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APPLICATIONS OF THE CROSS-ENTROPY METHOD TO IMPORTANCE
SAMPLING AND OPTIMAL CONTROL OF DIFFUSIONS

WEI ZHANG2 , HAN WANG1 , CARSTEN HARTMANN1,* , MARCUS WEBER2 , AND CHRISTOF

SCHÜTTE1,2

Abstract. We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy

algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal

control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a

parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several

numerical examples and discuss algorithmic issues and possible extensions of the method.
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1 Introduction This article deals with the application of the cross-entropy method to
diffusion processes, specifically, with the application to importance sampling for rare events
and optimal control. Generally, the cross-entropy method is a Monte-Carlo method that was
originally developed for the efficient simulation of rare events in queuing models and that has
been extended to, e.g., combinatorial optimization or analysis of networks in the meantime
[19, 3]. To our knowledge, however, the cross-entropy approach has not been analyzed or used in
combination with diffusion processes, even though there have been significant research activities
in the direction of efficient algorithms for importance sampling and optimal control of high
dimensional multiscale diffusions; see, e.g., [4, 22, 23] for some ideas related to importance
sampling of rare events or [21, 24] for problems in optimal control.

We will exploit the fundamental duality between importance sampling and optimal control,
which arises due to the fact that both problems admit a variational formulation that boils down
to finding an optimal transformation of the underlying path space measure [5]. Algorithms
for computing an optimal change of measure usually seek an approximation of the optimal
measure with respect to some distance on the space of (probability) measures. Here, we will
use the Kullback-Leibler divergence, which, although not a metric, is a numerically convenient
and widely used similarity measure for probability measures. The cross-entropy method then
provides a general algorithm to find the minimizer of the Kullback-Leibler divergence among a
family of parameterized probability measures, and the main purpose of this paper is to formulate
the method in the context of diffusions and to discuss its application to importance sampling
and optimal control.

This paper is organized as follows. The cross-entropy method in path space is outlined
in Section 2 and discussed in the context of importance sampling and the dual optimal control
problem. Section 3 is devoted to the formulation of the cross-entropy algorithm for diffusions.
Several numerical examples are studied in Section 4. We summarize our findings in Section 5.
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2 The cross-entropy method in path space In this section, we discuss how to use
the cross-entropy method for stochastic differential equations. The mathematical set-up will
be largely based on the application of the method to importance sampling, which is the most
standard application of the cross-entropy method in the literature. The associated (dual) optimal
control problem will be briefly discussed at the end of this section.

2.1 Problem set-up Consider zs ∈ Rn satisfying

dzs = b(zs)ds+
√

2ε dws , 0 ≤ s ≤ T
z0 = x

(2.1)

where ε > 0 is constant, b : Rn → Rn is a smooth, locally Lipschitz-continuous vector field, and
w is n-dimensional Brownian motion. Further let O ⊂ Rn be open and bounded and call

τ = inf{s > 0: zs /∈ O} (2.2)

the first exit time of the set O ⊂ Rn. In the following we will use Z to denote a path (trajectory)
{zs · 0 ≤ s ≤ T} and use the notation zs ∈ Rn for the state at time s. Accordingly we denote by
F (Z) a path functional that, throughout this paper, is assumed to be of the form

F (Z) = exp

(
−1
ε

∫ τ∧T

0

G(zs) ds− 1
ε
H(zτ∧T )

)
. (2.3)

for some continuous and bounded functions G,H : Rn → R and with τ ∧ T = min{τ, T}. We
consider a Monte Carlo method to compute the quantity

`(x) = E(F (Z)), (2.4)

with E(·) = E(·| z0 = x) denoting the conditional expectation over all realizations of (2.1)
starting at z0 = x. A special and interesting case is when G = 0 and H = −ε log 1∂O with ∂O

denoting the smooth boundary of the set O, in which case

E(1∂O(zτ∧T )) = P(τ ≤ T ), (2.5)

is the probability of trajectories starting at z0 = x to reach the boundary of O before time T .
The exit time distribution of a set provides details about, e.g., transition mechanisms and is a
common quantity to analyze metastable dynamics.

2.2 Cross-entropy method for importance sampling We now formulate the cross-
entropy method for diffusions. In doing so, we follow the relevant literature [3, 19] and first
introduce the general concept of importance sampling in path space, before we establish the link
with optimal control. Suppose we are able to generate path samples from a family of probability
measures {µλ}λ∈F on the space of continuous functions C([0, T ],Rn) that are parametrized by
λ ∈ F ⊂ Rm where the dynamics (2.1) corresponds to λ = 0; for the sake of simplicity, we set
F = Rm. We use the shorthand µ = µ0 and refer to µλ 6=0 as the tilted probability measure. We
further assume that every µλ has a probability density f(·;λ) with respect to the scaled Wiener
measure νε.∗

∗The scaled measure νε is the probability measure induced by the scaled Brownian motion
√

2εws on the

space C([0, T ],Rn). It is related to the standard Wiener measure underlying the standard Brownian motion ws

by rescaling of time, which follows from the fact that ws and
√

2εws/(2ε) have the same law.
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Importance sampling. The idea of importance sampling is—instead of drawing samples
from the measure µ—to generate samples from an alternative probability measure η = g(·)νε
that is absolutely continuous with respect to µ, but that yields Monte-Carlo estimators that
have, e.g., smaller variance or bounded relative error as the probability of the rare goes to zero
[12]. Using independent draws from η an unbiased Monte Carlo estimator of (2.4) is given by

`N =
1
N

N∑
i=1

F (Z̃i)f(Z̃i; 0)
g(Z̃i)

, (2.6)

where the trajectories Z̃i, i = 1, · · · , N are independent realizations from η. It is well known
that the optimal measure η∗ that minimizes the variance of the estimator has the density

g∗(Z) =
F (Z)f(Z; 0)

`
. (2.7)

It is easy to see that the thus defined η∗ yields a zero variance estimator. Note however that it
depends on ` = E(F (Z)), which is the quantity that we want to compute.

The idea of the cross-entropy method is to find the best approximation of η∗ among the
family µλ,λ ∈ F of tilted probability measures. The approach is based on minimizing the
Kullback-Leibler divergence, which in our case can be defined as follows: given two probability
measures µ1 = g1νε, µ2 = g2νε that are absolutely continuous with respect to the scaled Wiener
measure, the Kullback-Leibler divergence or relative entropy between µ1 and µ2 is defined as

D(µ1, µ2) = Eµ1

(
log

dµ1

dµ2

)
(2.8)

where the expectation with respect to the measure µ1 is defined as

Eµ1

(
log

dµ1

dµ2

)
=
∫

log
dµ1

dµ2
dµ1 =

∫
g1 log g1 dνε −

∫
g1 log g2 dνε . (2.9)

Cross-entropy method I. The cross entropy method now seeks an optimal change of
measure by solving the minimization task

min
λ∈Rm

D(η∗, µλ) (2.10)

for the tilt parameter λ ∈ Rm. Not knowing what η∗ is, this still sounds like an infeasible
minimization problem. It turns out, however, that we need to know η∗ only up to a constant
prefactor, which in our case, since x is fixed, eliminates the unknown quantity ` = `(x). Using
(2.7) and (2.8), the minimization problem is equivalent to the following maximization problem

max
λ∈Rm

Eµ(F (Z) log f(Z;λ)) . (2.11)

For the efficient numerical solution of (2.11) it is often convenient to allow for drawing
samples from a probability measure that somehow “in between” µ and µλ∗ . This will give us
some extra freedom to use, e.g., an iterative solver for the maximization problem (2.11). Letting
v ∈ Rm denote an arbitrary family parameter, our maximization problem can be recast as

max
λ∈Rm

Eµv (F (Z)h(Z;v) log f(Z;λ)), (2.12)
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where

h(Z;v) =
f(Z; 0)
f(Z;v)

. (2.13)

An unbiased estimator of (2.12) is

max
λ∈Rm

1
N

N∑
i=1

F (Z̃i)h(Z̃i;v) log f(Z̃i;λ) (2.14)

where Z̃i, i = 1, · · · , N are independent realizations generated from µv. The necessary condition
for λ∗ being a maximizer of (2.14) is obtained by taking the gradient with respect to λ:

N∑
i=1

F (Z̃i)h(Z̃i;v)∇λ log f(Z̃i;λ) = 0 . (2.15)

The degree of difficulty when solving (2.15) numerically of course depends on the parame-
terization of the tilted family of distributions. In Section 3, we will introduce a family of tilted
distributions that turns (2.15) into a linear system of equations for the unknown λ.

2.3 Cross-entropy method for optimal control In this section, we consider applying
the cross-entropy method to solve optimal control problems for diffusion processes. To this end
consider the optimal control problem with cost function [21, 24]

J(u) = Eµu

(∫ τ∧T

0

G(zs) +
1
4
|us|2ds+H(zτ∧T )

)
, (2.16)

with bounded continuous function G,H : Rn → R and us ∈ Rn being a measurable control
that will specified below. The expectation Eµu with respect to the probability measure µu is
understood as the expectation over all realizations of the controlled dynamics

dzs = (b(zs) + us) ds+
√

2ε dws, 0 ≤ s ≤ T
z0 = x

(2.17)

We suppose that G ≥ 0 and, for the ease of notation, we set H = 0. We wish to minimize (2.16)
under the constraint (2.17) and over all measurable controls u that are adapted to the filtration
generated by the Brownian motion driving the dynamics (2.17). Then, given suitable conditions
on the vector field b, it is known that this optimal control problem has a unique solution in
form of a Markovian feedback control [10]. That is, for some continuous and bounded function
c : [0, T ]× Rn → Rn, it holds that

ûs = c(s, zs) , (2.18)

where c(t, x) = −2∇v(t, x), with v being the value function or optimal cost-to-go:

v(t, x) = min
u

Eµu

(∫ τ∧T

0

G(zs) +
1
4
|us|2ds+H(zτ∧T )

∣∣∣∣zt = x

)
. (2.19)

Now call µ, µ̂ the probability measures on the path space C([0, T ],Rn) corresponding to
(2.17) with u = 0 and û. Then, using the Legendre-type dual relation, we have [2, 10]

J(û) = −ε log Eµ

(
exp

(
−1
ε

∫ τ∧T

0

G(zs) ds

))
, (2.20)
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where, by Jensen’s inequality (see [8, Sec. VI.2]), we know that µ̂-a.s.

exp

(
−1
ε

∫ τ∧T

0

G(zs) ds

)
dµ

dµ̂
= Eµ

(
exp

(
−1
ε

∫ τ∧T

0

G(zs) ds

))
(2.21)

From the above we conclude that (see [8, Sec. VI.3] for details)

J(u) = Eµ̂

(∫ τ∧T

0

(
G(zs) +

1
4
|us|2

)
ds

)
dµu
dµ̂

= J(û) + Eµ̂

((
ε log

dµ

dµ̂
+

1
4

∫ τ∧T

0

|us|2 ds
)
dµu
dµ̂

) (2.22)

After some rearrangement and simplification, we obtain the following simple relationship:

J(u) = J(û) + εD(µu, µ̂). (2.23)

where D(·, ·) is the Kullback-Leibler divergence as defined in (2.8).

Cross-entropy method II. Computing the optimal control û can be tedious, or is in-
feasible if the dynamics are high dimensional. As a remedy we suggest again to find the best
approximation of µ̂ = ĝ(·)νε among a suitably defined family µλ,λ ∈ F of tilted probability mea-
sures that are absolutely continuous with respect to νε. Sticking to the notation from Section 2,
it readily follows that the minimizer of (2.23) has the density

ĝ(Z) ∝ exp

(
−1
ε

∫ τ∧T

0

G(zs) ds

)
f(Z; 0) (2.24)

with respect to νε, which is should be compared to the corresponding expression (2.7) for the
optimal importance sampling distribution. By Girsanov’s theorem there is a one-to-one cor-
respondence between the control force u = u(λ) and a certain family of exponentially tilted
probability measures µλ. Instead of minimizing (2.16) subject to the dynamics (2.17), we solve
the constrained optimization problem

min
λ∈Rm

J(u(λ)). (2.25)

subject to the dynamics (2.17). From (2.23), we know that solving (2.25) is equivalent to
minimizing the Kullback-Leibler divergenceD between µu and µ̂, which, however, is still not easy.
On the other hand, inspired by the discussions in Section 2, we can apply cross-entropy method
to minimize the relaxed entropy functional D(µ̂, µu) rather than D(µu, µ̂). As a consequence,
the problem is reduced to the case in Section 2.

Note that the relaxed problem solved by the cross-entropy method is different from (2.25),
as the Kullback-Leibler divergence is not symmetric. Yet both (2.25) and its relaxed version
agree at the minimum, therefore the hope is that the latter yields a reasonable approximation
of the optimal control problem—given that the family of tilted distributions is cleverly chosen.

3 Cross-entropy algorithm In this section, we will specify the family {µλ}λ∈F of tilted
probability measures that we are going to use for the procedure introduced above and formulate
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the cross-entropy algorithm. As a first step, let µ denote the probability measure on C([0, T ],Rn)
that is induced by the dynamics (2.1) and let νε be scaled Wiener measure associated with

dzs =
√

2ε dws, 0 ≤ s ≤ T
z0 = x.

(3.1)

By Girsanov’s theorem [15], we have

dµ = exp
(
−1
ε
S(Z)

)
dνε , (3.2)

with the action

S(Z) = −
√
ε

2

∫ τ∧T

0

b(zs) · dws − 1
4

∫ τ∧T

0

|b(zs)|2 ds

= −1
2

∫ τ∧T

0

b(zs) · dzs +
1
4

∫ τ∧T

0

|b(zs)|2ds
(3.3)

where the stochastic integral is interpreted in the sense of Itô [15]. A remark is in order.
Remark 1. We could rewrite (3.2)–(3.3) as a Stratonovich integral using the relationship∫ τ∧T

0

b(zs) · dzs =
∫ τ∧T

0

b(zs) ◦ dzs − ε
∫ τ∧T

0

div b(zs) ds , (3.4)

by which we obtain

dµ = exp

(
1
2ε

∫ τ∧T

0

b(zs) ◦ dzs − 1
4ε

∫ τ∧T

0

(|b(zs)|2 + 2εdiv b(zs)) ds

)
dνε (3.5)

The associated action functional

S(Z) = −1
2

∫ τ∧T

0

b(zs) · dzs +
1
4

∫ τ∧T

0

|b(zs)|2ds+
ε

2

∫ τ∧T

0

div b(zs)ds (3.6)

is closely related to what is known as the Onsager-Machlup functional in the physical literature.
See [6, 17] for details. We will stick to Itô interpretation of (3.3) in the following.

3.1 Choosing a family of path space measures We will confine our attention to
a special class of tilted probability distributions that is suggested by the the optimal control
problem from in Section 2.3. To this end, let {φi}1≤i≤m denote a set of continuously differentiable
basis functions φi : [0, T ]× Rn → R. The cross-entropy method will be based on realizations of

dzs = (b(zs) + c(s, zs;λ)) ds+
√

2εdws, 0 ≤ s ≤ T
z0 = x ,

(3.7)

with

c(s, x;λ) = 2
m∑
i=1

λi∇φi(s, x) . (3.8)

(The scaling factor 2 is merely conventional.) It follows from Girsanov’s theorem that the
associated path probability measure µλ has a density f(·;λ) with respect to the scaled Wiener
measure νε. It is given by the usual exponential expression

f = exp

(
1
2ε

∫ τ∧T

0

(b(zs) + c(s, zs;λ)) · dzs − 1
4ε

∫ τ∧T

0

|b(zs) + c(s, zs;λ)|2 ds
)
. (3.9)
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As a consequence, we can generate independent samples from µλ by repeatedly simulating the
controlled dynamics (3.7). Since the tilting parameter λ = (λ1, . . . , λm) enters linearly, the
associated cross-entropy maximization problem (2.14) is strictly convex and thus has a unique
solution. Note that, indeed, µ0 = µ is the probability measure corresponding (2.1).

Cross-entropy method III. Defining

f(Z;λ) = exp
(
−1
ε
S(Z;λ)

)
, (3.10)

with the action

S = −1
2

∫ τ∧T

0

(b(zs) + c(s, zs;λ)) · dzs +
1
4

∫ τ∧T

0

|b(zs) + c(s, zs;λ)|2ds (3.11)

and noting that

∇λ log f(Z;λ) = −1
ε
∇λS(Z;λ), (3.12)

the necessary optimality condition (2.15) can be recast as a linear system of equations:

Aλ = r, (3.13)

where A = (Aij)1≤i,j≤m and r = (ri)1≤i≤m with

Aij = 2
N∑
k=1

F (Zk)h(Zk;v)
∫ τ∧T

0

∇φi(s, zks )∇φj(s, zks ) ds,

ri =
N∑
k=1

F (Zk)h(Zk;v)

(∫ τ∧T

0

∇φi(s, zks ) · dzks −
∫ τ∧T

0

∇φi(s, zks ) · b(zks ) ds

)
.

(3.14)

Here v ∈ Rm is an arbitrary vector, and Zk = (zks )0≤s≤T denotes the sample paths of (3.7)
with control us = c(s, zks ;v). Note that the realizations are generated from µv and therefore do
not depend on λ. Further notice that A is positive definite matrix if the basis functions φi are
linearly independent, which implies that (3.14) has a unique solution.

It thus seems that the solution of the discrete maximization problem (2.14) can be obtained
by just solving the linear equation (3.14). However in real applications, when the expectation
value ` of F (Z) in (2.4) is very small so that it is difficult to estimate the coefficients (3.14)
accurately enough, the solution itself is in danger of being inaccurate. In many applications,
the reason for this is metastability of the dynamics when ε � 1. In this case, the trajectories
are long and ` is small, which means computing (3.14) is both time-consuming and inaccurate.
Inspired by the original cross-entropy method [3], we may overcome this problem by starting
from a higher temperature (here: ε) and compute (3.14) while decreasing the temperature. The
proposed iterative method to solve (2.14) is illustrated in Algorithm 1.

We conclude this subsection with a few remarks on possible extensions of the method.
Remark 2. It is straightforward to relax the restriction of the fixed initial condition and

consider distributed initial conditions instead, i.e. z0 = x ∈ Rn following some probability dis-
tribution π on Rn. All considerations and the cross-entropy method remain valid without al-
terations, if the sum over the N realizations of the dynamics is replaced by the sum over all
realization and the sum over sufficiently many independent initial conditions x ∼ π.
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Algorithm 1 Cross-entropy algorithm

1: Define ε0 > ε1 > . . . > εk = ε, set v(0) = 0.
2: for j = 0 to k do
3: generate Nj trajectories zi, i = 1, 2, · · · , N from dynamics (3.7), with λ = v(j), ε = εj .
4: compute the coefficients of A(j), r(j) from (3.14) with v = v(j), and solve the linear

equations A(j)v(j+1) = r(j).
5: end for

Remark 3. We briefly mention two more possible generalization of the above algorithm.
The first generalization concerns dynamics with multiplicative noise:

dzs = b(zs)ds+
√

2εσ(zs) dws , (3.15)

where the n × n matrices a(·) = σ(·)σ(·)T are positive definite with bounded inverses. Defining
the weighted scalar product 〈u, v〉 = uT (a(z))−1v, then all considerations remain valid, with the
dot product u · v being replaced by 〈u, v〉. In particular, (3.3) must be replaced by

S(Z) = −1
2

∫ τ∧T

0

〈b(zs), dzs〉+
1
4

∫ τ∧T

0

‖b(zs)‖2ds , (3.16)

where ‖v‖ =
√〈v, v〉 is the norm induced by the scalar product 〈·, ·〉. Another important class of

systems are Langevin-type diffusions with degenerate noise:

dxs = ys ds

dys = − (∇V (xs) + ys) ds+
√

2εdws ,
(3.17)

Here (xs, ys) ∈ R2n are the state variables and V : Rn → R is a smooth potential energy that is
bounded below and sufficiently growing at infinity; more general variants of (3.17) can be consid-
ered too, but we refrain from discussing the most general scenario here. Langevin diffusions have
the property that, even though the noise is degenerate and hence the tilting of the distribution can
be only in the direction of some variables, one has control over the full path space distribution.†

Remark 4. If the terminal time T is large, it is possible to suppress the time dependence
of the basis functions and consider only functions φj = φi(x). In this case the optimal tilting is
not explicitly time-dependent as is the case in optimal stopping problems (see, e.g., [16]).

4 Numerical examples In this section, we will study the cross-entropy method with
some concrete dynamics and illustrate some numerical results.

4.1 One-dimensional double well potential We consider the one-dimensional diffu-
sion process

dzs = −V ′(zs)ds+
√

2εdws , (4.1)

with ws standard one-dimensional Brownian motion, ε = 0.2 and the double well potential

V (x) =
1
2

(x2 − 1)2 . (4.2)

†The reason for this lies in the fact that the Langevin equation satisfies a condition known as complete

controllability, which ensures that noise drives all degrees of freedom in the system [13].
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The bistable potential V has two minima at x0 = −1 and x2 = 1 and a local maximum at
x1 = 0. Define τ = inf{s > 0: zs − x2| ≤ 1}, and choose the starting point z0 = x0 to be the
left minimum. As basis function we use three (unnormalized) Gaussians of the form

φi(x) = exp
(
− (x− xi)2

2r2

)
, i = 0, 1, 2 , (4.3)

with r = 0.5 (see Fig. 4.1). Note that the basis functions are independent of time, which is due
to the fact that the time dependence of the optimal tilting is relatively weak in our case.

Optimal control. We begin by studying the following optimal control problem: minimize

J(u) = Eµu

(
τ +

1
4

∫ τ

0

u2
s ds

)
, (4.4)

under the tilted dynamics

dzs = (us − V ′(zs)) ds+
√

2εdws . (4.5)

The cost functional considered here is a variant of (2.16) for T → ∞ with running cost G = 1
and terminal cost H = 0. In all numerical computations, however, T = ∞ is replaced by a
large but finite terminal time T < ∞, so that τ ∧ T ≈ τ < ∞; the latter is to make sure that
Girsanov’s theorem is applied to a finite stopping time.

We generate trajectories using the Euler-Maruyama scheme with time step dt = 1.0×10−3.
The number of realizations used in Algorithm 1 is set to Nj = 104 for all temperature steps
εj = (2j + 1)−1, j = 0, 1, 2. The algorithm is initialized with v(0) = 0, from which v(j+1) is
obtained in the jth step with j = 0, 1, 2. Note that applying a control force ujs = c(s, zs;v(j)) in
the j-th iteration is equivalent to modifying the potential by

V I,j(x) = V (x)− 2
∑
i∈I

v
(j)
i φi(x) (4.6)

where I ⊂ N is the index set of the basis functions. We denote the optimized potential by
V I(x) = V I,3(x). The numerical results for index sets I ⊂ {0, 1, 2} are presented in Figure 4.2
and Figure 4.3. Figure 4.2 shows the modified potentials using four different index sets

I ∈ {{0}, {1}, {0, 1}, {0, 2}} . (4.7)

It can be seen that the solution is relatively sensitive to basis functions that either do not capture
the relevant region of state space (here: the transition region around the maximum at x1 = 0)
or that are supported in regions that are not sampled (here: rightmost energy well).

To analyze the accuracy of the cross-entropy-algorithm in more detail, we computed the
solution of the optimal control problem (4.4) by solving a Feymann-Kac type elliptic boundary
value problem using a highly accurate finite element discretization (see [21] for details); this is
our reference solution. We then apply the cross-entropy method with 17 Gaussian basis functions
with centres ak = −1.5 + 0.1k, k = 0, 1, · · · , 16 and variance r = 0.1 and compute the modified
potential via Algorithm 1. From Fig. 4.3, we see that cross-entropy solutions with 17 basis
functions can approximate the reference solution quite well. We also observe that a similarly
good approximation can be obtained with a single well-chosen basis function φ1. This indicates
the possibility to solve high-dimensional problems with few basis functions.
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With these optimized potential, we then generated N = 106 samples from the controlled
dynamics and computed the value of the associated cost function (4.4). The results are presented
in Table 4.1: We clearly observe that the best results are obtained when the basis functions
capture the relevant transition region (here: φ1), since with the index sets 2 and 3, the cost
value 1.31 is closer to the exact solution 1.25 than elsewhere.
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Fig. 4.1: One-dimensional basis functions φ0, φ1, φ2.
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Fig. 4.2: Effective potentials for one-dimensional dynamics. The modified potentials V I,j(x),
j = 0, 1, 2, 3, obtained by performing Algorithm 1, with different sets of basis functions as
explained in the text.

Importance sampling. We continue our study with the computation of the exit time
distribution P(τ ≤ T ) for different values of T . Here we choose T ∈ {2.0, 1.0, 0.5, 0.3, 0.2, 0.1}
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Fig. 4.3: Optimal control problem. Optimized potential V I(x) with a single basis function φ1

compared to the cross-entropy optimized potential with 17 basis functions and the (”exact”)
reference solution. The potentials are vertically shifted for better presentation.

basis set coefficients cost mean of τ
{φ0} (−1.252, 0, 0) 5.14 2.02
{φ1} (0, 1.313, 0) 1.31 0.57
{φ0, φ1} (−0.078, 1.246, 0) 1.31 0.57
{φ0, φ2} (−1.139, 0, 0.975) 3.88 1.73

17 Gaussians /reference 1.27/1.25 0.52/0.52

Table 4.1: One-dimensional optimal control problem with different sets of basis functions. The
cost is given by the expectation (4.4) that is computed from N = 106 samples. The last column
shows the mean of the stopping time τ under the modified dynamics. The last row displays the
results for 17 Gaussian basis functions and the reference solution.

with two sets of basis functions, {φ0} and {φ1}. We compare the outcome of the cross-entropy
algorithm with that obtained by standard Monte Carlo; the results are shown in Tables 4.2–4.4
and Figure 4.4. Tables 4.2 and 4.3 show the results of importance sampling with basis function
{φ0} and {φ1}, respectively, while Table 4.4 records the result of vanilla Monte Carlo. We can
observe that, for each value of T , the variances of the importance samplers are largely reduced
compared to those of standard Monte Carlo. The difference increases when T decreases as is to
be expected, for the event {τ ≤ T} is rarer the smaller T is. Note that for T = 0.1 standard
Monte Carlo cannot be used at all because not a single realization is generated that hits the set
boundary, while importance sampling still gives a reasonable estimate; see Table 4.4.

Acceleration index. In order to measure the speed-up gained by importance sampling
(IS) compared to standard Monte Carlo (MC) we define the acceleration index

I =
VarMC

VarIS
(4.8)

as the ratio of MC and IS sample variances. According to the central limit theorem, the variances
of the two methods will decrease as N−1 with the number N of trajectories, and hence the
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T coefficients P(τ ≤ T ) Var Accel. I Traj. Usage
2.0 (−0.592, 0, 0) 9.22× 10−2 1.8× 10−2 4.7 61%
1.0 (−0.984, 0, 0) 3.23× 10−2 2.2× 10−3 13.7 48%
0.5 (−1.570, 0, 0) 6.45× 10−3 1.3× 10−4 50.3 39%
0.3 (−2.321, 0, 0) 9.51× 10−4 4.8× 10−6 198.6 33%
0.2 (−3.219, 0, 0) 9.53× 10−5 8.7× 10−8 1091.8 27%
0.1 (−5.830, 0, 0) 1.22× 10−7 7.0× 10−13 very large 16%

Table 4.2: Computation of P(τ ≤ T ) by importance sampling, based on N = 106 independent
realizations a single basis function φ0. “Accel.” I (acceleration) measures the computational
speed-up of importance sampling relative to standard MC. “Traj. Usage” denotes the portion
of trajectories satisfying τ ≤ T under the modified dynamics.

T coefficients P(τ ≤ T ) Var Accel. I Traj. Usage
2.0 (0, 0.680, 0) 9.23× 10−2 9.2× 10−3 9.1 85%
1.0 (0, 1.059, 0) 3.23× 10−2 1.0× 10−3 30.0 81%
0.5 (0, 1.636, 0) 6.46× 10−3 7.4× 10−5 86.9 68%
0.3 (0, 2.360, 0) 9.49× 10−4 3.0× 10−6 310.9 56%
0.2 (0, 3.237, 0) 9.56× 10−5 5.9× 10−8 1621.2 46%
0.1 (0, 5.821, 0) 1.21× 10−7 4.1× 10−13 very large 26%

Table 4.3: Computation of P(τ ≤ T ) for the one-dimensional dynamics, based on N = 106

independent realizations a single basis function {φ1}; see Tab. 4.2 for comparison.

acceleration index I has the following interpretation: If N is sufficiently large and IS reaches
a certain error with N trajectories, MC requires about IN trajectories to achieve the same
error. Thus, I is the speed-up factor of IS relative to MC, provided that we can ignore the
computational overhead associated with importance sampling (which is the case here).

In Figure 4.4, the optimized potentials resulting from the IS are plotted for different values of
T and different sets of basis functions. As expected the optimized potentials become increasingly
different from the original potential the smaller the value of T , indicating that larger forces are
needed when the event is rarer.

4.2 Conformational transition of butane dissolved in water We will now apply
the cross-entropy algorithm to the conformational dynamics of solvated butane. Specifically, we
want to compute the cumulative distribution function of the gauche-trans transition time.

The solvated butane is simulated in a 3.0 × 3.0 × 3.0 nm3 box with periodic boundary
conditions, using the GROMOS 45a3 force field [20] with a modified GROMACS 4.5 [18]. The
simulation box contains 900 SPC/E [1] water molecules. The dynamics are governed by the
underdamped Langevin equation

dri = m−1
i pidt,

dpi = [fi(r) + ui]dt− γpidt+ σidwt,
(4.9)
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T P(τ ≤ T ) Var Accel. Traj. Usage
2.0 9.23× 10−2 8.4× 10−2 1.0 9.2%
1.0 3.22× 10−2 3.1× 10−2 1.0 3.2%
0.5 6.28× 10−3 6.2× 10−3 1.0 0.6%
0.3 1.00× 10−3 1.0× 10−3 1.0 0.1%
0.2 9.30× 10−5 9.3× 10−5 1.0 0.009%
0.1 0.00 − 1.0 0.0%

Table 4.4: Computation of P(τ ≤ T ) for the one-dimensional dynamics by standard Monte-
Carlo, based on N = 106 independent realizations; compare Tabs. 4.2 and 4.3.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2

0

2

4

6

8

10

12

V

Potential
original
T=2.0

T=0.5

T=0.2

T=0.1

(a) basis φ0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−10

−5

0

5

10

V

Potential
original
T=2.0

T=0.5

T=0.2

T=0.1

(b) basis φ1

0.1 0.5 1.0 1.5 2.0
T

10-7

10-6

10-5

10-4

10-3

10-2

10-1
P(τ≤T)

(c) P(τ ≤ T )

Fig. 4.4: The modified potentials for P(τ ≤ T ) with different sets of basis functions. The
potentials become increasingly different from the original one when T decreases. The rightmost
panel shows the cumulative distribution function of τ for T ∈ [0.1, 2.0].

where r = (r1, . . . , rN ) ∈ R3N and p = (p1, . . . , pN ) ∈ R3N , with ri denoting the Cartesian
coordinate of the i-th atom and with pi ∈ R3 being the conjugate momentum. Friction constant
γ and noise coefficients σi are coupled by the fluctuation-dissipation relation σ2

i = 2γmikBΘ
where kB is Boltzmann’s constant, Θ is the temperature and mi is the mass of the i-th atom
(here: ε = kBΘ). Here fi(r) denotes the force resulting from the GROMOS 45a3 force field and
ui is the additional biasing force on the i-th atom. The force term reads

fi(r) = −∇riVbonded(r)−∇riVnon-bonded(r). (4.10)

It involves bonded and non-bonded interactions. The bonded interactions are

Vbonded(r) =Vb(r) + Vθ(r) + Vφ(r)

=
Nb∑
k=1

1
4
kb(b2k(r)− b2k,0)2 +

Nθ∑
k=1

1
2
kθ(cos(θk(r))− cos θk,0)2

+
Nφ∑
k=1

kφ[1 + cos(δk) cos(mk φk(r))] (4.11)

where the bond potential Vb(r) is the energy due to the covalent bonds in the system, with
bk(r) being the instantaneous length of the k-th bond, bk,0 the constant equilibrium length, and
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Fig. 4.5: The butane molecule.

kb the force constant, Vθ(r) is the energy of the bond angle, with θk(r), θk,0 and kθ denoting
instantaneous angle, equilibrium angle and force constant; the third term is the energy of the
torsional dihedral angle, with φk(r), δk, mk and kφ denoting the instantaneous dihedral angle,
phase shift, multiplicity and the force constant. For a butane molecule as illustrated in Figure 4.5
covalent bonds are between the atoms 1–2, 2–3 and 3–4, bond angle interactions are between atom
triples 1–2–3 and 2–3–4, and dihedral angle interactions involve the atom quadruple 1–2–3–4.
The orders of magnitude of kb (= 7.15×106 kJ/(mol×nm4) for all bonds) and kθ (= 530 kJ/mol
for all bond angles) are much larger than the dihedral angle constant kφ (= 5.92 kJ/mol).
Therefore the vibrations of the bonds and bond angles can be viewed as fast motions in the
system. The butane dihedral angle potential has multiplicity m = 3 and phase shift δ = 0,
which implies that the dihedral angle is essentially populated around three angles −60◦, 60◦ and
180◦. The first two are called gauche conformations, the other one is called trans conformation;
transitions between these conformations are the slow motions in the system. We constrain the
bonds and bond angles of the water molecules using the SETTLE algorithm [14]. The non-
bonded interaction potential is given by

Vnon-bonded(r) =
∑
i,j

[
C12,ij

r12ij
− C6,ij

r6ij

]
+
∑
i,j

1
4πε0

qiqj
rij

, (4.12)

where rij is the relative distance between atom i and j. The first term of (4.12) is the van der
Waals interaction and the second term is the Coulomb interaction, where qi denotes the partial
charge due to the atom i. During the simulation, the van der Waals potential is evaluated
numerically by the cut-off method with cut-off radius 9 nm, while for the Coulomb energy the
smooth particle mesh Ewald method (SPME) is used [7].

Importance sampling and choice of feedback law. To compute P(τ ≤ T ), we first
generate an ensemble of initial conditions and run an equilibrium simulation (i.e. with u = 0 in
(4.9)) at 300 K, with friction constant 1.0 ps−1. The dihedral angle φ of the butane molecule is
monitored for every interval of 10 ps. If φ is in the range [40◦, 80◦] (corresponding to the gauche
conformation), then the system state (including all water coordinates) is recorded, and used for
the later study of gauche-trans transition. In our simulation, we only record the first 5000 of
these system states as an equilibrium sample of the gauche conformation.

As a next step, we run stopped simulations of (4.9) at 300 K with feedback control (u 6= 0)
and friction constant 10 ps−1; the process is stopped at τ ∧ T where τ is the time of first exit
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Fig. 4.6: The dihedral potential and the dihedral potential with added control potential.

from the gauche conformation. We define the exit from the gauche conformation as the entrance
to the trans conformation, which happens when the dihedral angle φ is equal or larger than 150◦.

The candidate feedback control ut = c(rt;λ) with c = (c1, . . . , cN ) used in the simulation
is assumed to depend only on the dihedral angle (that is a function of atomic coordinates):

ci(r;λ) = −∇riVctrl(φ(r)) = −∇ri
[ Nc∑
k=1

λk cos(kφ(r))
]
. (4.13)

The assumption that the control depends only on the dihedral angle is justified by the following
three observations: (1) the dihedral angle fully describes the conformational transition of the
butane molecule, (2) it is the slowest degree of freedom in the system relative to bond lengths,
bond angles and the motions of the water molecules, and (3) the explicit time dependence of the
control force is negligible; the influence of the potentially slow overall rotations of the butane
molecule that can couple to the internal conformational degrees of freedom on the optimal change
of measure is ruled out by numerical tests as is described below. As a consequence the optimal
control will be a function of the dihedral angle only—at least to a good approximation [24].
In this simulation, we choose the control potential Vctrl(φ(r)) to be a sum of cosine functions,
because the system is symmetric around φ = 0◦; the number of control functions is kept fixed at
Nc = 8 throughout the simulation. Numerical results confirm that the coefficient λ8 is already
very small compared to the dominant coefficients, which means that the number of basis functions
is large enough to capture the essential structure of the control. In all simulations the Langevin
equation (4.9) is discretized by the BAOAB scheme [11] with constant time step of 5× 10−4 ps.

Results. We have applied the cross-entropy algorithm to butane with T = 1.0, 0.5, 0.2
and 0.1 ps. From each of the 5,000 equilibrium system states from the gauche conformation, we
have launched 4 independent realizations of length τ ∧ T for T = 1.0, 0.5, and 0.2, which gives
MIS = 20, 000 independent trajectories; for the smallest value T = 0.1 ps, we have simulated 12
independent trajectories from each initial condition, resulting in 60,000 trajectories in total.

To compute the optimal control force u∗ we have employed a further simplification and
calculated and removed all the water molecules. This is done because the vacuum simulation
is much cheaper than the simulation with water and the control forces calculated in vacuum
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T [ps] P(τ ≤ T ) Error Var Accel. I Traj. Usage
0.1 4.30× 10−5 0.77× 10−5 3.53× 10−6 12.2 0.4%
0.2 1.21× 10−3 0.11× 10−3 2.50× 10−4 4.8 5.4%
0.5 6.85× 10−3 0.38× 10−3 2.88× 10−3 2.4 8.3%
1.0 1.74× 10−2 0.08× 10−2 1.21× 10−2 1.4 12.3%

Table 4.5: Results for solvated butane, with controls acting on the dihedral angle only. “Er-
ror” denotes the expected error

√
Var/MIS of the IS estimator, where MIS is the number of

trajectories used. The meaning of the other columns is the same as in Tab. 4.2.

T [ps] P(τ ≤ T ) Error Var Accel. Traj. Usage
0.1 9.00× 10−5 3.00× 10−5 9.00× 10−5 1.0 0.009%
0.2 1.29× 10−3 0.11× 10−3 1.29× 10−3 1.0 0.1%
0.5 7.41× 10−3 0.27× 10−3 7.36× 10−3 1.0 0.7%
1.0 1.78× 10−2 0.04× 10−2 1.75× 10−2 1.0 1.8%

Table 4.6: Results for solvated butane: Brute force Monte Carlo estimate of P(τ ≤ T ).

are an accurate approximation of the controls for the solvated molecule; the latter was verified
numerically by applying the cross-entropy method to solvated butane with the vacuum solution
as initial guess; no further iteration of the control forces was needed in this case.

The results of the importance sampling (IS) computations are summarized in Figure 4.6,
Table 4.5 and Table 4.6. In vacuum, we find probabilities P(τ ≤ T ) = 2.16× 10−2, 8.66× 10−3,
1.48 × 10−3 and 6.13 × 10−5 for T = 1.0, 0.5, 0.2 and 0.1 ps, respectively. These values do
not significantly differ from those of the solvated system (see the second column of Tab. 4.5).
For comparison, Table 4.6 shows the result reference estimates of P(τ ≤ T ), based on brute-
force Monte-Carlo (MC) simulation with MMC = 100, 000 independent realizations. The small
absolute error of the IS scheme indicates that the assumption that the control can be expressed
solely in terms of the dihedral angle is reasonable. Only for T = 0.1 ps the reference MC estimate
cannot be trusted, because only 9 of the 100,000 trajectories hit the trans conformation before
time T ; hence for T = 0.1 ps, neither the estimate of P(τ ≤ T ) nor the error are reliable.

The fourth column of Table 4.5 shows the variance of the IS estimator that is drastically
reduced as compared with the brute force MC simulation. As before we have computed the
total acceleration index I, as a result of both variance reduction and the speed up of the rare
transition events (see the fifth column of Table 4.5). The column ”trajectory usage” presents
the percentage of the trajectories that makes it to the trans conformation within time interval
[0, T ]. Figure 4.5 shows the effective dihedral angle potential (i.e. the original dihedral potential
Vφ(φ) plus the control potential Vctrl(φ)) where we only show the effective energy in the range
[40◦, 150◦], because the initial states of the trajectories are located in the range [40◦, 80◦], and
the trajectories are stopped when they reach φ = 150◦. For an easy comparison, all effective
energies are shifted by a constant, so that they all coincide at φ = 150◦. As expected the
resulting control forces are stronger the smaller T is.
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5 Discussions As a continuation of our works [24, 23], we propose a cross-entropy al-
gorithm for diffusion processes and study its application to importance sampling and optimal
control. For instance, in our previous work [23], we have analyzed the effect of the use of sub-
optimal controls in multiscale systems with explicit scale separation, e.g., slow-fast systems or
diffusions in the small-noise limit. Here the situation is different, in that no such small parameter
or detailed information regarding the relevant degrees of freedom is used. On the other hand, in
the cross-entropy method, the approximation of the target measure and, consequently, efficient
importance sampling or control strategies crucially depend on a sensible choice of a function
basis. A good choice can be often based on prior knowledge about the dynamical system, such
as metastable states or reactive coordinates; it is easy to imagine that there is no way to obtain
satisfactory results when the basis functions used are not supported along the relevant degrees of
freedom. The relation between the cross-entropy method and methods for multiscale dynamical
systems is an interesting and yet open question that will be addressed in future work.
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