
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BANISCH1, CHRISTOF SCHÜTTE1,2
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Institut für Mathematik und Informatik, FU Berlin, and Zuse Institute Berlin (ZIB)§

(Dated: April 25, 2014)

We investigate the problem of finding modules (or clusters, communities) in directed networks.
Until now, most articles on this topic have been oriented towards finding complete network partitions
despite the fact that this often is unwanted. We present a novel random walk based approach for
non-complete partitions of the directed network into modules in which some nodes do not belong to
only one of the modules but to several or to none at all. The new random walk process is reversible
even for directed networks but inherits all necessary information about directions and structure
of the original network. We demonstrate the performance of the new method in application to a
real-world earthquake network.

Real-world systems are often modeled as complex net-
works (or graphs). Understanding the behavior of these
systems is thus closely related to investigating the topol-
ogy and dynamics of the associated networks. One of
the most challenging questions in this direction is effi-
cient and accurate identification of network modules,
i.e. densely inter-connected subgraphs having sparse con-
nections to the rest of the network. During the last years,
different approaches have been proposed to detect mod-
ules in networks [1–5], see [6] for an exhaustive review.
However, most of them suffer from the following limi-
tations: they (i) consider only complete partitions of a
network where every node is assigned to exactly one mod-
ule, and (ii) can only be applied to undirected networks.
In other words, methods for non-complete partitions of
directed networks are rare. For example, the most promi-
nent technique for module finding based on modularity
maximization [2] has been generalized to directed net-
works [5, 7] but still aims for a complete partition; the
situation is true for pure graph algorithms like mincut
and most other clustering techniques. The largest family
of methods that allow for non-complete partitions of di-
rected networks use the Stochastic Blockmodel [8, 9] and
Variational Bayesian [10] approaches which often suffer
from convergence problems.

The two main results of this paper are: (a) a gener-
alization of the well known modularity function [2] to
directed networks which encodes directional information
correctly, in combination with (b) a new method for find-
ing non-complete/fuzzy partitions of directed, weighted
networks using random walk processes (RW) [11] and
spectral methods because of their optimality [12]. We
consider the network G = (V ;E), where V is the set
of nodes and E the set of edges. We assume that the
network is strongly connected, in particular that it has
no sinks and sources. Let us denote the weight of edge
(xy) ∈ E by K(x, y) and the weighted in- and out-degree
of a node by K+(x) =

∑
yK(x, y), K−(x) =

∑
yK(y, x)

respectively. Now, we can define a time-discrete RW pro-

cess (Xn)n on the network by specifying the following
transition matrix P

pxy =
K(x, y)
K+(x)

. (1)

Because of our assumptions on the networks we consider,
P is ergodic with unique stationary distribution π. If
the network is undirected then K is symmetric and P is
reversible.

A widely used approach for finding modules Cm ⊂ V in
directed networks is to optimize a quantity Q called mod-
ularity over all module assignment functions χm, where
χm(x) = 1 for x ∈ Cm and χm(x) = 0 for x /∈ Cm. The
modularity function has been introduced by Newman and
Girvan [2, 13] for undirected, unweighted networks and
various generalizations have been proposed [5, 7, 14] that
extend the definition to directed networks, all of which
can be written as

Q =
∑
m

∑
x,y

χm(x) [πxpxy − πxπy]χm(y), (2)

Optimization of Q is known to be NP-hard [15], but var-
ious fast heuristic algorithms exist [16, 17]. We will refer
to this family of methods as generalized Newman-Girvan
(gNG) approaches. It is obvious that gNG methods suffer
from two main drawbacks. First, they consider only full
partitions. Second, Q even in its generalized form is actu-
ally blind to the directional structure in the network: Q
is left unchanged if we replace πxpxy by its symmetrized
version πxp

s
xy = 1

2 (πxpxy + πypyx), which is not sensi-
tive to edge directions: πxpsxy can be large if for example
only the edge (xy) exists, independent of the length of
the shortest path from y back to x. In other words, opti-
mizing Q can produce modules consisting of nodes that
communicate only in one direction, which contradicts the
intuition that all nodes in a module should be similar.

In this article, we require nodes in a module to com-
municate in both directions via short paths, and we will
make this notion precise by introducing a novel measure
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of communication Ixy between nodes based on cycles.
Despite the fact that Ixy is symmetric, we will show that
it inherits all necessary information about directions and
structure of the original network. It will allow us to (a)
propose a modified version Q̄ of the modularity func-
tion which is sensitive to directional information and (b)
transform G into an undirected network were x and y
are connected by an edge with weight Ixy if Ixy > 0.
On the transformed network we can then use any fuzzy
clustering method designed for undirected networks.

Cycle decomposition and communication between
nodes. We now briefly introduce the theory of cycle de-
compositions for Markov chains as developed in [18] and
[19], which we will use for the RW process (1). An n-
cycle (or n-loop) on G is defined as an ordered sequence
[20] of n connected nodes γ = (x1, x2, . . . , xn), whose
length we denote by |γ| = n. Let C be the collection of
simple (i.e. no self-intersections are allowed) cycles on
G. Let (Xn)1≤n≤T be a realization of the Markov chain.
We say that (Xn)1≤n≤T passes through the edge (xy) if
∃n < T such that Xn = x and Xn+1 = y, and following
[18, 19] we say that (Xn)1≤n≤T passes through γ if it
passes through all edges of γ in the right order, but not
necessarily consecutively. Let Nγ

T be the number of times
γ is passed through up to time T . Then the limit

w(γ) := lim
T→∞

Nγ
T

T
(3)

exists almost surely [19] and gives us a uniquely defined
probabilistic cycle decomposition, that is a collection Γ =
{γ ∈ C|w(γ) > 0} of cycles with positive weights w(γ)
such that for every edge (xy) ∈ E the flow decomposition
formula holds:

Fxy =
∑

γ⊃(xy)

w(γ) (4)

where Fxy = πxpxy is the flow through (xy) and we write
γ ⊃ (xy) if the edge (xy) is in γ. An explicit but imprac-
tical formula to calculate the weights w(γ) was given in
[19]. Alternatively, and in analogy to how one samples
the transition matrix from a realization (Xn)1≤n≤T , we
can also sample them by obtaining the counts Nγ

T . In
[19] such a sampling algorithm was described in detail.

Example: The barbell graph. As an example consider
the barbell graph presented in Figure 1, with edge weight
K(l0, r0) = K(r0, l0) = ε < 1, all other edge weights
are one. Since every edge belongs to exactly one of
the three loops αc = (l0, r0), αl = (l0, l1, . . . , ln−1) and
αr = (r0, r1, . . . , rn−1), the weights of these loops can be
inferred directly from (4):

w(αl) = w(αr) =
1

2(n+ ε)
=: w, w(αc) = εw.

We now define a measure for communication between
nodes x, y ∈ V , as experienced by the realization

(Xn)1≤n≤T . To this end, think of (Xn)n as describing
a ’postman’ delivering parcels. Each time x is visited,
a parcel is picked up, which is then delivered when y is
reached. Let NT (x → y) be the number of deliveries
from x to y in time T - note that x and y need not be
adjacent. Then

kxy = lim
T→∞

NT (x→ y)
T

(5)

is a measure for the communication between x and y, as
experienced by (Xn)n. This quantity is called reaction
rate in Transition Path Theory [21]. It is easy to see
that kxy = kyx, which does not mean that kxy ignores
directional information. In fact, kxy contains information
about all possible ways to go from x to y together with
information about all possible ways to go from y to x,
since the RW must return to x from y before going to y
again.

Now focus on a single event x → y → x, which is
realized by passing through a loop γ. This event gives |γ|
counts to

∑
y′ NT (x→ y′), one for each y′ ∈ γ. In other

words, the single event x → y → x along γ is counted
as one parcel picked up, but |γ| parcels delivered. This
’overcounting’ leads to

∑
y kxy not being meaningfully

normalized.
To arrive at a normalized measure for communication

between nodes, we will let the RW pick up the parcel
at x and keep it until it returns to x, passing through a
loop γ. Then it will be delivered to any node on γ with
probability 1

|γ| . Now the number ÑT (x→ y) of deliveries
from x to y is

ÑT (x→ y) =
∑
γ3x,y

1
|γ|N

γ
T . (6)

Finally, we define the communication intensity Ixy as the
average rate of parcel deliveries:

Ixy := lim
T→∞

ÑT (x→ y)
T

=
∑
γ3x,y

w(γ)
|γ| , (7)

using (3) and (6), and we arrive at the probabilistic cycle
decomposition introduced earlier. Intuitively, Ixy is large
if there are many cycles connecting x and y, and if they
are important (w(γ) large) and short (|γ| small). Thus,
our new node communication intensity measure Ixy en-
codes the directional information. Additionally, Ixy is
normalized as∑

y

Ixy =
∑
y

∑
γ3x,y

w(γ)
|γ| =

∑
γ3x

w(γ) = πx, (8)

where the last equality follows from (4). This allows us to
introduce the loop transition matrix P̄ with components

p̄xy =
Ixy
πx

=
1
πx

∑
γ3x,y

w(γ)
|γ| . (9)
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Note that P̄ is reversible since Ixy = Iyx and it has the
same stationary distribution as P , namely π. Using Ixy
as a measure for the communication between nodes has
provided us with a way to symmetrize P without loosing
the directional information.

Generalized modularity function. We now define the
modified modularity function

Q̄ =
∑
m

∑
x,y

χm(x) [πxp̄xy − πxπy]χm(y) (10)

which encourages two nodes x,y to belong to the same
module if Ixy is large, that is if x and y are connected
by many short cycles with large weights w(γ). The ad-
vantage of Q̄ compared to Q is that it explicitly requires
nodes in the same module to be connected in both direc-
tions via short paths.

However, optimizing Q̄ will not result in fuzzy parti-
tions. Instead we note that Ixy also gives us a transfor-
mation of G into an undirected, weighted network GU ,
where we connect two nodes x, y by an edge with weight
Ixy if Ixy > 0. Now we can use any fuzzy clustering al-
gorithm for undirected networks on GU . Notice that the
standard transition matrix (1) on this network coincides
with P̄ .

Fuzzy clustering algorithm for directed networks. We
now present our new LOop-based Lumping Algo-
rithm (LOLA) for fuzzy clustering of directed weighted
networks:

(A) Given edge weights K(x, y), construct P according
to (1) and generate a realization (Xn)1≤n≤T of the
Markov chain given by P .

(B) Use the sampling algorithm described in [19] to ob-
tain the cycle decomposition Γ with weights w(γ)
via (3) and construct GU using (7).

(C) Use any fuzzy clustering method on GU .

In this paper, we will use the Markov State Model
(MSM) clustering method [22, 23] in (C). MSM cluster-
ing identifies module cores Cm as the metastable sets of
the RW process on GU , which has P̄ as it’s transition
matrix. Fuzzy affiliation functions are obtained as

qm(x) = P(Xt hits Cm next|X0 = x), ∀x ∈ V.

MSM clustering relies on the reversibility of P̄ [24, 25]
and can therefore not be applied to directed networks a
priori.

Remark 1. If G is very large and/or very metastable,
the sampling in step (B) can become too slow. To in-
crease performance, we can replace the sampling algo-
rithm in step (B) by any deterministic algorithm yield-
ing a different cycle decomposition (Γ, w̃) which will still
satisfy (4), but not (3), and will no longer be unique. In
[18] a deterministic algorithm was given which can find a

decomposition in polynomial time by iteratively reducing
the flow F , and the matrix P̄ (Γ) with components

p̄xy(Γ) =
1
πx

∑
γ∈Γ, γ3x,y

w̃(γ)
|γ| ,

is still reversible with stationary distribution π.
Remark 2. If the network is undirected, every edge

gives rise to a 2-loop. A cycle decomposition using only
these loops exists by putting w̃((xy)) = πxpxy, and a
short calculation shows P̄ (Γ) = 1

2 (I + P ). For MSM
clustering, this means that the RW is only slowed down,
but will produce the same modules.

We now illustrate the method by investigating two
small example networks and a real-world network con-
structed from earthquake data.

The barbell graph cont’d. We can calculate Ixy explic-
itly:

Ixy =


w/n x, y ∈ αl
w/n x, y ∈ αr
εw/2 x 6= y ∈ αc
εw/2 + w/n x = y ∈ αc

Clustering this graph with LOLA produces a full parti-
tion into two modules C1 = αl and C2 = αr, see Figure
1. We will call this partition the reference partition. The
scores assigned by Q and Q̄ to it are almost identical:

Q(C1, C2) =
1
2
− ε

n+ ε
, Q̄(C1, C2) =

1
2
− 1

2
ε

n+ ε
.

Now we consider what happens if one module is split in
two chains of equal size C1,a and C1,b. The total change
∆Q in Q resp. ∆Q̄ in Q̄ under this split is

∆Q =
1
8
− 1
n+ ε

, ∆Q̄ =
1
8
− 1

4
n

n+ ε
.

One can check that ∆Q > 0 for n ≥ 8 and ∆Q̄ < 0 as
long as n > ε. That is, as n grows Q favors a partition
into more and more subchains with less then 8 nodes
over the reference partition, even though increasing n
actually increases the metastability of the reference par-
tition. In contrast, the small chains favored by Q are not
metastable at all. On the other hand Q̄ always favors the
reference partition.

Finally, one can check that if directions are ignored,
Q behaves in exactly the same way as before, while Q̄
favors a partitioning into subchains with less then 6 nodes
since the nodes in these subchains can now communicate
directly. Thus, in this example we can see that Q is
not able to detect a qualitative difference between the
undirected and directed barbell graph, while Q̄ is.

False module identification. The next example is a
network with 21 nodes, for which LOLA-clustering finds
two metastable modules: C1 colored in blue and C2 col-
ored in red, see Figure 2a). The rest of the network forms
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l0 r0

rn-1

r1
ln-1

ε

C1,a

C1,b

C1

ln/2

ln/2-1
C2

FIG. 1: The barbell graph, consisting of two loops with
n nodes joined by an edge with weight ε.

a large transition region consisting of nodes with affilia-
tion less than 0.8 (see Supplementary material for more
detailed analysis). If we cluster this network using the
gNG algorithm, a third module C3 appears (green in 2b).
However, C3 is not a metastable module because none of
its nodes are connected via short paths in both direc-
tions. For example, A and B are connected by a directed
edge (AB), but in order to go from B to A, the RW has
to pass through the whole network. Consequently, IAB
is small, and therefore LOLA-clustering overcomes this
problem and is thus improving upon existing methods.

C1

C2

(a)

C1

C2

C3

A

B

(b)

FIG. 2: Example with false module identification. (a)
Clustering produced by LOLA. (b) Clustering produced

by gNG algorithm.

Earthquake graph. The last example is a timeseries
(Xn)n of seismic events in California from 1952 to 2012,
obtained from the SCEC[26]. A weighted, directed net-
work is constructed from this data as follows: Only events
with magnitude larger than mc = 2.5 are considered
(these are 48669 events). Space is discretized into boxes
of ∆l = 0.1◦ in the latitude and longitude directions, and
the boxes in which earthquakes occurred are the nodes.
Then edge weights are defined as K(x, y) = P(Xn =
x,Xn+1 = y), which is estimated from the timeseries by
counting successive events. See [27–30] for a discussion
of this and related approaches to construct networks out
of seismic data.

The presence of the timeseries data allows us to achieve
a significant speed up by constructing the cycle decom-

position in step (B) directly from the data. This entirely
avoids the construction of P , and no further sampling
is needed. For the network in question which has 2175
nodes and 28839 edges, step (B) takes 8 minutes on a
standard laptop and reports 7739 cycles. This speedup
will always be possible if the network is constructed from
timeseries data, which is very common. We give more
details in the supplementary material available at [url].

The fuzzy clustering obtained by LOLA is shown in
Figure 3, where nodes are colored if they are assigned
to a module with affiliation at least 0.8, and otherwise
assigned to the transition region and shown grey. In fact
80% of the nodes are assigned to the transition region,
but these correspond to only 25% of all events. This
illustrates that our fuzzy clustering correctly reflects the
uncertainty coming from limited data. A full clustering
would have to cluster the grey nodes as well, even though
not enough data is available to do so. LOLA-clustering
finds 9 modules, all of which correspond to important
faults or groups of faults, the largest one containing the
San Andreas fault. Although the idea of using networks
for analyzing seismic data is not new, to the best of our
knowledge, our method is the first that can identify faults
based only on the data and without using any additional
information.

FIG. 3: Quaternary faults [31] in Southern California
and the clustering of the SCEC timeseries found by
LOLA. Node size is proportional to the number of

events, color indicates the modules found.

Conclusion. In this paper we addressed the problem
of module detection in weighted directed networks by
constructing a novel measure of communication between
nodes. This measure is based on a cycle decomposition of
the probability flow which encodes the directional infor-
mation. Since our measure is symmetric, it allows us to
apply clustering methods designed for undirected graphs.
We applied our new method on analyzing two toy exam-
ples, and a real-world directed earthquake network and
showed how it overcomes the essential drawbacks of com-
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C. Schütte, Journal of Numerical Analysis, Industrial and
Applied Mathematics 6, 29 (2011).

[23] M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad,
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