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A Jack of all Trades?
solving stochastic mixed-integer nonlinear constraint programs

Thomas Arnold Timo Berthold Stefan Heinz Stefan Vigerske
René Henrion Martin Grötschel Thorsten Koch Caren Tischendorf
Werner Römisch

1 Introduction

Natural gas is one of the most important energy sources in Germany and Europe.
In recent years, political regulations have led to a strict separation of gas trading
and gas transport, thereby assigning a central role in energy politics to the trans-
portation and distribution of gas. These newly imposed political requirements in-
fluenced the technical processes of gas transport in such a way that the complex
task of planning and operating gas networks has become even more intricate.

There are many requirements to be met by gas network operators: They do not
only have to guarantee a safe and reliable operation of the network, they also have
to provide access for customers (e.g., gas traders, public services, industrial firms,
power plants, and energy suppliers) under technical and economic conditions that
are nondiscriminatory, transparent, and at competitive prices. Rejecting access to
the network requires well-founded justification, such as specifying unavoidable
costs caused by accepting a customer’s request. These and other requirements call
for technical and economic expertise in gas network planning far beyond current
capabilities.

A key concept of the new framework of gas transport is the “Entry/Exit Model”:
capacities for injection and extraction of gas are sold through different and indepen-
dent contracts. Customers do not have to specify anymore from which entry point
to which exit point of the network the gas should be transported, the transport com-
pany has to guarantee that any combination of entry and exit points is technically
feasible. The term “technical capacity” in political regulations is meant to denote
the maximum capacity available at an entry or exit point in the gas network. Even
if this concept is assumed to be reasonable, it is mathematically not well-defined, if
one considers the requirement of arbitrary combinations between exits and entries
as requested by the two-contract model. Thus, a basic theoretical and computa-
tional analysis of gas transport is needed [37] – not only by the network operators
themselves: The regulatory bodies are also highly interested in such questions.

Mathematically, the combination of discrete decisions on the configuration of
a gas transport network, the nonlinear equations describing the physics of gas,
and the uncertainty in demand and supply yield large-scale and highly complex
stochastic mixed-integer nonlinear optimization problems.

The MATHEON project Optimization of Gas Transport takes the key role of mak-
ing available the necessary core technology to solve the mathematical optimization
problems which model the topology planning and the operation of gas networks.



The vision of the project has been to advance the rapid specification and efficient
solution of mixed-integer nonlinear programs with chance constraints. This con-
tinues to have a broad impact on industrial and academic projects inside and out-
side of MATHEON. The mathematical optimization software developed by MATH-
EON scientists in this and in preceding projects has been successfully employed
within MATHEON projects Strategic Planning in Public Transport, Integrated Planning
of Multi-layer Telecommunication Networks, Service Design in Public Transport, Symme-
tries in Integer programming, Improvement of the Linear Algebra Kernel of Simplex-based
LP- and MIP-Solvers, Nonconvex Mixed-Integer Nonlinear Programming, Scheduling
Techniques in Constant Integer Programming, Chip Design Verification with Constraint
Integer Programming, and Combinatorial Optimization at Work, hence crosslinking all
domains of expertise within the application area “Networks”.

The MATHEON project Stable Transient Modeling and Simulation of Flow Networks
aims at modeling guidelines for flow networks guaranteeing stable partial differential-
algebraic equation systems (PDAEs) and identifying prototype space and time dis-
cretizations to ensure stable numerical solutions for such network PDAEs.

An important aspect of the academic impact is the free availability of our frame-
work. As a result of several years of research and development, it is now possible
to download a complete state-of-the-art framework for mixed-integer linear and
nonlinear programming in source code at http://scip.zib.de

The mutual research activities enabled many cooperations, both with industrial
and academic partners. The Forschungskooperation Netzoptimierung (ForNe) 1

takes a key role within our research network. Funded by the Open Grid Europe
GmbH, ForNe connects scientists from University of Nürnberg-Erlangen, Univer-
sity of Duisburg-Essen, TU Darmstadt, Leibniz University Hannover, and three of
the institutions participating in MATHEON: the Humboldt University Berlin, the
Weierstrass Institute, and the Zuse Institute. ForNe deals with capacity and topol-
ogy planning for gas transport networks. In joint effort, we develop optimization-
based methods for checking realizability of gas flow situations and work on tech-
niques that provide cost-effective network expansion measures to increase freely
allocable capacities.

Other cooperations along involved companies like Siemens, SAP, IBM, and fed-
eral authorities like the Bundesnetzagentur (the German office for the electricity
and gas market).

The remainder of this chapter is organized as follows. In Section 2, we will give
a formal definition of MINLPs, the class of mathematical optimization problems
that we have studied. In Section 3, we will describe the design of a global MINLP
solver and highlight our contributions to this field. Stochastic aspects of nonlin-
ear optimization are covered by Section 4. In Section 5, modeling and simulation
aspects for gas transport networks are discussed.

1http://www.zib.de/en/projects/current-projects/project-details/article/forne.
html
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2 Mixed-integer nonlinear programming

Nonlinear optimization problems containing both discrete and continuous vari-
ables are called mixed-integer nonlinear programs (MINLPs). Such problems arise
in many fields, such as energy production and distribution, logistics, engineering
design, manufacturing, and the chemical and biological sciences [23, 40, 43].

A general MINLP can be formulated as

min{ f (x) : x ∈ X} (1a)

with
X := {x ∈ [x, x] : Ax ≤ b, g(x) ≤ 0, xi ∈ Z, i ∈ I} , (1b)

where x, x ∈ R
n determine the lower and upper bounds on the variables (R := R ∪

{±∞}), the matrix A ∈ Rm′×n and the vector b ∈ Rm′ specify the linear constraints,
I ⊆ {1, . . . , n} denotes the set of variables with integrality requirement, f : [x, x]→ R

is the objective function, and g : [x, x] → Rm are the constraint functions. The set
X is called feasible set of (1). The restriction to inequality constraints is only for
notational simplicity. f (x) and g(x) are assumed to be at least continuous, but
efficient solution algorithms often require continuous differentiability, sometimes
also twice continuous differentiability. If f (x) is linear and each gj(x) is a quadratic
function (gj(x) = 〈x, Qjx〉+ 〈qj, x〉+ q̄j for some Qj ∈ Rn×n, qj ∈ Rn, and q̄j ∈ R),
(1) is called a mixed-integer quadratically constrained program (MIQCP).

The combination of discrete decisions, nonlinearity, and possible nonconvexity
of the nonlinear functions in MINLP merges the problems considered in the areas of
mixed-integer linear programming, nonlinear programming, and global optimiza-
tion into a single problem class. While linear and convex nonlinear programs are in
theory solvable in polynomial time [34, 31] and very efficiently in practice [18, 39],
nonconvexities as imposed by discrete variables or nonconvex nonlinear functions
easily lead to problems that are NP-hard in theory and computationally demand-
ing in practice. However, substantial progress has been made in the solvability of
mixed-integer linear programs [19]. As a consequence, state-of-the-art MIP solvers
are nowadays capable of solving a variety of MIP instances arising from real-world
applications within reasonable time [35]. On the other hand, also global optimiza-
tion has been a field of active research and development, see, e.g., the textbooks
[23, 31, 43] and the survey papers [26, 38].

Since its beginning in the mid 1970’s [5, 24], the integration of MIP and global
optimization of NLPs and the development of new algorithms unique for MINLP
has made a remarkable progress, see, e.g., the recent book [36] and the survey pa-
per [6]. While the integration of nonlinear aspects into a MIP solver often accounts
at first only for the easier case where the functions f (x) and gj(x), j = 1, . . . , m,
are assumed to be convex on [x, x] [1, 20], discrete decision variables are inte-
grated into a global optimization solver often by a simple extension of an already
existing branch-and-bound algorithm. Then, the latter is gradually extended by
more advanced MIP machinery (presolving, cutting planes, branching rules, . . .).
In MATHEON, we faced the much harder tasks of incorporating global optimiza-
tion of nonconvex problems, discrete decision variables, and stochastic optimiza-
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Figure 1: Visualizing of the inclusions of the different problem space: con-
straint programs (CP), mixed-integer nonlinear programs (MINLP), mixed-integer
quadratically constrained programs (MIQCP), pseudo Boolean optimization (PBO),
mixed-integer programs (MIP), and satisfiability testing (SAT).

tion techniques into a single framework which is based on constraint programming
concepts, see Section 3.

Even though not competitive with MIP, yet, there exists nowadays a variety
of general purpose software packages for the solution of medium-size nonconvex
MINLPs, see [21, 44] for an overview.

3 SCIP – a solver for MINLPs

Within the MATHEON project Optimization of Gas Transport, we have developed a
general framework for solving the mixed-integer nonlinear programs arising in
gas transport optimization. To this end, we have extended the framework SCIP [2,
4] that has originally been designed to solve mixed-integer linear programs with
extensions to constraint programming (see, e.g., [13, 28, 29]) step by step to handle
different kinds of nonlinearity.

First, we integrated algorithms for solving so-called pseudo-Boolean instances [14],
i.e., optimization problems with constraint functions that are polynomials over
0-1 variables. As a next step, we extended our research towards mixed-integer
quadratic problems, including nonconvexities [12, 16]. Finally, we made the SCIP
framework capable of solving general nonconvex MINLPs to global optimality [44],
incorporating powerful technologies from mixed-integer linear programming, global
optimization of nonlinear programs, constraint satisfaction, and constraint pro-
gramming. At the same time, we incorporated capabilities for stochastic program-
ming, see Section 4. Figure 1 visualizes the relationship between different classes
of mathematical optimization problems.

The most important elements of a branch-and-cut based MINLP solver are a
fast and numerically stable LP solver, cutting plane separators, primal heuristics,
presolving algorithms, and a suitable branching rule. A main focus of our project
was to develop new strategies for primal heuristics and branching.

Often, in MIP and MINLP, problems do actually not need to be solved to proven
optimality. A small gap to optimality might be sufficient, e.g., since the underlying
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Figure 2: A convex MIQCP and the Undercover sub-MIP induced by the NLP re-
laxation.

data contains uncertainty by itself or the user is satisfied with a near-optimal so-
lution because of limitations on the solution time. In both cases, primal heuristics
can help to improve the performance significantly. Primal heuristics are algorithms
that try to find feasible solutions of good quality within a reasonably short amount
of time. Over time, primal heuristics have become a substantial ingredient of state-
of-the-art MIP solvers [7]. In a recent publication, we present an overview of primal
heuristics for MINLP [8].

Large neighborhood search (LNS) has been one focus of our research on primal
heuristics. The main idea of LNS is to restrict the search for “good” solutions to a
neighborhood of specific points – usually close to already known feasible solutions.
This is typically done by defining a sub-MINLP of the original MINLP by fixing
some variables to values from the reference solution, adding some very restrictive
constraints or by modifying the objective to direct the search into a region with
many feasible solutions.

We provided a generic way of generalizing LNS heuristics from MIP to MINLP [15],
for the first time presenting nonlinear versions of Crossover and the DINS heuris-
tic. Further, we introduced RENS [9], the relaxation enforced neighborhood search, a
primal heuristic that uses a sub-MINLP to explore the set of feasible roundings
of an optimal solution of a linear or nonlinear relaxation. We analyzed how the
roundability is affected by different relaxations, the usage of cutting planes and the
fractionality of the solution.

In [10], we developed Undercover, a primal heuristic for nonconvex mixed-
integer nonlinear programs (MINLPs) that explores a mixed-integer linear sub-
problem (sub-MIP) of a given MINLP which is induced by the optimal solution
of a vertex covering problem. An illustration of the Undercover idea can be seen
in Figure 2. The lightly shaded region shows the solid corresponding to the NLP
relaxation; the parallel lines show the mixed-integer set of the MINLP’s feasible
solutions. The darkly shaded area shows the polytope associated with the Under-
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cover sub-MIP.
A minimum cover of an MINLP is an abstract structure that can be studied

and employed beyond the contexts of primal heuristics. In [11], we extended the
Undercover idea towards a branching strategy to subdivide a given MINLP into
disjoint subproblems, which are not only smaller, but also “more linear” [11].

Hybrid branching [3] combines different branching rules (pseudocosts, inference
values, VSIDS and conflict lengths) into a single variable selection criterion, thereby
achieving a stable performance for very different kinds of optimization problems.
Recently, we introduced Cloud branching [17], a framework for branching rules to
exploit the knowledge of alternative relaxation solutions. We showed that a ver-
sion of full strong branching that exploits the idea of cloud branching is about 30%
faster than default full strong branching on a standard MIP test set with high dual
degeneracy.

Having available a strong MIP core and state-of-the-art algorithms to solve non-
convex MINLP, the missing feature for handling energy optimization problems are
the stochastic aspects of the underlying demand and supply. How such problems
can be mathematically modeled and efficiently solved will be described in the next
section.

4 Stochastic aspects

A special class of nonlinear convex constraints are probabilistic constraints. We
consider mixed-integer problems with such constraints of the type

min
{

f (x) |g(x) ≤ 0, P(l ≤ A x + B ξ ≤ l) ≥ p
}

. (2)

Here, f : Rn → R is some objective function, g : Rn → Rm a deterministic con-
straint mapping, ξ some s-dimensional Gaussian random vector on a probability
space (Ω,A, P) and p ∈ [0, 1] some specified safety level. The meaning of the prob-
abilistic constraint is as follows: a decision x is declared to be feasible, whenever
the probability of satisfying the random inequality system

li ≤
n

∑
j=1

Aijxj +
s

∑
j=1

Bij ξ j ≤ li (i = 1, . . . , m)

is at least p. To solve such problems, we added a corresponding cutting plane sepa-
rator to SCIP. The basic idea is to add linear inequalities to the problem formulation
that separate the current solution xLP from the linear relaxed problem without cut-
ting off any part of the feasible set as defined by the nonlinear constraint. In this
sense, the feasible set is approximated by linear constraints. To get a linear con-
straint that does not cut off the feasible set, it is necessary to calculate the gradient
of the constraint mapping

Fξ(x) := P(l ≤ A x + B ξ ≤ l), ξ ∼ N (µ, Σ).

One has to take into account, however, that the function Fξ is not given by an ex-
plicit formula since the probability involved is defined by improper multivariate

6



integrals. On the other hand, there exist efficient codes to approximate distribution
functions of the multivariate normal distribution sufficiently well, see, e.g., [25].
Given the lack of explicit function values Fξ , this is much less true for the gradi-
ents. On the other hand, approximating ∇Fξ by finite differences is not practical
since the inaccuracy of function values Fξ will lead to highly unreliable estimations
of ∂xi Fξ(x) when driving the finite differences step size to zero. Fortunately, for
the case of the multivariate normal distribution, there exists an analytical relation
between function values and gradients of the distribution function (cf. [45]). This
means that no additional inaccuracy, beyond the one already present in the func-
tion values, is introduced when it comes to calculating gradients. In the employed
supporting hyperplane approach this gradient is used to construct a linear con-
straint at a point very close to the feasible set. Such a point is obtained by bisecting
the line between the aforementioned infeasible point xLP and an a priori calculated
point feasible w.r.t. the probability constraint. In this way a cutting plane separator
is defined that allows SCIP to solve MINLPs with probabilistic constraints of type
(2).

Then, we applied this solver to a simplified example of optimal power plant
management (cf. [42]). To be precise, we consider a power management model
consisting of a hydro plant coupled with a wind farm. Electricity produced by both
components serve first to meet the local power demand of some area of interest and
second to sell any surplus electricity on the market. We assume a known constant
inflow of water to the hydro plant. We will also assume that the time profiles for
the market price and for the demand are known for the considered short time pe-
riod. In contrast, we do not neglect the randomness of the wind force, which can
be highly fluctuating over the considered time frame. The wind farm, supported
by a part of the hydro power generation, is supposed to meet the local demand of
electricity. The remaining part of the hydro power generation is sold on the mar-
ket for gaining maximum profit according to the given price signal. The hydro
reservoir may be used to store water and, thereby, to better adapt the water release
strategy to the time profiles of price and demand. In order to exclude production
strategies which are optimal for the given time horizon but at the expense of fu-
ture ones (e.g., maximum production within capacity limits), a so-called end level
constraint is imposed for the final water level in the hydro reservoir. The decision
variables of our problem are the profiles for hydro power generation over the con-
sidered time horizon used to support demand satisfaction or to sell electricity. The
objective function is profit maximization. The constraints are simple bounds on the
total water release, which is either zero or given by the positive operational limits
of the turbine, the filling level of the hydro reservoir and demand satisfaction. The
latter is a random constraint since it is met by the sum of a deterministic compo-
nent of hydro energy and a stochastic component of wind energy. Moreover, to
realize the water release constraints, binary decision variables are necessary. Now,
the planning decision on optimal hydro power generation has to be taken a priori
without knowing future realizations of the random parameter (wind force). Dis-
cretizing the time interval into 48 hour steps, the problem is solved using SCIP as
described above. Figure 3 visualizes the optimal turbining profile and the energy
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Figure 3: Left: Optimal turbining profiles for the hydro reservoir, either switched
off (zero level) or within operation limits (dotted lines), Right: energy supply (wind
plus unsold hydro energy) for 100 simulated wind energy scenarios, demand pro-
file: thick blue curve

demand satisfaction. The turbining profile shows connected parts in which tur-
bines operate within their positive technical limits as well as disrupted parts due
to shut down or switch on decisions. It can be seen in the right picture that most
of the 100 plotted wind profile realizations satisfy the demand at every timestep.
In fact the probabilistic constraint was setup such that 90% of all realizations are
supposed to satisfy the demand through the whole time horizon. In this particular
instance only six of the realizations violate the demand constraint at least once –
and none of them more than twice.

5 Numerical simulation aspects

The transient numerical simulation of gas transport networks aims at a prediction
of the flow q and pressure values p in the network, supposed the pressure supplies
and flow demands are given during the time period of interest. The Project Stable
Transient Modeling and Simulation of Flow Networks addressed flow networks of dif-
ferent kinds: gas, water, current, blood flow. As each flow network, gas transport
networks can be described by the mass flow balance equations in each node and
the network element equations (pipe equations, valve model equations, compres-
sor model equations, etc.) for each branch and node element, see [32].

Restricting to pipes as branch elements, the gas network can be written as a
system of the form [27]

ARqR(t) + ALqL(t) = d(t) (3a)

∂tρ(x, t) + ∂xq(x, t) = 0 (3b)

∂tq(x, t) + a2∂xρ(x, t) = − λ

2D
q(x, t)|q(x, t)|

ρ(x, t)
(3c)

q(xL, t) = qL(t), ρ(xL, t) = A>L ρ(t) + A>Lss(t) (3d)

q(xR, t) = qR(t), ρ(xR, t) = A>R ρ(t) + A>Rss(t) (3e)

with the flows q(x, t) and densities ρ(x, t) along the pipes as well as the demand
flows d(t) and the supply densities s(t) at the nodes. The components of d(t) that
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element models
∂tg(y) + ∂xh(y) =

r(y, t)

net control
parameters
name=”reg1”,
sp=30, ...

netlist
pipe, rnode=”name”,

..., L=93, ...

parser
{n1, n2, ...},
{v1, v2, ...}

topological
analysis

loops, connections, ...

spatial discret.
∂tg(y) + ∆xh(y) =

r(y, t)

network equations
f(∂td(y), y, t) = 0

time dis-
cretization

f(∆td(y), y, t) = 0

nonlinear system
F (y) = 0

Newton type
method

yn = G(yn−1)

initialization
homotopy pro-

viding y0

linear system
Ay = b

preconditioning
P Ay = P b

linear solver
LU, QR, CG,
hybrid, ...

output
y

postprocessing
pressures p,
flows q, ...

Figure 4: Flow diagram for a distributed transient simulation of gas transport net-
works.

do not belong to a demand node equal zero. Each pipe is equipped with one di-
rection and the convention that it directs from the left node xL to the right node
xR. Correspondingly, qL(t) and qR(t) are the flows at the left and right nodes. The
incidence matrices AR and AL describe the branch to node relation for right and
left nodes. Finally, ρ(t) are the densities of all non-supplying nodes.

The equation (3a) describes the flow balance equation at each node. The equa-
tions (3b) and (3c) represent the isothermal Euler equations for slow flows where
the geodesic height differences are neglected and the gas equation is approximated
by

p(x, t) = a2ρ(x, t)

with a constant sound velocity a ∼ 300ms−1, see e.g. [22, 30, 41]. The equations
(3d) and (3e) reflect the boundary conditions for each pipe.

Figure 4 visualizes the distributed transient simulation of a gas transport net-
work described by (3a)-(3e). It bases on three input pillars. The first one comprises
the element models, e.g. pipe equations or valve model equations. The second one
reflects the network topology in form of netlists, and the third one describes the
scenario variables as flow demands and pressure supplies. As a result one gets the
pressure and left/right flow values at each node.

Addressing the aim to optimize the dispatching of gas networks, one has to
run a large number of simulations with different parameters and scenarios. It de-
mands to reduce the time effort for each simulation run. We developed two ways
of acceleration. Instead of running the simulation of the original model equations
with various parameter values, we developed a delta algorithm that computes ef-
ficiently the differences of solutions for model equations with different parameter
values [33]. Secondly, it has been shown [27] that the system (3a)-(3e) can be trans-
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formed into a system of the form

u′(t) = f (u(t), v1(t), v2(t), t) (4a)

v1(t) = g(u(t), v2(t), t) (4b)

v2(t) = Ms′(t) (4c)

after a space discretization with just one linear finite element for each pipe. It has
the advantage that the implicit structure of (3a)-(3e) is transformed into an explicit
structure that can be solved more efficiently. Additionally, the explicit structure
allows a direct application of POD methods resulting in efficient reduced order
models, see [27].

References

[1] K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-approximation-
based solver for nonlinear mixed integer programs. INFORMS Journal On Computing,
22(4):555–567, 2010.

[2] Tobias Achterberg. SCIP: Solving Constraint Integer Programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

[3] Tobias Achterberg and Timo Berthold. Hybrid branching. In Willem Jan van Hoeve
and John N. Hooker, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR
2009, volume 5547 of Lecture Notes in Computer Science, pages 309–311. Springer, May
2009.

[4] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint inte-
ger programming: A new approach to integrate CP and MIP. In Laurent Perron and
Michael A. Trick, editors, Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008, vol-
ume 5015 of Lecture Notes in Computer Science, pages 6–20. Springer, May 2008.

[5] E. M. L. Beale. Branch and bound methods for numerical optimization of non-convex
functions. In M. M. Barritt and D. Wishart, editors, COMPSTAT 80 Proceedings in
Computational Statistics, pages 11–20, Vienna, 1980. Physica-Verlag.

[6] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, Jim Luedtke, and
Ashutosh Mahajan. Mixed-integer nonlinear optimization. Preprint ANL/MCS-
P3060-1121, Argonne National Laboratory, 2012.

[7] T. Berthold. Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin, 2006.

[8] Timo Berthold. Primal MINLP heuristics in a nutshell. ZIB-Report 13-42, Zuse In-
stitute Berlin, 2013. http://opus4.kobv.de/opus4-zib/frontdoor/index/index/
docId/4217. Accepted for publication in Proceedings of OR 2013.

[9] Timo Berthold. RENS – the optimal rounding. Mathematical Programming Computation,
2013. online first publication.

[10] Timo Berthold and Ambros M. Gleixner. Undercover: a primal MINLP heuristic ex-
ploring a largest sub-MIP. Mathematical Programming, 2013. online first publication.

[11] Timo Berthold and Ambros M. Gleixner. Undercover branching. In Vincenzo Boni-
faci, Saverio Caminiti, Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors,
Proc. of SEA 2013, volume 7933 of LNCS, pages 212–223. Springer, 2013.

10

http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/4217
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/4217


[12] Timo Berthold, Ambros M. Gleixner, Stefan Heinz, and Stefan Vigerske. Analyzing
the computational impact of MIQCP solver components. Numerical Algebra, Control
and Optimization, 2(4):739–748, 2012.

[13] Timo Berthold, Stefan Heinz, Marco Lübbecke, Rolf H. Möhring, and Jens Schulz. A
constraint integer programming approach for resource-constrained project schedul-
ing. In Andrea Lodi, Michela Milano, and Paolo Toth, editors, Proc. of CPAIOR 2010,
volume 6140 of LNCS, pages 313–317. Springer, June 2010.

[14] Timo Berthold, Stefan Heinz, and Marc E. Pfetsch. Nonlinear pseudo-boolean opti-
mization: relaxation or propagation? In Oliver Kullmann, editor, Theory and Appli-
cations of Satisfiability Testing – SAT 2009, volume 5584 of Lecture Notes in Computer
Science, pages 441–446. Springer, July 2009.

[15] Timo Berthold, Stefan Heinz, Marc E. Pfetsch, and Stefan Vigerske. Large neighbor-
hood search beyond MIP. In Luca Di Gaspero, Andrea Schaerf, and Thomas Stützle,
editors, Proceedings of the 9th Metaheuristics International Conference (MIC 2011), pages
51–60, 2011.

[16] Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP framework to
solve MIQCPs. In Jon Lee and Sven Leyffer, editors, Mixed Integer Nonlinear Pro-
gramming, volume 154 of The IMA Volumes in Mathematics and its Applications, pages
427–444. Springer, 2011.

[17] Timo Berthold and Domenico Salvagnin. Cloud branching. In Carla Gomes and
Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, volume 7874 of Lecture Notes in Computer
Science, pages 28–43. Springer Berlin Heidelberg, 2013.

[18] R. E. Bixby. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3–15, 2002.

[19] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: theory and
practice – closing the gap. In M. J. D. Powell and S. Scholtes, editors, System Modelling
and Optimization: Methods, Theory and Applications, pages 19–49. Kluwer Dordrecht,
2000.

[20] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, G. Cornuéjols, Ignacio E. Gross-
mann, Carl D. Laird, Jon Lee, Andrea Lodi, F. Margot, Nicolas Sawaya, and Andreas
Wächter. An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5(2):186–204, 2008.

[21] Michael R. Bussieck and S. Vigerske. MINLP solver software. In J. J. Cochran et.al.,
editor, Wiley Encyclopedia of Operations Research and Management Science. Wiley & Sons,
Inc., 2010.

[22] K. Ehrhardt and M. C. Steinbach. Nonlinear optimization in gas networks. Modeling,
simulation and optimization of complex processes, page 139–148, 2005.

[23] Christodoulos A. Floudas. Deterministic Global Optimization: Theory, Algorithms and
Applications, volume 37 of Nonconvex Optimization and Its Applications. Kluwer Aca-
demic Publishers, 2000.

[24] J. J. H. Forrest and J. A. Tomlin. Branch and bound, integer, and non-integer program-
ming. Annals of Operations Research, 149(1):81–87, 2007.

[25] A. Genz and F. Bretz. Computation of Multivariate Normal and t Probabilities, volume
195 of Lecture Notes in Statistics. Springer, Heidelberg, 2009.

[26] Chrysanthos Gounaris and Christodoulos A. Floudas. A review of recent advances in
global optimization. Journal of Global Optimization, 45:3–38, 2009.

[27] S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, and P. Benner. Model Or-
der Reduction of Differential Algebraic Equations Arising from the Simulation of Gas Trans-
port Networks. DAE-Forum: Progress in Differential-Algebraic Equations - Deskriptor
2013. Springer, 2014. to appear.

11



[28] Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck. Recent improvements using
constraint integer programming for resource allocation and scheduling. In Carla P.
Gomes and Meinolf Sellmann, editors, Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, 10th International Confer-
ence, CPAIOR 2013, volume 7874 of Lecture Notes in Computer Science, pages 12–27.
Springer, 2013.

[29] Stefan Heinz, Jens Schulz, and J. Christopher Beck. Using dual presolving reductions
to reformulate cumulative constraints. Constraints, 18(2):166–201, 2013.

[30] M. Herty, J. Mohring, and V. Sachers. A new model for gas flow in pipe networks.
Mathematical Methods in the Applied Sciences, 33(7):845–855, 2010.

[31] Reiner Horst and P. Pardalos. Handbook of Global Optimization, volume 2 of Nonconvex
Optimization and Its Applications. Kluwer Academic Publishers, 1995.

[32] L. Jansen and C. Tischendorf. A Unified (P)DAE Modeling Approach for Flow Networks.
DAE-Forum: Progress in Differential-Algebraic Equations - Deskriptor 2013. Springer,
2014. to appear.

[33] Lennart Jansen and Caren Tischendorf. Effective numerical computation of parameter
dependent problems. In Bastiaan Michielsen and Jean-René Poirier, editors, Scientific
Computing in Electrical Engineering SCEE 2010, Mathematics in Industry, pages 49–57.
Springer Berlin Heidelberg, 2012.

[34] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR, 244(5):1093–1096, 1979. english translation in Soviet Math. Dokl.
20(1):191–194, 1979.

[35] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy,
and Kati Wolter. MIPLIB 2010 – mixed integer programming library version 5. Math-
ematical Programming Computation, 3(2):103–163, 2011.

[36] Jon Lee and Sven Leyffer, editors. Mixed Integer Nonlinear Programming, volume 154
of The IMA Volumes in Mathematics and its Applications. Springer, 2012.

[37] A. Martin, B. Geißler, C. Hayn, B. Hiller, J. Humpola, T. Koch, T. Lehmann, A. Morsi,
M. E. Pfetsch, L. Schewe, M. Schmidt, R. Schultz, R. Schwarz, J. Schweiger, M. C.
Steinbach, and B. M. Willert. Optimierung Technischer Kapazitäten in Gasnetzen.
In Optimierung in der Energiewirtschaft, volume 2157 of VDI-Berichte, pages 105–114,
Düsseldorf, 2011. VDI-Verlag.

[38] Arnold Neumaier. Complete search in continuous global optimization and constraint
satisfaction. In Acta Numerica, volume 13, chapter 4, pages 271–369. Cambridge Uni-
versity Press, 2004.

[39] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Op-
erations Research and Financial Engineering. Springer, 2nd edition, 2006.

[40] János D. Pintér, editor. Global Optimization: Scientific and Engineering Case Studies,
volume 85 of Nonconvex Optimization and Its Applications. Springer, 2006.

[41] Marc C. Steinbach. On PDE solution in transient optimization of gas networks. Journal
of Computational and Applied Mathematics, 203(2):345–361, 2007.

[42] A. Möller T. Arnold, R. Henrion and S. Vigerske. A mixed-integer stochastic nonlin-
ear optimization problem with joint probabilistic constraints. Matheon Preprint, 1009,
2013.

[43] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software,
and Applications, volume 65 of Nonconvex Optimization and Its Applications. Kluwer
Academic Publishers, 2002.

12



[44] Stefan Vigerske. Decomposition in Multistage Stochastic Programming and a Constraint
Integer Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis,
Humboldt-Universität zu Berlin, 2012.

[45] A. Möller W. Van Ackooij, R. Henrion and R. Zorgati. On probabilistic constraints in-
duced by rectangular sets and multivariate normal distributions. Mathematical Meth-
ods of Operation Research, 71:535–549, 2010.

13


	Introduction
	Mixed-integer nonlinear programming
	SCIP – a solver for MINLPs
	Stochastic aspects
	Numerical simulation aspects

