[i*step] with a variable integer increment
step (measured on a Sparc workstation and a 486 PC, the factor depending

on the compiler and the optimization). As a consequence, we can only view
either rows or columns of matrices. Since we prefer the latter, we adopted
the Fortran-like columnwise storage scheme.

In addition, it is possible to create views on submatrices of a given matrix.

In the following example, B is a view on the submatrix consisting of the first
two rows of the last two columns of A.

RealMat A(4, 5);

RealMat B(A, Range(1, 2), Range(4, 5));

We also implemented the operator() for Range arguments, giving the corre-
sponding substructure as result. Thus, the subvector structure x = (y, z)

may be almost equivalently realized as

RealVec x(5);

RealVec y = x(Range(1, 3)), z = x(Range(4, 5));

The only difference is that an additional temporary view is created as the
argument of the copy constructor. A more helpful example is the assignment
to a submatrix:

30

RealMat A(10), B(5);

A(Range(1, 5), Range(1, 5)) = B;

Here, the 5× 5 matrix B is copied (elementwise) to the upper left submatrix
of A.
It is also possible to interpret a matrix as a vector and vice versa. As an

example, we view the six elements of v once as a (2, 3)-matrix A and once as

a (3, 2)-matrix B.

RealVec v(6);

RealMat A(v, 2, 3), B(v, 3, 2);

The storage scheme looks like follows:

v = 1 2 3 4 5 6 −→ A =
1 3 5

2 4 6
B =

1 4

2 5

3 6

Hence, the matrix elements A(2, 2) and B(1, 2) both point to the fourth
component v(4) of v.

5.6.4 Copy Constructor and Temporary Objects

Besides the access to substructures, the most important application of the

copy constructor are temporary objects. Suppose you have defined a function

RealVec Result() {

RealVec result(5);

...

return result;

}

returning a temporary RealVec object. What happens if we use this function

in a copy constructor?

RealVec x = Result();

31

In the procedure Result , the compiler creates a new vector with a new block

of data. This temporary object is then used as argument for the copy con-
structor of x. Hence, x becomes a new view on the data of the temporary
variable. These data now have two references. The scope of the temporary
variable ends behind the copy constructor so that its destructor is called af-

terwards. The temporary object is killed, but its data object is not deleted
since there is still a reference left. As a consequence, x is a view on the result
of the procedures. Note that only the pointer to the data is copied rather

than the data themselves.
This usage of the copy constructor and temporary objects is very helpful

for an efficient implementation of binary operators. As an example, the
expression

RealVec y(5), z(5);

RealVec x = y + z;

creates a new vector x that contains the sum of y and z without copying.

Thus, we achieve almost C efficiency. Care must be taken with expressions
such as

RealVec x(5), y(5), z(5);

x = y + z;

Here, the copying is inavoidable. Furthermore, in contrast to a C imple-
mentation of the same expression, a temporary object is first created and
then destroyed including its data. Thus, it is often more efficient to intro-

duce a new variable (see also section 5.6.5). Moreover, the use of the unary
operators +=, –=, etc., is always very efficient.

5.6.5 Copy and Reference

Suppose you want to get a physical copy of a vector RealVec x . You can not
use a copy constructor

RealVec y = x;

to this end, since it only makes a copy of the view but not of the data .
Therefore, we defined for each MathView class a member function Copy()
that returns a complete physical copy of the given object. Hence, the line

32

RealVec y = x.Copy();

will do the job. Now suppose that you want to change an already created
vector RealVec x . In this case, the assignment operator is of no use, since
it does not change any view. Hence, we introduce a member function Ref-

erence(MathView&) that changes the view to the given argument. Thereby,
the old view is destroyed. Thus, the function Reference may be interpreted
as an assignment for the views in contrast to the elementwise assignment
operator. Consequently, the expression

x.Reference(y);

changes the vector x to the given vector y. Afterwards, x and y point to the

same data. Moreover, the line

x.Reference(y.Copy());

changes x to a physical copy of y. As this situation occurs quite often, we

have defined a corresponding function Copy(MathView&) so that

x.Copy(y);

does the same.

� The ODE Library

The basic idea behind the classes was to provide as much flexibility as possible
while keeping the interfaces simple for standard applications. Thus, the user
should be able to define his own solvers, scaling procedures or trajectories,
but he/she does not need to do so in order to solve a standard ODE. In

C++ this means that we had to make extensive use of virtual functions
which are almost always predefined but could be overloaded by the user.
This concept supersedes the function pointers used in the C implementation.
As an example, the user may explicitly define the derivative of the ODE’s

right hand side, or he/she may trust the default derivative by numerical
differentiation.

33

6.1 The Class Ode

The class Ode represents the base class for first order ordinary differential
equations

x′ = f(x, t)

each ODE problem has to be derived from. It contains a series of virtual
member functions describing

• the right hand side f and (optionally) its derivative

• the handling of implicit discretizations (linear solver etc.)

• a user defined scaling

• a parameter dependence

In the simplest case, the derived user defined ODE only has to define the
right hand side f . The other members are all predefined. Thus, the trivial
scalar ODE x′ = x is defined as follows:

class TrivialOde : public Ode {

public:

TrivialOde() : Ode(1) { autonomous = true; }

virtual Bool f(const RealVec& x, Real t, const RealVec& fx);

virtual Bool Df(const RealVec& x, Real t, const RealMat& A);

char* Name() const { return "TrivialOde"; }

};

Bool TrivialOde::f(const RealVec& x, Real t, const RealVec& fx) {

fx(1) = x(1);

fEval++;

return true;

}

Bool TrivialOde::Df(const RealVec& x, Real t, const RealMat& A) {

A(1, 1) = 1;

dfEval++;

return true;

}

34

6.2 The Ode Solver Classes

The classes for the ODE solvers were designed along the lines of the abstract
order and stepsize control for evolutional h-p methods and their application
to extrapolation codes as described in the first part. The base class Integrator

only provides some formal functionality such as setting the initial time t0,
the final time t1, and the accuracy tol. The problem to be solved is set
by the abstract virtual method SetOde(Ode&). Moreover, it defines the
usage of trajectories (see Section 6.3) and protocols (see Section 6.4). A

typical command sequence for a standard ODE looks as follows (Eulex is an
integrator derived from the base class Integrator , see Section 6.2.3).

main() {

TrivialOde ode;

Integrator *integrator = new Eulex;

integrator->SetOde(ode);

integrator->TStart(0);

integrator->TEnd(1);

integrator->Accuracy(1e-5);

RealVec x0(1), x(1);

x0 = 1;

if (integrator->Solve(x0, x)) {

cout << "solution x = " << x << endl;

}

else cout << "no solution found" << endl;

delete integrator;

}

6.2.1 The Class HpIntegrator

The class HpIntegrator realizes the abstract evolutional h-p method as de-
scribed in Section 1. It is based on the abstract virutal method Discretiza-
tionScheme which is nothing but the discretization scheme (Tk, Ek) intro-
duced in Section 1. The abstract virtual methods Work(Int k) and Info(Int

k) represent the amount of work and information sequences Ak and Bk, re-
spectively. The basic order p is set in the constructor. Due to the protocol

35

facilities (see Section 6.4) we distinguish two modes of operation: The adap-

tive mode, where the orders and stepsizes are chosen adaptively as outlined in
Section 1, and the slave mode, where the orders and stepsizes are taken from a
given protocol. Accordingly, there are two assiciated integration procedures,
AdaptiveSolve and SlaveSolve. A single adaptive h-p step is performed by the

function AdaptiveStep, whereas SlaveStep(const HpStep&) realizes a single
step of the given protocol.
At the beginning of each step the function PrepareStep (adaptive mode)

or PrepareSlaveStep (slave mode) is called. Here, the derived integrator may
compute all the information needed at the initial point x(t) of the integra-
tion step. In an explicit method this might be the function value at (x, t).
In a linearly implicit method we may also need the evaluation of the Jaco-

bian fx(x, t) at (x, t). If the solution is written to a trajectory, the method
SavePoint is called after each accepted integration step.
For a flexible scaling strategy, the algorithm uses the virtual methodsNorm

and Rescale. The former defines the current (scaled) norm, whereas Rescale

is called after each accepted integration step to update the scaling.

6.2.2 The Class ExMethod

The class ExMethod implements an abstract extrapolation method as a spe-
cial case of an evolutional h-p method as described in Section 2. Hence, the
discretization scheme for the h-p method (method DiscretizationScheme in

its base class HpIntegrator) is defined by extrapolating a basic discretization
scheme over the inner stepsizes given by a subdivision sequence. The ba-
sic integration formula Dt+H,t

n (x) introduced in Section 2 has to be given as

the abstract virtual method BasicIntegrator . The subdivision sequence nk is
represented by the virtual method Sequence(Int k).
In addition to the functions needed for the h-p method, the class ExMethod

contains the major parts of the algorithm for continuous output according

to Hairer and Ostermann [HO90]. If the derived extrapolation method (e.g.
Eulex or Eulsim) provides the table f of function values at the inner grid
points, the method ForwardDerivatives may be used to compute an extrap-
olated approximation of the derivatives at the beginning of the integration

step. These approximation are then used in HermiteTrajectory (see Section
6.3) for the Hermite interpolant defining the continuous approximation of

36

the trajectory.

6.2.3 The Class Eulex

The simplest example of an extrapolation code is based on the explicit Euler
discretization. The corresponding class Eulex defines the BasicIntegrator of

its base class ExMethod as the given number of explicit Euler steps. As
preparation of a single h-p step, we only have to evaluate the ODE’s right
hand side f at the beginning (x, t) of the integration interval. This value is
then saved for the forthcoming basic integration steps.

6.2.4 The Class Eulsim

The extrapolation code Eulsim based on the linearly implicit Euler formula
for stiff ODEs is only sligthly more complicated. In the preparation proce-

dure, we not only have to evaluate the right hand side f , but in addition the
Jacobian fx(x, t). Note that to this end, the virtual method Jacobian of the
given Ode is called that may be redefined by the user. Furthermore, we have
incorporated the residual oriented monotonicity test as sketched in Section

2.3. It is realized in the method MonotonicityTest .

6.3 The Trajectory Classes

If not only the solution at the final time is of interest, we have to save

some information in the course of the integration process. To this end, we
introduced some classes describing trajectories.
The abstract class Trajectory may be used to store information about the

trajectory approximated by the integration process. Once a Trajectory is
given to an Integrator by Integrator::OpenTrajectory , the integrator calls the
virtual function

Trajectory::SavePoint(const RealMat& x, Real t, Int p)

after each integration step. The matrix x contains the solution x(t) at the
current time t and the derivatives x′(t), . . . , x(p)(t) as column vectors.
As an example, the class HermiteTrajectory provides continuous output

by Hermite interpolation of the pointwise solution obtained in the integra-
tion process. Therefore, the solution and all available derivatives are stored

37

at each integration point (class IntegrationPoint). In a second step, this

information is transferred to the Hermite coefficients of the interpolating
polynomials (class IntegrationStep). Thus, we obtain a piecewise polynomial
approximation of the solution. To get the solution at an arbitrary time t, we
look for the enclosing integration interval in the list of integration steps and

evaluate the corresponding Hermite polynomial.
In the following sample program we employ the Hermite interpolation

classes to print the solution for t = 0, 0.1, 0.2, . . . , 1.

TrivialOde ode;

Eulex eulex(ode);

HermiteTrajectory phi;

eulex.TStart(0);

eulex.TEnd(1);

eulex.Accuracy(1e-5);

eulex.OpenTrajectory(phi);

RealVec x(1);

x(1) = 1;

if (eulex.Solve(x, x)) {

cout << "solution x(1) = " << x << endl;

for (Real t=0; t<=1; t+=0.1) {

cout << "solution x(" << t << ") = " << phi(t) << endl;

}

}

6.4 The Protocol Classes

For some applications it is useful to save information about the integration
process such as stepsizes and orders. As an example, we may wish to ‘freeze’

the order and stepsize sequence if two or more similar initial value problems
are to be solved, thus avoiding the adaptivity overhead. A typical application
is the integration of a variational equation along a given trajectory. In this
context it is often feasible to switch off the adaptive stepsize control and

to employ the order and stepsize sequence of the integration process for the
trajectory, i.e., the original ODE.

38

To realize this kind of stepsize freezing, we defined the class IntegrationPro-

tocol and the associated member functions of the Integrator class. These
functions only provide a formal framework for the use of protocols. The de-
rived integrator classes determine which kind of data is actually needed to
protocol the integration process. The h-p integrator, for example, uses the

class HpProtocol which mainly consists of the list of order-stepsize pairs. An
Integrator should be able to construct a new protocol by the virtual function
Integrator::NewProtocol . The usage of protocols is most easily described by

the following example.

TrivialOde ode;

Integrator *integrator = new Eulsim(ode);

IntegrationProtocol *protocol = integrator->NewProtocol();

RealVec x0(1), x(1);

integrator->Accuracy(1e-5);

integrator->TStart(0);

integrator->TEnd(1);

x0 = 1;

integrator->OpenForWriting(*protocol);

if (integrator->Solve(x0, x)) cout << "x = " << x << endl;

integrator->CloseProtocol();

x0 = 1.1;

integrator->OpenForReading(*protocol);

if (integrator->Solve(x0, x)) cout << "x = " << x << endl;

delete protocol;

delete integrator;

We first get a new protocol from the current integrator and set the standard

arguments (initial and final time, accuracy) of the integrator. Then, we solve
the (trivial) ODE for the initial value x0 = 1 writing the information about
the integration process to the protocol. In a second go, we use this protocol
to solve the same ODE for the initial value x0 = 1.1. Here, the integrator

employs the order and stepsize sequence from the first integration. In other
words, the two solutions are computed by the same formula. Obviously,

39

this saves the adaptivity overhead but not necessarily guarantees a correct

solution, even for small perturbations of the initial value. On the other hand,
the thus obtained approximation depends smoothly on the initial value, since
it corresponds to a fixed integration formula.

References

[Deu83] P. Deuflhard. Order and stepsize control in extrapolation meth-
ods. Numer. Math., 41:399–422, 1983.

[Deu89] P. Deuflhard. Uniqueness Theorems for Stiff ODE initial Value
Problems. In Proceedings 13th Biennial Conference on Numerical
Analysis, pages 74–88. University of Dundee, 1989.

[GB86] W. Gui and I. Babuška. The h, p and h-p versions of the finite
element method in one dimension, Part 1 to 3. Numer. Math.,
49:577–683, 1986.

[HNW87] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Dif-
ferential Equations I, Nonstiff Problems. Springer Verlag, Berlin,

Heidelberg, New York, Tokyo, 1987.

[HO90] E. Hairer and A. Ostermann. Dense ouput for extrapolation meth-
ods. Numer. Math, 58:419–439, 1990.

[Hoh93] A. Hohmann. Inexact Gauss Newton Methods for Parameter De-
pendent Nonlinear Problems. PhD thesis, Freie Universität Berlin,
1993.

[HW92] A. Hohmann and C. Wulff. Modular design of extrapolation codes.
Technical Report TR 92-5, Konrad-Zuse-Zentrum, Berlin, 1992.

[Str91] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, second edition, 1991.

