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Zusammenfassung

Heutzutage gibt es Konferenzen zu fast jeden möglichen Themenbereich. Dabei un-
terliegt jeder Konferenz ein Veranstaltungsplan, der alle Aktivitäten einer Konferenz
räumlich und zeitlich einordnet. Bei wissenschaftlichen Konferenzen bestehen diese Ak-
tivtäten zumeist aus einzelnen Vorträgen, die in sogenannten Sessions zusammengefasst
sind. Das Organisationskomitee von diesen Konferenzen ist damit beauftragt, jeder
Session eine feste Zeit und einen festen Raum innerhalb der Konferenz zuzuordnen.
Dabei soll eine Reihe von komplexen Nebenbedingungen eingehalten werden. Insbeson-
dere bei größeren Konferenzen wird das Zuordnungsproblem dann allgemein sehr schwer
überschau- und lösbar.

In dieser Arbeit werden wir die Planungsanforderungen erläutern, die bei größeren
Konferenzen entstehen. Weiterhin stellen wir einen Lösungsansatz vor, der Veranstal-
tungspläne mit Hilfe von mathematischer Optimierung berechnet. Dabei wird das all-
gemeine Planungsproblem in kleinere Teilprobleme zerlegt, die nacheinander mittels
gemischt-ganzzahliger Programmierung modelliert und gelöst werden.

Der Ausgangspunkt unserer Ergebnisse war die Erstellung eines Veranstaltungsplans
für das International Symposium on Mathematical Programming 2012 (ISMP) an der
TU-Berlin. Die ISMP ist einer der größten Konferenzen im Bereich der angewandten
Mathematik und Optimierung. Es wurden 1740 Vorträge zu 595 Sessions zusammenge-
fasst, die über eine Woche in 40 parallelen Räumen stattfanden. Das Veranstaltungspro-
gramm der ISMP 2012 wurde mit Hilfe der hier vorgestellten Modelle erstellt1.

1siehe SPIEGEL Online-Artikel: ’Das optimieren wir jetzt mal’ [25] vom 23.08.2012
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1 Introduction

Scientific conferences play an important role in almost all areas of today’s science and
research. They offer a wide platform for international researchers and developers for
communication and scientific exchange of current problems, experiences and knowledge
in nearly all fields of research. Such conferences usually consist of talks about different
topics that are given by authorized speakers. The planning process of a conference
includes the creation of a scientific program schedule, that means a local and temporal
allocation of all available talks.

As the number of talks can grow into thousands for large-scale conferences, the
conference scheduling becomes a complex challenge. Furthermore there exist a great
bandwidth on various and individual requirements on the allocation of the talks. In this
thesis we discuss the major problems that occur during the development of a conference
schedule and provide a framework how proper conference schedules can be generated
computationally. For that, we use Mixed-Integer-Programming techniques to find sched-
ules that respect the difficult range of additional constraints.

The basis of this thesis was the development of an optimized conference schedule
of the International Symposium on Mathematical Programming 2012 (ISMP 2012) in
Berlin, Germany. The ISMP is one of the largest conferences in the field of applied
mathematics and mathematical optimization and constitutes a great attraction for in-
ternational mathematicians and researchers. We will present our results based on the
problem instance that we used for the ISMP 2012.

2 The Conference Scheduling Problem

In the following we will describe the major problems and requirements that arise when
scheduling large conferences.

Combination of talks to sessions
In the beginning, the organizers are mostly confronted with a huge number of submitted
talks. At most conferences, each talk must be given within a session. A session includes
a couple of talks that are given successively within the session, without any longer breaks
in general. At the ISMP 2012, each session consisted of at most three talks, where each
talk was limited to 30 minutes speaking time, therefore each session had a total duration
of 90 minutes.

The first problem the organizers have to face is to find a suitable aggregation of
all submitted talks to sessions. Some sessions may already be formed by the speakers
themselves, but a large amount of talks must still be combined in a proper way. It is
intended to have talks of similar content in the same session. In addition, sessions that
are only partially filled with talks should be avoided, since the attendees of a session
should be motivated to attend for the entire session length.

Session assignment
Once all talks have been assigned to sessions, the next planning step is to create a sci-
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Talk 1 Talk 2 Talk 3

Session 1

Talk 3 Talk 4 Talk 5

Session 2

Talk 6 Talk 7 Talk 8

Session 3

Figure 1: Creating sessions

entific program schedule. We assume there are fixed time slots when sessions can take
place. Moreover, each time slot is supposed to have a constant duration that is equal
to the length of one session. At larger conferences, the number of sessions normally ex-
ceeds the number of available time slots, such that sessions have to take place in parallel.
Therefore, a minimum number of d nT e rooms is needed to allocate all sessions, where n
denotes the number of sessions and T the number of time slots. In our considerations
the creation of a scientific program schedule solely deals with the allocation of sessions
to time slots and rooms. But in addition a huge variety of constraints must be satisfied.

In the following we will look at a typical instance of a conference schedule and describe
the related problems by looking at the schedule from different views.

Assume we have given a fixed set of time slots {T1, T2, ...}, as well as a set of rooms
{A,B, ...}. Furthermore, we suppose that we have given sessions {1, ..., n}. Each session
must be assigned to exactly one time and room slot and each time-/room slot can be
occupied by at most one session.

R/T T1 T2 T3 T4 T5 T6

room A 4 20 9 21 16

room B 6 1 25 23 15

room C 5 17 2 8 20 3

room D 7 18 24 19

room E 12 10 13 11 22

Figure 2: Session view

The figure shows an exemplary schedule in the session view, where the numbers
correspond to a particular session. Such a schedule can be computed quite easily, since
it refers to a usual assignment problem. In practice, the amount of additional constraints
make this problem more complex.

Cluster scheduling
Even before the paper submitting phase, the organizers normally offer a set of clusters
for the conference. A cluster can be seen as generalized topic that each talk belongs
to. We expect that each talk is part of exactly one cluster. The classification of talks
to clusters is usually done by the speakers themselves during the abstract submission.
Therefore, we assume that this information is given in advance. It is further required
that all talks in the same session share the same cluster.

To extend the previous example, we additionally regard a set of clusters {1, 2...}.
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Each session belongs to exactly one of these clusters. The next figure shows the cluster
view of the schedule, where the numbers correspond to the cluster of each scheduled
session.

R/T T1 T2 T3 T4 T5 T6

room A 1 1 1 1 1

room B 4 4 3 3 3

room C 2 2 6 6 6 6

room D 5 5 5 5

room E 6 6 6 6 7

Figure 3: Cluster view

Obviously, the clusters could have different numbers of sessions. Another requirement
on the schedule is that each cluster is supposed to be equally available at each time slot,
as hown in the figure. Then, participants will have a higher chance to attend sessions
of any cluster of the conference. In addition, it is recommended that the sessions of one
cluster take place in the same room. This provides a better orientation and recognition
value in an unknown environment for international visitors.

Room capacity restrictions
Sessions of different clusters will generally deal with different topics, so the interest in
these sessions may deviate. There might also be talks that are given by more famous
speakers, or talks that present new achievements in some field of research such that there
exisits a high general interest in single sessions or talks respectively. Consequently it is
obvious that there will occur deviations in the number of attendees of each session. Since
every room has a limited number of seats, it is in the responsibility of the organizers
to ensure that more attractive sessions will be planned to larger rooms. Overcrowded
lecture rooms are one of the major problems, especially at large conferences. For that,
we suppose there are constant capacity demands for every session (more on this later).
The final schedule has to comply with the room capacities of every assignment. If we
extend the previous example, the figure below shows the schedule in the capacity view.

R/T capacity T1 T2 T3 T4 T5 T6

room A 200 92 22 75 53 34

room B 55 55 48 12 25 42

room C 120 70 118 23 90 48 35

room D 30 29 30 28 25

room E 45 43 26 11 44 33

Figure 4: Capacity view

The numbers correspond to the capacity demands of every session, or to the number
of attendees respectively. Note that the total number of attendees can vary for each time
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slot, as not all participants attend for the entire length of the conference. In particular,
there are time slots that are attended by more people. From our observations, the peak
is usually in the early mid of the conference.

In our approach we focus on the mere compliance with room capacities. That means
we do not depreciate, if a small session is scheduled into a proportional larger room.

Even attractivity distribution
As there are more or less attractive sessions at the conference, it is also not desirable
to have too many attractive sessions scheduled in parallel. That is because each time
slot should be equally attractive, as well as there must not appear too many attractive
sessions at the same time. If we would have given a value of attractivity of each session,
then the schedule should respect a roughly even attractivity distribution over all time
slots, see the figure below.

T1 T2 T3 T4 T5 T6
time slots

at
tr

ac
ti

v
it

y

attractivity distribution

Figure 5: Attractivity view

The attractivity view shows the total session attractivity at each time slot. In the
best case, the values are equal at each time slot.

Room distances
Apart from the room capacity, the assignment to rooms includes another difficulty.
Whenever a talk has been given within a session, there is a short break of approximately
five minutes to answer questions about the content of the talk. Many participants use
these breaks for room changes to other talks. Leaving attendees will have to overcome
a certain distance to the room of the next talk. As it is hard to estimate which talk
each attendee is changing to, we assume that it will be a talk of similar content. For
this reason, the distance between similar parallel sessions is supposed to be as small as
possible. Of course, this property should hold for all time slots.

The figure below shows an exemplary room map with room changing relations (blue)
between similar sessions at some time slot. On the left figure there is shown a proper
room assignment, while the right figure illustrates an improper room assignment.

In particular, large-scale conferences include room at several floors and in differ-
ent buildings, where distances have to be considered. There it is very important that
distances are kept short.
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room A
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room F room A

room B
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room D

room E

room F

Figure 6: Short (left) vs. long (right) room changing distances at some fixed time slot

All in all, these are the main points that must be respected by the final schedule.
There are even more constraints, like individual scheduling requests of single sessions.
For instance, one speaker is able to attend only the first day of the conference, then it
has to be constrained in the schedule. Moreover, some persons have to attend to several
sessions at the conference, then it must be ensured that these sessions will not overlap
at the same time. More constraints of this type are presented in the upcoming sections.

We conclude that conference scheduling is a very complex issue. A scheduling ’by
hand’ would be a very time consuming and nearly impossible challenge for large con-
ferences where thousands of different talks and persons are involved. Therefore, math-
ematical optimization methods find a great application, whenever conference organizers
have to deal with the complexity of such problems. In the following, we will present
an approach to compute conference schedules that respect the mentioned conditions.
As mentioned, the presented optimization models were developed to optimize the ISMP
2012 conference schedule. The problem instance of the ISMP 2012 included 1740 talks
which were combined to 595 sessions. These had to be scheduled to five days, each
having three time slots for the allocation of sessions. All sessions have been planned,
using the minimum number of 40 rooms for parallel sessions. Until now, this was the
largest ISMP that has ever taken place.

To provide a better understanding of the underlying combinatorial structures, the
optimization models were extended and improved after the ISMP 2012. We will refer to
the extended results in this thesis.

2.1 Previous Work

The problem of optimizing conference schedules was barely studied in the past. For a
closer insight into that problem, we used an existing master thesis [21] that dealt with
an equal problem of conference scheduling. For further references, we consulted papers
of timetabling models, that mostly dealt with the optimization of university and course
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schedules, see [1], [2], [3] and [8]. As our view on the problem is quite specific for itself,
we mostly searched for the underlying combinatorial problems, for which we then used
further literature.

2.2 Notation

We denote the set of talks at the conference by K. Each session s can be seen as sequence
of successive talks s = (k1, ..., km) (m ≤ 3 at ISMP). The set of all sessions is denoted
as S. Furthermore each session takes place at a certain time slot and in a certain room.
The set of all time slots at the conference is given by T and R is the set of available
rooms. In addition, each talk and each session belongs to a specific cluster. Then C
denotes the set of clusters and we denote the cluster of some talk k by ck and the cluster
of some session s by cs. Similarly, the sessions that belong to cluster c is defined are
given by the set Sc.

In the upcoming sections, we will present combinatorial problems that have a rep-
resentation via graphs. We usually define an undirected graph as G = (V,E), where V
denotes the set of vertices and E the set of edges between the vertices. We normally
denote the set of adjacent vertices of a given vertex v by δ(v) = {u | (u, v) ∈ E}. This
notation is used for different problems in this thesis. The same holds for the Mixed-
Integer-Programs, where the main variables are usually described by x, y and z. We
emphasize that all models are regarded separately in terms of notation, if not mentioned
otherwise. But it should be clear from the context which model is currently used.

3 Problem Decomposition

Our first testings revealed quickly that the simultaneous assignment of sessions to time-
and room slots is very hard to solve and too time consuming for practical purposes.
As the requirements on a large conference schedule are subject to constant changes,
we decided that it would be more helpful to use an optimization model that computes
solutions in a shorter time span. Therefore, we use a problem decomposition approach,
where the entire problem is subdivided into smaller subproblems that are easier and
faster to solve. Our decomposition includes the following subproblems:

(1) Combination of Talks to Sessions

(2) Time Assignment

(3) Stream Assignment

(4) Room Assignment

The subproblems are solved successively, where each step uses the solutions of its
predecessors. The first optimization step combines all talks to sessions (1) such that
similar talks will share the same session. The obtained set of sessions is used for the
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further procedure. In the time assignment (2), each session gets assigned to a particular
time slot of the conference. It is optimized to evenly distribute the sessions of each
cluster over the entire length of the conference. Afterwards, all sessions are arranged to
streams in the stream assignment (3). A stream is a sequence of sessions (s1, s2, ..., sT )
that successively take place in the same room. It is desired that rooms are occupied by
sessions of mainly one cluster for the whole conference. In the last step, each stream
is allocated to a particular room in the room assignment (4). The distances between
streams, that contain similar sessions, is to be minimized. All subproblems are modeled
as Mixed-Integer-Programs. An illustration on the entire optimization process is given
in the figure below.

set of talks

(1) Talk combination

set of sessions

(4) Room assignment

(3) Stream
assignment

(2) Time assignment

room A

room B

room C

room D

room E

room F

stream no. T1 T2 T3 T4 T5 T6

stream 1 2 2 2 2 2 2
stream 2 4 4 4 6 6 2
stream 3 1 1 5 5 7 7
stream 4 7 7 7 7 7 7
stream 5 6 6 6 8 8 8
stream 6 3 3 3 3 3 3

Figure 7: Sequence of optimization models for the conference scheduling problem
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4 Combining Talks to Sessions

After the paper-submission phase, the conference organizers have to combine the submit-
ted talks to sessions. The problem is to find a suitable combination of talks to sessions,
where talks with overlapping content should be given within the same session. In partic-
ular, only talks of the same cluster will be combined. Furthermore sessions are supposed
to be completely filled with talks, since partially filled sessions are rather unattractive
to attend.

In the following we present two Mixed-Integer-Programming approaches that make
use of different combinatorial problems. Both approaches yield an aggregation of all
talks to sessions. The total similarity between talks in one session is maximized, as well
as the total idle time in the created sessions is minimized. From our point of view, the
first model yields a better representation of the actual problem, but is more difficult
to solve. On the contrary, the second model is much easier to solve but just partially
reflects the underlying problem. In addition, the needed problem data is more difficult
to obtain and to characterize.

We have to mention, that the models of this section have not been used for the ISMP
2012. But in retrospect, they find a great application, when the conference planning is
considered as a whole. For this reason, our computational experience was made with
randomized data.

In the following we will consider the generalized case, where talks may have arbitrary
lengths. Therefore, we denote the constant duration of all sessions by D and the length
of talk k by dk. In particular, for the ISMP instance it holds dk = 30 for all k ∈ K and
D = 90 (in minutes), what we could also simplify to D = 3 and dk = 1 for all k ∈ K.

4.1 Clique Partitioning approach

For this problem we have given an undirected graph where each talk k ∈ K represents
a vertex. Every talk is supposed to have a similarity relation to all other talks of the
same cluster c ∈ C. These relations are modeled as undirected edges from an edge set
E = {(k, l) | k, l ∈ K, k < l, ck = cl}. Every edge (k, l) has an edge weight σkl ∈ R
that defines the similarity between talks k and l. Its value indicates the overlap in the
content of the talks. The higher the value of σkl the higher is the overlap. The induced
graph is given by G = (K,E).

All talks within the same session have a similarity relation to each other. Hence, we
will regard each session as complete subgraph of G, a clique. The problem is to find a
partition of K into disjoint subsets K1, ...,Km, such that for all i ∈ {1, ...,m} each Ki

induces a session or a clique respectively. We define the size of a clique, as the number of
vertices in the inuduced subgraph. The total similarity of the sessions, that is the total
edge weight of all cliques, is to be maximized. This combinatorial problem is also known
as the Clique Partitioning Problem (CPP) that was shown to be NP-hard. It has been
studied by Grötschel and Wakabayashi [4][22] who introduced different cutting plane
techniques for this problem. Ji and Mitchell [23] considered the problem with minimum
clique size requirement and propose a branch-and-cut algorithm.
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Our considerations include further restrictions concerning the length of the sessions
and talks. For every session Ki the sum of the lengths of all talks in Ki must not exceed
the duration of the session, that is

∑
k∈Ki

dk ≤ D. Thus, dk can be seen as additional
vertex weight, where each clique bounds the weight of all contained vertices by D. These
knapsack conditions within a clique partitioning problem has been studied by Mehrotra
and Trick [24].

Furthermore, our model penalizes the unused capacity of each clique, as this cor-
responds to the idle time in each session which is to be minimized. In addition, we
have another requirement on the maximum number of cliques in the clique partitioning,
since the number of sessions is bounded by the number of available time- and room slots.

30

30

30

30

30 30

idle time = 0 idle time = 30 idle time = 60

Figure 8: Three possible sessions (cliques) with duration of D = 90 that contain talks of length
dk = 30 and the induced idle time

In the following we will present an integrated Mixed-Integer-Program that solves the
problem with respect to the mentioned constraints.

Mixed Integer Program
For every edge (k, l) ∈ E we introduce binary variables xkl, that take on the value
1, if talks k and l appear in the same session. The number of possible sessions is
bounded by the number of available assignment slots, that is |T | · |R|. Consequently, the
number of cliques in the graph must be restricted to this amount. From the modeling
view, restricting the number of cliques is a non-trivial matter, so we introduce further
variables. Let W = d D

mink∈K dk
e, then B = {1, ...,W} denotes the set of possible clique

sizes. Furthermore, let zkb denote the binary variable which takes on the value 1, if talk
k is contained in a session of size b ∈ B, and 0 otherwise. Moreover, let ykb ≥ 0 denote
the amount of idle time that is induced by talk k, if it is contained in a session of size
b. A more detailed explanation on this variable is given later. At large conferences, it
is usual that sessions can also be created by the speakers themselves. Therefore let K+

denote the set of talk pairs of the same cluster, which are supposed to appear in the
same session. The Mixed Integer Program reads as follows:
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max λ
∑

(k,l)∈E

σklxkl − (1− λ)
∑
k∈K

∑
b∈B

ykb

s.t. xjk + xkl − xjl ≤ 1
xjk − xkl + xjl ≤ 1 ∀(j, k), (k, l), (j, l) ∈ E (1)
−xjk + xkl + xjl ≤ 1∑
b∈B

zkb = 1 ∀k ∈ K (2)

ykb ≤ D · zkb ∀k ∈ K, b ∈ B (3)∑
l∈δ(k)

xkl =
∑
b∈B

(b− 1) · zkb ∀k ∈ K (4)

dk +
∑
l∈δ(k)

dlxkl +
∑
b∈B

b · ykb = D ∀k ∈ K (5)

∑
k∈K

∑
b∈B

1

b
zkb ≤ |T | · |R| (6)

xkl = 1 ∀(k, l) ∈ K+ (7)

xkl ∈ {0, 1} ∀(k, l) ∈ E
ykb ≥ 0 ∀k ∈ K, b ∈ B
zkb ∈ {0, 1} ∀k ∈ K, b ∈ B

The similarities between talks in the same sessions are maximized in the objective
function, as well as the total idle time in all sessions is minimized. The coefficient
λ ∈ [0, 1] weights the importance between the two objectives. Constraints (1) are the
triangle inequalities, which indicate that whenever two edges in a triangle (j, k, l) are
selected, then also the third edge must be selected. Together with the integrality con-
dition xkl ∈ {0, 1} for all (k, l) ∈ E, the integral points that satisfy these inequalities
yield a complete description of all clique partitionings in G, see [4]. Inequalities (2) say
that each talk must be assigned to a session of a particular size. If some talk k is not
contained in a session of size b, then it induces no idle time ykb there (3). Constraints (4)
state that the number of adjacent edges of some talk k is exactly the size of the clique
of k minus one. Further, the sum of the lengths of all talks in a session must not exceed
the maximal duration D of a session, what is modeled by (5). The term

∑
b∈B b · ykb is

used to count the correct amount of idle time in the objective function, because every
clique member shares the idle time. Inequality (6) says that the number of sessions must
not exceed the maximum number of sessions, what is |T | · |R|. In addition xkl must be
fixed to one for all (k, l) ∈ K+ (7).
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Reduction of the problem size
In practical implementation, the triangle inequalities (1) have a huge impact on the
complexity of this problem, as the number of constraints grows rapidly, even for smaller
instances. Therefore, it was hard to find proper solutions for our problem instances.
For this reason, we did a reduction approach to reduce the number of constraints to a
manageable amount. Our approach was to eliminate ’redundant’ edges. In our model we
regard an edge as redundant, if it does not satisfy a certain value σ of similarity. More
precise, all edges (k, l) ∈ E with σkl < σ are eliminated. This seems useful, as edges
with a lower similarity value are rather unattractive to choose. Therefore, we define the
reduced edge set as E′ = {(k, l) ∈ E | σkl ≥ σ} ⊆ E and apply the model to the sparse
graph G′ = (K,E′) . With this reduction approach, the completeness property of the
subgraphs is lost in general due to the elimination, so the triangle inequalities do not
give a full representation of the clique partitionings in G′ anymore. Thus, we have to
replace the triangle inequalities (1) by the following set of constraints to regain a full
description.

xjk + xkl − xjl ≤ 1 ∀(j, k), (k, l), (j, l) ∈ E′
xjk − xkl + xjl ≤ 1 ∀(j, k), (k, l), (j, l) ∈ E′ (1′)
−xjk + xkl + xjl ≤ 1 ∀(j, k), (k, l), (j, l) ∈ E′

xjk + xkl ≤ 1 ∀(j, k), (k, l) ∈ E′ : (j, l) /∈ E′, j < l
xjk + xjl ≤ 1 ∀(j, k), (j, l) ∈ E′ : (k, l) /∈ E′, k < l (1′′)
xkl + xjl ≤ 1 ∀(k, l), (j, l) ∈ E′ : (j, k) /∈ E′, j < k

Inequalities (1’) are the triangle inequalities, as used before for each triangle in the
sparse graph. If one edge of an arbitrary triangle in G is lost due to the elimination,
we have to ensure that at most one of the two remaining edges belongs to a clique of
the clique partitioning of G′ (1”). An equivalent interpretation of these inequalities is to
set xkl = 0 in (1) for all eliminated edges (k, l) /∈ E′, where (1’) and (1”) are the usual
triangle inequalities. The benefit arises from the fact that triangles with two deleted
edges induce a redundant triangle inequality.

Computational experience
Since this problem is NP-hard, it was not surprising that the problem was not solvable
with the general formulation. Therefore, we introduced the elimination approach, in
order to reduce the huge number of triangle inequalities in the model. This made it
possible for us to compute solutions for problem sizes of the ISMP, or even larger. But
in general, we can be far from the optimum, so we considered another formulation that
is presented in the next section.

4.2 Capacitated Facility Location approach

The main idea of this model approach is to assign each talk k ∈ K to a session s ∈ S̄
of a preformed session set S̄. Whenever a talk is assigned to a session, then this session
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is ’opened’. Here it is important that each session of S̄ already belongs to a certain
cluster c ∈ C such that talks are only assigned to sessions of equal cluster. It also
ensures that talks of different clusters are not assigned to the same session. Therefore
let S̄k = {s ∈ S | cs = ck} for all k ∈ K and Ks = {k ∈ K | cs = ck} for all s ∈ S̄.
Furthermore, each assignment (k, s) of talk k to session s has a similarity value σks that
indicates the similarity of talk k to session s. The first objective is to maximize the total
similarity of the talks to the sessions, while each talk must be assigned to a particular
session. Secondly, the occurring idle time of each session should be minimized. In order
to respect the maximum possbile number of sessions, we have to bound the total number
of opened sessions by |T | · |R|. As in the previous model, it must be ensured that the
total length of all assigned talks does not exceed the duration limit D of each session. In
the end, each opened session s ∈ S̄ forms a ’real’ session at the conference that contains
all assigned talks.

In combinatorial optimization, this problem variant is better known as n-Single
Source Capacity Location Problem (n-SSCFLP). There we have given a set of customers
and a set of potential facility locations, where each customer must be assigned to exactly
one opened facility. The total assignment cost and the total opening cost of all facilities
should be minimized. Moreover, the capacity of each facility must be sufficient to serve
the demand of all assigned customers. Also, the number of opened facilities is bounded
by a constant n. The n-SSFCLP belongs to the class of NP-hard problems.

If we transform our problem to the n-SSCFLP, each talk k corresponds to a customer
that has demand dk, as well as each session s is associated with a potential facility that
has capacity D and opening cost equal to zero. The assignment cost is given by −σks,
thus σks is the profit to assign customer k to facility s. The bound on the maximum
number of openend facilites is n = |T | · |R| in our case.

In contrast to the general formulation of the n-SSCFLP, we also want to minimize
the idle time in each session, what can be seen as additional cost for ’unused capacity’
of each facility. Additionally, there are talk pairs which have to be scheduled within the
same session. We will see that these conditions can be implemented with a common
n-SSCFLP formulation. The figure below shows an illustration to this modeling variant.

Talks (customers):

Sessions (facilities):

30 30 30 30 30 30

90 90 90

idle time = 0 idle time = 30 idle time = 60

Figure 9: Different assignments of talks with length dk = 30 to sessions with duration of D = 90
and the induced idle time (unused capacity)
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Mixed Integer Program
For every assignment (k, s) of talk k to session s, there is the binary variable xks which
takes on the value 1, if talk k is assigned to session s, and 0 otherwise. The variable
ys ≥ 0 denotes the amount of idle time in each session s. Furthermore, the decision
variable zs is 1, if session s is opened, and 0 otherwise. Equally to the previous model,
K+ denotes the set of talk pairs, that should be allocated to the same session. Especially
it must hold ck = cl for all (k, l) ∈ K+. The Mixed-Integer-Program states as follows:

max λ
∑

(k,s)∈E

σksxks − (1− λ)
∑
s∈S̄

ys

s.t.
∑
s∈S̄k

xks = 1 ∀k ∈ K (1)

∑
k∈Ks

dk · xks + ys = D · zs ∀s ∈ S̄ (2)

xks ≤ zs ∀k ∈ K, s ∈ S̄k (3)∑
s∈S̄

zs ≤ |T | · |R| (4)

xks = xls ∀(k, l) ∈ K+, s ∈ S̄k (5)

xks ∈ {0, 1} ∀k ∈ K, s ∈ S̄k
ys ≥ 0 ∀s ∈ S̄
zs ∈ {0, 1} ∀s ∈ S̄

The objective function maximizes the total similarity of the assignments of talks
to sessions, as well as the total idle time in the created sessions is minimized. The
coefficient λ ∈ [0, 1] weights the importance between the two objectives. Constraints
(1) ensure that every talk is assigned to exactly one session. Inequalities (2) express
that the talk lengths may not exceed the duration of each session and its gap is ex-
actly the idle time of the session. Inequalities (3) are not necessary for the formulation,
but they yield stronger bounds for linear relaxation of the problem. In (4), the total
number of opened sessions must not exceed the number of available session slots, that is
|T | · |R|. Constraint (5) guarantees, that all talks in K+ are assigned to the same session.

If we take a closer look to the model, we see that it can be transformed to a common
n-SSCFLP. For that, we rearrange inequality (2) and see that we can get rid of the ys
variables:

0 ≤ ys = D · zs −
∑
k∈K

dk · xks (2)
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∑
k∈K

dk · xks ≤ D · zs ∀s ∈ S̄ (2′)

Constraints (2) are replaced by (2’) which now correspond to the ususal capacity
requirement of an n-SSCFLP. The definition of ys in (2) is then inserted into the objective
function:

max
∑

(k,s)∈E

(λσks + (1− λ)dk)xks −
∑
s∈S̄

(1− λ)D · zs

= max
∑
k∈k

(1− λ)dk︸ ︷︷ ︸
const.

+
∑

(k,s)∈E

λσksxks −
∑
s∈S̄

(1− λ)D · zs

⇔ min
∑

(k,s)∈E

σ′ksxks +
∑
s∈S̄

fszs

Now, inequalities (1) - (4) correspond directly to the n-SSCFLP formulation with
new assignment cost σ′ks = −λσks and facility opening cost fs = (1− λ)D. This has the
natural interpretation that the idle time just depends on the number of opened sessions,
while the total duration of the talks is constant anyway.

Constraints (5), which expressed that talk pairs (k, l) ∈ K+ must be assigned to the
same session, can also be eliminated by replacing all talks, that must be scheduled into
one session, by a new greater talk that has the total duration of all replaced talks.

Computational experience
For our computational results we choose S̄ = K, that means it is possible to open
a session for each talk. As the similarities occur between talks, we used the same
similarities, as in the clique partitioning model. In contrast to the previous approach,
this problem is properly solvable without reducing the problem size. But in contrast
to the CPP, it does not yield a proper formulation of the underlying problem, as some
similarity relations (between the customers) are not considered. Therefore it gives just
a partial representation of the actual problem.

5 Time Assignment

In this section we will present the next optimization step, the time assignment. It
yields an assignment of all sessions to time slots. The entire time assignment model
includes a huge variety of different constraints. For this reason, we will present a general
Mixed-Integer-Programming formulation first, until further classes of constraints are
introduced. Based on that, we will give an approach to the robust optimization of the
schedule, that relates to the uncertain number of attendees of every session and the
compliance with room capacities.
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5.1 Mathematical Optimization Model

In the optimization model, each session s ∈ S is assigned to a time slot t ∈ T . This is
modeled by decision variables xst, with:

xst =

{
1, if session s takes place at time slot t

0, otherwise

A solution of the time assignment model yields a partition of S into disjoint sets S1, ..., ST
with St ∩ St′ = ∅ for all pairwise distinct t, t′ ∈ T . In that sense, St contains all
sessions that are scheduled at time slot t. These sets are used as input for the upcoming
optimization models. In the next sections we present a comprehensive description of the
core-model, which is followed by further classes of constraints.

5.1.1 Core model - Modeling an evenly distributed schedule

Each conference participant has individual preferences concerning the choice of his ses-
sion. But it is natural to assume that every participant focuses only on a selection of
topics that he is interested in. These topics are generalized given by the set of clusters
C. As each session belongs to exactly one cluster c, the sessions of a cluster are supposed
to be equally available at every time slot of the conference.
That means for every cluster c ∈ C the set Sc ⊆ S, what is the set of sessions that
belongs to c, must be evenly distributed over all t ∈ T . For a given cluster c the fol-
lowing illustration shows how Sc should be distributed over the time slots in the best case.

c c c c c c

c c c c c c c c c

c c c c c c c c c

T1 T2 T3 T4 T5 T6 T7 T8 T9

day 1 day 2 day 3

Figure 10: Exemplary time assignment for Sc

The figure shows the distribution of Sc over an exemplary conference with time slots
T = {T1, ..., T9}. This example shows the best distribution for Sc, in a sense, that will
be explained during the further procedure. We see that Sc is evenly distributed over
all time slots, so participants, who are interested in cluster c, are able to attend the
sessions of c at every time slot. Each day of the conference has exactly three time slots.
At day 1 and day 3 there occur three parallel sessions of Sc, while at day 2 there are
scheduled two parallel sessions. Time slots with a maximum number of sessions should
appear together at entire days (day 1 and day 3). This is desired, because ’cluster gaps’
should be avoided during a single day, that means one room is supposed to be occupied
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by sessions of one cluster for the whole day. We also want that Sc can be scheduled in
the minimum possible number of rooms. With this time distribution, it it possible that
Sc occupies the minimum number of three rooms.

In the following we present a Mixed-Integer-Program to obtain such an evenly dis-
tributed schedule for arbitrary subsets of sessions S′ ⊆ S. For that, we need to introduce
further definitions and properties of the schedule.

Let bt denote the number of sessions of a fixed cluster at time slot t. Assume that a
participant is interested in this specific cluster only, that means he will attend sessions
of this cluster only. Additionally, we have to assume that he is able to attend only one
session at each time slot. Let ω denote the number of different session programs s1, ..., sT
that our participant can choose for the whole conference.

Claim 1. ω is maximal if and only if |bt − bt′ | ≤ 1 for all pairs of time slots t, t′ ∈ T .

Proof. As it is possible to choose only one session per time slot, the number different
session programs is the product over the number of available sessions at each time slot,
except those with bt = 0. Let T ′ be the set of time slots t with bt > 0, then he can
choose ω =

∏
t∈T ′ bt different session programs for the conference.

Let ω be maximal and assume that bt − bt′ > 1 for two different time slots t, t′ ∈ T .
Swapping one session from t to t′ yields:

(bt − 1)(bt′ + 1)
∏

t∈T ′\{t,t′}

bt = (btbt′ + bt − bt′ − 1)
∏

t∈T ′\{t,t′}

bt > btbt′
∏

t∈T ′\{t,t′}

bt = ω

This forms a contradiction on ω being maximal.
To show the other direction, let |bt − bt′ | ≤ 1 for all t, t′ ∈ T ′ and assume that ω is

not maximal. Any deviation of the distribution that preserves |bt − bt′ | ≤ 1 yields the
same ω. Consequently in a distribution, where ω is maximal, it must hold bt − bt′ > 1
for two time slots t and t′. But then we could always find a greater ω, equally to the
case before. This contradicts to the fact that ω is maximal in such a distribution.

Since we expect many participants to concentrate on a few clusters only, the claim
yields a nice property for the schedule. There, the number of different session programs
for one cluster is maxed out.

The next definitions are needed to define an evenly distributed schedule, as shown
in Figure 10.

Definition 2. Let S′ ⊆ S be an arbitrary subset of sessions. We call a time slot t
maximal for S′, if bt′ ≤ bt for all t′ ∈ T .

Definition 3. Let D denote the set of days for the conference. We define Td as the set
of time slots, which belong to day d ∈ D. We say a set of sessions S′ ⊆ S is bundled at
day d, if all time slots t ∈ Td are maximal for S′.
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Definition 4. We say a set of sessions S′ ⊆ S has an evenly distributed schedule (EDS),
if the following properties hold:

(i) |bt − bt′ | ≤ 1 forall t, t′ ∈ T

(ii) the number of bundled days is maximal, with respect to (i)

The time assignment of Sc in Figure 10 has an EDS, because two time slots differ by
at most one session (i), and the number of bundled days (day 1 and 3) is maximal (ii).
In our considerations it is not important which days are bundled, as long as the number
of bundled days is maximal.

Next, we introduce a Mixed-Integer-Programming approach, that models an EDS
for arbitrary session sets S′ ⊆ S. For that, we define S as the set of session-subsets,
for which an EDS should be applied. Since every cluster is supposed to be evenly dis-
tributed we define S =

⋃
c∈C{Sc}, that means the elements of S are the session sets of

each cluster. For simplicity in the further notation we use the index set J to denote all
EDS sets with S =

⋃
j∈J{Sj}. This will be helpful to describe further EDS sets that are

introduced later.

Mixed Integer Program
For each j ∈ J we define the variable Uj ≥ 0 that is an upper bound on the number of
sessions of Sj ∈ S at all time slots. Furthermore let yjt be a binary variable which takes
on the value 1, if time slot t is maximal for Sj , and 0 otherwise. The binary variable
zjd is equal to 1, if Sj is bundled at day d, and 0 otherwise. The following Mixed-
Integer-Program produces an assignment of each session to a time slot, such that each
Sj receives an EDS. Therefore λ1, λ2, λ3 > 0 are weight coefficients, that are specified
later.

min λ1

∑
j∈J

Uj + λ2

∑
j∈J

∑
t∈T

yjt − λ3

∑
j∈J

∑
d∈D

zjd

s.t.
∑
t∈T

xst = 1 ∀s ∈ S (1)

Uj + yjt −
∑
s∈Sj

xst ≥ 1 ∀j ∈ J, t ∈ T (2)∑
t∈T

yjt ≥ 1 ∀j ∈ J (3)

zjd − yjt ≤ 0 ∀j ∈ J, d ∈ D, t ∈ Td (4)

xst ∈ {0, 1} s ∈ S, t ∈ T
Uj ≥ 0 ∀j ∈ J
yjt ∈ {0, 1} ∀j ∈ J, t ∈ T
zjd ∈ {0, 1} ∀j ∈ J, d ∈ D
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The objective function minimizes Uj , what is the maximal number of sessions that are
scheduled at some time slot. In addition, the number of maximal time slots is minimized
and the number of bundled days is maximized for every Sj ∈ S. Inequalities (1) mean,
that every session must be assigned to exactly one time slot. Constraints (2) indicate,
that Uj is bounded from below by the number of sessions at time slot t, if t is maximal
for Sj (yjt = 1). Otherwise, if t is not maximal for Sj (yjt = 0), then Uj must differ by
at least one from the number of sessions at t. This is because at least one maximal time
slot must exist for every Sj (3). Inequalities (4) say, that if Sj is bundled at day d, then
all t ∈ Td must be maximal.

Note that Uj is always integral in an optimal solution of the model. Moreover, the
integrality condition of zjd can be relaxed to 0 ≤ zjd ≤ 1.

The next figure illustrates the relation between an arbitrary time assignment and the
induced variables values.

c c c c c

c c c c c c c

c c c c c c c c c

T1 T2 T3 T4 T5 T6 T7 T8 T9

yjt 0 1 1 0 0 0 1 1 1

zjd 0 0 1

day 1 day 2 day 3

(min) Uj = 3

(min)

(max)

Figure 11: Time assignment and the induced variable values and for session set Sj = Sc

Remark. In particular, an optimal solution of the optimization model yields an EDS
for every Sj , only if the weight coefficients λ1, λ2, λ3 are chosen correctly. Therefore we
have to make a distinction between the variables in the objective function to obtain an
EDS for every Sj with j ∈ J .

Proposition 5. Let λ1 > (|T | − 1) · λ2 and λ2 > λ3. A solution of the above time
assignment model is optimal with respect to weight coefficients λ1, λ2, λ3 > 0, if and only
if all Sj ∈ S with j ∈ J have an evenly distributed schedule (EDS).

Proof. Let x = (xst)s∈S,t∈T be the assignment vector of an optimal solution of the time-
assignment with λ1 > (|T | − 1) · λ2 and λ2 > λ3. For the proof we look at an arbitrary
session set Sj and assume that it has no evenly distributed schedule. Therefore, there
must either exist time slots t, t′ with

∑
s∈Sj

xst −
∑

s∈Sj
xst′ > 1 or the number of time

slots is not maximal, when
∑

s∈Sj
xst −

∑
s∈Sj

xst′ ≤ 1.

At first, we will consider the case of
∑

s∈Sj
xst−

∑
s∈Sj

xst′ > 1 for time slots t, t′ ∈ T
and make a case-by-case-analysis. W.l.o.g we can assume that t is a maximal time slot.
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Case 1: t is the only maximal time slot.
Swapping a session from time slot t to t′ decreases Uj by one, because Uj was bounded
from below by the number of sessions at a maximal time slot. As t was the only maximal
time slot, Uj can be decreased by one due to this swap. The number of maximal time
slots could increase to at most |T | − 1, since there exists at least one maximal time slot
in any time assignment. However, the number of bundled days can only be increased
due to the swap, so we obtain a cost reduction of −λ1 + (|T | − 1) · λ2 < 0 in the worst
case. But that is a contradiction on x being optimal.

Case 2: t is not the only maximal time slot.
Swapping one session from t to t′ decreases the number of maximal time slots by one.
Since there is at least one further maximal time slot, Uj could not be decreased and
remains the same. However, at most one bundled day could be destroyed due to the
swap. Then we would obtain a cost reduction of −λ2−(−λ3) < 0, what is a contradiction
on x being optimal.

Consequently, if x is optimal, then it holds |
∑

s∈Sj
xst −

∑
s∈Sj

xst′ | ≤ 1 for all

t, t′ ∈ T . If this property holds, then also the number of bundled days is maximal,
because it is maximized in the objective function.

For the other direction we require all Sj with j ∈ J to have an EDS, that is given by
the assignment vector x = (xst)s∈S,t∈T and the variables U, y, z. We assume, that x is not
optimal for the objective function min

∑
j∈J(λ1Uj + λ2

∑
t∈T yjt − λ3

∑
d∈D zjd). Thus,

there must exist at least one j ∈ J , for which the sub-objective function minλ1Uj +
λ2
∑

t∈T yjt − λ3
∑

d∈D zjd has strictly higher cost than in the optimal solution. Let
x∗, U∗, y∗, z∗ be the variables values of an optimal time assignment. Again, we do a
proof by cases. As already mentioned, one of the following cases must occur for some
j ∈ J :

Case 1: U∗j < Uj
In an EDS, Uj is already minimal, so U∗j cannot be smaller, as it is bounded from below
by the same amount of sessions.

Case 2:
∑

t∈T y
∗
jt <

∑
t∈T yjt

Any EDS-preserving deviation of the schedule yields the same amount of maximal time
slots. Therefore, the only possibility to decrease

∑
t∈T yjt, is to swap a session to an

existing maximal time slot t′. Then, t′ would form the only maximal time slot and the
amount of maximal time slots would particularly be minimal (= 1). As Uj is bounded
from below by the number of sessions at any time slot, Uj is increased by one due to this
swap. For such a deviation, the largest possible difference in the number of maximal time
slots ranges from |T | to 1 in the best case. Then the cost changes to λ1−(|T |−1)λ2 > 0.

Case 3:
∑

d∈D zjd <
∑

d∈D z
∗
jd

If we increase the number of bundled days, then also the number of maximal time slots
must be increased by at least one. This yields the cost change of λ2 − λ3 > 0.

Finally we can exclude case 1. For case 2 and 3 it is not possible to decrease the
number of maximal time slots or to increase the number of bundled days respectively,
without increasing the cost. Finally, there exists no j ∈ J , for which the optimal solution
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has strictly smaller cost, that means x must be optimal. This contradicts the assumption.

Proposition 5 holds for both directions, consequently no evenly distributed schedule
is excluded with the Mixed-Integer-Program formulation. With respect to that, we apply
the following weight coefficients to the objective function:

min 2|T |
∑
j∈J

Uj + 2
∑
j∈J

∑
t∈T

yjt −
∑
j∈J

∑
d∈D

zjd

5.1.2 Room capacity restrictions

Each session differs in its cluster, content, speakers and the contained talks. Naturally,
each attendee has own interests and preferences concerning the choice of his session.
Hence, all sessions will obviously have different numbers of attendees. As each session
takes place in a certain room, it is necessary that the available number of seats is not
exceeded. Especially for large conferences, where the room sizes may be significantly
different, the compliance with room capacities is a very important requirement on the
schedule.

In this section we will refer to the work of Lübbecke and Lach [2][3]. They present
inequalities that satisfy room capacity restrictions within a time assignment. This is a
non-trivial matter, as we are just considering assignments of sessions to time slots in this
model. We further want give a proof that these inequalities are sufficient to model the
compliance with room capacities in a time assignment.

In the following let ur denote the capacity of a room r ∈ R and let as indicate the
number of attendees in a session s ∈ S. A more detailed study on how as is determined,
is given in Section 5.2, but we naturally assume that as > 0.

Definition 6. An assignment (s, r) of a session s to room r is called feasible, if the
number of attendees does not exceed the capacity, that means as ≤ ur.

Let St be the set of all sessions, that are scheduled at time slot t. This set is actually
not defined yet, because it is only given by a solution of the time assignment. But in
the following we will give sufficient conditions for St to comply with the room capacities.
These conditions can be formulated by means of linear inequalities, as proposed in [2]
and [3]. For that, we model each session s ∈ St and every room r ∈ R as vertices in
the vertex set St ∪ R. Furthermore let E be a set of the undirected edges, that model
all feasible assignments (s, r) between sessions s ∈ St and rooms r ∈ R. We define
Gt = (St ∪ R,E) as the feasible assignment graph for time slot t. In particular, Gt is a
bipartite graph with the bipartition {St, R}.

Definition 7. Let G = (V,E) be an undirected graph. M ⊆ E is called a matching
of G, if the edges of M have no vertex in common. M is a perfect matching, if every
vertex v ∈ V is incident to an edge in M.
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Lemma 8. The sessions of St comply with the capacities of R if and only if the feasible
assignment graph Gt contains a matching M such that each vertex of St is incident to
an edge in M.

Proof. Let St = {s1, ..., sm}, then St complies with room capacities if there are feasible
assignments (s1, r1), ..., (sm, rm) for all sessions of St to distinct rooms ri 6= rj for all
i, j ∈ {1, ...,m} with i 6= j. These feasible assignments directly correspond to the edges
of the matching M. The other direction is analogous.

Consequently, our optimization model must ensure, that there exists such a matching
for all Gt with t ∈ T . As proposed in [2] and [3], we refer to the theorem of Hall, that
yields a sufficient condition on the existence of such a matching.

Hall’s Matching Theorem. Let G = (V,E) be an undirected bipartite graph with the
bipartition V = A ∪ B and the edge set E. Let Γ(A) ⊆ B be the set of vertices that are
adjacent to vertices in A. G contains a perfect matching if and only if |A′| ≤ |Γ(A′)| for
all A′ ⊆ A.

We will apply this theorem to our feasible assignment graph Gt with A = St and
B = R. Note that the theorem also works for |St| ≤ |R|, as the number of sessions at
some time slot may be smaller than the number of rooms. Let S′ ⊆ S be an arbitrary
subset of sessions and let Γ(S′) ⊆ R be the set of rooms that are adjacent to sessions of
S′ in Gt. The cardinality of S′ ∩ St is given by

∑
s∈S′ xst. The following linear inequali-

ties model the Hall condition for all feasible assignment graphs Gt:

∑
s∈S′

xst ≤ |Γ(S′)| ∀S′ ⊆ S, t ∈ T

In general the number of these constraints is exponential and thereby hardly applica-
ble in practice. We will give a proof that the constraints can be reduced to a polynomial
number. We show that, for each subset S′ ⊆ St, there exist a polynomial number of
dominating inequalities.

Definition 9. Let dT1 x ≤ b1 and dT2 x ≤ b2 be valid linear inequalities for the time
assignment. We say inequality dT2 x ≤ b2 dominates dT1 x ≤ b1, if there exists a λ > 0
such that d1 ≤ λd2 and λb2 ≤ b1.

Remark: In particular, each dominated inequality in a linear programming formulation
becomes redundant.

Let r0 be a ’dummy’ room with capacity ur0 = 0 and let Rmax denote the set of
rooms that have the highest capacity, as there might exist more than one. Further let
R0 = R ∪ {r0} − Rmax and S>r = {s ∈ S | as > ur} be the set of sessions that have no
feasible assignment to room r.
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Lemma 10. Let S′ ⊆ S be an arbitrary subset of sessions. Then there exists a room
r′ ∈ R0 such that the following holds:

(i) S′ ⊆ S>r′

(ii) Γ(S′) = Γ(S>r′)

Proof. Let s′ = arg mins∈S′(as) be the smallest session of S′.
Further let r′ = arg maxr∈R:ur<as′ (ur) be the largest room, that can not include session
s′. We show that (i) and (ii) holds for r′.

(i) Let s be an arbitrary session in S′. It holds as ≥ as′ > ur′ and therefore s ∈ S>r′ by
definition of S>r′ .

(ii) Let r ∈ Γ(S′), then there exists a feasible assignment (s, r) with s ∈ S′. It holds
s ∈ S>r′ because of (i). That means (s, r) is a feasible assignment for a session s ∈ S>r′
and therefore r ∈ Γ(S>r′).

For the other inclusion let r ∈ Γ(S>r′). It holds ur′ < as′ ≤ ur, because r′ is the
largest room that can not include s′ and ur > ur′ by definition of r. That means (s′, r)
is a feasible assignment. Since s′ ∈ S′ it follows r ∈ Γ(S′).

Finally, Lemma 10 yields the following dominating inequalities for every S′ ⊆ S:∑
s∈S′

xst ≤
∑

s∈S>r′

xst ≤ |Γ(S>r′)| = |Γ(S′)| ∀t ∈ T

We do the reformulation of Γ(S>r′) = {r ∈ R | ur > ur′} =: Br′ and add the
reformulated linear inequalities to the existing time assignment model formulation:∑

s∈S:as>ur

xst ≤ |Br| ∀r ∈ R0, t ∈ T (5)

Remark: Rooms with equal capacity describe the same inequality. Therefore, we could
also refer to a subset of rooms of R0 whose capacities are pairwise different.

Corollary 11. There exist a polynomial number of inequalities that dominate the Hall
inequalities.

Corollary 12. The inequalities (5) are sufficient for the existence of a matching in the
feasible assignment graph Gt. Thus, a feasible solution of the time assignment model
yields the compliance with room capacities at every time slot t ∈ T .

Summarized the main argument for the reducible number of constraints is, that we can
exploit the sorting of the attendance values as and capacities ur. If an assignment of
a session s to room r is feasible, then an assignment of a smaller session to r is also
feasible. This implies a redundancy of inequalities in our model. An illustration to this
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sessions s ∈ St rooms r ∈ R

S′

s′

r′

dominating
set S>r′

Γ(S>r′)
= Γ(S′)

as, ur in ascending order

feasible (direct) and infeasible (dashed) assignments

Figure 12: Bipartite assignment graph Gt with dominating session set S>r′ ⊇ S′

idea is given in the next figure.

Remark: An optimal solution of the time assignment, that includes the room capacity
constraints, does not necessarily yield an evenly distributed schedule for all EDS sets
j ∈ J , as in the previous section. The model is restricted with this constraint.

5.1.3 Capacity labeling

If the total number of attendees is sufficiently large, it becomes more difficult to comply
with the room capacities. Even though all capacity constraints might be satisfied, as
well as all clusters may be evenly distributed over the time slots, the final schedule might
look inappropriate for practical usage. In terms of hard capacity constraints, the sessions
of one cluster may appear in many different rooms, what is supposed to be avoided in
the final schedule. The next figure shows an exemplary time assignment of Sc for some
cluster c. Sessions with a large number of attendees are illustrated by L and sessions
with a small number by S.

Even though Sc has an EDS, this assignment will not work well in practice. If
capacity constraints are hard to satisfy, then there is no degree of freedom in the choice
of the rooms. That means large sessions must appear in large rooms and, consequently,
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L S L S L S L S

L S L S L S L S

T1 T2 T3 T4 T5 T6 T7 T8

Figure 13: Unsuitable time assignment for Sc

the small sessions must be scheduled to small rooms, because larger rooms are occupied.
If we apply a provisional room assignment on this time distribution, the schedule would
look similar to the following figure:

small
rooms:

large
rooms:

L L L L

L L L L

S S S S

S S S S

T1 T2 T3 T4 T5 T6 T7 T8

Figure 14: Expected room assignment: large sessions to large rooms, small sessions to small
rooms

This worst case example shows that big and small sessions are alternating between
large and small rooms over the entire length of the conference. That means people, who
want to attend this cluster, have to change the room at every consecutive time slot.
Furthermore this cluster would probably occupy four different rooms, even if two rooms
might be possible. Another disadvantage is the time overlap of the large sessions, because
they are more popular in general. Since one participant can visit only one talk at the
same time, he would miss the other popular talk. These situations have to be excluded
for real-world instances. A more suitable time assignment would be the following:

small rooms:

large rooms: L L L L L L L L

S S S S S S S S

T1 T2 T3 T4 T5 T6 T7 T8

Figure 15: Even distribution of large and small sessions

In this time assignment, large and small sessions are evenly distributed over the time
slots. We generalize this to the fact that an even distribution must additionally hold for
sessions with different capacity demand. To achieve such a distribution in our schedule,
our approach is to apply the EDS constraints of the previous section to further sets of
sessions. In contrast to the last example we need a more precise categorization of the
needed capacities of the sessions.

Since we consider feasible assignments only, it holds as ≤ ur for each assignment of
a session s to room r. Hard capacity constraints will restrict the assignments, such that
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ur is generally not much greater than as, because larger rooms are occupied by larger
sessions. Let L = {ur | r ∈ R} be the set of room capacities. We define a capacity
labeling as a function

π : S → L, s 7→ min{ur | as ≤ ur}.

It describes the minimum possible capacity of an available room that a session can
be allocated to. Thus it can be seen as the capacity, where each session ’fits best’ in the
sense of hard capacity constraints. In particular, all sessions with the same label can be
regarded as equal in terms of needed capacities.

Let Scl = {s ∈ S | cs = c, π(s) = l} be the session sets that contain all sessions
that belong to cluster c and capacity label l. Let Lc = {l ∈ L | Scl 6= ∅} be the set
of labels that are covered by sessions of cluster c. Then, similar to the example before,
we apply the EDS constraints to each Scl by should be evenly distributed over the time
slots. Therefoupdating the EDS set S to:

S =
⋃
c∈C
{Sc} ∪

⋃
c∈C

⋃
l∈Lc

{Scl}

Since we introduce additional variables and constraints for every EDS set, the prob-
lem size of the model is enlarged with this step.

Extended example
We want to present a further example for a fixed cluster c, where the sets Sc and Scl
are evenly distributed, but a better time assignment would be possible. For instance,
let us assume that the sessions of c belong to the capacity labels Lc = {l1, l2, l3, l4} with
l1 < l2 < l3 < l4. From the definition of S an EDS is applied to the following sets:
Sc, Scl1,, Scl2 , Scl3 , Scl4 . In particular Scli ⊆ Sc for all i = 1, ..., 4. An examplary time
assignment for Sc is shown in the figure below.

l4 l4 l4 l4 l4 l4 l1 l1 l1

l3 l3 l3 l2 l2 l2 l2 l2 l2

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 16: Time assignment for labeled sessions of Sc

The entire set Sc, as well as each labeling set Scl1 , Scl2 , Scl3 , Scl4 , is evenly distributed.
Once again, we refer to the case of hard capacity constraints. From our previous obser-
vations, sessions with lower capacity labels will be scheduled into smaller rooms, while
sessions of a higher label will appear in larger rooms. This is because sessions of a higher
capacity label will also require a higher minimal capacity. Again, we apply a provisional
room assignment to the time distribution of the previous figure, now with respect to
capacity labels.
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small room:

medium room:

large room: l4 l4 l4 l4 l4 l4

l3 l3 l3 l2 l2 l2 l2 l2 l2

l1 l1 l1

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 17: Hard capacities: high labels to large rooms, low labels to small rooms

The labels l1, l4 are characteristically assigned to large and small rooms, while the
labels l2, l3 could appear in the same room of medium size. This might be possible, if the
difference of l2 and l3 is not too large. In a worse case we can assume, that they cannot
share the same room, because shifts due to hard capacity constraints are possible. The
number of rooms that one cluster occupies, is to be minimized in the next optimization
step. With this time distribution we would probably occupy three rooms for this cluster,
but we do not know as the room assignment is done in the end of the entire optimization
process. That leads to the question, if we could find a better time assignment for this
case. The idea is to integrate sessions of a lower capacity label into the stream of the
next higher capacity label. To continue the example, for every i ∈ {1, 2, 3} the sessions
of the labels li and li+1 should be evenly distributed. Consequently the EDS constraints
are applied for these additional sets of sessions. The figure below shows an improved
time assignment with respect to additional EDS constraints for successive labels.

stream l4:

stream l3:

stream l2:

stream l1:

l4 l4 l4 l4 l4 l4

l3 l3 l3

l2 l2 l2 l2 l2 l2

l1 l1 l1

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 18: EDS for consecutive capacity labels

In contrast to the example before the successive labels (l1, l2), (l2, l3), (l3, l4) are evenly
distributed. Note that it is still possible for the labels l2, l3 to appear in the same room,
because they received an EDS constraint. Unlike the previous time assignment, the la-
bels l1, l2 and l3, l4 are not assigned in parallel anymore, because they also received an
EDS constraint. Now it is possible for them to appear in the same room, if the capacity
restrictions would be sufficient. If the integration of l1, l2 and l3, l4 into one room would
be possible, then only two rooms are used for cluster c instead of three.

Inspired from that idea, we enumerate the labels (for which there exists at least one
session) of each cluster c by Lc = {l1, l2, ...} and update the EDS set S.
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S =
⋃
c∈C
{Sc} ∪

⋃
c∈C

⋃
l∈Lc

{Scl} ∪
⋃
c∈C

|Lc|−1⋃
i=1

{Scli ∪ Scli+1
}

Apart from S the Mixed Integer Program remains the same, as it was introduced in
Section 5.1.1 where S was defined with help of an index set J .

Summarized, the capacity labeling contributes to a time-dependent presorting by
the needed room capacities of each session. This is supposed to provide a better room
assignment in the next optimization step. It is an intuitional approach that we believe
to improve the later solutions. For our contribution in this thesis we have not proven,
if a time assignment with labeling constraints would always yield a better schedule.
But from our observations, they contribute significantly to a better scheduling result.
An computed example with and without labeling constraints is given in the section
’computational results’.

5.1.4 Lower bound constraints

The time assignment model focuses on the even distribution of all session sets Sj ∈ S
with j ∈ J . For each of these sets we applied EDS constraints. A further advantage of
the EDS constraints is that there exist strong lower bounds.

Let Sj ∈ S be a set of sessions that belongs to an EDS and let Uj , yjt and zjd
be the corresponding variables, as they were introduced in Section 5.1.1. Further let
N = mind∈D |Td|. The objective function of the time assignment model reads as:

min
∑
j∈J

(λ1Uj + λ2

∑
t∈T

yjt − λ3

∑
d∈D

zjd)

Definition 13. Consider the following parameters:

(i) U∗j = d |Sj |
|T | e

(ii) y∗j = |Sj | mod |T |

(iii) z∗j = b |Sj | mod |T |
N c

Claim 14. Every feasible solution of the time assignment and every j ∈ J satisfies the
following inequalities:

(1) U∗j ≤ Uj

(2) λ1U
∗
j + λ2y

∗
j − λ3z

∗
j ≤ λ1Uj + λ2

∑
t∈T

yjt − λ3

∑
d∈D

zjd
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Proof. (1) Uj is the upper bound on the number of sessions of Sj at each time slot.
Each session of Sj has to be scheduled, so the minimum number of sessions at each time

slot is
|Sj |
|T | . Since the number of scheduled sessions at each time slot is integral, it holds

d |Sj |
|T | e = U∗j ≤ Uj .

(2) Proposition 5 says that an EDS yields the optimal objective value for each Sj .
Therefore, we show that the lower bound in (2) is the objective value of an EDS of Sj .
The minimal possible value of Uj is U∗j , what was already shown in (1). Especially in an
EDS it holds Uj = U∗j . There are exactly |Sj | mod |T | leftover time slots, where Sj is
maximal. Each bundled day of Sj consists of at least N maximal time slots. That means

from the number of maximal time slots in the EDS, we can create at most b |Sj | mod |T |
N c

bundled days. As these are the best possible values for each of the variables in an EDS,
the inequality (2) yields a lower bound for Sj .

For each j ∈ J we can add the following constraints to the time assignment model:

U∗j ≤ Uj ∀j ∈ J (6)

λ1U
∗
j + λ2y

∗
j − λ3z

∗
j ≤ λ1Uj + λ2

∑
t∈T

yjt − λ3

∑
d∈D

zjd ∀j ∈ J (7)

From our observations, the lower bound constraints contribute significantly to the
computation process. In our test instances we obtained smaller integrality gaps by adding
these lower bounds to the model formulation such that the time assignment model was
almost optimally solvable.

5.1.5 Chairman constraints

Every session at the ISMP conference has a chairman who gives a short introduction
about the talks and the speakers in the session. A chairman is also able to give a talk at
the conference, what does not necessarily have to be contained in the session he attends
as chairman. This special case, where a chairman must be present in several sessions
at the same time, has to be excluded. Therefore let Stalkp be the set of sessions, where

a person p ∈ P gives a talk and Schairp the set of sessions p attends as chairman. For
our case at ISMP the number of talks a person may give was restricted to one, i.e.
|Stalkp | = 1. The avoidance of time overlaps of the corresponding sessions is modeled by
the linear inequality:∑

s∈Stalk
p ∪Schair

p

xst ≤ 1 ∀t ∈ T, p ∈ P : |Stalkp ∪ Schairp | > 1 (8)
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5.1.6 Individual scheduling requests

During the planning process of large conferences, like the ISMP 2012, there occur a series
of individual scheduling requests from the conference participants. We figured out three
main types of requests: interval, no overlap and precedence requests. Each type of
request is modeled as additional linear inequality in the time assignment.

Interval requests
An interval requests asks to schedule a session within a certain interval of time slots.
Therefore let SI denote the set of sessions that belong to an interval request and let
[t−s , t

+
s ] be the desired time slot interval. The following inequality ensures that these

sessions are scheduled within the requested interval:∑
t∈[t−s ,t

+
s ]

xst = 1 ∀s ∈ SI (9)

No overlap requests
The no overlap requests ask that a pair of sessions (s1, s2) is not scheduled not in parallel.
Here let SN ⊆ S2 be the set of session pairs that must not overlap. The requests are
modeled by the linear inequalities:

xs1t + xs2t ≤ 1 ∀(s1, s2) ∈ SN , t ∈ T (10)

Precedence requests
Precedence requests constrain a session to be scheduled before another session. In gen-
eral, such requests occur, when there are dependencies between two sessions according
to their title and content. For example, there might be precedence constraints between
sessions with the titles: Scheduling I, Scheduling II, Scheduling III that have to be
scheduled in direct succession.

We differentiate between hard and soft precedence constraints. Hard constraints
state that two sessions have to appear at two successive time slots, while soft constraints
allow further time slots in between. Let ShardP , SsoftP ⊆ S2 denote the set of session pairs
with hard and soft precedence constraints. Each element (s1, s2) indicates that s1 must
be scheduled before s2. Let T ′ = T −max(T ), then hard and soft precedence constraints
are modeled as:

xs1t = xs2t+1 ∀(s1, s2) ∈ ShardP , t ∈ T ′ (11) (hard precedence)

xs1t ≤
∑

t′∈T :t′≥t+1

xs2t′ ∀(s1, s2) ∈ SsoftP , t ∈ T ′ (12) (soft precedence)

5.1.7 Even attractivity distribution

At each conference there are some talks that are more popular than others, because of
different interests in specific talks, famous speakers or new results in research. Obviously,
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more people are attracted to attend those sessions. Therefore it is important to have an
equal amount of interesting talks available at each time slot to establish an attractive
scientific program for the whole conference.

To determine a degree of popularity for each session, we have to distinguish between
’attractive’ and ’less attractive’ sessions. In that sense, we introduce an attractivity
coefficient αs > 0 that denotes the attractivity of each session s. The higher the value,
the more pople are attracted to attend this session.

There are many possibilities to define this value. For the ISMP, we used a weighted
sum of potential attractivity indicators to obtain αs, like: number of submitted talks for
cs, stated preferences at the webpage registration and empirical attendee numbers of a
previous conference. Since the attractivity of a session is in the eye of the beholder, we
define αs to be the attractivity of an average participant. The values of αs are now used
to implement an even attractivity distribution over the length of the conference.

For that, we define the variable Amin ≥ 0, which is a lower bound on the sum of
attractivities at every time slot t ∈ T . Similarly, the variable Amax ≥ 0 yields an upper
bound for every time slot t ∈ T . The even attractivity distribution is modeled by linear
inequalities and an additional term in the objective function:

Amin ≤
∑
s∈S

αsxst ∀t ∈ T (13)

Amax ≥
∑
s∈S

αsxst ∀t ∈ T (14)

Thus, for each pair of time slots the absolute difference in the sum of attractivities is
at most Amax−Amin. Since the attractivities should be evenly distributed, Amax−Amin
is minimized. Finally we add the following term to the objective function with weight
coefficient λ4 ≥ 0:

min λ4(Amax −Amin)

The coefficient λ4 can be adjusted when looking at the produced schedules.

In Section 5.2 we will use the property of an even attractivity distribution to approx-
imate the uncertain number of attendees as by use of a stochastic model. We will see
that a balanced attractivity distribution even has good side effects.

5.2 Robustness of capacity compliance

In the previous subsection we introduced attractivity values αs to determine the average
interest in every session s ∈ S at the conference. With respect to these values we derive
a stochastic model to determine the number of attendees as for every session. In the real
world, as well as in our model concept, the number of attendees is an uncertain quantity.
In our stochastic modeling approach, the needed capacity of every session is calculated
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with use of a nonlinear model. We will give an approach to deal with the nonlinearity
of that model, as well as the integration to the existing time assignment formulation.

First, let n denote the total number of attendees at the conference or, respectively,
the maximum number of attendees at a specific time slot. The total number of attendees
may vary between the time slots. But from the perspective of an organizer, we have to
assume that each participant takes part in the whole conference. Therefore, we suppose
that n attendees are present at each time slot. We further assume that every person has
average preferences regarding the choice of his session, that means his choice between
the sessions depends on the attractivity coefficients αs and we also suppose that each
participant makes his choice independently from the other participants. It is expected
that every participant chooses a session at each time slot t, so the choice depends on
the attractivities αs of the sessions, that are scheduled at t. Consequently, we define the
probability to choose some session s at time slot t, as the ratio between αs and the total
attractivity at t. An illustration to the choice modeling is given in Figure 18.
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Figure 19: Selection probabilities ps(x) of a participant p for two different time assignments

The figure shows two different time assignments for time slot t. Since the probability
to choose one particular session depends on the selection of sessions that are available
at t, the choice probabilities may change for two different time assignments, as for s2, s3

in the example. From these assumptions we define the following stochastic concepts:

Definition 15. Let Ω = {ω1, ω2} be the decision set to choose (ω1) or not to choose a
session (ω2). For all sessions s ∈ S and all participants j ∈ P let Xsj : Ω → {0, 1} be
discrete and stochastically independent random variables that are defined as

Xsj(ω) =

{
1, ω = ω1

0, ω = ω2

Xsj = 1 states that participant j chooses session s and Xsj = 0 otherwise. Further
let St denote the set of sessions at t and t(s) be the time slot, when session s is scheduled.
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It is assumed that there exists at least one session at each time slot, i.e.
∑

s∈S xst ≥ 1
for all t ∈ T . We define the discrete probability function P : Ω→ [0, 1] by:

P(Xsj = 1) =
αs∑

s′∈St(s)

αs′xs′t(s)
= ps(x)

P(Xsj = 0) = 1− ps(x).

Then ps(x) denotes the probability that participant j will attend session s. Moreover,
each participant chooses session s with the same probability. Since αs refers to average
preferences.

Note that αs referred to average preferences and αs > 0 for all s ∈ S. It is easy to
see that P defines a probability function. We also notice that ps(x) is a rational function
in x and especially non-linear. This can be interpreted by the fact that the choice on
session s depends on the selection of sessions that are available at time slot t(s). This
selection is determined by the decision variables xst of the time assignment.

Definition 16. Each random variable Xsj has a value of either one or zero (success
or no success). Therefore, Xsj defines a Bernoulli trial. The sequence Xs1, ..., Xsn over
all participants implies a Bernoulli process for every session s. We define the random
variable Xs as the number of successes in this Bernoulli process. In the model, this is
analogous to the number of participants who choose session s.

Xs =
∑
j∈P

Xsj

In particular, we obtain the binomial distribution function. That yields the probability
that exactly k persons will choose session s:

P(Xs = k) =

(
n

k

)
ps(x)k(1− ps(x))n−k =: B(k, n, ps(x))

Similarly, the cumulative distribution function yields the probability that at most k
persons attend session s:

P(Xs ≤ k) =

k∑
j=0

(
n

j

)
ps(x)j(1− ps(x))n−j =: F (k, n, ps(x))

Note that the probabilities still depend on the decision variables xst.

From these definitions we want to determine the number of attendees as. One pos-
sibility would be to choose the expected value of Xs, that is:

as(x) = E[Xs] = n · ps(x)
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But in general, the use of expected values will not work well in practice. This is
because the probability that some session exceeds the expected value is quite large. For
our considerations we want to have a degree of certainty that the calculated number
of attendees will not be exceeded. Therefore, we define a certainty value γs ∈ [0, 1]
which defines the probability, that session s will not be exceeded. Thus, the number of
attendees is defined as the minimum number k, such that the probability that at most
k participants choose session s is greater than γs:

as(γs, x) = min{k ∈ N | P(Xs ≤ k) ≥ γs}

⇔ as(γs, x) = min{k ∈ N | F (k, n, ps(x)) ≥ γs}

Two problems remain with this formulation. First, the total needed capacity in-
creases for higher values of γs. If we choose them arbitrarily large, then the capacity
constraints might get infeasible. We further assume that γs is chosen, such that all
capacity constraints are satisfied. The next problem is the nonlinearity of the number
of attendees as(γs, x), because the inequality (5), see Section 5.1.2, uses constant values
for as.

One important observation is, if we use a constant value ãs ≥ as(γs, x), then the
room capacity will also be sufficient for the stochastic values as(γs, x), because we are
considering feasible assignments only, that means:

as(γs, x) ≤ ãs ≤ ur ⇒ as(γs, x) ≤ ur ⇒ (s, r) is a feasible assignment.

If we would use values smaller than as(γs, x), then it is not ensured that capacities
are still sufficient.

In our approach we create upper bound values ãs for every session s, what implies
the compliance with room capacities for the stochastic values. The disadvantage of up-
per bounds is the increase in the needed room capacities. It is necessary that the gap
between ãs and as(γs, x) is kept tight. We present an approximation of ≈ (1 + 2ε+ ε2)
(ε ≥ 0) on the stochastic values. This approach makes use of the approximability of an
even attractivity distribution which was introduced in Section 5.1.6.

Let ε ≥ 0 and let C = 1
|T |
∑

s∈S αs be the mean attractivity at each time slot. The

constant probability to choose session s is defined as p̃s = αs
C (1 + ε). We apply the

following inequalities to the existing time assignment model:

C ≤ Amin(1 + ε) (15) Amax ≤ C(1 + ε) (16)

Proposition 17. Let x be a feasible solution of the time assignment with respect to
inequalities (15) and (16). Then p̃s yields an (1+2ε+ε2)-approximation on the stochastic
probabilities ps(x) for all s ∈ S, that means ps(x) ≤ p̃s ≤ ps(x)(1 + 2ε+ ε2) ∀s ∈ S.

Proof. First, we show ps(x) ≤ p̃s:
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ps(x) =
αs∑

s′∈S
αs′xs′t(s)

≤ αs
Amin

≤ αs
C

(1 + ε) = p̃s.

The first inequality yields constraint (13) of the time assignment model, and the second
inequality follows from constraint (15).

The second inequality p̃s ≤ ps(x)(1 + 2ε+ ε2) follows from :

p̃s =
αs
C

(1+ε) ≤ αs
Amax

(1+ε)2 ≤ αs∑
s′∈S

αs′xs′t(s)
(1+ε)2 = ps(x)(1+ε)2 = ps(x)(1+2ε+ε2)

The first inequality is a direct consequence of constraint (16) and the second follows
from inequality (14).

Remark 18. Note that we compute a solution of the time assignment model with respect
to fixed parameters ε ≥ 0 and γs ∈ [0, 1]. For arbitrary small ε the optimization model
may get infeasible, because a completely even attractivity distribution is not possible.
Also for values of γs → 1, the model may also get infeasible, as the needed capacities will
increase.

If we add inequalities (15) and (16) to our model, then we obtain an approximation
factor of (1 + 2ε+ ε2) on the probability to choose session s. In the following we use the
approximated constant probabilities p̃s to define a constant upper bound on the number
of attendees ãs with respect to the certainty value γs:

ãs(γs) = min{k ∈ N | F (k, n, p̃s) ≥ γs}

Proposition 19. For arbitrary γs ∈ [0, 1], the constant ãs(γs) defines an upper bound
for the stochastic values as(γs, x), that means:

as(γs, x) ≤ ãs(γs) ∀s ∈ S

Proof. By proposition 17 it holds ps(x) ≤ p̃s. For fixed k and n the functional value of
the cumulative binomial distribution function F decreases with increasing probability,
that means F (k, n, p̃s) ≤ F (k, n, ps(x)). Now, let k = as(γs, x) and k̃ = ãs(γs). We
assume ãs(γs) < as(γs, x) or k̃ < k respectively. By definition of as(γs, x) and ãs(γs), it
holds γs ≤ F (k̃, n, p̃s) and γs ≤ F (k, n, ps(x)). From that, it follows:

γs ≤ F (k̃, n, p̃s) ≤ F (k̃, n, ps(x)) < F (k, n, ps(x))

The last inequality uses the strict monotony of the cumulative binomial distribution
function. That forms a contradiction on k being minimal for F (k, n, ps(x)) ≥ γs, since
it also holds for k̃ < k. Consequently it follows: k ≤ k̃ ⇔ as(γs, x) ≤ ãs(γs).
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We found constant upper bound values on the stochastic number of attendees. That
means if we choose the values ãs(γs) instead of the stochastic values as(γs, x), then ev-
ery feasible assignment of sessions to rooms will also be feasible for the stochastic values.

Quality of the upper bound
Now we want to make a statement concerning the quality of the upper bound. As higher
values of ãs(γs) will increase the needed capacities, it would be helpful to have this
bound as tight as possible. To show the approximation quality, we transform problem
of the discrete binomial distribution to continuous intervals, using the normal distribu-
tion. For large n, it is known that the normal distribution approximates the binomial
distribution for given expected value and variance of the binomial distribution. We
will show that the transformation to the continuous case yields an approximation of
ãs(γs) ≤ as(γs, x)(1 + 2ε+ ε2), what then nearly corresponds to the discrete case.

At first, we define the cumulative distribution function of the standard normal dis-
tribution:

Φ(x) = 1√
2π

∫ x
−∞ e

−y2/2dy.

To evaluate the cumulative normal distribution function in a certain point x we
use the known substitution Φ(x−µσ ) with given expected value µ and variance σ2. In
particular, the binomial distribution obtains µ = np and σ2 = np(1 − p). For large n
ther is the approximation.

F (k, n, p) ≈ Φ(k−µσ ).

Let ε′ = 2ε+ ε2. As already shown in proposition 17, it holds ps(x) ≤ p̃s ≤ ps(x)(1 +
ε′). We abuse notation and denote p = ps(x) and p̃ = p̃s. The expected values and
variances of the binomial distribution for p and p̃ are known to be the following:

µ = np, σ2 = np(1− p)
µ̃ = np̃, σ̃2 = np̃(1− p̃)

Let γs ∈ [0, 1] be the certainty value. There are values a, ã ∈ R for which Φ(a−µσ ) =

Φ( ã−µ̃σ̃ ) = γs. These values correspond to the number of attendees in the continuous
case. The next proposition refers to the case of 0.5 ≤ γs, what is usual for practical
problems, so we actually do not restrict the problem here.

Proposition 20. For a given certainty value γs ∈ [0.5, 1], let a, ã ∈ R with
Φ(a−µσ ) = Φ( ã−µ̃σ̃ ) = γs. Then ã approximates a within a factor of (1 + ε′).

Proof. Equally to the observations of proposition 17, Φ yields, at some fixed, point
smaller functional values for higher probabilities. Therefore it holds a ≤ ã, similar to
the discrete case.

For the other inequality, it holds a − np = a − µ ≥ 0 because of γs ≥ 0.5. We fur-
ther know that p̃ ≤ p(1 + ε′). We do the following assessment:
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a− np ≤
√

1−p
1−p̃(a− np) ≤

√
(1+ε′)np(1−p)

np̃(1−p̃) (a− np)

≤
√

np(1−p)
np̃(1−p̃)(1 + ε′)(a− np) ≤

√
np(1−p)
np̃(1−p̃)(a(1 + ε′)− np̃)

⇔ a−np√
np(1−p)

≤ a(1+ε′)−np̃√
np̃(1−p̃)

With use of the last inequality we obtain:

γs = Φ( ã−np̃√
np̃(1−p̃)

) = Φ( a−np√
np(1−p)

) ≤ Φ(a(1+ε′)−np̃√
np̃(1−p̃)

)

Looking at the left- and right-hand side, the monotony of Φ yields ã ≤ a(1 + ε′).

Summarized, the transformation of the problem to continuous intervals yields an
approximation factor of ε′ = 1 + 2ε+ ε2 for ãs. We do not achieve this approximation in
general for the binomial distribution. But since for large n, the approximation quality
of Φ( ã−µ̃σ̃ ) ≈ F (ã, n, p̃) increases, we can conclude that it also yields a sufficient good
approximation for our considerations. We tested instances of n = 500−2000 participants,
where values of ε = 0.008 (approximation factor of ≈ 1.016) were achievable for the ISMP
instance and for general instances ε ≈ 0.03 is a realistic guideline for larger conferences.

The following table illustrates the previous assessments for the number of attendees
concerning the two probabilities ps(x) and p̃s.

0 a ã 100
0

0.5

γs

1

a(1 + ε′)

number of attendees

ce
rt

ai
n
ty

va
lu

e

certainty vs. capacity demand

ps(x)
p̃s

Figure 20: cumulative normal distribution for session s with probabilities ps(x) ≤ p̃s

Relation to the total capacity demand
If we want to introduce a general certainty value γ, which states that no session of the
conference will exceed the capacity, then we have to choose values with

∏
s∈S γs ≥ γ.

One simple possibility is to define γs := γ
1
|S| . The following tables show the increase

in total capacity with respect to the certainty value γ and approximation factor ε. The
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data refers to the ISMP problem instance with n = 1500 participants.
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γ = 0.95, ε = 0.05

For fixed ε ≥ 0, the total capacity demand grows slowly for smaller values of γ. The
absolute certainty that no session exceeds the capacity (γ = 1) occurs, when as = n
for all s ∈ S, what would be |S| · n = 892.500 in the left figure. Therefore, the total
capacity demand grows rapidly for γ close to one. In general, γ = 1 is not achievable for
real-world instances. In contrast to that, for fixed certainty value γ the total capacity
demand grows almost linear with approximation factor ε. Since we want to achieve
values of ε close to zero, the problem is to find a small value of ε such that the model
remains feasible. But also for small ε we restrict the schedule in the property that the
attractivity at each time slot is constrained to deviate from the mean attractivity by
only ε. The goal is to find a good balance between the values of γ and ε by testing
different configurations of the underlying problem instance.

6 Stream Assignment

The second optimization step is called the stream assignment that uses the solution of
the time assignment to connect sessions to streams. Formally, a stream is a sequence
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(s1, ..., sT ) of sessions, that take place in the same room. In particular, a stream has
no assignment to a certain room yet, as it only contains sessions in temporal order. A
stream can also be empty, that means it contains no sessions.

This model focuses on the minimization of used streams of each cluster, what implies
to find a distribution over the minimum possible number of rooms. Another objective
is, that the sessions of one cluster should occur successive in the same stream. We will
call this successive occurrence of a certain cluster in a stream, a time connection. More
detailed, a cluster c has a time connection at time slot t, if there are sessions s, s′ ∈ Sc
that appear successive in the same stream at time slots t and t+ 1. In the objective, the
number of time connections is to be maximized.

A first observation shows, that both objectives are not equivalent to each other. Let
us have a look at the following examples of a stream assignment. In Figure 21 we see
that cluster c occupies a minimum number rooms, what is obviously not sufficient for
a maximum number of time connections, even if c has an EDS. Considering the other
case, if we have a maximal number of time connections, it is also not ensured that the
number of rooms will be minimal, see Figure 22.

stream 1:

stream 2:

c ∗ c ∗ c ∗ c ∗ c

c c ∗ c ∗ c ∗ c ∗

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 21: Minimal number of used rooms for Sc

stream 1:

stream 2:

1 1 1 2 2 2 4 4 4

4 4 4 3 3 3 1 1 1

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 22: Maximal number of time connections for each cluster c = 1, 2, 3, 4

In the next sections we present a Mixed-Integer-Program that assigns every session
to a stream with respect to the mentioned objectives. Furthermore, we will introduce a
small heuristic that modifies the solution of the stream assignment, such that a further
set of constraints can be validated.

6.1 Mathematical Optimization Model

In this next part we introduce the MIP formulation to that problem. We will abuse
notation and choose similar variables, like in the time assignment. Both models are
regarded as completely independent from each other in terms of notation. Even though
we mentioned that, by definition, a stream is independent from any room, we will use an
assignment of sessions to rooms in this model. That is because we have to ensure that
the stream assignment also satisfies the room capacities. Therefore, this model approach
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is regarded as an allocation to rooms, but the final room of each stream may change
during the last optimization step, the ’room assignment’.

Mixed Integer Program
From the solution of the time assignment, we obtained disjoint sets S1, ..., ST , where St
contains all sessions that are scheduled at time slot t ∈ T .

Further let A = {(s, r) | s ∈ S, r ∈ R, as ≤ ur} be the set of feasible assignments
from sessions to rooms. We define the binary variable xsr for all feasible assignments
(s, r) ∈ A:

xsr =

{
1, if session s takes place in room r

0, otherwise

For each c ∈ C, the sessions of Sc are supposed to occupy a minimum number of
rooms. Therefore, we introduce the decision variable zcr that takes on the value 1, if any
session of cluster c takes place in room r, and 0 otherwise. To model the time connec-
tions, we define the binary variable ycrt that has the value 1, if there exist two sessions
of cluster c in room r at time slots t and t + 1. Further let Rs = {r ∈ R | as ≤ ur}
denote the set of feasible rooms for session s and Sr = {s ∈ S | as ≤ ur} the set of
feasible sessions for room r. For simplification, let Srt = Sr ∩St and Scrt = Sc ∩Sr ∩St.
We further define T ′ = T −max(T ) and λ ∈ [0, 1] is a weight coefficient between the two
objectives.

min λ
∑
c∈C

∑
r∈R

zcr − (1− λ)
∑
c∈C

∑
r∈R

∑
t∈T ′

ycrt

s.t.
∑
r∈Rs

xsr = 1 ∀s ∈ S (1)

∑
s∈Srt

xsr ≤ 1 ∀r ∈ R, t ∈ T (2)

∑
s∈Scrt

xsr − zcr ≤ 0 ∀c ∈ C, r ∈ R, t ∈ T (3)

ycrt −
∑
s∈Scrt

xsr ≤ 0 ∀c ∈ C, r ∈ R, t ∈ T ′ (4)

ycrt −
∑

s∈Scrt+1

xsr ≤ 0 ∀c ∈ C, r ∈ R, t ∈ T ′ (5)

xsr ∈ {0, 1} ∀s ∈ S, r ∈ Rs
ycrt ∈ {0, 1} ∀c ∈ C, r ∈ R, t ∈ T ′
zcr ∈ {0, 1} ∀c ∈ C, r ∈ R
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The objective function minimizes the number of rooms that are occupied by every cluster,
as well as it maximizes the number of time connections of each cluster. The value of λ
weigths the importance between the objectives. Inequalities (1) state, that every session
is assigned to a feasible room. At every time slot, each room can be occupied by at most
one feasible assignment (2). Constraint (3) says, if a session of cluster c is scheduled
in room r at any time slot, then cluster c occupies room r. The time connections are
modeled with constraints (4) and (5): if there is a time connection of cluster c in room
r at time slot t, then also sessions of cluster c must be scheduled in room r at time
slots t and t + 1. Note that the variables ycrt, zcr can be relaxed to: 0 ≤ zcr ≤ 1 and
0 ≤ ycrt ≤ 1.

6.2 Computational complexity of the stream assignment

The solving time of the entire stream assignment model was too high for our understand-
ing of practical implementation. We believe that the high computation time results from
occurring symmetries in the model. More precise, there are assignments that do not af-
fect the objective function. There it makes no difference whether to choose the one or
the other room for a particular cluster. This makes the solving process more complex.

We tested several modifications of the stream assignment MIP. It turned out, that
if we delete constraints (3) and the variables zcr from the model, then the running
time improves greatly. That means, when only the time connections (ycrt variables) are
maximized, then the stream assignment is nearly optimally solvable in short time. In
most cases this also leads to a surprisingly good schedule. But as already mentioned, a
maximal number of time connections does not exclude that the sessions of one cluster can
be widely distributed over the set of rooms. This may result in long walking distances
between parallel sessions of equal clusters. Our solutions were taken from the relaxed
model.

6.3 Cluster swap heuristic

A solution of the stream assignment MIP yields an assignment of all sessions to streams.
In the model, every stream was associated with a room to ensure the compliance with
room capacities, that means it holds as ≤ ur for each assignment of a session s to a
room r. Let us consider a time slot t, where two sessions s1, s2 ∈ Sc of cluster c are
scheduled. Assume that the number of attendees of session s1 is smaller than the number
of s2, that means as1 < as2 . Even though all capacity constraints might be satisfied, it
could be that s1 is scheduled to a room that has greater capacity than the room of s2.
This case is not restricted by the model formulation, as long as the capacity constraints
remain feasible. From the point of view of a participant, it might be confusing why
an apparently smaller session is scheduled in a large room, while another session of the
same cluster is at nearly maxed out capacity. This case is supposed to be excluded.

A simple heuristic restores this property for the schedule by swapping the relevant
sessions in the correct order according to their capacities or capacity demand respectively,
see below.
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Example

r1

r2

r3

r4

s1

s2

s3

s4

⇒

r1

r2

r3

r4

s1

s2

s3

s4

Figure 23: Application of the swap heuristic

In the figure above, let s1, ..., s4 be sessions of cluster c that are scheduled into rooms
r1, ..., r4 at some time slot t. We assume that as1 ≤ ... ≤ as4 and ur1 ≤ ... ≤ ur4 . The
left figure shows the assignment that is obtained from the stream assignment, while the
right side shows the allocation after the swap heuristic, where the sessions of Sc are
sorted in correct order with respect to their capacity demand.

We also tried a formulation of this restriction by means of additional linear inequali-
ties in the stream assignment model, but the computation time increased drastically due
to this implementation. Then we decided to use this simple heuristic. As the procedure
swaps only between sessions of the same cluster, the objective value of the previous MIP
model would also remain the same, since for each cluster no time connection or room is
lost or added due to the swaps. Also no further constraints are violated.

For the input of the heuristic, we need a matrix M , where each row corresponds to
a room r ∈ R and each column to a time slot t ∈ T . The entries are the sessions srt ∈ S
that are scheduled in room r and time slot t. The matrix is given from a solution of
the stream assignment, where each stream was associated with a room. There are also
given vectors u and a, that contain the room capacities of every room or the number
of attendees of every session respectively. The heuristic swaps the sessions within the
matrix. In particular, it swaps only sessions of the same cluster at the same time slot.
Possible swaps are performed for every cluster c ∈ C.

The first loop iterates over all time slots t ∈ T . For time slot t, the sets Sc and Rc
are defined for every cluster c. Every session s that is scheduled at t, is added to Sc,
while the room r, where s is scheduled, is added to Rc (6-10). Next, we iterate over
all clusters c ∈ C and apply the sort function to Sc and Rc. The sets are sorted by
the number of attendees or the room capacities respectively. The method greedyAssign
performs a greedy assignment of the sorted sessions s ∈ S′c to the sorted rooms r ∈ R′c
in the order of the sorting. The assignment matrix is iteratively updated, until swaps
are executed for all time slots.

The sort and greedyAssign methods, obviously, run in polynomial time, so the entire
algorithm is polynomial for the given input sizes. From our observations, the algorithm
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Algorithm 1 Cluster Swap Heuristic

Require: assignment matrix M with entries srt ∈ S, r ∈ R, t ∈ T
Ensure: swapped matrix M ′

1: procedure ClusterSwap(M)
2: M ′ ←M
3: for all t ∈ T do
4: Rc ← ∅ ∀c ∈ C
5: Sc ← ∅ ∀c ∈ C
6: for all r ∈ R do
7: s← srt
8: c← cs
9: Rc ← {r}

10: Sc ← {s}
11: end for
12: for all c ∈ C do
13: S′c ← sort(Sc, as)
14: R′c ← sort(Rc, ur)
15: M ′ ← greedyAssign(M ′, t, R′c, S

′
c)

16: end for
17: end for
18: return M ′

19: end procedure

has almost no effect on the computation time.

7 Room assignment

This section deals with the last optimization step, the room assignment. From the
solutions of the previous optimization models, we obtained the time slot and the stream
of every session. That means we know how the sequences of sessions that appear in the
same room, look like. Finally, each stream must be assigned to room that is available
for the conference. Walking distances between streams with similar content should be
minimized.

Regarding this as a separate subproblem, is definitely important for large scale confer-
ences. The sessions of the ISMP 2012 occupied 40 different rooms that were distributed
over two different buildings and 10 floors. Since many participants change to other talks
within a session, they have only five minutes to change the room until the next talk be-
gins. Conference attendees will feel uncomfortable when they have to rush between the
talks, what is caused by too long walking distances. Thus, our approach is to allocate
’similar’ streams to ’nearby’ rooms.

In the following we will explain the concepts of the regarded ’distance’ between the
rooms and the ’similarity’ between two streams. Furthermore, we will discuss the associ-
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ated combinatorial problem and also present a Mixed-Integer-Programming formulation
to solve it.

7.1 Room distances

For every pair (i, j) of rooms, we define a value δij that represents the distance between
the rooms i and j. One possibility is to make use of door-to-door distances, using
coordinates of every room. A distance measure, for example Euclidean- or Manhattan-
distances, can be used for this. In particular, the term ’distances’ does not only have to
refer to pure distances. It could also indicate a degree of displeasure to change between
two rooms. For instance, penalty values for going up a stairway, taking the elevator, the
crossing of a street, changing the building or taking crowded corridors can be mentioned
here. A good choice of the distance values depends on the specific room map for the
conference.

At ISMP 2012 we used 3-dimensional room coordinates (xr, yr, zr), where xr, yr de-
note the coordinates in the plane and zr the floor of a room r. We also introduced
penalty values λ1, λ2 for changing the floor or the building respectively. The corridor
ways and the building structure of TU-Berlin is similar to Manhattan-distances, so the
distances δij between two rooms (i, j) were defined as:

δij =

{
|xi − xj |+ |yi − yj |+ λ1|zi − zj |, if (i, j) in the same building

|xi − xj |+ |yi − yj |+ λ1|zi + zj |+ λ2, otherwise

Note that a participant has to overcome the z-coordinate twice when he changes the
building. This is an idea on how those values can be determined. Naturally, we will
restrict to δij ≥ 0.

7.2 Similarity values

Regarding room changes, streams with similar content should be assigned to nearby
rooms. Therefore, we define a similarity value for each pair of streams which depends on
the included sessions. We assume that participants either choose sessions with the same
or a similar cluster for a room change. Thus, we will define a similarity value between
clusters first, until we construct a similarity value between streams on the basis of that
definition.

7.2.1 Cluster similarity

We consider two clusters as ’similar’, if there are overlaps in the topic or the content.
The higher the overlap the higher is the similarity. For the definition it is useful to create
superordinate attributes that give an idea of the possible contents. From the number of
matching attributes between two clusters, we calculate a similarity coefficient. Usually,
similarity coefficients in a range from [0, 1] are used.
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For example, let A and B denote the set of attributes that belong to two clusters.
Often used similarity coefficients are the following, see [15]:

Jaccard index:

J(A,B) :=
|A ∩B|
|A ∪B|

Dice-Sørensen index:

DS(A,B) :=
2|A ∩B|
|A|+ |B|

Tversky index: coefficients α, β ≥ 0:

T (A,B, α, β) :=
|A ∩B|

|A ∩B|+ α|A−B|+ β|B −A|

Note that T (A,B, 0.5, 0.5) = DS(A,B). At ISMP we referred to the following
tags or attributes respectively: Theory, Computation, Application, Discrete, Nonlinear,
Stochastic. For each cluster it was decided whether it matches one of these attributes or
not.

Example

attribute/set A B A ∩B A ∪B A−B B −A
Theory 1 1 1 1 0 0
Computation 1 1 1 1 0 0
Application 0 1 0 1 0 1
Discrete 1 0 0 1 1 0
Nonlinear 0 1 0 1 0 1
Stochastic 0 0 0 0 0 0∑

3 4 2 5 1 2

The table shows the set of attributes A or B that correspond to two exemplary clusters.
It show whether it matches one of these attributes (= 1) or not (= 0). From the previous
definitions, the similarity coefficients for this example would be:

J(A,B) = 0.4
DS(A,B) = 0.571
T (A,B, 1, 0.5) = 0.5

Modifications with fractional values in the table could be used as well. Again, this is
just an approach, how similarities between clusters could be defined. This is a fast and
easy method to implement in practice. Dependent on the choice of the attributes, it also
yields a good representation of the similarities between two clusters. For the upcoming
procedure we denote the similarity value for a cluster pair (c, c′) by βcc′ . We further
restrict to βcc′ ≥ 0.
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7.2.2 Stream similarity

In this section, we define the similarity values between each pair of streams. From the
definition, each stream is a sequence of sessions (s1, ..., sT ) that occur successively in
the same room. Let i and j denote two streams with sessions sit and sjt at time slot t.
Furthermore, let cit denote the cluster of session sit. The main goal is to minimize the
walking distances between parallel sessions. Secondly, we also want sessions at successive
time slots to take place in nearby rooms. Therefore, we have to consider all relations
between sessions at parallel and successive time slots. Below there is shown a figure with
the regarded relations.

stream i:

stream j:

ci1 ci2 ci3 ci4 ci5 ci6

cj1 cj2 cj3 cj4 cj5 cj6

T1 T2 T3 T4 T5 T6

Figure 24: Room changing relations between two streams

Note that we do not need to consider the relations between different days (where
dt 6= dt+1). Let T ′ = T −max(T ), then the similarity value σij between streams i and
j, is defined as weighted sum over the cluster similarities βcc′ of the regarded relations:

σij =
∑
t∈T ′

w1(βcitcjt + βcjtcit)︸ ︷︷ ︸
parallel relations

+
∑

t∈T ′:dt=dt+1

w2 (βcitcjt+1 + βcit+1cjt)︸ ︷︷ ︸
relations at successive time slots

The additional weight coefficients w1, w2 ≥ 0 are applied to distinguish between
the importance of parallel and successive relations. Parallel room changes appear more
important, because the breaks in parallel sessions are much shorter. Our scenarios use
weights of w1 = 1 and w2 = 0.5.

7.3 The room assignment problem

Finally, the streams are assigned to rooms such that the distance between similar streams
is minimized. We denote this problem as the Room Assignment Problem (RAP). In the
next sections we introduce the associated combinatorial problem of the RAP. Further-
more, we give a Mixed-Integer-Programming formulation of the RAP and discuss the
complexity of that problem. In the last subsection we present an approach to reduce the
problem size to compute instances that are comparable to the ISMP.

7.3.1 Room assignment problem and MIP formulation

Let I denote the set of streams that is obtained by a solution of the stream assignment.
The set of sessions that are contained in stream i ∈ I, is defined by Si. We denote
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amaxi = maxs∈Si(as) as the largest session in stream i. An assignment of stream i to room
r is feasible, if and only if amaxi ≤ ur because each session of the stream must comply
with the room capacity. To deduce a combinatorial model, every feasible assignment
(i, r) of a stream i to room r is modeled as separate vertex in a vertex set V , which is
given by:

V = {(i, r) | i ∈ I, r ∈ R, amaxi ≤ ur}

Between each pair (i1, r1), (i2, r2) ∈ V of assignments, we have to consider the dis-
tance δr1r2 and the similarity σi1i2 of the rooms and streams respectively. Therefore,
the relations between two assignments u, v ∈ V are modeled as undirected edges. Since
each stream is allocated exactly once, as well as each room is occupied by one stream,
the edges between assignments of equal streams or rooms are excluded. The edge set E
reads as follows:

E = {(i1, r1, i2, r2) | (i1, r1), (i2, r2) ∈ V, i1 < i2, r1 6= r2}

The induced undirected graph is defined as G = (V,E).

Definition 21. Let G = (V,E) be an undirected graph with vertex set V and edge set
E. We say G is complete, if each pair of vertices in V is adjacent. A complete subgraph
of G is called a clique. Furthermore, a clique with the largest possible number of vertices
is called a maximum clique.

Definition 22. Given a graph G = (V,E), a stable set S ⊆ V is a subset of vertices,
where each pair of vertices in S is non-adjacent.

The graph G of the room assignment problem has a special structure. Let Vi =
{(i, r) | (i, r) ∈ V } and Vr = {(i, r) | (i, r) ∈ V } be the set of assignments that cor-
respond to a stream i or room r respectively. By the definition of the edge set, each
Vi and Vr is a stable set, because no edge occurs between equal streams and rooms.
Consequently, for I and R, there exists a decomposition of G into disjoint stable sets
with V =

⋃
i∈I{Vi} and V =

⋃
r∈R{Vr}, since each vertex is covered by one of these sets.

The problem of the room assignment consists in finding a selection of assignments
(vertices) such that each stream and each room belongs to exactly one assignment.
Whenever two assignments are selected, the edge between them must be selected as
well. Assume that each edge has a certain cost, depending on the distance and the
similarity values between the incident assignments, and let b = |I| = |R| denote the
number of streams or rooms respectively. We can describe the problem as follows:

Find a clique of size b in G such that the total edge cost of the clique is minimal.
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Vi1

Vi2

Vi3

Vr1

Vr2

Vr3

Figure 25: Two distinct decompositions of G with |I| = |R| = 3 into stable sets and the selected
clique

Note that a feasible solution of the stream assignment implies the existence of a clique
of size b because room capacities were considered explicitly. In addition, the problem
description already excludes multiple assignments of streams and rooms. From the def-
inition of E, there is a partition into b stable sets Vi or Vr respectively. Since there
is one stable set that covers all vertices of a stream or room respectively, and a clique
must be complete, multiple assignments of rooms or streams are excluded. Moreover,
each of the partitions contains exactly b stable sets, therefore, one vertex from each
stable set must be selected. In particular, b is also the size of the largest clique in G
because an additional vertex would necessarily contain a stream and room that is al-
ready among the b selected vertices. Thus, each clique of size b is also a maximum clique.

Mixed Integer Program
We define the binary variables xv to be 1, if an assignment v = (i, r) ∈ V of a stream
i to room r is selected, and 0 otherwise. Furthermore, the binary variable yuv is 1, if
the edge (u, v) between two assignments u, v ∈ V is selected. We denote the cost of
each edge (u, v) = (i1, r1, i2, r2) by σi1i2δr1r2 = λuv. Here, σij is the similarity value
between streams i1, i2 and δr1r2 the distance value between rooms r1, r2, as introduced
in the previous sections. The total cost of the selected edges is minimized. Therefore, it
is more valuable to choose greater distances for lower similarities and shorter distances
for higher similarity values. The Mixed-Integer-Program reads as follows:
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min
∑

(u,v)∈E

λuvyuv

s.t.
∑
v∈V

xv = b (1)∑
v∈Vi

xv ≤ 1 ∀i ∈ I (2)∑
v∈Vr

xv ≤ 1 ∀r ∈ R (3)

yuv − xu ≤ 0 ∀(u, v) ∈ E (4)
yuv − xv ≤ 0 ∀(u, v) ∈ E (5)
xu + xv − yuv ≤ 1 ∀(u, v) ∈ E (6)

(b− 1)xv =
∑
u∈δ(v)

yuv ∀v ∈ V (7)

xv ∈ {0, 1} ∀v ∈ V
yuv ∈ {0, 1} ∀(u, v) ∈ E

Note that the integrality condition for yuv can be relaxed to 0 ≤ yuv ≤ 1 for all
(u, v) ∈ E. The objective function minimizes the total cost, which is the sum over the
cost of all selected edges. Inequality (1) says, that exactly b vertices must be chosen.
It must also be ensured that at most one stream and room is chosen from the selected
vertices that are given by constraints (2) and (3). The next inequalities (4) and (5)
indicate, that whenever an edge between two assignments u and v is selected, then also
u and v must be selected. Similarly, constraint (6) yields that whenever two assignments
u and v are chosen, then also the edge (u, v) must be selected. The inequalities of (7)
state that whenever an assignment v is chosen, then there must exist b−1 incident edges
to v because the selected clique has size b.

As a special remark we have to mention that inequalities (2) and (3) are redundant
in this MIP formulation. Summing up (7), together with (4) yields

b− 1 = (b− 1)
∑

v∈Vi xv =
∑

v∈Vi
∑

u∈δ(v) yuv ≤
∑

v∈Vi
∑

u∈δ(v) xu

If we substract this inequality from (1), we get
∑

u∈Vi xu ≤ 1, that is (2). Constraint
(3) is obtained analogous. These inequalities will be needed later, so they are already
introduced with this model.

7.3.2 Previous work and related problems

Since the room assignment problem is quite special for itself, we generalize this problem.
The considered problem is to find a clique of size b with minimal edge weight. We could
also relax this formulation to find a clique of size ≥ b that has minimal edge weight
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because, as mentioned, the largest clique in the room assignment graph already has size
b. We will also refer to complete graphs for the generalization. Therefore, we reformulate
the problem to: Given an undirected complete graph G = (V,E) with edge cost λe, find
a clique of size ≥ b that has minimal edge cost.

The problem of finding minimal edge weighted cliques with minimum clique size
requirement was rather studied for one cliques only, but for clique partitionings, see
Mitchell and Ji [23]. We can also mention the closely related Maximum Edge Weighted
Clique Problem (MEWCP) that was extensively studied in the recent years, see [5],[6],[7]
and [19]. The problem can be stated as follows: given an undirected complete graph,
find a clique of size ≤ b that has maximal edge weight.

It is possible to reduce the RAP to MEWCP by changing the edge weights to λ′e =
Λ−λe > 0, where Λ is a large constant. If we solve the induced MEWCP, we would also
obtain the maximal clique of size b, as the considered edge weights are strictly positive.
If C would be such an optimal clique, then∑

e∈E(C) λ
′
e =

∑
e∈E(C)(Λ− λe) = b(b− 1)/2 · Λ−

∑
e∈E(C) λe is maximal

⇔
∑

e∈E(C) λe is minimal

In particular, every valid inequality of the reduced MEWCP problem is also valid
for the original RAP, as no possible clique is excluded.

However, the MEWCP isNP-hard, as the Maximum Clique Problem (MCP) emerges
as a special case, that was also shown to be NP-hard. The MCP is to find a clique in a
given graph that has maximum cardinality.

In contrast to the general MCP, the problem of finding a maximum clique in the graph
of the RAP is easy to obtain, since a maximum clique represents a feasible assignment of
streams to rooms. That means, finding a maximum clique in the RAP graph corresponds
to an assignment problem what can be computed in polynomial time. But the additional
consideration of edge weights and the lower bound on the clique size makes this problem
more difficult to solve.

A more generalized option to regard the MEWCP is to consider the so-called Boolean
Quadric Polytope, that describes the induced integer polytope of the general MEWCP
formulation without clique size requirement. Studies on this polytopal structure have
been made in [18] and [20].

7.3.3 Improving the computation time of the RAP

From our computational experience, the room assignment problem is very hard to solve.
For our problem instances the computation time exceeds the limit that we consider to be
useful for practical implementation. If all edges between all feasible assignments would
be considered, then the problem becomes too large to solve. Our approach is to reduce
the problem size to make progress, also with hard instances.

Again, the main idea is to delete edges of the underlying graph G to a moderate
number. Especially, we delete edges that we do not consider as ’important’ for our
problem. Every selected edge (u, v) = (i, r, j, r′) between assignments u = (i, r) and

53



v = (j, r′) contributes to the objective function with cost λuv = λirjr′ = σijδrr′ . The
first observation that we make is that we can eliminate edges with σuv = 0, because they
will not even affect the objective value, if we would consider them or not. In general this
is the case, if the similarity value σij between streams i and j is equal to zero, that means
both streams have nothing in common with respect to their content. Consequently our
approach is to eliminate edges that do not satisfy a certain value of similarity. As we are
focusing on the assignment of similar streams to nearby rooms, this seems to be an useful
approach. Therefore, let the parameter σ define a lower bound on the similarity values
up to which edges are considered in the model. We redefine the edge set as follows:

E′ = {(i, r, j, r′) | (i, r), (j, r′) ∈ V, i < j, r 6= r′, σij ≥ σ} ⊆ E

The new graph G′ = (V,E′) consists of the same assignments v ∈ V , but with
reduced edge set E′. All variables yuv = yirjr′ with σij < σ are eliminated, what reduces
the problem size. The relaxed optimization model of RAP is applied to the sparse graph
G′.

Remark 23. The elimination of edges due to σ will violate the clique structure in
general. That means we do not know whether each vertex v has exactly b − 1 incident
edges in E′. As we still want to select b vertices, constraint (5) is not valid for G′ and
must be deleted from the model formulation. Every other inequality is still valid for G′.

In particular, inequalities (2) and (3) are not redundant anymore due to this relax-
ation. In contrast, the deleted constraints (5) were ’good’ inequalities and contributed
to a good performance with respect to the computation time. We introduce valid in-
equalities that are similar to the deleted ones. For every assignment v ∈ V we define
bv = bir = |{j | j ∈ I\{i}, σij ≥ σ}|. In this formulation, bv is the number of adjacent
assignments of vertex v in E′. Then the following inequalities are valid for the reduced
model and replace inequalities (5) of the previous model:

bvxv ≤
∑

(u,v)∈E′
yuv ∀v ∈ V (5′)
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8 Conclusion

In this thesis we provide a framework to compute conference schedules that respect a
wide sets of constraints. We also introduced an approach to the robust optimization
of the conference schedule, which relates to the uncertain number of attendees and
the compliance with room capacities. We gained new insights into the combinatorial
structures of the problems that occur during the planning of a conference.

In practice, the optimization models contributed significantly to the creation of a
conference schedule that was used at ISMP 2012. Especially, the compliance with hun-
dreds of individual scheduling requests was a great challenge. The computed conference
schedules, see ’computational results’, look appropriate to be used at real conferences.
They provide us with the information, if the room capacities will be sufficient to accom-
modate all conference participants. In this context, Mixed-Integer-Programming yields
a perfect application to solve the difficulties of conference scheduling.

But the model has also some weaknesses concerning the regarded problem data.
The approach of computing a robust schedule highly depends on the used attractivity
coefficients αs for each session. These coefficients were determined due to attractivity
indicators. A remaining problem is to decide whether the used attractivity indicators
yield a good representation of an average attendee behavior. That means we actually
do not know which sessions are selected by a particular attendee. From our experience
at ISMP 2012, the main attractivity indicator for a session is the popularity of the
speaker, since famous speakers will generally have a great audience. It will be important
for future conferences to obtain this particular attractivity information for each session.
It would also be helpful to integrate insider knowledge for a more realistic estimation,
because not every speaker must be known by the organizers.

For further research on this topic, it would also be interesting if there are efficient
methods that produce a schedule without the distinction of a time- and room assign-
ment. As we considered mainly MIP models for the different subproblems, it would be
interesting to develop an algorithmic approach for that problem. Moreover, it would be
fascinating to deal with the question, if there is a schedule that can optimally satisfy
the personal session preferences of every participant, when this information would be
known in advance. This could also be regarded from a game theoretic perspective. The
leads to the individualization of the schedule that respects individual preferences in a
best possible way.

Special thanks to Prof. Dr. Ralf Borndörfer for his helpfulness and patience for this
thesis.
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9 Computational results

All presented results were computed on a Intel Core 2 Extreme X9650 3.00GHz with
Gurobi Optimizer version 5.5.0.

9.1 Combination of Talks to Sessions

• random similarites σkl ∈ [0, 1]

• weight coefficient λ = 0.75 for both models

• D = 3, dk = 1 ∀k ∈ K

• |K| denotes the number of talks

• |S| denotes the number of computed sessions

• σ is the lower bound on the considered similarity relations, that means only edges
with σkl ≥ σ are in the problem graph (clique partitioning only)

• |E| is the number of used edges in the underlying problem graph (inclusive reduc-
tion)

• all instances were computed with a constant time limit of 600 seconds

• both models were tested for the same instances, see Section 4.2 ’computational
experience’

• instance with |K| = 1740 and max. |S| = 630 refers to the ISMP proportion

Clique partitioning

instance computation solution

|K| min. |S| max. |S| σ |E| # vars # constr % gap |S| idle time avg similarity

500 167 200 0 5,106 8,109 105,091 6.83 176 28 0.843
1000 334 400 0.6 8,435 14,438 149,592 3.81 343 29 0.901
1500 500 600 0.75 11,830 20,833 195,429 2.53 509 27 0.923
1740 580 630 0.8 12,618 23,061 193,757 2.12 592 36 0.930
2000 667 750 0.85 12,230 24,233 161,547 1.93 687 61 0.934

Capacitated Facility Location

instance computation solution

|K| min. |S| max. |S| |E| # vars # constr % gap |S| idle time avg similarity

500 167 200 5,606 6,610 7,111 1.76 176 28 0.901
1000 334 400 21,937 23,941 24,942 2.29 343 29 0.951
1500 500 600 48,353 51,357 52,858 1.65 509 27 0.966
1740 580 630 65,024 68,508 70,249 1.28 588 24 0.969
2000 667 750 85,211 89,215 91,216 1.13 675 25 0.974
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9.2 Capacity labels

• random generated clusters and attractivity values

• instance was computed with and without cluster labeling constraints

• n = 1000 attendees

Schedule without capacity labels

• cluster time connections: 398

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 1 1 1 1 1 1 1 1 1 11 11 11 11 11 6
H 0107 144 11 11 11 11 11 11 11 11 11 11 11 11 22 11 8
H 0110 198 5 5 5 5 5 5 5 5 5 5 5 6 12 12 12
H 0111 99 3 3 3 3 3 3 3 3 3 15 2 17 17 17 17
H 0112 99 18 9 9 9 3 3 3 3 3 3 3 3 3 3 3

H 1012 262 13 22 22 22 22 15 15 15 4 8 8 8 20 8 8
H 1028 231 17 17 8 8 8 8 8 8 8 8 1 13 13 13 13
H 1029 41 6 6 11 22 8 8 8 8 8 8 8 8 8 8 5
H 1058 263 4 4 18 18 18 18 18 18 18 7 21 4 4 4 4

H 2013 261 9 9 7 14 14 14 14 14 14 14 14 14 14 14 14
H 2032 236 12 12 13 13 7 7 7 7 7 7 7 7 7 7 7
H 2033 67 23 22 6 6 6 2 2 14 14 2 2 2 2 2 2
H 2035 30 2 2 2 2 2 19 19 19 18 18 16 16 16
H 2036 45 10 10 2 2 2 4 4 4 17 17 17 17 17 20 20
H 2038 50 16 21 16 15 15 13 13 17 12 19 19 19 19 19 19
H 2051 30 9 13 15 1 1 1 17 2 2 2 8 8 8
H 2053 261 15 15 20 20 20 20 11 11 19 19 19 19 19 19 19

H 3002 40 19 19 19 19 6 6 6 6 4 4 23 23 23 14
H 3003A 20 8 8 17 12 12 12 15 18
H 3004 50 4 6 6 6 5 6 6 6 6 6 6 19 1 1 1
H 3005 80 19 19 19 19 19 19 19 19 19 10 10 10 10 10 10
H 3008 30 14 14 14 5 16 16 17 17 17
H 3010 388 20 20 20 11 22 22 22 22 22 22 22 22 22 22 22
H 3012 40 7 7 4 4 20 20 20 11 7 7 17 17
H 3013 40 11 13 13 13 13 22 22 22 22 18 15 15 15 15 15
H 3021 30 19 19 19 7 4 4 12 9 19 19 21 21 24 9
H 3027 80 1 1 1 17 17 17 17 17 16 16 16 16 16 16 16
H 3503 140 2 24 24 4 4 15 15 15 15 15 15 15 15 15 15

MA 004 235 15 15 15 10 12 12 12 4 4 6 6 6 20 4 4
MA 005 235 16 16 16 16 6 10 10 10 1 1 1 1 1 1 1
MA 041 152 23 23 23 23 23 23 13 13 13 9 9 9 9 9 9
MA 042 140 13 8 8 8 4 9 9 9 20 20 20 18 12 12 23
MA 043 152 21 21 21 21 21 21 12 23 23 23 23 18 18 21 21

MA 141 70 24 24 24 24 24 24 24 24 24 24 24 24 24 14 24
MA 144 68 3 3 3 19 19 2 16 16 16 5 5 5 5 5 24

MA 313 40 17 17 17 17 17 17 16 21 21 21 21 21 14 2 2
MA 376 32 6 3 13 13 23 23 23 23 23 23 23 23 23

MA 415 50 14 14 14 14 14 23 24 24 24 24 14 2 2 18 18

MA 549 32 20 20 20 20 14 14 12 12 12 12 12 4
MA 550 32 24 16 9 9 9 5 13 13 5 6 6

MA 649 32 8 11 10 18 21 21 16 10 21 24 24 24 24 11
MA 650 32 22 18 12 12 11 11 23 20 20 20 20 20
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Same instance with capacity labels

• cluster time connections: 508 ≈ 27.6% increase

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 22 22 22 22 22 22 12 12 12 12 12 12 12 12 12
H 0107 144 22 22 22 22 11 14 14 15 15 22 22 22 22 22 22
H 0110 198 18 18 18 18 18 18 18 18 18 18 18 18 18 18 23
H 0111 99 7 7 7 7 7 7 7 7 7 7 7 7 7 7 20
H 0112 99 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

H 1012 262 12 12 12 15 4 15 16 16 16 16 16 16 16 16 16
H 1028 231 8 8 8 8 8 8 8 8 8 8 16 16 16 16 16
H 1029 41 8 8 8 8 8 8 8 8 8 8 8 8 21 21 21
H 1058 263 24 24 24 6 6 6 6 6 6 6 6 6 1

H 2013 261 17 17 17 17 17 17 17 17 17 9 9 9 9 9 9
H 2032 236 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 2033 67 9 9 9 9 9 9 3 3 3 8 8 8 8 8 8
H 2035 30 13 13 13 22 12 12 12 7
H 2036 45 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4
H 2038 50 11 11 11 17 17 13 6 6 6 6 6 6 6 6 6
H 2051 30 6 6 6 23 23 23 23 23 23 23 23 23 23
H 2053 261 14 14 14 23 23 23 23 23 23 11 11 23 23 23 23

H 3002 40 19 19 19 19 19 17 17 17 17 17 17 17 17 17 17
H 3003A 20 15 15 15 14 14
H 3004 50 23 23 23 23 19 19 19 19 19 3 3 3 17 17 17
H 3005 80 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 3008 30 16 16 16 16 16 16 19 19 19 19 19 19 19 19 19
H 3010 388 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
H 3012 40 6 6 6 24 24 24 11 11 11 15 15 15 15 15 15
H 3013 40 20 20 20 20 20 20 16 16 16 16 11 11 11 11
H 3021 30 18 18 18 13 13 13 17 17 17 6 6 6
H 3027 80 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 3503 140 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2

MA 004 235 10 10 10 10 10 10 10 10 10 10 10 10 1 18 18
MA 005 235 21 21 21 21 21 21 21 21 21 14 14 14 14 14 14
MA 041 152 19 19 19 2 2 2 2 2 2 2 2 2 2 2 2
MA 042 140 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MA 043 152 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

MA 141 70 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
MA 144 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MA 313 40 2 2 2 2 2 2 1 1 1 7 7 7 22 22 22
MA 376 32 23 9 9 9 9 9 24 24 24 24 24 24

MA 415 50 5 5 5 14 14 14 14 14 14 14 14 14 14 10 10

MA 549 32 17 17 17 5 5 5 21 8 8 8 8 8
MA 550 32 14 14 14 14 14 2 2 2 2 2 2 3 3 3

MA 649 32 12 12 12 12 12 12 22 22 22 20 20 20 20 20 20
MA 650 32 21 21 21 21 9 9 9 21 21 21 12 12
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9.3 ISMP problem instance

The ISMP 2012 problem instance was computed with the following parameters:

• 595 sessions from 24 different clusters

• 5 days, each with 3 time slots ⇒ 15 time slots

• 42 rooms

• 116 interval requests

• 45 no overlap requests

• 85 hard precedence requests

• ε = 0.05 (robustness approximation factor)

• room assignment: consider similarities σij ≥ σ = 0.5 ·max(i,j)∈E(σij)

Cluster list # sessions

Approximation and Online Algorithms 16

Combinatorial Optimization 85

Complementarity and Variational Inequalities 20

Conic Programming 30

Constraint Programming 10

Derivative-free and Simulation-based Optimization 11

Finance and Economics 19

Game Theory 24

Global Optimization 18

Implementations and Software 18

Integer and Mixed-Integer-Programming 46

Life Sciences and Healthcare 13

Logistics, Traffic and Transportation 29

Mixed-Integer-Nonlinear-Progamming 18

Multi-objective Optimization 15

Nonlinear Programming 41

Non-smooth Optimization 14

Optimization in Energy Systems 30

PDE-constrained Optimization 21

Robust Optimization 16

Sparse Optimization and compressed Sensing 14

Stochastic Optimization 37

Telecommunications and Networks 20

Variational Analysis 30
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Multiple attendances of single persons (sessions of each person must not overlap!)

# sessions to be present 2 3 4 5 6 7 8

# persons 152 28 8 4 2 1 1

The problem instance was computed for different numbers of attendees n to simulate the
effect of hard capacity restrictions on the final schedule. We used a constant time limit
of 600 seconds for each model. The robust view shows the probabilities that the room
capacities will be sufficient (not be exceeded) for each assignment. This is calculated on
the basis of the probabilities that we have introduced in Definition 15.

9.3.1 Instance 1: n = 500

• γs = 0.95 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Time assignment 10,779 5,815 600 0.01
Stream assignment 69,974 91,945 315.76 optimal
Room assignment 47,665 138,926 395.4 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
H 1028 231 20 2 2 2 2 2 2 2 2 2 2
H 1029 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 1058 263 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

H 2013 261 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H 2032 236 21 21 21 21 21 21 21 21 21 21 21 21 21 21
H 2033 67 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2035 30 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2036 45 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2038 50 12 12 12 12 12 12 12
H 2051 30 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
H 2053 261 17 17 17 17 17 17 17 1 17 17 17 17 17 17 17

H 3002 40 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10
H 3003A 20 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3004 50 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3005 80 16 16 16 16 16 16 16 16 16 11 16 16 23
H 3008 30 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3010 388 14 14 14 14 14 14 14 14 14 14 14 14 7 7 7
H 3012 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3013 40 22 22 22 22 22 22 22 22 22 6 6 6 6
H 3021 30 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
H 3027 80 9 9 9 5 5 5 5 5 5 5
H 3503 140 10 10 10 10 10 10 7 23 3 23 23 23 3

MA 004 235 13 13 13 13 13 13 13 13 13 13 13 13 13 13
MA 005 235 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
MA 041 152 8 8 8 14 14 14 14 14 14
MA 042 140 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MA 043 152 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

MA 141 70 19 19 19 19 19 19 8 8 8 8 8 8 8 8 8
MA 144 68 3 3 3 19 19 19 19 19 19 19 19 19 19 19 19

MA 313 40 6 6 6 6 6 6 6 12 12 12 12 12 12
MA 376 32 8 8 8 8 8 8 8 8 8 8 8 8 19 19 19

MA 415 50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

MA 549 32 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
MA 550 32 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 23 24 23 23 23 23 23 23 23 32 23 34 19 19 19
H 1058 263 13 18 18 13 18 18 18 18 18 18 18 18 18 18 18
H 1012 262 28 28 28 28 28 28 20 28 28 28 28 28 28 28 28
H 2053 261 24 24 24 24 17 24 45 42 17 24 24 24 24 24 24
H 2013 261 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13
H 2032 236 17 24 24 24 24 24 24 24 24 24 24 24 24 24
MA 005 235 23 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 004 235 18 18 18 18 18 18 18 18 13 18 18 18 18 18
H 1028 231 20 17 13 17 17 17 17 17 17 17 17
H 0110 198 13 17 17 17 17 17 13 13 17 17 13 17 17 17 17
MA 041 152 22 22 22 16 16 16 23 23 23
MA 043 152 17 12 17 17 17 17 12 17 17 17 17 17 17 17 17
H 0107 144 17 17 17 17 17 17 17 17 17 17 17 19 17 17 17
MA 042 140 17 17 17 17 17 17 23 21 22 17 17 17 17 17 17
H 3503 140 21 21 21 21 21 21 19 16 24 16 16 16 26
H 0111 99 19 20 17 17 17 17 17 17 19 17 17 20 19 17 17
H 0106 99 17 19 17 17 17 17 17 17 17 17 17 19 17 17 17
H 0112 99 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
H 3027 80 31 23 23 13 13 13 13 13 13 13
H 3005 80 20 20 20 20 20 20 20 20 20 26 20 20 16
MA 141 70 17 17 17 19 17 17 32 22 22 22 22 22 22 22 22
MA 144 68 18 18 18 17 17 17 17 17 17 17 12 17 17 17 17
H 2033 67 21 21 24 21 21 21 21 21 21 21 21 21 21 21 21
MA 415 50 19 19 19 19 19 19 14 14 19 19 19 19 19 19 19
H 2038 50 14 14 14 14 14 14 10
H 3004 50 20 20 20 25 24 26 26 25 25 20 20 20 20 20 20
H 2036 45 26 24 26 21 21 21 21 21 21 21 21 24 24 21 26
H 1029 41 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
MA 313 40 16 16 16 16 16 16 16 14 14 14 14 14 14
H 3002 40 10 13 13 27 21 21 21 21 27 21 21 21 21 21 21
H 3013 40 18 18 18 25 22 27 18 18 18 16 23 23 27
H 3012 40 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 549 32 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
MA 649 32 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
MA 550 32 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
MA 376 32 22 22 22 22 22 22 21 16 16 22 22 22 23 23 23
MA 650 32 16 16 16 16 16 16 16 11 16 16 16 16 16 16 16
H 3021 30 16 16 16 16 16 16 11 16 16 16 16 16 16 16 16
H 2051 30 23 23 16 23 23 23 23 23 23 23 23 23 23 23 23
H 3008 30 18 18 18 18 18 18 18 18 18 18 18 18 18
H 2035 30 21 15 21 21 21 21 21 21 21 15 21 21 21 21 24

H 3003A 20 20 20 20 20 20 20 14 14 20 20 20 20 14 14 20
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3005 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 141 70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 144 68 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2033 67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 415 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2038 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3004 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2036 45 0.99 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 0.99
H 1029 41 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 313 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3002 40 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3013 40 1.0 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0 1.0 0.99 0.99 0.99
H 3012 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 549 32 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 649 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 550 32 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 376 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 650 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3021 30 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2051 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3008 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2035 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

H 3003A 20 0.97 0.97 0.97 0.97 0.97 0.97 0.99 0.99 0.97 0.97 0.97 0.97 0.99 0.99 0.97

9.3.2 Instance 2: n = 750

• γs = 0.95 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Time assignment 11,283 6,691 600 0.05
Stream assignment 68,657 91,945 220.86 optimal
Room assignment 41,609 121,229 175,59 optimal

63



Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 23 23 23 23 23 23 23 23 23 23 23 23 23 23
H 1028 231 2 2 2 2 2 2 2 2 2 2 5 3 3
H 1029 41 21 21 21 21 21 21 21 21 21 21 21 21 21 21
H 1058 263 6 6 6 6 6 6 6 6 6 6 6

H 2013 261 3 3 3 3 3 3 3 3 3 9 9 9 9 9 9
H 2032 236 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 2033 67 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2035 30 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2036 45 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2038 50 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
H 2051 30 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 2053 261 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

H 3002 40 22 22 22 16 22 22 22
H 3003A 20 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3004 50 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3005 80 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 3008 30 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3010 388 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
H 3012 40 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3013 40 16 16 16 20 11 22 7 16 16 16 16 16 16 16
H 3021 30 12 12 12 12 12 12 12 12 12 12 12 12 12
H 3027 80 17 17 17 17 17 17 17 17 17 17 17 17 17 17
H 3503 140 5 5 5 5 5 5 5 5 5 1 10 10 10

MA 004 235 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MA 005 235 19 19 19 19 19 19 8 8 8 8 8 8 8 8 8
MA 041 152 9 9 9 9 9 9 9 9 9 9 9 9 14 14 14
MA 042 140 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MA 043 152 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

MA 141 70 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
MA 144 68 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

MA 313 40 7 7 7
MA 376 32 23 23 23 23 23 23 3 3 3 3 3 3 3 3 3

MA 415 50 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

MA 549 32 13 13 13 13 13 13 13 13 13 13 13 13 13 13
MA 550 32 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 26 26 26 26 26 26 18 18 26 26 26 26 26 26 26
H 1058 263 22 22 22 22 22 33 33 39 22 22 22
H 1012 262 16 22 22 22 22 22 22 22 22 22 22 22 22 22
H 2013 261 25 25 25 25 25 25 34 37 25 32 23 32 32 32 32
H 2053 261 26 26 26 26 26 26 26 26 26 38 35 31 26 26 26
H 2032 236 51 51 51 51 51 51 51 51 61 51 51 51 51 51 51
MA 004 235 32 32 32 32 32 32 22 22 30 32 32 32 32 32 32
MA 005 235 23 23 17 23 23 23 32 32 32 32 32 45 32 32 32
H 1028 231 24 24 24 24 24 24 24 24 24 24 19 25 18
H 0110 198 24 24 24 24 24 26 24 24 24 24 24 24 24 24 24
MA 041 152 32 32 32 32 32 32 32 32 32 44 32 32 46 34 49
MA 043 152 23 23 23 23 23 23 23 17 17 23 23 23 23 23 23
H 0107 144 24 17 24 17 17 17 24 24 24 24 24 17 24 24 24
H 3503 140 13 19 19 19 19 19 19 19 19 51 29 39 38
MA 042 140 23 23 23 33 23 31 23 23 23 23 23 23 30 23 23
H 0106 99 24 24 24 24 24 27 24 24 27 24 24 24 24 24 24
H 0111 99 27 24 24 24 28 27 28 24 27 24 24 24 24 24 24
H 0112 99 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3005 80 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27
H 3027 80 35 35 35 35 35 24 35 35 35 24 64 35 35 35
MA 141 70 40 40 40 28 40 40 40 40 28 40 40 40 40 40 40
MA 144 68 27 23 23 33 33 33 23 23 23 23 23 23 23 23 23
H 2033 67 30 37 30 34 30 35 30 35 37 30 30 30 30 30 30
H 2038 50 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
H 3004 50 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
MA 415 50 32 32 32 32 32 32 23 32 23 32 32 32 32 23 32
H 2036 45 37 30 35 30 30 30 37 30 30 30 30 21 30 30 30
H 1029 41 34 34 34 34 34 34 34 34 34 24 34 34 34 34
H 3002 40 26 26 26 28 26 26 26
H 3013 40 28 28 28 40 35 26 27 28 28 28 28 28 28 28
MA 313 40 27 19 19
H 3012 40 37 35 37 28 28 28 28 28 28 28 28 28 35 34 35
MA 376 32 22 22 22 22 22 22 25 25 25 25 25 25 25 25 25
MA 650 32 22 22 22 22 22 22 22 22 22 22 22 16 22 22 22
MA 649 32 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
MA 549 32 32 26 26 26 26 26 26 26 26 26 26 26 26 26
MA 550 32 26 26 18 26 26 26 26 26 26 26 26 26 26 26 26
H 3008 30 28 28 28 28 28 28 28 28 20 20 20 20 28 28 28
H 3021 30 19 19 19 19 19 19 19 19 19 19 19 14 19
H 2051 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
H 2035 30 30 30 30 30 30 30 30 30 30 30 30 21 30 30 30

H 3003A 20 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3005 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0
MA 141 70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 144 68 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2033 67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2038 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3004 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 415 50 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 1.0 0.99 0.99 0.99 0.99 1.0 0.99
H 2036 45 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99
H 1029 41 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3002 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3013 40 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 313 40 0.99 1.0 1.0
H 3012 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 376 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 650 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 649 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 549 32 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 550 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3008 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3021 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2051 30 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2035 30 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.99 0.97 0.98 0.98

H 3003A 20 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

9.3.3 Instance 3: n = 1000

Solution process

• γs = 0.95 (certainty value)

Model # variables # constraints CPU time(s) %gap

Time assignment 11,619 7,310 600 0.07
Stream assignment 65,657 91,934 207.93 optimal
Room assignment 31,670 91,928 600 40.05
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 1028 231 2 2 2 2 2 2 10 10 10 2 2 2 2
H 1029 41 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 1058 263 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

H 2013 261 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
H 2032 236 17 17 17 17 17 3 17 17 17 17 17 17 17 17 17
H 2033 67 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2035 30 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
H 2036 45 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2038 50 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2051 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 2053 261 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

H 3002 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3003A 20
H 3004 50 16 22 22 22 22 22 22 22 22 22
H 3005 80 22 22 22 22 22 22 22 22 22 20 6 6 6 6
H 3008 30 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 3010 388 21 21 21 21 21 21 11 21 21 21 21 21 21 21 21
H 3012 40 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 3013 40 3 3 3 3 3 3 3 3 3 3 3 3 22 22 22
H 3021 30 6 6 6 6 6 6 6 5 5 5 5
H 3027 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 3503 140 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

MA 004 235 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9
MA 005 235 3 1 8 8 8 8 8 8 8 8 8 8 8 8
MA 041 152 23 22 16 16 16 16 16 16 16 16 16 16 16 16
MA 042 140 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
MA 043 152 16 16 16 16 16 16 16 16 16 16 7 16 16 16

MA 141 70 5 5 5 5 5 5 14 14 14 3 3 3 3 3 3
MA 144 68 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

MA 313 40 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
MA 376 32 12 12 12 12 12 12 12 12 12 12 12 12 12

MA 415 50 7 7 7 19 19 19 19 19 19 23 23 23 23

MA 549 32 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
MA 550 32 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 44 44 44 44 44 44 38 31 44 44 44 44 44 44 44
H 1058 263 42 42 42 42 42 42 59 42 63 42 42 44 42 42 42
H 1012 262 33 33 33 33 33 33 33 42 33 33 33 33 33 33 33
H 2013 261 51 51 51 51 51 36 51 51 51 51 51 51 51 51 51
H 2053 261 42 38 40 30 30 30 30 30 30 30 30 30 30 30 30
H 2032 236 45 45 45 31 31 47 45 45 45 84 45 45 45 45 45
MA 005 235 32 79 41 41 41 29 38 29 41 41 41 41 41 41
MA 004 235 41 41 41 41 41 41 41 41 41 59 41 41 29 41 41
H 1028 231 31 31 31 31 31 31 38 38 38 31 31 31 31
H 0110 198 31 31 31 31 31 31 31 31 31 22 31 31 31 31 31
MA 041 152 28 49 36 36 36 36 36 36 36 36 36 36 36 36
MA 043 152 44 36 36 45 45 36 36 36 36 36 35 47 48 46
H 0107 144 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 042 140 36 36 36 36 36 36 25 25 25 36 25 36 36 36 36
H 3503 140 41 41 41 41 41 41 41 41 41 41 41 41 41 57 41
H 0111 99 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
H 0106 99 31 35 31 34 36 35 31 31 31 35 35 35 35 31 31
H 0112 99 22 31 22 31 31 31 31 31 31 31 22 22 31 31 31
H 3027 80 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66
H 3005 80 33 33 40 33 33 33 33 33 33 36 28 43 43 50
MA 141 70 17 24 24 24 24 24 29 29 29 32 44 32 32 32 32
MA 144 68 38 38 38 38 38 38 50 49 38 38 38 38 38 38 38
H 2033 67 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
H 3004 50 36 33 33 33 33 33 33 33 33 45
H 2038 50 44 44 44 38 38 38 48 43 44 38 38 38 48 48 48
MA 415 50 35 35 35 42 42 42 35 30 30 28 28 28 28
H 2036 45 38 38 38 27 27 38 38 38 38 38 38 38 38 38 38
H 1029 41 33 33 33 33 33 33 24 33 33 33 33 33 33 33
H 3012 40 35 24 24 35 35 35 35 35 35 35 35 35 35 35 35
MA 313 40 33 33 33 33 33 33 33 33 33 23 23 33 33 33 33
H 3013 40 32 22 32 32 32 32 32 32 32 32 32 32 33 33 33
H 3002 40 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
MA 549 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
MA 649 32 28 28 28 28 28 28 28 28 28 28 20 28 28 28 28
MA 376 32 24 24 24 24 24 24 17 24 24 24 24 24 24
MA 550 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
MA 650 32 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
H 3021 30 28 28 28 28 28 28 28 24 24 24 24
H 3008 30 30 30 30 30 30 30 30 30 30 30 30 21 30 30 30
H 2035 30 28 28 28 28 28 28 28 28 28 28 28 28 20 28 28
H 2051 30 21 30 30 30 30 30 30 30 30 30 30 30 21 30 30

H 3003A 20
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3005 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 141 70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0
MA 144 68 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2033 67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3004 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2038 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 415 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2036 45 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 1029 41 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3012 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 313 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3013 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3002 40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 549 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 649 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 376 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 550 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 650 32 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3021 30 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
H 3008 30 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.99 0.98 0.97 0.97
H 2035 30 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99 0.98 0.98
H 2051 30 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.99 0.97 0.97

H 3003A 20

9.3.4 Instance 4: n = 1250

• γs = 0.85, model infeasible for γs = 0.9 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,703 7,446 600 0.06
Stream assignment 64,078 91,932 600 0.1
Room assignment 19,864 56,580 23.72 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 3 3 3 3 9 9 10 10 10 2 2 2 2 2 2
H 1028 231 13 13 13 13 13 3 13 13 13 13 13 13 13 13 13
H 1029 41 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 1058 263 21 21 21 21 21 21 21 21 21 21 21 21 21 21

H 2013 261 17 17 17 17 17 17 17 17 17 17 17 17 17 17
H 2032 236 16 16 16 16 16 16 6 6 6 6 6 6 19 19 19
H 2033 67 11 11 11 11 11 11 20 11 7 11 11 11 11 11 11
H 2035 30 12 12 12 12 12 12 12
H 2036 45 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2038 50 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2051 30 5 5 5 2 2 2 11 11 12 12 12 12 12 12
H 2053 261 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H 3002 40 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 3003A 20
H 3004 50 16 16 16 16 16 16 16 16 16 16 16 22 16 16 16
H 3005 80 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 2 7 22 22 22 22 22 22 16 16 16 16 16 16
H 3012 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3013 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
H 3503 140 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

MA 004 235 8 8 8 8 8 8 8 8 8 8 8 8 1 11
MA 005 235 19 19 19 8 8 8 8 8 8 8 8 8 8 8 8
MA 041 152 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
MA 042 140 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MA 043 152 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

MA 141 70 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
MA 144 68 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

MA 313 40 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
MA 376 32 6 6 6 9 5 5 5 5 5 5 5 23

MA 415 50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

MA 549 32 23 23 23 23 7 7 14 14 14 6 6
MA 550 32 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 41 38 51 56 45 37 37 37 40 28 40 40 40 40
H 1058 263 50 50 50 50 50 50 50 50 50 50 34 50 50 50
H 1012 262 35 35 35 53 46 46 42 42 42 38 35 35 35 35 39
H 2053 261 75 75 75 75 75 75 75 75 75 75 75 75 92 75 75
H 2013 261 50 50 50 35 35 50 50 50 50 50 50 50 97 50
H 2032 236 40 40 40 28 28 28 48 57 48 31 31 31 33 33 33
MA 005 235 48 48 48 46 46 46 31 31 42 46 46 46 46 46 46
MA 004 235 46 46 46 46 46 46 46 46 46 46 67 46 75 43
H 1028 231 37 37 37 37 47 50 37 37 37 37 37 37 37 37 37
H 0110 198 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
MA 043 152 33 33 33 23 23 33 33 33 33 33 33 33 33 33 33
MA 041 152 33 33 33 33 33 33 33 33 33 39 33 33 33 23 33
H 0107 144 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
H 3503 140 47 47 47 47 47 47 47 47 47 67 47 72 49 47 47
MA 042 140 33 33 33 33 33 33 33 33 33 48 43 45 33 33 33
H 0106 99 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
H 0111 99 38 35 35 35 39 39 35 35 35 38 35 35 35 38 35
H 0112 99 35 35 35 35 35 35 35 35 35 35 35 35 24 24 35
H 3027 80 58 58 58 58 58 40 58 58 58 58 58 58 58 58 58
H 3005 80 51 51 53 40 40 40 40 40 40 40 40 40 51 50 54
MA 141 70 42 42 42 42 42 42 42 57 56 42 42 42 42 42 42
MA 144 68 46 46 46 46 46 65 46 46 46 46 46 46 46 46 46
H 2033 67 50 50 50 54 54 54 40 43 38 43 43 43 49 50 54
MA 415 50 35 24 35 35 35 35 35 35 35 35 35 35 35 35 35
H 2038 50 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
H 3004 50 40 40 40 40 40 40 40 40 40 40 40 37 40 40 40
H 2036 45 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
H 1029 41 37 37 37 25 37 37 37 37 37 37 37 37 37 37 37
H 3012 40 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
H 3013 40 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
H 3002 40 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
MA 313 40 36 36 36 25 25 36 36 36 36 36 36 36 36 36 36
MA 649 32 31 31 22 31 31 31 31 31 31 31 31 31 31 31 31
MA 550 32 31 31 31 31 31 31 31 31 31 31 31 31 31 22 31
MA 549 32 31 31 31 31 26 26 32 32 32 31 31
MA 650 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 376 32 31 31 31 32 26 26 26 26 26 26 26 31
H 3008 30 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27
H 2035 30 26 26 26 26 26 26 18
H 3021 30 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27
H 2051 30 18 26 26 24 24 24 29 29 26 26 26 26 26 26

H 3003A 20
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3005 80 0.99 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99 0.99
MA 141 70 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 144 68 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2033 67 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 415 50 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2038 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3004 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2036 45 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
H 1029 41 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
H 3012 40 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
H 3013 40 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
H 3002 40 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
MA 313 40 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97
MA 649 32 0.93 0.94 0.99 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.93
MA 550 32 0.93 0.94 0.94 0.94 0.93 0.93 0.94 0.93 0.93 0.93 0.94 0.94 0.93 0.99 0.93
MA 549 32 0.93 0.94 0.93 0.93 0.99 0.99 0.9 0.91 0.91 0.94 0.94
MA 650 32 0.93 0.94 0.94 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.93
MA 376 32 0.94 0.94 0.94 0.92 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.93
H 3008 30 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
H 2035 30 0.98 0.98 0.98 0.98 0.98 0.98 0.99
H 3021 30 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
H 2051 30 0.99 0.98 0.98 0.99 0.99 0.99 0.93 0.92 0.98 0.98 0.98 0.98 0.98 0.98

H 3003A 20

9.3.5 Instance 5: n = 1500

• γs = 0.6, model infeasible for γs = 0.65 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,661 7,423 600 0.06
Stream assignment 63,974 91,932 274.37 optimal
Room assignment 22,074 63,347 202.86 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 22 3 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 1028 231 2 2 2 2 2 2 2 2 2 6 6 6 3 3 3
H 1029 41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 1058 263 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

H 2013 261 17 17 17 17 17 3 17 17 17 17 17 17 17 17 17
H 2032 236 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 2033 67 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2035 30 12 12 12 12 12 12 12 12 12 12 12 12 12
H 2036 45 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2038 50 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
H 2051 30 5 5 5 19 5 5 5 2 2 2
H 2053 261 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H 3002 40 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H 3003A 20
H 3004 50 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3005 80 22 22 22 22 22 22 14 14 14 22 22 22 22 22 22
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 16 16 16 22 22 22 22 22 22 22 22 22 10 10 10
H 3012 40 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
H 3013 40 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 21 21 21 21 21 21 21 21 21 21 11 21 21 21 21
H 3503 140 13 13 13 13 13 13 20 13 13 13 13 13 13 13 13

MA 004 235 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MA 005 235 19 19 19 19 1 19 8 8 8 8 8 8 8 8 8
MA 041 152 7 7 7 9 9 9 16 16 7 16 16 16 16 16 16
MA 042 140 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
MA 043 152 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

MA 141 70 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
MA 144 68 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

MA 313 40 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
MA 376 32 23 23 23 23 23 23 23 23 23 23 23 23 6 6

MA 415 50 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

MA 549 32 23 23 6 6 6 6 6 6 23 23 23 23 23 23
MA 550 32 5 5 5 5

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 58 54 54 39 39 39 39 39 39 60 55 48 62 60 45
H 1058 263 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
H 1012 262 34 34 34 51 45 48 34 34 34 34 34 34 34 34 34
H 2013 261 54 54 54 108 36 58 54 54 54 54 54 36 54 54 54
H 2053 261 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
H 2032 236 51 51 51 34 34 41 34 34 34 34 34 34 34 34 34
MA 005 235 34 34 34 34 101 34 49 49 49 49 49 73 49 49 49
MA 004 235 49 49 49 49 49 49 33 33 45 49 49 49 49 49 49
H 1028 231 36 36 36 36 36 36 41 36 36 52 52 61 37 37 37
H 0110 198 36 40 43 41 41 41 36 41 41 36 36 36 36 36 36
MA 041 152 40 40 40 49 49 70 43 43 40 43 43 43 55 53 57
MA 043 152 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
H 0107 144 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3503 140 39 39 39 39 39 39 42 50 39 39 39 39 39 39 39
MA 042 140 43 43 43 43 43 43 43 29 43 29 29 29 43 43 43
H 0111 99 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 0112 99 36 36 36 36 24 24 36 36 36 36 36 36 36 36 36
H 0106 99 39 53 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3005 80 39 39 39 39 39 39 53 79 73 39 39 39 39 39 39
H 3027 80 53 53 53 53 53 53 53 53 53 53 45 36 53 53 53
MA 141 70 63 63 42 63 63 63 63 63 63 63 63 63 63 63 63
MA 144 68 49 49 49 49 33 49 49 49 49 49 49 49 49 49 49
H 2033 67 58 58 54 45 45 45 45 45 45 54 58 54 52 58 54
H 3004 50 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
H 2038 50 45 45 45 45 45 45 45 45 45 45 30 45 45 45 45
MA 415 50 50 50 50 50 50 50 33 50 50 33 33 50 50 50 50
H 2036 45 45 45 45 30 45 45 45 45 45 45 45 45 45 45 45
H 1029 41 34 34 34 34 34 34 34 34 34 23 23 34 34 34 34
H 3012 40 38 38 38 38 38 38 38 38 38 26 38 26 38 38 38
MA 313 40 40 27 27 40 40 40 40 40 40 40 40 40 40 40 40
H 3002 40 37 37 37 37 37 37 37 37 37 37 37 37 37 37 25
H 3013 40 39 39 39 39 39 39 39 39 26 39 39 39 39 39 39
MA 376 32 32 32 22 32 32 32 32 32 32 32 32 32 32 32
MA 649 32 22 32 32 32 32 32 32 32 32 32 32 32 32 32 32
MA 550 32 27 27 27 27
MA 549 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
MA 650 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
H 3021 30 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
H 2035 30 27 27 27 27 27 27 27 27 27 27 27 27 18
H 3008 30 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
H 2051 30 18 27 27 23 27 27 27 24 24 24

H 3003A 20
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3005 80 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.83 0.94 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99 0.99 0.99
MA 141 70 0.94 0.94 0.99 0.95 0.95 0.94 0.93 0.95 0.94 0.93 0.92 0.95 0.94 0.94 0.93
MA 144 68 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 2033 67 0.97 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.99 0.99 0.96 0.99
H 3004 50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
H 2038 50 0.91 0.91 0.89 0.92 0.92 0.91 0.9 0.92 0.92 0.9 0.99 0.92 0.92 0.91 0.9
MA 415 50 0.76 0.75 0.72 0.78 0.78 0.75 0.99 0.78 0.77 0.99 0.99 0.78 0.76 0.75 0.73
H 2036 45 0.74 0.72 0.7 0.99 0.75 0.72 0.7 0.75 0.74 0.7 0.68 0.76 0.74 0.72 0.7
H 1029 41 0.96 0.96 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.99 0.99 0.96 0.96 0.96 0.95
H 3012 40 0.84 0.82 0.81 0.85 0.84 0.82 0.81 0.84 0.84 0.99 0.8 0.99 0.84 0.82 0.81
MA 313 40 0.72 0.99 0.99 0.74 0.74 0.71 0.69 0.74 0.73 0.69 0.67 0.74 0.73 0.71 0.69
H 3002 40 0.88 0.87 0.86 0.89 0.89 0.87 0.86 0.89 0.88 0.86 0.85 0.89 0.88 0.87 0.99
H 3013 40 0.8 0.79 0.77 0.82 0.81 0.79 0.77 0.81 0.99 0.77 0.76 0.82 0.8 0.79 0.78
MA 376 32 0.71 0.7 0.99 0.73 0.72 0.7 0.68 0.72 0.72 0.68 0.67 0.73 0.74 0.71
MA 649 32 0.99 0.7 0.67 0.72 0.72 0.7 0.68 0.72 0.72 0.68 0.66 0.73 0.71 0.7 0.68
MA 550 32 0.95 0.95 0.94 0.94
MA 549 32 0.71 0.68 0.75 0.75 0.72 0.71 0.75 0.74 0.68 0.67 0.73 0.71 0.7 0.68
MA 650 32 0.71 0.7 0.67 0.72 0.72 0.7 0.68 0.72 0.72 0.68 0.66 0.73 0.71 0.7 0.68
H 3021 30 0.86 0.85 0.84 0.87 0.87 0.85 0.84 0.87 0.86 0.84 0.83 0.87 0.86 0.85 0.84
H 2035 30 0.88 0.87 0.86 0.89 0.88 0.87 0.86 0.88 0.88 0.86 0.85 0.89 0.99
H 3008 30 0.86 0.85 0.84 0.87 0.87 0.85 0.84 0.87 0.86 0.84 0.83 0.87 0.86 0.85 0.84
H 2051 30 0.99 0.89 0.88 0.98 0.88 0.9 0.9 0.95 0.94 0.96

H 3003A 20

9.3.6 Instance 6: n = 1750

• γs = 0.25, model infeasible for γs = 0.3 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,577 7,287 600 0.03
Stream assignment 63,490 91,931 277.51 optimal
Room assignment 17,906 50,783 29.00 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 22 22 22 22
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 17 17 17 17 17 17 17 17 17 17 17 17 17 3 17
H 1028 231 8 8 8 8 8 8 8 8 8 9 9 9 7 7 7
H 1029 41 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 1058 263 16 16 16 16 16 16 20 1 2 2 2 2 2 2 2

H 2013 261 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 2032 236 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
H 2033 67 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 2035 30 5 5 5 5 5 5 5 5 5 5
H 2036 45 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2038 50 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2051 30 3 12 12 12 12 12 12 12 12 12 12 12 12
H 2053 261 8 8 8 22 22 22 6 6 6 6 6 6 14 14 14

H 3002 40 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H 3003A 20 12
H 3004 50 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 3005 80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
H 3012 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3013 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
H 3503 140 21 21 21 21 21 21 21 21 21 21 16 21 21 21 21

MA 004 235 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
MA 005 235 13 13 13 13 13 7 13 13 13 13 13 13 13 13 13
MA 041 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 042 140 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 043 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

MA 141 70 19 19 19 3 3 3 19 19 19 10 10 10 8 8 8
MA 144 68 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

MA 313 40 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
MA 376 32 23 23 23 23 23 23 2 23

MA 415 50 2 2 2 2 2 2 8 8 8 8 8 8 8 8 8

MA 549 32 6 6 6 11 16 16 16 16 6 6
MA 550 32 23 23 23 23 23 23 23 23 23 23 23 23 23

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 51 51 51 51 51 51 51 51 51 33 51 51 51 51 51
H 1058 263 57 55 56 60 56 59 66 88 36 36 36 41 36 36 36
H 1012 262 56 56 56 36 56 56 56 56 56 56 56 56 116 55 36
H 2013 261 88 88 88 88 88 88 88 109 88 88 88 88 88 88 88
H 2053 261 50 46 50 39 39 39 32 32 32 64 53 53 77 51 84
H 2032 236 51 51 51 51 55 51 51 51 51 51 51 51 33 33 33
MA 004 235 39 39 39 39 25 39 39 39 39 39 39 39 39 39 39
MA 005 235 39 39 39 52 39 41 39 39 39 39 39 39 39 39 39
H 1028 231 50 50 50 50 50 50 50 50 77 51 74 51 41 41 41
H 0110 198 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
MA 043 152 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
MA 041 152 60 60 56 56 60 60 46 46 46 46 46 46 56 54 56
H 0107 144 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3503 140 55 55 55 55 55 55 55 55 55 36 43 55 55 55 55
MA 042 140 46 46 46 46 46 46 46 46 30 46 46 46 46 46 46
H 0106 99 42 44 42 40 36 36 36 36 42 41 41 39 49 57 63
H 0111 99 36 36 36 24 24 24 36 36 36 36 24 36 36 36 36
H 0112 99 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3027 80 66 66 66 66 66 66 43 43 66 66 66 66 66 66 66
H 3005 80 34 34 34 34 34 34 34 34 34 52 46 49 34 34 34
MA 141 70 34 34 22 37 37 60 34 34 34 46 46 46 50 50 50
MA 144 68 46 46 46 46 46 46 46 46 46 64 62 46 46 46 46
H 2033 67 41 34 34 34 34 34 52 52 52 34 34 34 34 34 34
MA 415 50 36 36 36 36 36 36 32 32 50 50 50 50 50 50 50
H 2038 50 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
H 3004 50 34 34 34 34 22 22 34 34 34 34 34 34 34 34 34
H 2036 45 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
H 1029 41 41 41 41 41 41 41 41 41 41 41 41 41 27 27 41
MA 313 40 25 38 25 38 38 38 38 38 38 38 38 38 38 38 38
H 3012 40 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
H 3013 40 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
H 3002 40 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
MA 650 32 32 32 32 32 32 32 32 21 32 32 32 32 32 32 32
MA 549 32 32 32 32 30 28 28 28 28 32 32
MA 649 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
MA 376 32 32 32 21 32 32 32 24 32
MA 550 32 32 32 32 32 32 32 32 32 32 32 32 32 32
H 2035 30 17 26 26 26 26 26 26 26 26 26
H 3008 30 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27
H 2051 30 24 27 27 27 27 27 27 27 27 27 27 27 27
H 3021 30 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27

H 3003A 20 17
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3027 80 0.92 0.94 0.92 0.92 0.93 0.93 0.99 0.99 0.93 0.92 0.93 0.92 0.94 0.93 0.93
H 3005 80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0
MA 141 70 0.99 0.99 1.0 0.99 0.99 0.87 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 144 68 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.58 0.7 0.99 0.99 0.99 0.99
H 2033 67 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.95 0.95 0.99 0.99 0.99 0.99 0.99 0.99
MA 415 50 0.96 0.97 0.96 0.96 0.96 0.97 0.99 0.99 0.41 0.39 0.41 0.4 0.43 0.41 0.41
H 2038 50 0.76 0.78 0.74 0.75 0.77 0.77 0.74 0.78 0.77 0.76 0.77 0.76 0.78 0.77 0.77
H 3004 50 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
H 2036 45 0.49 0.52 0.47 0.48 0.5 0.51 0.46 0.51 0.5 0.48 0.5 0.49 0.52 0.5 0.5
H 1029 41 0.39 0.41 0.37 0.38 0.4 0.41 0.36 0.41 0.4 0.38 0.4 0.39 0.98 0.98 0.4
MA 313 40 0.99 0.51 0.99 0.48 0.5 0.5 0.46 0.51 0.5 0.48 0.5 0.48 0.51 0.5 0.5
H 3012 40 0.45 0.47 0.43 0.44 0.46 0.47 0.42 0.47 0.46 0.44 0.46 0.45 0.47 0.46 0.46
H 3013 40 0.45 0.47 0.43 0.44 0.46 0.47 0.42 0.47 0.46 0.44 0.46 0.45 0.47 0.46 0.46
H 3002 40 0.57 0.6 0.56 0.56 0.58 0.59 0.55 0.59 0.59 0.57 0.59 0.57 0.6 0.58 0.58
MA 650 32 0.35 0.38 0.34 0.35 0.36 0.37 0.33 0.97 0.37 0.35 0.37 0.35 0.38 0.36 0.36
MA 549 32 0.39 0.41 0.37 0.52 0.63 0.66 0.66 0.64 0.4 0.4
MA 649 32 0.35 0.38 0.34 0.35 0.36 0.37 0.33 0.37 0.37 0.35 0.37 0.35 0.38 0.36 0.36
MA 376 32 0.36 0.38 0.96 0.35 0.37 0.37 0.9 0.37
MA 550 32 0.34 0.35 0.37 0.37 0.34 0.37 0.37 0.35 0.37 0.36 0.38 0.37 0.37
H 2035 30 0.99 0.69 0.65 0.66 0.67 0.68 0.65 0.68 0.68 0.68
H 3008 30 0.58 0.61 0.57 0.58 0.59 0.6 0.57 0.6 0.6 0.58 0.6 0.59 0.61 0.59 0.6
H 2051 30 0.81 0.62 0.63 0.64 0.6 0.64 0.63 0.62 0.64 0.62 0.64 0.63 0.63
H 3021 30 0.58 0.61 0.57 0.58 0.59 0.6 0.57 0.6 0.6 0.58 0.6 0.59 0.61 0.59 0.6

H 3003A 20 0.62

9.3.7 Instance 7: n = 2000

• γs = 0.05, model infeasible for γs = 0.1 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,577 7,287 600 0.04
Stream assignment 63,500 91,934 209.48 optimal
Room assignment 23,757 68,369 95.12 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 1028 231 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2
H 1029 41 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 1058 263 17 17 17 1 17 17 17 17 17 17 17 17 17 17 17

H 2013 261 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
H 2032 236 21 21 21 21 21 21 21 21 21 21 21 21 21 21
H 2033 67 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2035 30 12 12 12 12 12 12 12 12 12 12 12 12 15 15
H 2036 45 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2038 50 16 16 16 16 16 16 16 16 16 16 8 8 8
H 2051 30 5 5 5 5 16
H 2053 261 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

H 3002 40 13 13 13 13 13 13 13 13 13 3 13 13 13 13 13
H 3003A 20 12
H 3004 50 11 22 10 10 10 10 10 10 10 10 10 10 10 10
H 3005 80 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
H 3012 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3013 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
H 3503 140 8 8 8 8 3 8 9 9 20 19 19 19 19 19 19

MA 004 235 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MA 005 235 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
MA 041 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 042 140 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 043 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

MA 141 70 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MA 144 68 10 10 10 10 10 10 6 6 6 22 22 22 22 22 22

MA 313 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
MA 376 32 6 6 6 6 6 23 9 23 23 23 23

MA 415 50 15 15 15 15 15 15 15 15 15 15 15 15 7 15 2

MA 549 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 550 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

MA 649 32 14 14 14 8 5 5 5 5 5 5 6 6 6
MA 650 32 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 80 52 87 52 52 52 52 52 55 52 52 52 52 52 52
H 1058 263 56 56 56 114 36 122 56 56 56 56 56 56 56 56 36
H 1012 262 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
H 2053 261 51 51 51 51 51 51 51 76 51 51 51 51 51 51 51
H 2013 261 68 68 68 68 68 43 68 68 43 68 68 68 68 68 68
H 2032 236 56 56 56 56 56 56 56 56 56 35 56 56 56 56
MA 005 235 33 33 33 33 33 33 33 33 33 53 46 50 33 33 33
MA 004 235 21 33 21 33 33 33 33 33 33 33 33 33 33 33 33
H 1028 231 41 41 41 36 36 40 36 36 36 36 36 36 36 36 36
H 0110 198 36 36 36 36 36 22 22 22 22 36 36 36 36 36 36
MA 043 152 29 46 46 46 46 46 29 46 46 46 46 46 46 46 46
MA 041 152 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
H 0107 144 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3503 140 50 50 50 32 56 50 51 51 68 53 53 53 33 41 33
MA 042 140 56 56 56 61 56 61 46 46 46 54 62 61 46 46 46
H 0112 99 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 0106 99 36 36 36 22 36 36 36 36 36 36 36 36 36 23 36
H 0111 99 36 36 36 41 42 41 36 36 36 41 41 41 36 36 43
H 3005 80 39 39 39 39 39 39 39 39 39 39 52 39 39 39 39
H 3027 80 50 50 50 50 50 79 50 50 50 50 50 50 50 50 50
MA 141 70 36 36 36 36 36 36 36 36 36 61 36 36 36 36 36
MA 144 68 46 46 46 64 46 66 65 54 54 38 38 38 57 64 49
H 2033 67 43 43 43 43 43 43 62 58 56 57 60 57 43 43 43
H 2038 50 43 43 43 43 43 43 43 43 43 43 50 46 50
MA 415 50 38 38 38 38 38 38 38 38 38 38 38 38 41 38 36
H 3004 50 46 38 46 46 46 46 46 46 46 46 46 46 46 46
H 2036 45 27 27 27 43 43 43 43 43 43 43 43 43 43 43 43
H 1029 41 25 25 41 41 41 41 41 41 41 41 41 41 41 41 41
H 3002 40 39 39 39 39 39 39 39 39 39 36 39 24 39 39 39
H 3012 40 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
H 3013 40 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
MA 313 40 33 33 33 33 33 33 33 33 33 33 33 33 21 33 33
MA 649 32 32 32 32 32 25 25 25 25 25 25 31 31 31
MA 376 32 31 31 31 31 31 31 32 31 31 31 31
MA 650 32 31 31 31 31 31 31 31 31 31 31 19 31 31 31 31
MA 549 32 31 19 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 550 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
H 3008 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
H 3021 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
H 2051 30 15 25 25 25 27
H 2035 30 25 25 25 25 25 25 25 25 25 25 25 25 24 24

H 3003A 20 16
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99
H 3005 80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
H 3027 80 0.99 0.99 0.99 0.99 0.99 0.12 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MA 141 70 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.49 0.99 0.99 0.99 0.99 0.99
MA 144 68 0.96 0.96 0.96 0.28 0.96 0.16 0.21 0.74 0.75 0.99 0.99 0.99 0.55 0.26 0.9
H 2033 67 0.98 0.98 0.98 0.98 0.98 0.97 0.32 0.47 0.6 0.54 0.33 0.52 0.98 0.98 0.98
H 2038 50 0.42 0.41 0.42 0.42 0.42 0.4 0.41 0.42 0.39 0.4 0.1 0.26 0.11
MA 415 50 0.73 0.72 0.73 0.74 0.73 0.7 0.73 0.72 0.73 0.73 0.7 0.71 0.55 0.73 0.83
H 3004 50 0.25 0.69 0.28 0.28 0.24 0.28 0.26 0.27 0.27 0.25 0.26 0.26 0.27 0.27
H 2036 45 0.96 0.96 0.96 0.18 0.18 0.15 0.18 0.17 0.17 0.17 0.15 0.16 0.17 0.17 0.17
H 1029 41 0.93 0.92 0.12 0.13 0.12 0.1 0.12 0.11 0.12 0.12 0.11 0.11 0.11 0.12 0.12
H 3002 40 0.15 0.15 0.15 0.16 0.15 0.13 0.15 0.14 0.15 0.26 0.13 0.93 0.14 0.15 0.15
H 3012 40 0.16 0.16 0.16 0.17 0.16 0.14 0.16 0.15 0.16 0.16 0.14 0.15 0.15 0.16 0.16
H 3013 40 0.16 0.16 0.16 0.17 0.16 0.14 0.16 0.15 0.16 0.16 0.14 0.15 0.15 0.16 0.16
MA 313 40 0.44 0.43 0.43 0.44 0.44 0.4 0.43 0.42 0.43 0.43 0.4 0.42 0.98 0.43 0.43
MA 649 32 0.09 0.09 0.09 0.12 0.53 0.52 0.53 0.53 0.5 0.52 0.14 0.14 0.14
MA 376 32 0.14 0.14 0.14 0.15 0.14 0.13 0.09 0.11 0.12 0.13 0.12
MA 650 32 0.13 0.12 0.12 0.13 0.13 0.11 0.13 0.12 0.12 0.12 0.87 0.12 0.12 0.13 0.12
MA 549 32 0.13 0.88 0.12 0.13 0.12 0.11 0.12 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.12
MA 550 32 0.13 0.12 0.12 0.13 0.12 0.11 0.12 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.12
H 3008 30 0.31 0.3 0.31 0.31 0.31 0.28 0.31 0.3 0.3 0.31 0.28 0.29 0.3 0.31 0.3
H 3021 30 0.31 0.3 0.31 0.31 0.31 0.28 0.31 0.3 0.3 0.31 0.28 0.29 0.3 0.31 0.3
H 2051 30 0.97 0.38 0.39 0.4 0.24
H 2035 30 0.35 0.34 0.34 0.35 0.34 0.32 0.34 0.33 0.34 0.34 0.32 0.33 0.46 0.47

H 3003A 20 0.39

9.3.8 Instance 8: n = 2250

• γs = 0.01, model infeasible for γs = 0.05 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,619 7,355 600 0.05
Stream assignment 63,355 91,937 600 0.02
Room assignment 22,495 64,542 61.03 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 1028 231 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3
H 1029 41 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
H 1058 263 8 8 8 1 22 20 16 16 16 16 16 16 16 17 17

H 2013 261 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
H 2032 236 17 17 17 17 17 17 17 17 17 17 17 17 11 11 11
H 2033 67 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 2035 30 12 12 12 12 16 12 12 12 12 12 12 12 12 12
H 2036 45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 2038 50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 2051 30 16 16 16 11 3 2 11
H 2053 261 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

H 3002 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 3003A 20
H 3004 50 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3005 80 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9
H 3012 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3013 40 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 14 14 14 14 14 14 14 14 14 22 22 22 22 22 22
H 3503 140 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

MA 004 235 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MA 005 235 19 19 19 19 19 19 14 14 14 14 14 14 14 14 14
MA 041 152 11 11 11 11 11 11 11 11 11 11 11 8 8 8 8
MA 042 140 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 043 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

MA 141 70 21 21 21 21 21 21 21 21 21 21 21 21 21 21
MA 144 68 9 9 9 9 9 9 10 10 10 6 6 6 6 6 7

MA 313 40 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MA 376 32 5 5 5 5 5 5 23 23 23 5 5 5 5

MA 415 50 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

MA 549 32 23 6 6 6 6 6 6 8 8 23
MA 550 32 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 42 42 42 53 80 53 53 53 53 53 53 53 53 53 53
H 1058 263 84 52 52 122 39 71 44 44 44 44 44 44 44 130 59
H 1012 262 40 40 40 40 40 40 40 40 40 40 40 40 54 40
H 2053 261 71 71 71 71 71 44 44 71 71 71 71 71 71 71 71
H 2013 261 47 47 47 47 47 47 67 47 69 47 47 47 47 47 47
H 2032 236 59 59 59 59 59 59 36 36 59 59 59 59 64 64 64
MA 004 235 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97
MA 005 235 55 55 55 34 42 34 84 54 92 54 54 54 54 54 54
H 1028 231 36 41 36 42 45 43 42 42 42 36 37 42 64 37 58
H 0110 198 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
MA 043 152 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
MA 041 152 64 56 59 48 48 48 59 59 59 48 48 52 52 52 52
H 0107 144 36 36 22 36 36 36 36 36 36 36 36 36 36 36 36
H 3503 140 52 52 52 52 52 52 52 52 52 52 52 47 52 52 52
MA 042 140 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
H 0106 99 36 36 36 36 36 36 36 36 36 36 36 36 36
H 0111 99 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 0112 99 22 22 36 36 36 36 36 36 36 22 36 36 36 36 36
H 3005 80 44 44 44 44 44 44 61 58 63 59 59 64 44 44 44
H 3027 80 58 54 54 54 54 54 33 33 33 39 39 39 67 51 60
MA 141 70 58 58 58 58 58 58 36 58 58 58 58 58 58 58
MA 144 68 53 53 53 33 53 53 47 47 47 56 56 68 31 31 42
H 2033 67 55 48 52 34 34 34 34 34 34 34 34 34 34 34 34
H 3004 50 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44
H 2038 50 42 25 25 42 42 42 42 42 42 42 42 42 42 42 42
MA 415 50 39 39 39 39 39 39 39 39 39 23 39 23 39 39 39
H 2036 45 34 34 34 34 34 34 34 20 20 34 34 34 34 34 34
H 1029 41 40 40 40 40 40 40 40 40 40 40 40 40 40 40 24
MA 313 40 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
H 3002 40 34 34 34 20 34 34 34 34 34 34 34 34 34 34 34
H 3012 40 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
H 3013 40 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
MA 549 32 32 31 31 31 31 31 31 32 32 19
MA 649 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
MA 650 32 32 19 32 32 32 32 32 32 32 32 32 32 32 32 32
MA 376 32 15 25 25 25 25 25 32 32 32 25 25 25 25
MA 550 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
H 2035 30 25 25 25 15 27 25 25 25 25 25 25 25 25 25
H 2051 30 27 27 27 29 22 22 29
H 3021 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
H 3008 30 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

H 3003A 20
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0106 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0111 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0112 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3005 80 0.99 0.99 0.99 0.99 0.99 0.99 0.67 0.8 0.55 0.75 0.74 0.46 0.99 0.99 0.99
H 3027 80 0.8 0.9 0.91 0.91 0.92 0.91 0.99 0.99 0.99 0.99 0.99 0.99 0.39 0.95 0.73
MA 141 70 0.34 0.31 0.33 0.34 0.36 0.33 0.99 0.37 0.36 0.35 0.31 0.36 0.32 0.37
MA 144 68 0.51 0.48 0.49 0.99 0.53 0.5 0.8 0.82 0.8 0.39 0.38 0.02 0.99 0.99 0.96
H 2033 67 0.36 0.7 0.53 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 3004 50 0.13 0.12 0.13 0.13 0.14 0.13 0.13 0.15 0.13 0.14 0.14 0.12 0.14 0.12 0.15
H 2038 50 0.24 0.98 0.98 0.24 0.25 0.23 0.24 0.26 0.24 0.25 0.25 0.22 0.25 0.22 0.26
MA 415 50 0.4 0.37 0.39 0.4 0.42 0.39 0.4 0.43 0.4 0.99 0.41 0.99 0.41 0.38 0.43
H 2036 45 0.41 0.39 0.4 0.41 0.43 0.4 0.41 0.99 0.99 0.42 0.42 0.39 0.42 0.39 0.43
H 1029 41 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.04 0.04 0.85
MA 313 40 0.07 0.06 0.06 0.07 0.07 0.06 0.07 0.08 0.07 0.07 0.07 0.06 0.07 0.06 0.08
H 3002 40 0.17 0.15 0.16 0.94 0.18 0.16 0.16 0.18 0.16 0.17 0.17 0.15 0.17 0.15 0.18
H 3012 40 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04
H 3013 40 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04
MA 549 32 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.02 0.02 0.72
MA 649 32 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03
MA 650 32 0.02 0.68 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03
MA 376 32 0.95 0.25 0.25 0.26 0.28 0.26 0.02 0.03 0.02 0.27 0.27 0.25 0.28
MA 550 32 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03
H 2035 30 0.13 0.12 0.13 0.88 0.07 0.13 0.14 0.13 0.14 0.14 0.12 0.14 0.12 0.14
H 2051 30 0.07 0.06 0.07 0.03 0.3 0.33 0.03
H 3021 30 0.11 0.1 0.1 0.11 0.12 0.11 0.11 0.12 0.11 0.12 0.11 0.1 0.11 0.1 0.12
H 3008 30 0.11 0.1 0.1 0.11 0.12 0.11 0.11 0.12 0.11 0.12 0.11 0.1 0.11 0.1 0.12

H 3003A 20

9.3.9 Instance 9: n = 2500

• γs = 0.001, model infeasible for γs = 0.01 (certainty value)

Solution process

Model # variables # constraints CPU time(s) %gap

Room assignment 11,619 7,355 600 0.07
Stream assignment 63,308 91,935 600 0.1
Room assignment 19,056 54,350 28.43 optimal
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Cluster view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 0106 99 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2
H 0107 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0110 198 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0111 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H 0112 99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

H 1012 262 16 16 16 16 16 16 22 22 22 22 22 22 22 22 22
H 1028 231 22 22 22 22 22 22 22 22 22 22 22 22 14 14 14
H 1029 41 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
H 1058 263 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

H 2013 261 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
H 2032 236 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 2033 67 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H 2035 30 12 12 12 12 12 12 12 12 12 12 12 12 12
H 2036 45 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2038 50 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
H 2051 30 5 5 5 2 2 11
H 2053 261 17 17 17 17 17 17 17 17 17 17 3 17 17 17 17

H 3002 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 3003A 20 23
H 3004 50 20 3 3 3 3 7 7 7 2 2 2 2 2 2
H 3005 80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H 3008 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3010 388 2 2 2 19 19 19 19 19 19 1 6 6 6 6 6
H 3012 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
H 3013 40 13 13 13 22 13 13 13 13 13 13 13 13 13 13 13
H 3021 30 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
H 3027 80 10 10 10 10 10 10 10 10 10 10 10 10 9 16 9
H 3503 140 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

MA 004 235 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MA 005 235 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10
MA 041 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 042 140 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
MA 043 152 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

MA 141 70 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
MA 144 68 21 21 21 21 21 21 21 21 21 21 21 21 21 21

MA 313 40 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
MA 376 32 23 23 23 23 23 23 23 23 23 23 23 23 23

MA 415 50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

MA 549 32 6 6 6 6 6 16 16 16 16 9
MA 550 32 23 23 23 23 23 23 5 5 5 6 5 5 5 5

MA 649 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
MA 650 32 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
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Capacity view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 36 36 36 42 34 34 56 56 56 101 31 31 57 70 57
H 1058 263 73 73 44 73 73 73 73 73 73 73 73 73 73 73 73
H 1012 262 62 59 66 61 61 65 39 39 39 52 61 39 39 39 39
H 2013 261 54 54 54 54 54 54 54 54 54 54 54 54 54 54 83
H 2053 261 60 60 60 60 36 60 60 60 60 36 59 137 60 60 60
H 2032 236 101 101 101 101 101 101 101 101 101 101 101 101 101 128 101
MA 005 235 53 53 53 53 53 53 32 32 48 48 48 48 48 48 48
MA 004 235 53 53 53 53 53 53 53 53 87 53 53 53 53 53 53
H 1028 231 39 39 39 69 39 39 39 39 39 39 39 39 88 55 96
H 0110 198 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
MA 041 152 48 48 48 48 48 48 48 48 48 29 48 48 48 48 48
MA 043 152 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
H 0107 144 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 3503 140 40 40 40 40 55 40 40 40 40 40 40 40 40 40 40
MA 042 140 66 66 60 48 48 48 66 66 58 48 48 48 60 60 60
H 0106 99 43 43 42 36 42 41 36 36 36 42 43 42 45 36 36
H 0111 99 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
H 0112 99 36 36 36 21 36 36 36 36 36 36 36 36 36 21 21
H 3005 80 34 34 34 34 34 34 56 49 52 34 34 34 34 34 34
H 3027 80 48 48 48 48 48 48 48 48 48 71 68 48 54 45 54
MA 141 70 55 55 55 59 55 55 55 55 55 55 55 55 33 33 33
MA 144 68 59 59 59 59 59 59 59 36 59 59 59 59 59 59
H 2033 67 37 37 65 37 37 37 37 37 37 37 37 37 37 37 37
H 3004 50 44 37 22 37 37 25 25 42 36 36 36 36 36 36
MA 415 50 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
H 2038 50 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
H 2036 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
H 1029 41 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
H 3002 40 34 34 34 20 20 34 34 34 34 34 34 34 34 34 34
MA 313 40 39 39 39 23 39 23 39 39 39 39 39 39 39 39 39
H 3012 40 34 34 34 34 19 34 34 34 34 34 34 34 34 34 34
H 3013 40 40 40 40 39 40 23 40 40 40 40 40 40 40 40 40
MA 649 32 18 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 376 32 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 549 32 31 31 31 31 31 26 26 26 26 32
MA 650 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
MA 550 32 31 31 31 31 31 31 24 24 24 31 24 24 24 24
H 3008 30 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
H 2051 30 13 24 24 21 21 29
H 3021 30 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
H 2035 30 25 25 25 25 25 25 25 25 25 25 25 25 14

H 3003A 20 18
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Robust view

room capacity
Monday Tuesday Wednesday Thursday Friday

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

H 3010 388 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1058 263 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1012 262 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2013 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2053 261 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 2032 236 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
MA 005 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 004 235 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 1028 231 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0110 198 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 041 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 043 152 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 0107 144 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
H 3503 140 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MA 042 140 0.99 0.99 0.99 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0 0.99 0.99 0.99
H 0106 99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 0111 99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
H 0112 99 0.99 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 1.0
H 3005 80 0.99 0.99 0.99 0.99 0.99 0.99 0.6 0.91 0.76 0.99 0.99 0.99 0.99 0.99 0.99
H 3027 80 0.91 0.91 0.93 0.91 0.92 0.92 0.92 0.92 0.91 0.05 0.11 0.92 0.69 0.96 0.67
MA 141 70 0.24 0.23 0.27 0.09 0.25 0.26 0.24 0.25 0.22 0.24 0.26 0.24 0.99 0.99 0.99
MA 144 68 0.05 0.05 0.07 0.05 0.06 0.06 0.06 0.96 0.06 0.06 0.05 0.05 0.05 0.05
H 2033 67 0.93 0.92 0.01 0.92 0.93 0.94 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.92 0.92
H 3004 50 0.02 0.25 0.97 0.23 0.23 0.92 0.92 0.06 0.26 0.27 0.26 0.25 0.24 0.24
MA 415 50 0.06 0.06 0.08 0.06 0.07 0.07 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.05
H 2038 50 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02
H 2036 45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H 1029 41 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H 3002 40 0.04 0.04 0.05 0.82 0.83 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03
MA 313 40 0.0 0.0 0.0 0.6 0.0 0.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H 3012 40 0.04 0.04 0.05 0.04 0.84 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.04
H 3013 40 0.0 0.0 0.0 0.0 0.0 0.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA 649 32 0.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA 376 32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA 549 32 0.0 0.0 0.0 0.0 0.0 0.04 0.04 0.03 0.04 0.0
MA 650 32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA 550 32 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.11 0.09 0.0 0.11 0.1 0.09 0.09
H 3008 30 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
H 2051 30 0.76 0.05 0.06 0.15 0.15 0.0
H 3021 30 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
H 2035 30 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.72

H 3003A 20 0.01
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