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Zusammenfassung

Heutzutage gibt es Konferenzen zu fast jeden moglichen Themenbereich. Dabei un-
terliegt jeder Konferenz ein Veranstaltungsplan, der alle Aktivitdten einer Konferenz
raumlich und zeitlich einordnet. Bei wissenschaftlichen Konferenzen bestehen diese Ak-
tivtaten zumeist aus einzelnen Vortragen, die in sogenannten Sessions zusammengefasst
sind. Das Organisationskomitee von diesen Konferenzen ist damit beauftragt, jeder
Session eine feste Zeit und einen festen Raum innerhalb der Konferenz zuzuordnen.
Dabei soll eine Reihe von komplexen Nebenbedingungen eingehalten werden. Insbeson-
dere bei grofleren Konferenzen wird das Zuordnungsproblem dann allgemein sehr schwer
iiberschau- und losbar.

In dieser Arbeit werden wir die Planungsanforderungen erlautern, die bei grofleren
Konferenzen entstehen. Weiterhin stellen wir einen Losungsansatz vor, der Veranstal-
tungsplane mit Hilfe von mathematischer Optimierung berechnet. Dabei wird das all-
gemeine Planungsproblem in kleinere Teilprobleme zerlegt, die nacheinander mittels
gemischt-ganzzahliger Programmierung modelliert und gelost werden.

Der Ausgangspunkt unserer Ergebnisse war die Erstellung eines Veranstaltungsplans
fir das International Symposium on Mathematical Programming 2012 (ISMP) an der
TU-Berlin. Die ISMP ist einer der grofiten Konferenzen im Bereich der angewandten
Mathematik und Optimierung. Es wurden 1740 Vortrige zu 595 Sessions zusammenge-
fasst, die iber eine Woche in 40 parallelen Raumen stattfanden. Das Veranstaltungspro-
gramm der ISMP 2012 wurde mit Hilfe der hier vorgestellten Modelle erstellt!.

!siche SPIECEL Online-Artikel: "Das optimieren wir jetzt mal’ [25] vom 23.08.2012



1 Introduction

Scientific conferences play an important role in almost all areas of today’s science and
research. They offer a wide platform for international researchers and developers for
communication and scientific exchange of current problems, experiences and knowledge
in nearly all fields of research. Such conferences usually consist of talks about different
topics that are given by authorized speakers. The planning process of a conference
includes the creation of a scientific program schedule, that means a local and temporal
allocation of all available talks.

As the number of talks can grow into thousands for large-scale conferences, the
conference scheduling becomes a complex challenge. Furthermore there exist a great
bandwidth on various and individual requirements on the allocation of the talks. In this
thesis we discuss the major problems that occur during the development of a conference
schedule and provide a framework how proper conference schedules can be generated
computationally. For that, we use Mized-Integer-Programming techniques to find sched-
ules that respect the difficult range of additional constraints.

The basis of this thesis was the development of an optimized conference schedule
of the International Symposium on Mathematical Programming 2012 (ISMP 2012) in
Berlin, Germany. The ISMP is one of the largest conferences in the field of applied
mathematics and mathematical optimization and constitutes a great attraction for in-
ternational mathematicians and researchers. We will present our results based on the
problem instance that we used for the ISMP 2012.

2 The Conference Scheduling Problem

In the following we will describe the major problems and requirements that arise when
scheduling large conferences.

Combination of talks to sessions

In the beginning, the organizers are mostly confronted with a huge number of submitted
talks. At most conferences, each talk must be given within a session. A session includes
a couple of talks that are given successively within the session, without any longer breaks
in general. At the ISMP 2012, each session consisted of at most three talks, where each
talk was limited to 30 minutes speaking time, therefore each session had a total duration
of 90 minutes.

The first problem the organizers have to face is to find a suitable aggregation of
all submitted talks to sessions. Some sessions may already be formed by the speakers
themselves, but a large amount of talks must still be combined in a proper way. It is
intended to have talks of similar content in the same session. In addition, sessions that
are only partially filled with talks should be avoided, since the attendees of a session
should be motivated to attend for the entire session length.

Session assignment
Once all talks have been assigned to sessions, the next planning step is to create a sci-



Session 1 Session 2 Session 3

[ Talk 1 ]| Talk 2 B[ Talk 3] || [Talk 35| Talk 4 B[ Talk 5] || [Talk 6 5| Talk 7 b Talk 8]

Figure 1: Creating sessions

entific program schedule. We assume there are fixed time slots when sessions can take
place. Moreover, each time slot is supposed to have a constant duration that is equal
to the length of one session. At larger conferences, the number of sessions normally ex-
ceeds the number of available time slots, such that sessions have to take place in parallel.
Therefore, a minimum number of [7] rooms is needed to allocate all sessions, where n
denotes the number of sessions and 7T the number of time slots. In our considerations
the creation of a scientific program schedule solely deals with the allocation of sessions
to time slots and rooms. But in addition a huge variety of constraints must be satisfied.

In the following we will look at a typical instance of a conference schedule and describe
the related problems by looking at the schedule from different views.

Assume we have given a fixed set of time slots {T'1,72,...}, as well as a set of rooms
{A, B, ...}. Furthermore, we suppose that we have given sessions {1, ...,n}. Each session
must be assigned to exactly one time and room slot and each time-/room slot can be
occupied by at most one session.

| R/T |[T1|T2|T3[T4[T5]T6|
room A 4 201 9 21 | 16
room B 6 1 25|23 |15
room C 5 | 17 | 2 8 | 20| 3
room D 7T 118 24|19
roomE || 12 | 10 | 13 | 11 | 22

Figure 2: Session view

The figure shows an exemplary schedule in the session view, where the numbers
correspond to a particular session. Such a schedule can be computed quite easily, since
it refers to a usual assignment problem. In practice, the amount of additional constraints
make this problem more complex.

Cluster scheduling
Even before the paper submitting phase, the organizers normally offer a set of clusters
for the conference. A cluster can be seen as generalized topic that each talk belongs
to. We expect that each talk is part of exactly one cluster. The classification of talks
to clusters is usually done by the speakers themselves during the abstract submission.
Therefore, we assume that this information is given in advance. It is further required
that all talks in the same session share the same cluster.

To extend the previous example, we additionally regard a set of clusters {1,2...}.



Each session belongs to exactly one of these clusters. The next figure shows the cluster
view of the schedule, where the numbers correspond to the cluster of each scheduled
session.

| R/T [[T1|T2][T3]|T4][T5]T6|

room A 1 1 1
room B 3 3
room C 2 6 6

room D 5

OO DN |
Y| O O |

Y| O W

room E 6

Figure 3: Cluster view

Obviously, the clusters could have different numbers of sessions. Another requirement
on the schedule is that each cluster is supposed to be equally available at each time slot,
as hown in the figure. Then, participants will have a higher chance to attend sessions
of any cluster of the conference. In addition, it is recommended that the sessions of one
cluster take place in the same room. This provides a better orientation and recognition
value in an unknown environment for international visitors.

Room capacity restrictions

Sessions of different clusters will generally deal with different topics, so the interest in
these sessions may deviate. There might also be talks that are given by more famous
speakers, or talks that present new achievements in some field of research such that there
exisits a high general interest in single sessions or talks respectively. Consequently it is
obvious that there will occur deviations in the number of attendees of each session. Since
every room has a limited number of seats, it is in the responsibility of the organizers
to ensure that more attractive sessions will be planned to larger rooms. Overcrowded
lecture rooms are one of the major problems, especially at large conferences. For that,
we suppose there are constant capacity demands for every session (more on this later).
The final schedule has to comply with the room capacities of every assignment. If we
extend the previous example, the figure below shows the schedule in the capacity view.

| R/T | capacity || TL | T2 | T3 | T4 [ T5 | T6 |

room A 200 92 | 22 | 75 53 | 34
room B 55 55 | 48 | 12 | 25 | 42
room C 120 70 | 118 | 23 | 90 | 48 | 35
room D 30 29 | 30 | 28 | 25

room E 45 43 | 26 | 11 | 44 | 33

Figure 4: Capacity view

The numbers correspond to the capacity demands of every session, or to the number
of attendees respectively. Note that the total number of attendees can vary for each time



slot, as not all participants attend for the entire length of the conference. In particular,
there are time slots that are attended by more people. From our observations, the peak
is usually in the early mid of the conference.

In our approach we focus on the mere compliance with room capacities. That means
we do not depreciate, if a small session is scheduled into a proportional larger room.

Even attractivity distribution

As there are more or less attractive sessions at the conference, it is also not desirable
to have too many attractive sessions scheduled in parallel. That is because each time
slot should be equally attractive, as well as there must not appear too many attractive
sessions at the same time. If we would have given a value of attractivity of each session,
then the schedule should respect a roughly even attractivity distribution over all time
slots, see the figure below.

attractivity distribution

T

TL T2

attractivity

time slots

Figure 5: Attractivity view

The attractivity view shows the total session attractivity at each time slot. In the
best case, the values are equal at each time slot.

Room distances

Apart from the room capacity, the assignment to rooms includes another difficulty.
Whenever a talk has been given within a session, there is a short break of approximately
five minutes to answer questions about the content of the talk. Many participants use
these breaks for room changes to other talks. Leaving attendees will have to overcome
a certain distance to the room of the next talk. As it is hard to estimate which talk
each attendee is changing to, we assume that it will be a talk of similar content. For
this reason, the distance between similar parallel sessions is supposed to be as small as
possible. Of course, this property should hold for all time slots.

The figure below shows an exemplary room map with room changing relations (blue)
between similar sessions at some time slot. On the left figure there is shown a proper
room assignment, while the right figure illustrates an improper room assignment.

In particular, large-scale conferences include room at several floors and in differ-
ent buildings, where distances have to be considered. There it is very important that
distances are kept short.



Figure 6: Short (left) vs. long (right) room changing distances at some fixed time slot

All in all, these are the main points that must be respected by the final schedule.
There are even more constraints, like individual scheduling requests of single sessions.
For instance, one speaker is able to attend only the first day of the conference, then it
has to be constrained in the schedule. Moreover, some persons have to attend to several
sessions at the conference, then it must be ensured that these sessions will not overlap
at the same time. More constraints of this type are presented in the upcoming sections.

We conclude that conference scheduling is a very complex issue. A scheduling ’by
hand’ would be a very time consuming and nearly impossible challenge for large con-
ferences where thousands of different talks and persons are involved. Therefore, math-
ematical optimization methods find a great application, whenever conference organizers
have to deal with the complexity of such problems. In the following, we will present
an approach to compute conference schedules that respect the mentioned conditions.
As mentioned, the presented optimization models were developed to optimize the ISMP
2012 conference schedule. The problem instance of the ISMP 2012 included 1740 talks
which were combined to 595 sessions. These had to be scheduled to five days, each
having three time slots for the allocation of sessions. All sessions have been planned,
using the minimum number of 40 rooms for parallel sessions. Until now, this was the
largest ISMP that has ever taken place.

To provide a better understanding of the underlying combinatorial structures, the
optimization models were extended and improved after the ISMP 2012. We will refer to
the extended results in this thesis.

2.1 Previous Work

The problem of optimizing conference schedules was barely studied in the past. For a
closer insight into that problem, we used an existing master thesis [21] that dealt with
an equal problem of conference scheduling. For further references, we consulted papers
of timetabling models, that mostly dealt with the optimization of university and course



schedules, see [1], [2], [3] and [8]. As our view on the problem is quite specific for itself,
we mostly searched for the underlying combinatorial problems, for which we then used
further literature.

2.2 Notation

We denote the set of talks at the conference by K. Each session s can be seen as sequence
of successive talks s = (k1,...,kn) (m < 3 at ISMP). The set of all sessions is denoted
as S. Furthermore each session takes place at a certain time slot and in a certain room.
The set of all time slots at the conference is given by T and R is the set of available
rooms. In addition, each talk and each session belongs to a specific cluster. Then C
denotes the set of clusters and we denote the cluster of some talk k by ¢ and the cluster
of some session s by c;. Similarly, the sessions that belong to cluster c is defined are
given by the set S..

In the upcoming sections, we will present combinatorial problems that have a rep-
resentation via graphs. We usually define an undirected graph as G = (V, E), where V
denotes the set of vertices and E the set of edges between the vertices. We normally
denote the set of adjacent vertices of a given vertex v by d(v) = {u | (u,v) € E}. This
notation is used for different problems in this thesis. The same holds for the Mixed-
Integer-Programs, where the main variables are usually described by z,y and z. We
emphasize that all models are regarded separately in terms of notation, if not mentioned
otherwise. But it should be clear from the context which model is currently used.

3 Problem Decomposition

Our first testings revealed quickly that the simultaneous assignment of sessions to time-
and room slots is very hard to solve and too time consuming for practical purposes.
As the requirements on a large conference schedule are subject to constant changes,
we decided that it would be more helpful to use an optimization model that computes
solutions in a shorter time span. Therefore, we use a problem decomposition approach,
where the entire problem is subdivided into smaller subproblems that are easier and
faster to solve. Our decomposition includes the following subproblems:

1) Combination of Talks to Sessions

3

(1)

(2) Time Assignment
(3) Stream Assignment
(4)

4

Room Assignment

The subproblems are solved successively, where each step uses the solutions of its
predecessors. The first optimization step combines all talks to sessions (1) such that
similar talks will share the same session. The obtained set of sessions is used for the

10



further procedure. In the time assignment (2), each session gets assigned to a particular
time slot of the conference. It is optimized to evenly distribute the sessions of each
cluster over the entire length of the conference. Afterwards, all sessions are arranged to
streams in the stream assignment (3). A stream is a sequence of sessions (s1, o, ..., ST)
that successively take place in the same room. It is desired that rooms are occupied by
sessions of mainly one cluster for the whole conference. In the last step, each stream
is allocated to a particular room in the room assignment (4). The distances between
streams, that contain similar sessions, is to be minimized. All subproblems are modeled
as Mized-Integer-Programs. An illustration on the entire optimization process is given
in the figure below.

set of talks

(1) Talk combination \\\

set of sessions

(2) Time assignment |

[stream no. [ T1[ T2 |73 [14]T5]T6] .~
stream 1 2 2 2 2 2 2 | e /’
stream 2 41414717676/ 2] ,
(8) Stream stream 3 115|577/ ,:<:\
assignment stream 4 T T T T T T
stream 5 6 6 6 8 8 8 |17,
stream 6 3 3 3 3 3 3 |--- ’\‘\'\‘

Figure 7: Sequence of optimization models for the conference scheduling problem

11



4 Combining Talks to Sessions

After the paper-submission phase, the conference organizers have to combine the submit-
ted talks to sessions. The problem is to find a suitable combination of talks to sessions,
where talks with overlapping content should be given within the same session. In partic-
ular, only talks of the same cluster will be combined. Furthermore sessions are supposed
to be completely filled with talks, since partially filled sessions are rather unattractive
to attend.

In the following we present two Mixed-Integer-Programming approaches that make
use of different combinatorial problems. Both approaches yield an aggregation of all
talks to sessions. The total similarity between talks in one session is maximized, as well
as the total idle time in the created sessions is minimized. From our point of view, the
first model yields a better representation of the actual problem, but is more difficult
to solve. On the contrary, the second model is much easier to solve but just partially
reflects the underlying problem. In addition, the needed problem data is more difficult
to obtain and to characterize.

We have to mention, that the models of this section have not been used for the ISMP
2012. But in retrospect, they find a great application, when the conference planning is
considered as a whole. For this reason, our computational experience was made with
randomized data.

In the following we will consider the generalized case, where talks may have arbitrary
lengths. Therefore, we denote the constant duration of all sessions by D and the length
of talk k by di. In particular, for the ISMP instance it holds d = 30 for all kK € K and
D =90 (in minutes), what we could also simplify to D =3 and d, =1 for all k € K.

4.1 Clique Partitioning approach

For this problem we have given an undirected graph where each talk k£ € K represents
a vertex. Every talk is supposed to have a similarity relation to all other talks of the
same cluster ¢ € C'. These relations are modeled as undirected edges from an edge set
E = {(k1)| k1l e K,k <l,c; = c}. Every edge (k,l) has an edge weight o € R
that defines the similarity between talks k£ and [. Its value indicates the overlap in the
content of the talks. The higher the value of o; the higher is the overlap. The induced
graph is given by G = (K, E).

All talks within the same session have a similarity relation to each other. Hence, we
will regard each session as complete subgraph of G, a clique. The problem is to find a
partition of K into disjoint subsets K1, ..., Ky, such that for all i € {1,...,m} each K;
induces a session or a clique respectively. We define the size of a clique, as the number of
vertices in the inuduced subgraph. The total similarity of the sessions, that is the total
edge weight of all cliques, is to be maximized. This combinatorial problem is also known
as the Clique Partitioning Problem (CPP) that was shown to be N’P-hard. It has been
studied by Grotschel and Wakabayashi [4][22] who introduced different cutting plane
techniques for this problem. Ji and Mitchell [23] considered the problem with minimum
clique size requirement and propose a branch-and-cut algorithm.

12



Our considerations include further restrictions concerning the length of the sessions
and talks. For every session K; the sum of the lengths of all talks in K; must not exceed
the duration of the session, that is }°, K, Ak < D. Thus, djy can be seen as additional
vertex weight, where each clique bounds the weight of all contained vertices by D. These
knapsack conditions within a clique partitioning problem has been studied by Mehrotra
and Trick [24].

Furthermore, our model penalizes the unused capacity of each clique, as this cor-
responds to the idle time in each session which is to be minimized. In addition, we
have another requirement on the maximum number of cliques in the clique partitioning,
since the number of sessions is bounded by the number of available time- and room slots.

30

30 30 30
@

30 30

idle time = 0 idle time = 30 idle time = 60

Figure 8: Three possible sessions (cliques) with duration of D = 90 that contain talks of length
di = 30 and the induced idle time

In the following we will present an integrated Mixed-Integer-Program that solves the
problem with respect to the mentioned constraints.

Mixed Integer Program

For every edge (k,l) € E we introduce binary variables zy;, that take on the value
1, if talks k and [ appear in the same session. The number of possible sessions is
bounded by the number of available assignment slots, that is |T'| - |R|. Consequently, the
number of cliques in the graph must be restricted to this amount. From the modeling
view, restricting the number of cliques is a non-trivial matter, so we introduce further
variables. Let W = [m], then B = {1,..., W} denotes the set of possible clique
sizes. Furthermore, let 2y, denote the binary variable which takes on the value 1, if talk
k is contained in a session of size b € B, and 0 otherwise. Moreover, let yi, > 0 denote
the amount of idle time that is induced by talk k, if it is contained in a session of size
b. A more detailed explanation on this variable is given later. At large conferences, it
is usual that sessions can also be created by the speakers themselves. Therefore let K
denote the set of talk pairs of the same cluster, which are supposed to appear in the
same session. The Mixed Integer Program reads as follows:

13



max A\ Z Uklxkl—(l—)\)zzykb

(k,heE keK beB

st. xjptaom—x; <1
xjk_xkl+le <1 V(],]{?),(k},l),(],l) €E (1)
—Zjptxp +a; <1

szbzl Vk e K (2)
beB
Yeb < D - zip Vk € K,be B (3)

Z Thl = Z(b — 1) © Zkb Vk e K (4)

15 (k) beB
dy + Zdlxkl—FZb-ykb:D Vk e K (5)

16 (k) beB

1

STl IR (6)
keK beB
zp =1 V(k,1) € Ky (7)
xp € {0,1} V(k,l) e E
yrp > 0 Vke K,be B
zip € {0,1} Vke K,be B

The similarities between talks in the same sessions are maximized in the objective
function, as well as the total idle time in all sessions is minimized. The coefficient
A € [0, 1] weights the importance between the two objectives. Constraints (1) are the
triangle inequalities, which indicate that whenever two edges in a triangle (7, k,[) are
selected, then also the third edge must be selected. Together with the integrality con-
dition zy; € {0,1} for all (k,l) € E, the integral points that satisfy these inequalities
yield a complete description of all clique partitionings in G, see [4]. Inequalities (2) say
that each talk must be assigned to a session of a particular size. If some talk k is not
contained in a session of size b, then it induces no idle time yy;, there (3). Constraints (4)
state that the number of adjacent edges of some talk k is exactly the size of the clique
of k minus one. Further, the sum of the lengths of all talks in a session must not exceed
the maximal duration D of a session, what is modeled by (5). The term » ;b - yg is
used to count the correct amount of idle time in the objective function, because every
clique member shares the idle time. Inequality (6) says that the number of sessions must
not exceed the maximum number of sessions, what is |T'| - |R|. In addition zj; must be
fixed to one for all (k,1) € K4 (7).

14



Reduction of the problem size

In practical implementation, the triangle inequalities (1) have a huge impact on the
complexity of this problem, as the number of constraints grows rapidly, even for smaller
instances. Therefore, it was hard to find proper solutions for our problem instances.
For this reason, we did a reduction approach to reduce the number of constraints to a
manageable amount. Our approach was to eliminate 'redundant’ edges. In our model we
regard an edge as redundant, if it does not satisfy a certain value o of similarity. More
precise, all edges (k,l) € FE with oy < o are eliminated. This seems useful, as edges
with a lower similarity value are rather unattractive to choose. Therefore, we define the
reduced edge set as E' = {(k,l) € E | o)y > 0} C E and apply the model to the sparse
graph G’ = (K, E’) . With this reduction approach, the completeness property of the
subgraphs is lost in general due to the elimination, so the triangle inequalities do not
give a full representation of the clique partitionings in G’ anymore. Thus, we have to
replace the triangle inequalities (1) by the following set of constraints to regain a full
description.

Tjk + Trl — Zj1 <1 V(], k‘), (k,l), (j,l) <3

Tjp —xp +xj <1 v(j, k), (k,1),(4,1) € E (1"
—Tjk +ap g <1 V(G E), (kD), (4,1) € B

Tjp + 1 <1 V(5. k), (k1) cE: (4,0) ¢El,j <l
Tjp+xj <1 V(j,k),(j,l) e B : (k1) ¢ E' k<1 (17)
T+ <1 V(/{I,Z),(j,l)GEl:(j,k‘)¢El,j<k‘

Inequalities (1’) are the triangle inequalities, as used before for each triangle in the
sparse graph. If one edge of an arbitrary triangle in G is lost due to the elimination,
we have to ensure that at most one of the two remaining edges belongs to a clique of
the clique partitioning of G’ (17). An equivalent interpretation of these inequalities is to
set ¢k = 0 in (1) for all eliminated edges (k,l) ¢ E’, where (1’) and (17) are the usual
triangle inequalities. The benefit arises from the fact that triangles with two deleted
edges induce a redundant triangle inequality.

Computational experience

Since this problem is N"P-hard, it was not surprising that the problem was not solvable
with the general formulation. Therefore, we introduced the elimination approach, in
order to reduce the huge number of triangle inequalities in the model. This made it
possible for us to compute solutions for problem sizes of the ISMP, or even larger. But
in general, we can be far from the optimum, so we considered another formulation that
is presented in the next section.

4.2 Capacitated Facility Location approach

The main idea of this model approach is to assign each talk k € K to a session s € S
of a preformed session set S. Whenever a talk is assigned to a session, then this session

15



is ‘opened’. Here it is important that each session of S already belongs to a certain
cluster ¢ € C such that talks are only assigned to sessions of equal cluster. It also
ensures that talks of different clusters are not assigned to the same session. Therefore
let S, ={s€8S|cs=cp}forallk e Kand Ks = {k € K | cs = ¢} for all s € S.
Furthermore, each assignment (k, s) of talk k to session s has a similarity value oy, that
indicates the similarity of talk k to session s. The first objective is to maximize the total
similarity of the talks to the sessions, while each talk must be assigned to a particular
session. Secondly, the occurring idle time of each session should be minimized. In order
to respect the maximum possbile number of sessions, we have to bound the total number
of opened sessions by |T'| - |R|. As in the previous model, it must be ensured that the
total length of all assigned talks does not exceed the duration limit D of each session. In
the end, each opened session s € S forms a 'real’ session at the conference that contains
all assigned talks.

In combinatorial optimization, this problem variant is better known as n-Single
Source Capacity Location Problem (n-SSCFLP). There we have given a set of customers
and a set of potential facility locations, where each customer must be assigned to exactly
one opened facility. The total assignment cost and the total opening cost of all facilities
should be minimized. Moreover, the capacity of each facility must be sufficient to serve
the demand of all assigned customers. Also, the number of opened facilities is bounded
by a constant n. The n-SSFCLP belongs to the class of NP-hard problems.

If we transform our problem to the n-SSCFLP, each talk k corresponds to a customer
that has demand di, as well as each session s is associated with a potential facility that
has capacity D and opening cost equal to zero. The assignment cost is given by —ogs,
thus oy is the profit to assign customer k to facility s. The bound on the maximum
number of openend facilites is n = |T'| - |R| in our case.

In contrast to the general formulation of the n-SSCFLP, we also want to minimize
the idle time in each session, what can be seen as additional cost for 'unused capacity’
of each facility. Additionally, there are talk pairs which have to be scheduled within the
same session. We will see that these conditions can be implemented with a common
n-SSCFLP formulation. The figure below shows an illustration to this modeling variant.

Talks (customers): 30 30 30 30 30 30
Sessions (facilities): 90 90 90
idle time = 0 idle time = 30 idle time = 60

Figure 9: Different assignments of talks with length dj = 30 to sessions with duration of D = 90
and the induced idle time (unused capacity)

16



Mixed Integer Program

For every assignment (k, s) of talk k to session s, there is the binary variable zjs which
takes on the value 1, if talk k is assigned to session s, and 0 otherwise. The variable
ys > 0 denotes the amount of idle time in each session s. Furthermore, the decision
variable zg is 1, if session s is opened, and 0 otherwise. Equally to the previous model,
K denotes the set of talk pairs, that should be allocated to the same session. Especially
it must hold ¢ = ¢ for all (k,l) € K. The Mixed-Integer-Program states as follows:

max A\ Z OksTrs — (1 — A) Zys

(k‘,s)GE s€S
st Y ape =1 Vke K (1)
SESk
de‘xks+yS:D‘zs Vs e S (2)
keK
Ths < Zs Vke K,s €Sy (3)

sesS

Tks = Tls V(k},l) € K+, s € gk (5)
zps € {0,1} Vk € K,s € S

ys > 0 Vs e S

zs € {0,1} Vs e S

The objective function maximizes the total similarity of the assignments of talks
to sessions, as well as the total idle time in the created sessions is minimized. The
coefficient A € [0, 1] weights the importance between the two objectives. Constraints
(1) ensure that every talk is assigned to exactly one session. Inequalities (2) express
that the talk lengths may not exceed the duration of each session and its gap is ex-
actly the idle time of the session. Inequalities (3) are not necessary for the formulation,
but they yield stronger bounds for linear relaxation of the problem. In (4), the total
number of opened sessions must not exceed the number of available session slots, that is
|T|-|R|. Constraint (5) guarantees, that all talks in K are assigned to the same session.

If we take a closer look to the model, we see that it can be transformed to a common
n-SSCFLP. For that, we rearrange inequality (2) and see that we can get rid of the ys
variables:

Ogys:D'zs_de'xks (2)
keK
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de-l‘kSSD'ZS Vs e S (2/)
keK

Constraints (2) are replaced by (2’) which now correspond to the ususal capacity
requirement of an n-SSCFLP. The definition of y, in (2) is then inserted into the objective
function:

max Y (Aoks + (1= Ndi)ags — > (1= A)D -z
(k,s)eE seS
=max» (1—Nde+ Y Aopstps — » (1= N)D -z
kek (k,s)€E seS
const.

< min Z OhsThs + Z fszs

(k,S)GE seS

Now, inequalities (1) - (4) correspond directly to the n-SSCFLP formulation with
new assignment cost o},, = —Aoy, and facility opening cost fs = (1 —A)D. This has the
natural interpretation that the idle time just depends on the number of opened sessions,
while the total duration of the talks is constant anyway.

Constraints (5), which expressed that talk pairs (k,l) € K4 must be assigned to the
same session, can also be eliminated by replacing all talks, that must be scheduled into
one session, by a new greater talk that has the total duration of all replaced talks.

Computational experience

For our computational results we choose S = K, that means it is possible to open
a session for each talk. As the similarities occur between talks, we used the same
similarities, as in the clique partitioning model. In contrast to the previous approach,
this problem is properly solvable without reducing the problem size. But in contrast
to the CPP, it does not yield a proper formulation of the underlying problem, as some
similarity relations (between the customers) are not considered. Therefore it gives just
a partial representation of the actual problem.

5 Time Assignment

In this section we will present the next optimization step, the time assignment. It
yields an assignment of all sessions to time slots. The entire time assignment model
includes a huge variety of different constraints. For this reason, we will present a general
Mixed-Integer-Programming formulation first, until further classes of constraints are
introduced. Based on that, we will give an approach to the robust optimization of the
schedule, that relates to the uncertain number of attendees of every session and the
compliance with room capacities.
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5.1 Mathematical Optimization Model

In the optimization model, each session s € S is assigned to a time slot ¢t € T. This is
modeled by decision variables x4, with:

1, if session s takes place at time slot ¢
Tst = .
0, otherwise

A solution of the time assignment model yields a partition of S into disjoint sets S1, ..., St
with S; NSy = 0 for all pairwise distinct ¢,#/ € T. In that sense, S; contains all
sessions that are scheduled at time slot ¢. These sets are used as input for the upcoming
optimization models. In the next sections we present a comprehensive description of the
core-model, which is followed by further classes of constraints.

5.1.1 Core model - Modeling an evenly distributed schedule

Each conference participant has individual preferences concerning the choice of his ses-
sion. But it is natural to assume that every participant focuses only on a selection of
topics that he is interested in. These topics are generalized given by the set of clusters
C. As each session belongs to exactly one cluster ¢, the sessions of a cluster are supposed
to be equally available at every time slot of the conference.

That means for every cluster ¢ € C the set S. C S, what is the set of sessions that
belongs to ¢, must be evenly distributed over all ¢t € T. For a given cluster ¢ the fol-
lowing illustration shows how S, should be distributed over the time slots in the best case.

(oW
—

ay day 2 day 3

[ ][] [c]

T1L T2 T3 T4 T5 T T7 T8 T9

Figure 10: Exemplary time assignment for S,

The figure shows the distribution of S, over an exemplary conference with time slots
T ={T1,...,79}. This example shows the best distribution for S, in a sense, that will
be explained during the further procedure. We see that S, is evenly distributed over
all time slots, so participants, who are interested in cluster ¢, are able to attend the
sessions of ¢ at every time slot. Each day of the conference has exactly three time slots.
At day 1 and day 3 there occur three parallel sessions of S., while at day 2 there are
scheduled two parallel sessions. Time slots with a maximum number of sessions should
appear together at entire days (day 1 and day 3). This is desired, because ’cluster gaps’
should be avoided during a single day, that means one room is supposed to be occupied
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by sessions of one cluster for the whole day. We also want that S, can be scheduled in
the minimum possible number of rooms. With this time distribution, it it possible that
S occupies the minimum number of three rooms.

In the following we present a Mixed-Integer-Program to obtain such an evenly dis-
tributed schedule for arbitrary subsets of sessions S’ C S. For that, we need to introduce
further definitions and properties of the schedule.

Let b; denote the number of sessions of a fixed cluster at time slot ¢. Assume that a
participant is interested in this specific cluster only, that means he will attend sessions
of this cluster only. Additionally, we have to assume that he is able to attend only one
session at each time slot. Let w denote the number of different session programs sy, ..., ST
that our participant can choose for the whole conference.

Claim 1. w is mazimal if and only if |b; — by| < 1 for all pairs of time slots t,t' € T.

Proof. As it is possible to choose only one session per time slot, the number different
session programs is the product over the number of available sessions at each time slot,
except those with b; = 0. Let T’ be the set of time slots ¢ with b; > 0, then he can
choose w = [],cq by different session programs for the conference.

Let w be maximal and assume that b; — by > 1 for two different time slots ¢,¢ € T.
Swapping one session from ¢ to t’ yields:

(e =Dy +1) J[ br=@be+be—by—1) J[ be>bby [] bi=w
teT\{t,t'} teT\{t,t'} teT\{t,t'}

This forms a contradiction on w being maximal.

To show the other direction, let |by — by| < 1 for all ¢,¢' € T” and assume that w is
not maximal. Any deviation of the distribution that preserves |b; — by| < 1 yields the
same w. Consequently in a distribution, where w is maximal, it must hold b; — by > 1
for two time slots ¢ and ¢'. But then we could always find a greater w, equally to the
case before. This contradicts to the fact that w is maximal in such a distribution. O

Since we expect many participants to concentrate on a few clusters only, the claim
yields a nice property for the schedule. There, the number of different session programs
for one cluster is maxed out.

The next definitions are needed to define an evenly distributed schedule, as shown
in Figure 10.

Definition 2. Let S’ C S be an arbitrary subset of sessions. We call a time slot t
mazimal for S, if by < by for allt' € T.

Definition 3. Let D denote the set of days for the conference. We define Ty as the set
of time slots, which belong to day d € D. We say a set of sessions S’ C S is bundled at
day d, if all time slots t € T; are maximal for S’.
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Definition 4. We say a set of sessions S' C S has an evenly distributed schedule (EDS),
if the following properties hold:

(i) |by — by| <1 forall t,t' €T
(ii) the number of bundled days is mazimal, with respect to (i)

The time assignment of S, in Figure 10 has an EDS, because two time slots differ by
at most one session (i), and the number of bundled days (day 1 and 3) is maximal (ii).
In our considerations it is not important which days are bundled, as long as the number
of bundled days is maximal.

Next, we introduce a Mixed-Integer-Programming approach, that models an EDS
for arbitrary session sets S’ C S. For that, we define S as the set of session-subsets,
for which an EDS should be applied. Since every cluster is supposed to be evenly dis-
tributed we define S = (J {5}, that means the elements of S are the session sets of
each cluster. For simplicity in the further notation we use the index set J to denote all
EDS sets with S = (J;¢;{5;}. This will be helpful to describe further EDS sets that are
introduced later.

Mixed Integer Program

For each j € J we define the variable U; > 0 that is an upper bound on the number of
sessions of §; € S at all time slots. Furthermore let y;; be a binary variable which takes
on the value 1, if time slot ¢ is maximal for S;, and 0 otherwise. The binary variable
2jq is equal to 1, if S; is bundled at day d, and 0 otherwise. The following Mixed-
Integer-Program produces an assignment of each session to a time slot, such that each
S; receives an EDS. Therefore A1, A2, A3 > 0 are weight coefficients, that are specified
later.

min Alej—l—AgZZyﬁ—)\szzzﬂ

jeJ jeJ teT jeJ deD
s.t. szt =1 Vse S (1)
teT
Ui+yje— Y aa>1 VjeJteT (2)
s€S;
Zyjt >1 vjiedJ (3)
teT
Zjg —Yjt <0 VjeJde D,teTy (4)
xg € {0,1} seSteT
Uj >0 vieJ
yje € {0,1} ViedJteT
zjq € {0,1} VjelddeD
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The objective function minimizes U;, what is the maximal number of sessions that are
scheduled at some time slot. In addition, the number of maximal time slots is minimized
and the number of bundled days is maximized for every S; € S. Inequalities (1) mean,
that every session must be assigned to exactly one time slot. Constraints (2) indicate,
that U; is bounded from below by the number of sessions at time slot ¢, if ¢ is maximal
for S; (yje = 1). Otherwise, if ¢ is not maximal for S; (y;;: = 0), then U; must differ by
at least one from the number of sessions at t. This is because at least one maximal time
slot must exist for every S; (3). Inequalities (4) say, that if S; is bundled at day d, then
all t € T,; must be maximal.

Note that U; is always integral in an optimal solution of the model. Moreover, the
integrality condition of z;4 can be relaxed to 0 < zj4 < 1.

The next figure illustrates the relation between an arbitrary time assignment and the
induced variables values.

min) %2 [ 0 T[T JoJoJo[1][1]1
(max) zjd 0 0 1

Figure 11: Time assignment and the induced variable values and for session set .S; = S,

Remark. In particular, an optimal solution of the optimization model yields an EDS
for every S, only if the weight coefficients A1, A2, A3 are chosen correctly. Therefore we
have to make a distinction between the variables in the objective function to obtain an
EDS for every S; with j € J.

Proposition 5. Let A\; > (|T| — 1) - A2 and X2 > X3. A solution of the above time
assignment model is optimal with respect to weight coefficients A1, Az, A3 > 0, if and only
if all S; € S with j € J have an evenly distributed schedule (EDS).

Proof. Let x = (xst)sester be the assignment vector of an optimal solution of the time-
assignment with A\; > (|T'| — 1) - A2 and Ay > A3. For the proof we look at an arbitrary
session set S; and assume that it has no evenly distributed schedule. Therefore, there
must either exist time slots ¢, with Zsesj Tgt — Zsesj Zg > 1 or the number of time
slots is not maximal, when Zsesj Tst — Zsesj rgp < 1.

At first, we will consider the case of Zsesj Lot — Zsesj g > 1 for time slots t,¢' € T
and make a case-by-case-analysis. W.l.o.g we can assume that ¢ is a maximal time slot.
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Case 1: t is the only maximal time slot.
Swapping a session from time slot ¢ to ¢’ decreases U; by one, because U; was bounded
from below by the number of sessions at a maximal time slot. Ast was the only maximal
time slot, U; can be decreased by one due to this swap. The number of maximal time
slots could increase to at most |T'| — 1, since there exists at least one maximal time slot
in any time assignment. However, the number of bundled days can only be increased
due to the swap, so we obtain a cost reduction of —A; + (|7'] — 1) - A2 < 0 in the worst
case. But that is a contradiction on x being optimal.

Case 2: t is not the only maximal time slot.
Swapping one session from ¢ to ¢ decreases the number of maximal time slots by one.
Since there is at least one further maximal time slot, U; could not be decreased and
remains the same. However, at most one bundled day could be destroyed due to the
swap. Then we would obtain a cost reduction of —A\s —(—A3) < 0, what is a contradiction
on z being optimal.

Consequently, if x is optimal, then it holds |ZS€SJ_ Tst — Zsesj xg| < 1 for all
t,t' € T. If this property holds, then also the number of bundled days is maximal,
because it is maximized in the objective function.

For the other direction we require all S; with j € J to have an EDS, that is given by
the assignment vector & = (x4 )sester and the variables U, y, z. We assume, that x is not
optimal for the objective function min -, ;(AUj + X2 37 Yje — A3 D _gep 2ja)- Thus,
there must exist at least one j € J, for which the sub-objective function min \1U; +
A2 Y et Yit — A3 D_gep %ja has strictly higher cost than in the optimal solution. Let
x*, U*,y*, z* be the variables values of an optimal time assignment. Again, we do a
proof by cases. As already mentioned, one of the following cases must occur for some
jedJ:

Case 1: UF < U;

In an EDS, Uj is already minimal, so U cannot be smaller, as it is bounded from below
by the same amount of sessions.

Case 2: 3 ycr v < Dyer Ust
Any EDS-preserving deviation of the schedule yields the same amount of maximal time
slots. Therefore, the only possibility to decrease ), ., y;i, is to swap a session to an
existing maximal time slot #'. Then, ¢ would form the only maximal time slot and the
amount of maximal time slots would particularly be minimal (= 1). As U; is bounded
from below by the number of sessions at any time slot, Uj is increased by one due to this
swap. For such a deviation, the largest possible difference in the number of maximal time
slots ranges from |T'| to 1 in the best case. Then the cost changes to A\; — (|T'| —1)A2 > 0.

Case 3: > gep 2jd < Xaep #d
If we increase the number of bundled days, then also the number of maximal time slots
must be increased by at least one. This yields the cost change of Ao — A3 > 0.

Finally we can exclude case 1. For case 2 and 3 it is not possible to decrease the
number of maximal time slots or to increase the number of bundled days respectively,
without increasing the cost. Finally, there exists no j € J, for which the optimal solution
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has strictly smaller cost, that means x must be optimal. This contradicts the assumption.
O

Proposition 5 holds for both directions, consequently no evenly distributed schedule
is excluded with the Mixed-Integer-Program formulation. With respect to that, we apply
the following weight coeflicients to the objective function:

min 2T U +23 > g — DY zja

jeJ jeJ teT jeJ deD

5.1.2 Room capacity restrictions

Each session differs in its cluster, content, speakers and the contained talks. Naturally,
each attendee has own interests and preferences concerning the choice of his session.
Hence, all sessions will obviously have different numbers of attendees. As each session
takes place in a certain room, it is necessary that the available number of seats is not
exceeded. Especially for large conferences, where the room sizes may be significantly
different, the compliance with room capacities is a very important requirement on the
schedule.

In this section we will refer to the work of Liibbecke and Lach [2][3]. They present
inequalities that satisfy room capacity restrictions within a time assignment. This is a
non-trivial matter, as we are just considering assignments of sessions to time slots in this
model. We further want give a proof that these inequalities are sufficient to model the
compliance with room capacities in a time assignment.

In the following let w, denote the capacity of a room r € R and let as indicate the
number of attendees in a session s € S. A more detailed study on how a; is determined,
is given in Section 5.2, but we naturally assume that as; > 0.

Definition 6. An assignment (s,r) of a session s to room r is called feasible, if the
number of attendees does not exceed the capacity, that means as < uy.

Let St be the set of all sessions, that are scheduled at time slot ¢. This set is actually
not defined yet, because it is only given by a solution of the time assignment. But in
the following we will give sufficient conditions for S; to comply with the room capacities.
These conditions can be formulated by means of linear inequalities, as proposed in [2]
and [3]. For that, we model each session s € S; and every room r € R as vertices in
the vertex set S; U R. Furthermore let E be a set of the undirected edges, that model
all feasible assignments (s,r) between sessions s € S; and rooms r € R. We define
Gy = (S; U R, E) as the feasible assignment graph for time slot ¢. In particular, G; is a
bipartite graph with the bipartition {S;, R}.

Definition 7. Let G = (V, E) be an undirected graph. M C FE s called a matching
of G, if the edges of M have no vertex in common. M is a perfect matching, if every
vertex v € V is incident to an edge in M.
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Lemma 8. The sessions of S; comply with the capacities of R if and only if the feasible
assignment graph G contains a matching M such that each vertex of Sy is incident to
an edge in M.

Proof. Let S; = {s1,..., Sm}, then S; complies with room capacities if there are feasible
assignments (s1,71), ..., (Sm,m) for all sessions of S; to distinct rooms r; # r; for all
i,7 € {1,...,m} with ¢ # j. These feasible assignments directly correspond to the edges
of the matching M. The other direction is analogous.

O

Consequently, our optimization model must ensure, that there exists such a matching
for all Gy with ¢t € T. As proposed in [2] and [3], we refer to the theorem of Hall, that
yields a sufficient condition on the existence of such a matching.

Hall’s Matching Theorem. Let G = (V, E) be an undirected bipartite graph with the
bipartition V.= AU B and the edge set E. Let T'(A) C B be the set of vertices that are

adjacent to vertices in A. G contains a perfect matching if and only if |A'| < |T'(A")| for
all A’ C A.

We will apply this theorem to our feasible assignment graph G; with A = S; and
B = R. Note that the theorem also works for |S;| < |R|, as the number of sessions at
some time slot may be smaller than the number of rooms. Let S’ C S be an arbitrary
subset of sessions and let I'(S") C R be the set of rooms that are adjacent to sessions of
S’ in Gy. The cardinality of S’ NSy is given by > o xs. The following linear inequali-
ties model the Hall condition for all feasible assignment graphs Gy:

Y ag <T(Y)| VS CSteT
ses’

In general the number of these constraints is exponential and thereby hardly applica-
ble in practice. We will give a proof that the constraints can be reduced to a polynomial
number. We show that, for each subset S’ C S;, there exist a polynomial number of
dominating inequalities.

Definition 9. Let lex < by and dgx < by be walid linear inequalities for the time
assignment. We say inequality dXx < by dominates di x < by, if there exists a A > 0
such that di < Ada and \by < by.

Remark: In particular, each dominated inequality in a linear programming formulation
becomes redundant.

Let 79 be a ’dummy’ room with capacity uw,, = 0 and let R,,,, denote the set of
rooms that have the highest capacity, as there might exist more than one. Further let
Ry = RU{ro} — Rmasz and S~, = {s € S| as > u,} be the set of sessions that have no
feasible assignment to room r.
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Lemma 10. Let S’ C S be an arbitrary subset of sessions. Then there exists a room
r" € Ry such that the following holds:

(i) ST C Ssp
(i) T(S") = T(S5)

Proof. Let s = argmingcg/(as) be the smallest session of S’.
Further let ' = arg max,.c Rour<a, (uy) be the largest room, that can not include session
s’. We show that (i) and (ii) holds for »’.

(i) Let s be an arbitrary session in S’. It holds as > ag > u,» and therefore s € S5,/ by
definition of Ss,-.

(ii) Let r € T'(S’), then there exists a feasible assignment (s,r) with s € S’. It holds
s € S, because of (i). That means (s,r) is a feasible assignment for a session s € S<.,/
and therefore r € I'(S5,/).

For the other inclusion let r € T'(Ss,v). It holds u,» < ay < u,, because 1’ is the
largest room that can not include s’ and wu, > u,s by definition of r. That means (s, r)
is a feasible assignment. Since s’ € S’ it follows r € T'(5’). O

Finally, Lemma 10 yields the following dominating inequalities for every S’ C S:

Z Tst S Z Tst S ’F(S>r’)’ = |F(S/)’ vt € T

ses’ SES>T/

We do the reformulation of I'(Ss,/) = {r € R | u, > ux} =: B, and add the
reformulated linear inequalities to the existing time assignment model formulation:

Y x4 <|B| VreRyteT (5)

SES:as>ur

Remark: Rooms with equal capacity describe the same inequality. Therefore, we could
also refer to a subset of rooms of Ry whose capacities are pairwise different.

Corollary 11. There exist a polynomial number of inequalities that dominate the Hall
mequalities.

Corollary 12. The inequalities (5) are sufficient for the existence of a matching in the
feasible assignment graph Gi. Thus, a feasible solution of the time assignment model
yields the compliance with room capacities at every time slott € T'.

Summarized the main argument for the reducible number of constraints is, that we can
exploit the sorting of the attendance values as and capacities u,. If an assignment of
a session s to room r is feasible, then an assignment of a smaller session to r is also
feasible. This implies a redundancy of inequalities in our model. An illustration to this
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sessions s € Sy rooms r € R

O as, ur in ascending order O

dominating
set Ss,v

feasible (direct) and infeasible (dashed) assignments

Figure 12: Bipartite assignment graph G; with dominating session set Ss,. 2 S’

idea is given in the next figure.

Remark: An optimal solution of the time assignment, that includes the room capacity
constraints, does not necessarily yield an evenly distributed schedule for all EDS sets
7 € J, as in the previous section. The model is restricted with this constraint.

5.1.3 Capacity labeling

If the total number of attendees is sufficiently large, it becomes more difficult to comply
with the room capacities. Even though all capacity constraints might be satisfied, as
well as all clusters may be evenly distributed over the time slots, the final schedule might
look inappropriate for practical usage. In terms of hard capacity constraints, the sessions
of one cluster may appear in many different rooms, what is supposed to be avoided in
the final schedule. The next figure shows an exemplary time assignment of S. for some
cluster c. Sessions with a large number of attendees are illustrated by L and sessions
with a small number by S.

Even though S. has an EDS, this assignment will not work well in practice. If
capacity constraints are hard to satisfy, then there is no degree of freedom in the choice
of the rooms. That means large sessions must appear in large rooms and, consequently,
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(L) [T L) s [s][L][s]
---
T3

T4 T5 T6 T7 T8

Figure 13: Unsuitable time assignment for S,

the small sessions must be scheduled to small rooms, because larger rooms are occupied.
If we apply a provisional room assignment on this time distribution, the schedule would
look similar to the following figure:

large
rooms:

ol

TH T2 T3 T4 T5 Te T7 T8

Figure 14: Expected room assignment: large sessions to large rooms, small sessions to small
rooms

This worst case example shows that big and small sessions are alternating between
large and small rooms over the entire length of the conference. That means people, who
want to attend this cluster, have to change the room at every consecutive time slot.
Furthermore this cluster would probably occupy four different rooms, even if two rooms
might be possible. Another disadvantage is the time overlap of the large sessions, because
they are more popular in general. Since one participant can visit only one talk at the
same time, he would miss the other popular talk. These situations have to be excluded
for real-world instances. A more suitable time assignment would be the following;:

large rooms:
small rooms:

T1 T2 T3 T4 T5 Te T7 T8

Figure 15: Even distribution of large and small sessions

In this time assignment, large and small sessions are evenly distributed over the time
slots. We generalize this to the fact that an even distribution must additionally hold for
sessions with different capacity demand. To achieve such a distribution in our schedule,
our approach is to apply the EDS constraints of the previous section to further sets of
sessions. In contrast to the last example we need a more precise categorization of the
needed capacities of the sessions.

Since we consider feasible assignments only, it holds a5 < wu, for each assignment of
a session s to room r. Hard capacity constraints will restrict the assignments, such that
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u, is generally not much greater than as, because larger rooms are occupied by larger
sessions. Let £ = {u, | r € R} be the set of room capacities. We define a capacity
labeling as a function

m:8 = L, s min{u, | as < u,}.

It describes the minimum possible capacity of an available room that a session can
be allocated to. Thus it can be seen as the capacity, where each session ’fits best’ in the
sense of hard capacity constraints. In particular, all sessions with the same label can be
regarded as equal in terms of needed capacities.

Let Sq = {s € S| ¢s = ¢,m(s) = [} be the session sets that contain all sessions
that belong to cluster ¢ and capacity label I. Let L. = {l € L | Sy # 0} be the set
of labels that are covered by sessions of cluster ¢. Then, similar to the example before,
we apply the EDS constraints to each S, by should be evenly distributed over the time
slots. Therefoupdating the EDS set S to:

S = U{SC}U U U {Sa}

ceC ceCleLl,

Since we introduce additional variables and constraints for every EDS set, the prob-
lem size of the model is enlarged with this step.

Extended example

We want to present a further example for a fixed cluster ¢, where the sets S. and Sy
are evenly distributed, but a better time assignment would be possible. For instance,
let us assume that the sessions of ¢ belong to the capacity labels L. = {l1,l2,l3, 14} with
Iy < ly < l3 < lg. From the definition of S an EDS is applied to the following sets:
Se, Sty Selys Seiy» Sely- In particular Sy, C S, for all i = 1,...,4. An examplary time
assignment for S, is shown in the figure below.

T™1L T2 T3 T4 T5 T T7 T8 T9

Figure 16: Time assignment for labeled sessions of S,

The entire set S, as well as each labeling set S¢;, , Sciy, Seis, Sei, » is evenly distributed.
Once again, we refer to the case of hard capacity constraints. From our previous obser-
vations, sessions with lower capacity labels will be scheduled into smaller rooms, while
sessions of a higher label will appear in larger rooms. This is because sessions of a higher
capacity label will also require a higher minimal capacity. Again, we apply a provisional
room assignment to the time distribution of the previous figure, now with respect to
capacity labels.
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Figure 17: Hard capacities: high labels to large rooms, low labels to small rooms

The labels I1,1, are characteristically assigned to large and small rooms, while the
labels o, 3 could appear in the same room of medium size. This might be possible, if the
difference of o and I3 is not too large. In a worse case we can assume, that they cannot
share the same room, because shifts due to hard capacity constraints are possible. The
number of rooms that one cluster occupies, is to be minimized in the next optimization
step. With this time distribution we would probably occupy three rooms for this cluster,
but we do not know as the room assignment is done in the end of the entire optimization
process. That leads to the question, if we could find a better time assignment for this
case. The idea is to integrate sessions of a lower capacity label into the stream of the
next higher capacity label. To continue the example, for every i € {1,2,3} the sessions
of the labels [; and ;11 should be evenly distributed. Consequently the EDS constraints
are applied for these additional sets of sessions. The figure below shows an improved
time assignment with respect to additional EDS constraints for successive labels.

stream l4: 1
stream I3 T
stream lo: )

TTM T2 T3 T4 T5 T6 Trv T8 T9

Figure 18: EDS for consecutive capacity labels

In contrast to the example before the successive labels (11, 12), (l2,13), (I3,14) are evenly
distributed. Note that it is still possible for the labels lo, I3 to appear in the same room,
because they received an EDS constraint. Unlike the previous time assignment, the la-
bels I1,12 and I3,14 are not assigned in parallel anymore, because they also received an
EDS constraint. Now it is possible for them to appear in the same room, if the capacity
restrictions would be sufficient. If the integration of l1,ls and I3,14 into one room would
be possible, then only two rooms are used for cluster c instead of three.

Inspired from that idea, we enumerate the labels (for which there exists at least one
session) of each cluster ¢ by L. = {l1,[2, ...} and update the EDS set S.
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S= U{Sc} U U U {Scl} U U U {SCli USCli+1}

ceC ceCleLl, ceC i=1

Apart from S the Mixed Integer Program remains the same, as it was introduced in
Section 5.1.1 where S was defined with help of an index set J.

Summarized, the capacity labeling contributes to a time-dependent presorting by
the needed room capacities of each session. This is supposed to provide a better room
assignment in the next optimization step. It is an intuitional approach that we believe
to improve the later solutions. For our contribution in this thesis we have not proven,
if a time assignment with labeling constraints would always yield a better schedule.
But from our observations, they contribute significantly to a better scheduling result.
An computed example with and without labeling constraints is given in the section
‘computational results’.

5.1.4 Lower bound constraints

The time assignment model focuses on the even distribution of all session sets S; € S
with j € J. For each of these sets we applied EDS constraints. A further advantage of
the EDS constraints is that there exist strong lower bounds.

Let S; € S be a set of sessions that belongs to an EDS and let Uj,y;; and zj4
be the corresponding variables, as they were introduced in Section 5.1.1. Further let
N = mingep |Ty4|. The objective function of the time assignment model reads as:

min Z(MUJ' + A2 Zyjt — A3 Z Zjd)

jeJ teT deD

Definition 13. Consider the following parameters:
; * 1S5
(i) Uj = [ﬁW
(ii) yj = |S;] mod [T

(ZZZ) Z; — USJ'| r]ﬂVOd ‘T|J

Claim 14. FEwvery feasible solution of the time assignment and every j € J satisfies the
following inequalities:

(1) Ur<y;

(2) MU+ Xy = Aszf S MUj+ XY v —As Y 2ja
teT deD
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Proof. (1) Uj is the upper bound on the number of sessions of S; at each time slot.
Each session of S; has to be scheduled, so the minimum number of sessions at each time

s 1551
slot is =4

51 7
w=v; <,

Since the number of scheduled sessions at each time slot is integral, it holds

(2) Proposition 5 says that an EDS yields the optimal objective value for each S;.
Therefore, we show that the lower bound in (2) is the objective value of an EDS of Sj.
The minimal possible value of U; is U}, what was already shown in (1). Especially in an
EDS it holds U; = U;. There are exactly [Sj| mod |T| leftover time slots, where S; is
maximal. Each bundled day of S; consists of at least N maximal time slots. That means
from the number of maximal time slots in the EDS, we can create at most LWJ
bundled days. As these are the best possible values for each of the variables in an EDS,

the inequality (2) yields a lower bound for ;.
]

For each j € J we can add the following constraints to the time assignment model:

Ur < U vjeJ (6)

MUS + dayj — Azz) S MUj + Ao Zyjt — A3 Z zjg Vjed (7)
teT deD

From our observations, the lower bound constraints contribute significantly to the
computation process. In our test instances we obtained smaller integrality gaps by adding
these lower bounds to the model formulation such that the time assignment model was
almost optimally solvable.

5.1.5 Chairman constraints

Every session at the ISMP conference has a chairman who gives a short introduction
about the talks and the speakers in the session. A chairman is also able to give a talk at
the conference, what does not necessarily have to be contained in the session he attends
as chairman. This special case, where a chairman must be present in several sessions
at the same time, has to be excluded. Therefore let S;alk be the set of sessions, where
a person p € P gives a talk and Sgha" the set of sessions p attends as chairman. For
our case at ISMP the number of talks a person may give was restricted to one, i.e.
\S;;alk\ = 1. The avoidance of time overlaps of the corresponding sessions is modeled by
the linear inequality:

Y wa<1 VteT,peP:[SFuUshar|>1 (8)

talk chair
seSEtkUSS
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5.1.6 Individual scheduling requests

During the planning process of large conferences, like the ISMP 2012, there occur a series
of individual scheduling requests from the conference participants. We figured out three
main types of requests: interval, no overlap and precedence requests. Each type of
request is modeled as additional linear inequality in the time assignment.

Interval requests

An interval requests asks to schedule a session within a certain interval of time slots.
Therefore let S; denote the set of sessions that belong to an interval request and let
[t ,tF] be the desired time slot interval. The following inequality ensures that these
sessions are scheduled within the requested interval:

Z xge =1 VseSr (9)

telts td]

No overlap requests

The no overlap requests ask that a pair of sessions (s1, s2) is not scheduled not in parallel.
Here let Sy € S? be the set of session pairs that must not overlap. The requests are
modeled by the linear inequalities:

Tyt + syt <1 V(s1,82) € Sy, t €T (10)

Precedence requests

Precedence requests constrain a session to be scheduled before another session. In gen-
eral, such requests occur, when there are dependencies between two sessions according
to their title and content. For example, there might be precedence constraints between
sessions with the titles: Scheduling I, Scheduling II, Scheduling III that have to be
scheduled in direct succession.

We differentiate between hard and soft precedence constraints. Hard constraints
state that two sessions have to appear at two successive time slots, while soft constraints
allow further time slots in between. Let S}”f“"d, Sfff ¥ C 52 denote the set of session pairs
with hard and soft precedence constraints. Each element (si, s2) indicates that s; must
be scheduled before s3. Let 77 = T'—max(T'), then hard and soft precedence constraints
are modeled as:

Tyt = Togt+1 V(s1,82) € S;é“’"d,t €T’ (11) (hard precedence)

Tyt < Z Tor V(s1,82) € S;Oft,t €T (12) (soft precedence)
YT # >t+1

5.1.7 Even attractivity distribution

At each conference there are some talks that are more popular than others, because of
different interests in specific talks, famous speakers or new results in research. Obviously,
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more people are attracted to attend those sessions. Therefore it is important to have an
equal amount of interesting talks available at each time slot to establish an attractive
scientific program for the whole conference.

To determine a degree of popularity for each session, we have to distinguish between
‘attractive’ and ’less attractive’ sessions. In that sense, we introduce an attractivity
coefficient o > 0 that denotes the attractivity of each session s. The higher the value,
the more pople are attracted to attend this session.

There are many possibilities to define this value. For the ISMP, we used a weighted
sum of potential attractivity indicators to obtain «g, like: number of submitted talks for
cs, stated preferences at the webpage registration and empirical attendee numbers of a
previous conference. Since the attractivity of a session is in the eye of the beholder, we
define a to be the attractivity of an average participant. The values of a are now used
to implement an even attractivity distribution over the length of the conference.

For that, we define the variable A,,;, > 0, which is a lower bound on the sum of
attractivities at every time slot t € T'. Similarly, the variable A4, > 0 yields an upper
bound for every time slot ¢t € T'. The even attractivity distribution is modeled by linear
inequalities and an additional term in the objective function:

Apin €Y gy VEET (13)
seS

Amaz 2 Y aszg VEET (14)
SES

Thus, for each pair of time slots the absolute difference in the sum of attractivities is
at most Apae — Amin. Since the attractivities should be evenly distributed, Aaz — Amin
is minimized. Finally we add the following term to the objective function with weight
coefficient A4 > 0:

min )\4(Amax - Amzn)
The coefficient A4 can be adjusted when looking at the produced schedules.

In Section 5.2 we will use the property of an even attractivity distribution to approx-
imate the uncertain number of attendees as; by use of a stochastic model. We will see
that a balanced attractivity distribution even has good side effects.

5.2 Robustness of capacity compliance

In the previous subsection we introduced attractivity values a; to determine the average
interest in every session s € S at the conference. With respect to these values we derive
a stochastic model to determine the number of attendees a; for every session. In the real
world, as well as in our model concept, the number of attendees is an uncertain quantity.
In our stochastic modeling approach, the needed capacity of every session is calculated
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with use of a nonlinear model. We will give an approach to deal with the nonlinearity
of that model, as well as the integration to the existing time assignment formulation.

First, let n denote the total number of attendees at the conference or, respectively,
the maximum number of attendees at a specific time slot. The total number of attendees
may vary between the time slots. But from the perspective of an organizer, we have to
assume that each participant takes part in the whole conference. Therefore, we suppose
that n attendees are present at each time slot. We further assume that every person has
average preferences regarding the choice of his session, that means his choice between
the sessions depends on the attractivity coefficients oy and we also suppose that each
participant makes his choice independently from the other participants. It is expected
that every participant chooses a session at each time slot ¢, so the choice depends on
the attractivities ag of the sessions, that are scheduled at t. Consequently, we define the
probability to choose some session s at time slot ¢, as the ratio between a and the total
attractivity at ¢. An illustration to the choice modeling is given in Figure 18.

S:  as  ps(x) S s ps(x)
4 0.4 . 85' 4
3 3 0.1875
2 02 (v) @ 2 0125
4 04 @ 4 025
( :81:; 7 @ 7 04375

Figure 19: Selection probabilities ps(x) of a participant p for two different time assignments

The figure shows two different time assignments for time slot ¢. Since the probability
to choose one particular session depends on the selection of sessions that are available
at t, the choice probabilities may change for two different time assignments, as for so, s3
in the example. From these assumptions we define the following stochastic concepts:

Definition 15. Let Q = {wi, w2} be the decision set to choose (w1) or not to choose a
session (wz). For all sessions s € S and all participants j € P let Xz; : Q — {0,1} be
discrete and stochastically independent random variables that are defined as

1, w=w

0, w=uws

Xs; = 1 states that participant j chooses session s and Xs; = 0 otherwise. Further
let Sy denote the set of sessions at t and t(s) be the time slot, when session s is scheduled.
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It is assumed that there exists at least one session at each time slot, i.e. ZSGS Tor > 1
for allt € T. We define the discrete probability function P : Q — [0,1] by:

Qg
P(X, = 1) = — po(z
( > ) Z A/ Tslt(s) 8()
SIGSt(s)

P(Xy; = 0) = 1 — py(a).

Then ps(x) denotes the probability that participant j will attend session s. Moreover,
each participant chooses session s with the same probability. Since ag refers to average
preferences.

Note that ay referred to average preferences and oy > 0 for all s € S. It is easy to
see that P defines a probability function. We also notice that ps(x) is a rational function
in  and especially non-linear. This can be interpreted by the fact that the choice on
session s depends on the selection of sessions that are available at time slot ¢(s). This
selection is determined by the decision variables x4 of the time assignment.

Definition 16. Each random variable Xg; has a value of either one or zero (success
or no success). Therefore, Xs; defines a Bernoulli trial. The sequence X1, ..., Xon over
all participants implies a Bernoulli process for every session s. We define the random
variable X as the number of successes in this Bernoulli process. In the model, this is
analogous to the number of participants who choose session s.

Xo=) Xy

JEP

In particular, we obtain the binomial distribution function. That yields the probability
that exactly k persons will choose session s:

POt = ) = () (o) (L= )™ = Bl ()

Similarly, the cumulative distribution function yields the probability that at most k
persons attend session S:

k
n , iy
IP(XS = k) - Z (j)ps(l‘)](l _ps(x»n I = F(k:,n,ps(aj))
§=0
Note that the probabilities still depend on the decision variables xg;.

From these definitions we want to determine the number of attendees as. One pos-
sibility would be to choose the expected value of X, that is:

as(z) = E[X,] = n - ps(x)
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But in general, the use of expected values will not work well in practice. This is
because the probability that some session exceeds the expected value is quite large. For
our considerations we want to have a degree of certainty that the calculated number
of attendees will not be exceeded. Therefore, we define a certainty value v, € [0,1]
which defines the probability, that session s will not be exceeded. Thus, the number of
attendees is defined as the minimum number k, such that the probability that at most
k participants choose session s is greater than ~s:

as(vs,x) = min{k € N | P(X, < k) > 75}
& as(vs, ) = min{k € N | F(k,n,ps(z)) > 75}

Two problems remain with this formulation. First, the total needed capacity in-
creases for higher values of 5. If we choose them arbitrarily large, then the capacity
constraints might get infeasible. We further assume that v, is chosen, such that all
capacity constraints are satisfied. The next problem is the nonlinearity of the number
of attendees as(7s, ), because the inequality (5), see Section 5.1.2, uses constant values
for as.

One important observation is, if we use a constant value a5 > as(7s, ), then the
room capacity will also be sufficient for the stochastic values as(7s, ), because we are
considering feasible assignments only, that means:

as(vs, ) < as < up = as(vs, ) < up = (s,7) is a feasible assignment.

If we would use values smaller than as(7s,x), then it is not ensured that capacities
are still sufficient.

In our approach we create upper bound values as for every session s, what implies
the compliance with room capacities for the stochastic values. The disadvantage of up-
per bounds is the increase in the needed room capacities. It is necessary that the gap
between G and as(7s, ) is kept tight. We present an approximation of ~ (1 + 2¢ + €2)
(e > 0) on the stochastic values. This approach makes use of the approximability of an
even attractivity distribution which was introduced in Section 5.1.6.

Let e >0 and let C = ‘%' ZSES as be the mean attractivity at each time slot. The
constant probability to choose session s is defined as ps = (1 + ¢). We apply the
following inequalities to the existing time assignment model:

C<Apin(l+¢€) (15) Apaz < C(1+€) (16)

Proposition 17. Let x be a feasible solution of the time assignment with respect to
inequalities (15) and (16). Then ps yields an (1+2e+¢€2)-approzimation on the stochastic
probabilities ps(x) for all s € S, that means ps(x) < ps < ps(x)(1+ 26 +€2) Vs € S.

Proof. First, we show ps(x) < ps:
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Qs Qs

= <
Z as’xs’t(s) Amzn
s'es

Qg -
ps(x) < E(1+e) = Ds-

The first inequality yields constraint (13) of the time assignment model, and the second
inequality follows from constraint (15).

The second inequality ps < ps(z)(1 + 2¢ + €2) follows from :

- Qs

Ps C

(67

s
Z Qg Tsit(s)
s'eS

Qs

Amar

(I4¢) < (1+€)% < (14€)% = po(z)(1+€)? = po(z)(1+2e+€?)

The first inequality is a direct consequence of constraint (16) and the second follows
from inequality (14). O

Remark 18. Note that we compute a solution of the time assignment model with respect
to fized parameters € > 0 and s € [0,1]. For arbitrary small € the optimization model
may get infeasible, because a completely even attractivity distribution is not possible.
Also for values of vs — 1, the model may also get infeasible, as the needed capacities will
increase.

If we add inequalities (15) and (16) to our model, then we obtain an approximation
factor of (1 + 2¢ + €2) on the probability to choose session s. In the following we use the
approximated constant probabilities ps to define a constant upper bound on the number
of attendees as with respect to the certainty value ~4:

a’S(ﬁYS) = mln{k € N ‘ F(k7n7ﬁs) Z 'Ys}

Proposition 19. For arbitrary vs € [0,1], the constant as(vys) defines an upper bound
for the stochastic values as(~s, ), that means:

as(Vs, ) < as(ys) Vs €S

Proof. By proposition 17 it holds ps(x) < ps. For fixed k and n the functional value of
the cumulative binomial distribution function F' decreases with increasing probability,
that means F(k,n,ps) < F(k,n,ps(z)). Now, let k = as(vs,x) and k = as(7ys). We
assume s (7s) < as(ys, ) or k < k respectively. By definition of a, (s, z) and as(vs), it

holds vs < F(k,n,ps) and 75 < F(k,n,ps(x)). From that, it follows:
78 S F(];‘7n7]58) S F(l;:,n,ps(x)) < F(k7n7p8(x))

The last inequality uses the strict monotony of the cumulative binomial distribution
function. That forms a contradiction on & being minimal for F'(k,n,ps(z)) > 7s, since
it also holds for k < k. Consequently it follows: k < k < as(vs, ) < as(s)-

O
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We found constant upper bound values on the stochastic number of attendees. That
means if we choose the values as(7s) instead of the stochastic values as(7s, x), then ev-
ery feasible assignment of sessions to rooms will also be feasible for the stochastic values.

Quality of the upper bound

Now we want to make a statement concerning the quality of the upper bound. As higher
values of as(ys) will increase the needed capacities, it would be helpful to have this
bound as tight as possible. To show the approximation quality, we transform problem
of the discrete binomial distribution to continuous intervals, using the normal distribu-
tion. For large n, it is known that the normal distribution approximates the binomial
distribution for given expected value and variance of the binomial distribution. We
will show that the transformation to the continuous case yields an approximation of
as(7s) < as(vs, z)(1 + 2¢ + €2), what then nearly corresponds to the discrete case.

At first, we define the cumulative distribution function of the standard normal dis-
tribution:

B(r) = A= [T, eV 2dy.

To evaluate the cumulative normal distribution function in a certain point x we
use the known substitution ®(*>£) with given expected value p and variance o2 In
particular, the binomial distribution obtains g = np and 0? = np(1 — p). For large n
ther is the approximation.

k—

e}

Let ¢ = 2¢+¢€2. As already shown in proposition 17, it holds ps(z) < ps < ps(z)(1 +
€'). We abuse notation and denote p = ps(x) and p = ps. The expected values and
variances of the binomial distribution for p and p are known to be the following:

Let v, € [0,1] be the certainty value. There are values a,a € R for which ®(“2F) =
@(agﬂ) = 7. These values correspond to the number of attendees in the continuous
case. The next proposition refers to the case of 0.5 < 4, what is usual for practical
problems, so we actually do not restrict the problem here.

Proposition 20. For a given certainty value s € [0.5,1], let a,a € R with
O(=E) = ®(%5E) =75 Then a approzimates a within a factor of (1 +¢€').

o

Proof. Equally to the observations of proposition 17, @ yields, at some fixed, point
smaller functional values for higher probabilities. Therefore it holds a < a, similar to
the discrete case.

For the other inequality, it holds a — np = a — u > 0 because of vs > 0.5. We fur-
ther know that p < p(1+€¢). We do the following assessment:

39



a—np < ,/iig(a—np)g %(a—nm

< /B (4 €)@ - np) < /2B (a1 + €) — np)

o o_azmw o a(l+€)—np
Vip(l=p) = /np(1-p)
With use of the last inequality we obtain:

.= ® a—np _ a—np < a(l4+€)—np
%= i) = Y e < 2

Looking at the left- and right-hand side, the monotony of ® yields a < a(1+¢'). O

Summarized, the transformation of the problem to continuous intervals yields an
approximation factor of € = 1+ 2e+ €2 for a,. We do not achieve this approximation in
general for the binomial distribution. But since for large n, the approximation quality
of @(agﬁ) ~ F(a,n,p) increases, we can conclude that it also yields a sufficient good
approximation for our considerations. We tested instances of n = 500—2000 participants,
where values of € = 0.008 (approximation factor of ~ 1.016) were achievable for the ISMP
instance and for general instances € &~ (.03 is a realistic guideline for larger conferences.

The following table illustrates the previous assessments for the number of attendees

concerning the two probabilities ps(x) and ps.

certainty vs. capacity demand

1L B 7ps~(1')
— DPs
2 % .
g
2
2 051 a
=
-
8
0
0

number of attendees

Figure 20: cumulative normal distribution for session s with probabilities ps(x) < ps

Relation to the total capacity demand
If we want to introduce a general certainty value ~y, which states that no session of the
conference will exceed the capacity, then we have to choose values with [[,cq7vs > 7.

1
One simple possibility is to define v, := ~IST. The following tables show the increase
in total capacity with respect to the certainty value v and approximation factor e. The
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to the ISMP problem instance with n = 1500 participants.

certainty vs. total capacity demand
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For fixed € > 0, the total capacity demand grows slowly for smaller values of 7. The
absolute certainty that no session exceeds the capacity (y = 1) occurs, when as = n
for all s € S, what would be |S|-n = 892.500 in the left figure. Therefore, the total
capacity demand grows rapidly for ~ close to one. In general, v = 1 is not achievable for
real-world instances. In contrast to that, for fixed certainty value v the total capacity
demand grows almost linear with approximation factor e. Since we want to achieve
values of € close to zero, the problem is to find a small value of € such that the model
remains feasible. But also for small ¢ we restrict the schedule in the property that the
attractivity at each time slot is constrained to deviate from the mean attractivity by
only €. The goal is to find a good balance between the values of v and e by testing
different configurations of the underlying problem instance.

6 Stream Assignment

The second optimization step is called the stream assignment that uses the solution of
the time assignment to connect sessions to streams. Formally, a stream is a sequence
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(s1,...,s7) of sessions, that take place in the same room. In particular, a stream has
no assignment to a certain room yet, as it only contains sessions in temporal order. A
stream can also be empty, that means it contains no sessions.

This model focuses on the minimization of used streams of each cluster, what implies
to find a distribution over the minimum possible number of rooms. Another objective
is, that the sessions of one cluster should occur successive in the same stream. We will
call this successive occurrence of a certain cluster in a stream, a time connection. More
detailed, a cluster ¢ has a time connection at time slot ¢, if there are sessions s,s’ € S,
that appear successive in the same stream at time slots ¢ and ¢4 1. In the objective, the
number of time connections is to be maximized.

A first observation shows, that both objectives are not equivalent to each other. Let
us have a look at the following examples of a stream assignment. In Figure 21 we see
that cluster ¢ occupies a minimum number rooms, what is obviously not sufficient for
a maximum number of time connections, even if ¢ has an EDS. Considering the other
case, if we have a maximal number of time connections, it is also not ensured that the
number of rooms will be minimal, see Figure 22.

stream 1:
stream 2:

T1 T2 T3 T4 T5 T T7 T8 T9

Figure 21: Minimal number of used rooms for S,

stream 1:
stream 2:

TM" T2 T3 T4 T5 Te6 T7 T8 T9

Figure 22: Maximal number of time connections for each cluster ¢ = 1,2, 3,4

In the next sections we present a Mixed-Integer-Program that assigns every session
to a stream with respect to the mentioned objectives. Furthermore, we will introduce a
small heuristic that modifies the solution of the stream assignment, such that a further
set of constraints can be validated.

6.1 Mathematical Optimization Model

In this next part we introduce the MIP formulation to that problem. We will abuse
notation and choose similar variables, like in the time assignment. Both models are
regarded as completely independent from each other in terms of notation. Even though
we mentioned that, by definition, a stream is independent from any room, we will use an
assignment of sessions to rooms in this model. That is because we have to ensure that
the stream assignment also satisfies the room capacities. Therefore, this model approach

42



is regarded as an allocation to rooms, but the final room of each stream may change
during the last optimization step, the 'room assignment’.

Mixed Integer Program
From the solution of the time assignment, we obtained disjoint sets Si, ..., ST, where S;
contains all sessions that are scheduled at time slot t € T.

Further let A = {(s,r) | s € S,7 € R,as < u,} be the set of feasible assignments
from sessions to rooms. We define the binary variable zg, for all feasible assignments
(s,7) € A:

1, if session s takes place in room r
LTsp = .
0, otherwise

For each ¢ € C, the sessions of S. are supposed to occupy a minimum number of
rooms. Therefore, we introduce the decision variable z., that takes on the value 1, if any
session of cluster ¢ takes place in room r, and 0 otherwise. To model the time connec-
tions, we define the binary variable y..+ that has the value 1, if there exist two sessions
of cluster ¢ in room r at time slots ¢ and ¢ + 1. Further let Ry = {r € R | as < u,}
denote the set of feasible rooms for session s and S, = {s € S | as < u,} the set of
feasible sessions for room r. For simplification, let S,; = S, NSy and S¢e = SN SN Sk
We further define 77 = T'—max(7") and A € [0,1] is a weight coefficient between the two
objectives.

min )\ZZZCT—(l_)\)ZZZZ/cM

ceCrer ceCreRteT’
s.t. Z Ter =1 Vs e S (1)
reRs
d ae <1 VreRteT (2)
SES'r't

szr—zwgo YVee Core RiteT (3)

SGScrt

Yert — Z 2y <0 VeeCO,reRteT (4)

SGScrt
Yot — Y T <0 Ve€C,rERLET (5)
Sesc'rt+1
zsr € {0,1} Vs € S,r e Ry
ycrte{oal} VCGC,TER,tET’
zer € {0,1} Vee C,reR
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The objective function minimizes the number of rooms that are occupied by every cluster,
as well as it maximizes the number of time connections of each cluster. The value of A
weigths the importance between the objectives. Inequalities (1) state, that every session
is assigned to a feasible room. At every time slot, each room can be occupied by at most
one feasible assignment (2). Constraint (3) says, if a session of cluster ¢ is scheduled
in room 7 at any time slot, then cluster ¢ occupies room r. The time connections are
modeled with constraints (4) and (5): if there is a time connection of cluster ¢ in room
r at time slot t, then also sessions of cluster ¢ must be scheduled in room r at time
slots t and ¢ 4+ 1. Note that the variables y¢r¢, 2o can be relaxed to: 0 < z., < 1 and
0 < Yert < 1.

6.2 Computational complexity of the stream assignment

The solving time of the entire stream assignment model was too high for our understand-
ing of practical implementation. We believe that the high computation time results from
occurring symmetries in the model. More precise, there are assignments that do not af-
fect the objective function. There it makes no difference whether to choose the one or
the other room for a particular cluster. This makes the solving process more complex.

We tested several modifications of the stream assignment MIP. It turned out, that
if we delete constraints (3) and the variables z. from the model, then the running
time improves greatly. That means, when only the time connections (y.¢ variables) are
maximized, then the stream assignment is nearly optimally solvable in short time. In
most cases this also leads to a surprisingly good schedule. But as already mentioned, a
maximal number of time connections does not exclude that the sessions of one cluster can
be widely distributed over the set of rooms. This may result in long walking distances
between parallel sessions of equal clusters. Our solutions were taken from the relaxed
model.

6.3 Cluster swap heuristic

A solution of the stream assignment MIP yields an assignment of all sessions to streams.
In the model, every stream was associated with a room to ensure the compliance with
room capacities, that means it holds as < wu, for each assignment of a session s to a
room 7. Let us consider a time slot ¢, where two sessions si,s9 € S. of cluster ¢ are
scheduled. Assume that the number of attendees of session s is smaller than the number
of s9, that means as, < as,. Even though all capacity constraints might be satisfied, it
could be that s; is scheduled to a room that has greater capacity than the room of ss.
This case is not restricted by the model formulation, as long as the capacity constraints
remain feasible. From the point of view of a participant, it might be confusing why
an apparently smaller session is scheduled in a large room, while another session of the
same cluster is at nearly maxed out capacity. This case is supposed to be excluded.

A simple heuristic restores this property for the schedule by swapping the relevant
sessions in the correct order according to their capacities or capacity demand respectively,
see below.
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Example
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Figure 23: Application of the swap heuristic

In the figure above, let s, ..., s4 be sessions of cluster ¢ that are scheduled into rooms
r1,...,74 at some time slot {. We assume that as;, < ... < ag, and u,; < ... < up,. The
left figure shows the assignment that is obtained from the stream assignment, while the
right side shows the allocation after the swap heuristic, where the sessions of S, are
sorted in correct order with respect to their capacity demand.

We also tried a formulation of this restriction by means of additional linear inequali-
ties in the stream assignment model, but the computation time increased drastically due
to this implementation. Then we decided to use this simple heuristic. As the procedure
swaps only between sessions of the same cluster, the objective value of the previous MIP
model would also remain the same, since for each cluster no time connection or room is
lost or added due to the swaps. Also no further constraints are violated.

For the input of the heuristic, we need a matrix M, where each row corresponds to
aroom r € R and each column to a time slot ¢t € T'. The entries are the sessions s, € S
that are scheduled in room r and time slot £. The matrix is given from a solution of
the stream assignment, where each stream was associated with a room. There are also
given vectors u and a, that contain the room capacities of every room or the number
of attendees of every session respectively. The heuristic swaps the sessions within the
matrix. In particular, it swaps only sessions of the same cluster at the same time slot.
Possible swaps are performed for every cluster ¢ € C.

The first loop iterates over all time slots t € T. For time slot ¢, the sets S. and R,
are defined for every cluster c¢. Every session s that is scheduled at ¢, is added to S,
while the room r, where s is scheduled, is added to R, (6-10). Next, we iterate over
all clusters ¢ € C and apply the sort function to S. and R.. The sets are sorted by
the number of attendees or the room capacities respectively. The method greedyAssign
performs a greedy assignment of the sorted sessions s € S/ to the sorted rooms r € R.,
in the order of the sorting. The assignment matrix is iteratively updated, until swaps
are executed for all time slots.

The sort and greedyAssign methods, obviously, run in polynomial time, so the entire
algorithm is polynomial for the given input sizes. From our observations, the algorithm
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Algorithm 1 Cluster Swap Heuristic

Require: assignment matrix M with entries s, € S,7 € R,t €T
Ensure: swapped matrix M’

1. procedure CLUSTERSWAP(M )
2 M «+— M

3 for allt €T do

4 R.«+ 0 VeeC

5: Se+0 VYeeC

6 for all r € R do

7 S < Spt

8 C 4 cg

9: R, + {r}

10: Se « {s}

11: end for

12: for all c € C' do

13: S+ sort(Se, as)

14 R!. < sort(Re,uy,)

15: M’ + greedyAssign(M’,t, R., S)
16: end for

17: end for

18: return M’
19: end procedure

has almost no effect on the computation time.

7 Room assignment

This section deals with the last optimization step, the room assignment. From the
solutions of the previous optimization models, we obtained the time slot and the stream
of every session. That means we know how the sequences of sessions that appear in the
same room, look like. Finally, each stream must be assigned to room that is available
for the conference. Walking distances between streams with similar content should be
minimized.

Regarding this as a separate subproblem, is definitely important for large scale confer-
ences. The sessions of the ISMP 2012 occupied 40 different rooms that were distributed
over two different buildings and 10 floors. Since many participants change to other talks
within a session, they have only five minutes to change the room until the next talk be-
gins. Conference attendees will feel uncomfortable when they have to rush between the
talks, what is caused by too long walking distances. Thus, our approach is to allocate
‘similar’ streams to 'nearby’ rooms.

In the following we will explain the concepts of the regarded ’distance’ between the
rooms and the ’similarity’ between two streams. Furthermore, we will discuss the associ-
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ated combinatorial problem and also present a Mixed-Integer-Programming formulation
to solve it.

7.1 Room distances

For every pair (4, j) of rooms, we define a value §;; that represents the distance between
the rooms ¢ and j. One possibility is to make use of door-to-door distances, using
coordinates of every room. A distance measure, for example Euclidean- or Manhattan-
distances, can be used for this. In particular, the term ’distances’ does not only have to
refer to pure distances. It could also indicate a degree of displeasure to change between
two rooms. For instance, penalty values for going up a stairway, taking the elevator, the
crossing of a street, changing the building or taking crowded corridors can be mentioned
here. A good choice of the distance values depends on the specific room map for the
conference.

At ISMP 2012 we used 3-dimensional room coordinates (z,, y,, z), where z,, y, de-
note the coordinates in the plane and 2z, the floor of a room r. We also introduced
penalty values A1, Ao for changing the floor or the building respectively. The corridor
ways and the building structure of TU-Berlin is similar to Manhattan-distances, so the
distances d;; between two rooms (7, j) were defined as:

5 — |zi — x| + |y — yi] + M|z — 2], if (i,7) in the same building
Y |zi — x| + lyi — y;| + AMilzi + 25| + A2,  otherwise

Note that a participant has to overcome the z-coordinate twice when he changes the
building. This is an idea on how those values can be determined. Naturally, we will
restrict to d;; > 0.

7.2 Similarity values

Regarding room changes, streams with similar content should be assigned to nearby
rooms. Therefore, we define a similarity value for each pair of streams which depends on
the included sessions. We assume that participants either choose sessions with the same
or a similar cluster for a room change. Thus, we will define a similarity value between
clusters first, until we construct a similarity value between streams on the basis of that
definition.

7.2.1 Cluster similarity

We consider two clusters as ’similar’, if there are overlaps in the topic or the content.
The higher the overlap the higher is the similarity. For the definition it is useful to create
superordinate attributes that give an idea of the possible contents. From the number of
matching attributes between two clusters, we calculate a similarity coefficient. Usually,
similarity coefficients in a range from [0, 1] are used.

47



For example, let A and B denote the set of attributes that belong to two clusters.
Often used similarity coefficients are the following, see [15]:

Jaccard index:

|AN B|
J(A,B) =
Dice-Sgrensen index:
2|AN B|
DS(A,B) == ——
Al + | B|
Tversky index: coefficients o, 8 > 0:
|AN B

T(A, B =
A B B) = BT 