
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RYOHEI YOKOYAMA, YUJI SHINANO, SYUSUKE TANIGUCHI,
MASASHI OHKURA, AND TETSUYA WAKUI

Optimization of energy supply systems
by MILP branch and bound method

in consideration of hierarchical relationship
between design and operation

ZIB-Report 14-09 (April 2014)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


 

*1 Corresponding author. Phone: +81-72-254-9229, Fax: +81-72-254-9904, 

  E-mail: yokoyama@me.osakafu-u.ac.jp 
 

Optimization of energy supply systems by MILP branch and 

bound method in consideration of hierarchical relationship 

between design and operation 

 

Ryohei Yokoyama*1, Yuji Shinano*2, Syusuke Taniguchi*3, 

Masashi Ohkura*3, and Tetsuya Wakui*3 

*1, *3 Department of Mechanical Engineering, Osaka Prefecture University 

1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan 

*2 Department Optimization, Zuse Institute Berlin 

Takustrasse 7, D-14195 Berlin, Germany 

 

 

Abstract 

To attain the highest performance of energy supply systems, it is necessary to 

rationally determine types, capacities, and numbers of equipment in consideration of 

their operational strategies corresponding to seasonal and hourly variations in energy 

demands.  In the combinatorial optimization method based on the mixed-integer linear 

programming (MILP), integer variables are used to express the selection, numbers, and 

on/off status of operation of equipment, and the number of these variables increases 

with those of equipment and periods for variations in energy demands, and affects the 

computation efficiency significantly.  In this paper, a MILP method utilizing the 

hierarchical relationship between design and operation variables is proposed to solve the 
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optimal design problem of energy supply systems efficiently:  At the upper level, the 

optimal values of design variables are searched by the branch and bound method;  At 

the lower level, the values of operation variables are optimized independently at each 

period by the branch and bound method under the values of design variables given 

tentatively during the search at the upper level;  Lower bounds for the optimal value of 

the objective function are evaluated, and are utilized for the bounding operations at both 

the levels.  This method is implemented into open and commercial MILP solvers.  

Illustrative and practical case studies on the optimal design of cogeneration systems are 

conducted, and the validity and effectiveness of the proposed method are clarified. 

 

Keywords:  Energy supply systems, Optimal design, Optimal operation, Mixed-integer 

linear programming, Branch and bound method, Hierarchical approach 

 

 

1. Introduction 

In designing energy supply systems, it is important to rationally determine their 

structures by selecting energy producing and conversion equipment from many 

alternatives so that they match energy demand requirements.  It is also important to 

rationally determine capacities and numbers of selected equipment in consideration of 

their operational strategies such as on/off status of operation and load allocation 

corresponding to seasonal and hourly variations in energy demands.   

In recent years, distributed energy supply systems have been widespread and 

diversified, and many types of equipment have been installed into them, which means 

that many alternatives for system design and operation have arisen.  Thus, it has 



3 

become more and more difficult for designers to design the systems properly in 

consideration of their operational strategies only with their experiences.  In addition, 

not only reliability in energy supply but also economics, energy saving, and 

environmental impact have become more and more important criteria for system design 

and operation, with which designers have been burdened more heavily.  For the 

purpose of assisting designers in system design and operation, therefore, it is necessary 

to develop a tool for providing rational design and operation solutions flexibly and 

automatically. 

One of the ways to rationally determine the aforementioned design and operation 

items of energy supply systems is to use combinatorial optimization methods, which are 

based on the mathematical programming such as mixed-integer linear programming 

(MILP) [1–17] and mixed-integer nonlinear programming [18] as well as the meta 

heuristics such as simulated annealing [19] and genetic algorithm [20, 21].  Among 

these, the method based on the MILP has been proposed and utilized widely as one of 

the effective approaches.  It leads to a natural expression of decision variables.  For 

example, in this method, the selection, numbers, and on/off status of operation of 

equipment are expressed by integer variables, and the capacities and load allocation of 

equipment by continuous ones.   

In earlier years, the conventional solution algorithm for the MILP which combines 

the branch and bound method with the simplex one has not been so efficient, and the 

optimal design problem has often been treated in consideration of single-period 

operation [1], or multi-period one for a small number of periods [2], to avoid excessive 

difficulty of the problem.  This is because the number of integer variables increases 

with those of equipment and periods, and it becomes difficult to obtain the optimal 
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solution in a practical computation time using the conventional solution algorithm.  

Afterwards, some efforts have been made to treat the optimal design problem in 

consideration of multi-period operation for a larger number of periods [3–5].  

Nevertheless, equipment capacities have still been treated as continuous variables, and 

correspondingly performance characteristics and capital costs of equipment have been 

assumed to be continuous functions with respect to their capacities.  This is because if 

equipment capacities are treated discretely, the number of integer variables increases 

drastically, and the problem becomes too difficult to solve.  As a result, the treatment 

of equipment capacities as continuous variables causes discrepancies between existing 

and optimized values of capacities, and expresses the dependence of performance 

characteristics and capital costs on capacities with worse approximations.   

In recent years, commercial MILP solvers have become more efficient, and many 

applications to the optimal design of distributed energy supply systems have been 

conducted in consideration of multi-period operation for a large number of periods.  

However, only the types of equipment with fixed capacities have been determined in [6, 

7], the types and capacities of equipment have been determined, but the capacities have 

been treated as continuous variables in [8–10], and the types and numbers of equipment 

with fixed capacities have been determined in [11–13].  In addition, the dependence of 

performance characteristics of equipment on their capacities or part load levels has not 

been taken into account in [14, 15].  On the other hand, an optimal design method has 

been proposed in consideration of discreteness of equipment capacities to resolve the 

aforementioned insufficiency of equipment models [16].  In this method, a formulation 

for keeping the number of integer variables as small as possible has been presented to 

solve the optimal design problem efficiently.  However, the aforementioned difficulty 
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in the MILP method still exists essentially.  Even commercial MILP solvers which are 

recently available may not derive the optimal solutions in practical computation times.   

Recently, a MILP method utilizing the hierarchical relationship between design 

and operation variables has been proposed to solve the optimal design problem of 

energy supply systems efficiently [17]:  At the upper level, the optimal values of 

design variables are searched by the branch and bound method;  At the lower level, the 

values of operation variables are optimized independently at each period by the branch 

and bound method under the values of design variables given tentatively during the 

search at the upper level.  This method has been implemented into an open MILP 

solver at the initial stage [22].  In addition, an illustrative case study on the optimal 

design of a gas engine cogeneration system has been conducted, and the validity and 

effectiveness of the proposed method has been clarified fundamentally.  However, this 

solver allows only small scale problems with small numbers of variables.  Therefore, a 

revision is necessary to implement the method into a commercial MILP solver and 

conduct practical case studies.  

In this paper, the aforementioned MILP method utilizing the hierarchical 

relationship between design and operation variables is revised to conduct the 

optimization calculation more efficiently.  First, lower bounds for the optimal value of 

the objective function are evaluated by solving critical design and operation problems 

defined using the hierarchical relationship.  Then, bounding operations with these 

lower bounds are conducted in the branch and bound methods used at both the levels.  

This revised method is implemented into an open MILP solver, and is applied to an 

illustrative case study on the optimal design of a gas engine cogeneration system.  In 

addition, the method is implemented into a commercial MILP solver, and is applied to a 
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practical case study on the optimal design of a gas turbine cogeneration system.  The 

validity and effectiveness of the method are investigated through these case studies.  

 

2. Formulation of optimal design problem 

2.1. Basic concept 

To consider seasonal and hourly variations in energy demands, a typical year is 

divided into multiple periods, and energy demands are estimated at each period.  As 

shown in Fig. 1, a super structure for an energy supply system is created to match 

energy demand requirements.  The super structure is composed of all the units of 

equipment considered as candidates for selection, and a real structure is created by 

selecting some units of equipment from the candidates.  Furthermore, some units of 

equipment are operated to satisfy energy demands at each period.  The selection, 

capacities, and numbers of equipment are considered as design variables, and the on/off 

status of operation and load allocation of equipment as operation ones.  The 

hierarchical relationship between the design and operation variables is shown in Fig. 2.  

In this paper, the selection and capacities are expressed by binary variables, the numbers 

and on/off status of operation by integer ones, and the load allocation by continuous 

ones.   

As fundamental constraints, performance characteristics of equipment and energy 

balance relationships are considered.  If necessary, other constraints such as 

relationships between maximum demands and consumptions of purchased energy, and 

operational restrictions are considered.  As the objective function to be minimized, the 

annual total cost is adopted typically, and is evaluated as the sum of annual capital cost 

of equipment and annual operational cost of purchased energy.  These constraints and 
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objective function are expressed as functions with respect to the design and operation 

variables.   

 

 

Fig. 1  Concept of super structure 

 

 

 

Fig. 2  Hierarchical relationship between design and operation variables 
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Fig. 3  Energy supply system with simple super structure 

 

In the following, an optimal design problem is formulated for the energy supply 

system with a simple super structure shown in Fig. 3.  The formulation can easily be 

extended to energy supply systems with complex super structures. 

 

2.2. Selection, capacities, and numbers of equipment 

The energy supply system is composed of I blocks, each of which corresponds to a 

type of equipment.  The capacity of the ith type of equipment is selected from its  

candidates.  In addition, the number of the ith type and the jth capacity of equipment is 

determined within its maximum .  The selection and number of the ith type and the 

jth capacity of equipment are designated by the binary variable  and the integer 

variable , respectively.  By these definitions, the following equations are obtained: 
 

  (1) 
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γ ijΣ
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γ ij ∈ {0, 1} ( j = 1, 2, , J i)
η ij ∈ {0, 1, , N ij} ( j = 1, 2, , J i)
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Here, it is assumed that multiple units with the same capacity can be selected for a type 

of equipment.  To select multiple units with different capacities for a type of 

equipment, multiple blocks for the type of equipment should be included in the system. 

 

 

(a) Dependence on number of equipment at on status of operation 

 

 

 (b) Dependence on capacity of equipment 

Fig. 4  Modeling of performance characteristics of equipment 
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2.3. Performance characteristics of equipment 

A relationship between the flow rates of input and output energy is shown in Fig. 4 

as performance characteristics of the ith type and the jth capacity of equipment.  Here, 

the discontinuity of the relationship due to the number of equipment at the on status of 

operation is expressed by an integer variable, and the relationship for multiple units of 

equipment is approximated by a linear equation as follows: 
 

  (2) 

where  is the integer variable for the number of equipment at the on status of 

operation.  Here, it is assumed that  units of equipment are operated at the same 

load level, and the sums of the flow rates of input and output energy are expressed by 

the continuous variables  and , respectively.  This assumption is validated if the 

simple performance characteristics expressed by Eq. (2) are used. , , , and  

are the performance characteristic values of the ith type and the jth capacity of 

equipment, i.e.,  and  are the slope and intercept, respectively, of the linear 

relationship between the flow rates of input and output energy for a unit of equipment at 

the on status of operation, and  and  are the lower and upper limits, respectively, 

for the flow rate of input energy for a unit of equipment at the on status of operation.  

The argument k is the index for periods, and K is the number of periods.  The first 

equation in Eq. (2) expresses the flow rate of output energy as a function with respect to 
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that of input energy when  units of equipment are at the on status of operation, and 

makes the flow rate of output energy zero when all the units of equipment are at the off 

status of operation.  The second equation in Eq. (2) makes the flow rate of input 

energy within its lower and upper limits when  units of equipment are at the on 

status of operation, and zero when all the units of equipment are at the off status of 

operation.  The third equation in Eq. (2) means that the number of equipment at the on 

status of operation may not be larger than that selected.  Since  is common to all the 

capacities,  
is used as its maximum in the fourth equation in Eq. (2).   

Since  is common to all the capacities, this formulation keeps the number of 

integer variables as small as possible, which makes the computation time as short as 

possible. 

 

2.4. Annual total cost and energy balance relationship 

As mentioned previously, the annual total cost is adopted as the objective function 

z to be minimized, and is expressed by 
 

  (3) 

where R is the capital recovery factor,  is the capital cost of the ith type and the jth 

capacity of equipment,  is the unit cost for energy charge of the input energy 

consumed by the ith type of equipment, and T is the duration per year of each period.   

As the energy balance relationship, the following equation is considered: 
 

  (4) 

where Y is the energy demand at each period. 
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2.5. Linearization of nonlinear terms 

To reformulate this optimal design problem as a MILP one, the nonlinear terms 

due to the products of the binary variable  and the continuous and integer variables 

 and  in Eq. (2) are replaced with the continuous variables  and  as follows: 

 and , respectively.  As a result, Eq. (2) is reduced to 
 

  (5) 

In addition, the following linear constraints are introduced to make the aforementioned 

replacement valid: 
 

  (6) 
 

  (7) 

with lower and upper bounds for the continuous and integer variables  and  as 

follows:  and
 

, and  and
 

, 

respectively. 
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2.6. Vector representation of formulation 

To show the solution process below, the reformulated MILP problem is expressed 

using vectors for variables and constraints.  The binary and integer design variables  

and  are expressed as  
 

  (8) 

The integer and continuous operation variables  and , , , and  are 

expressed as 
 

    (9) 

respectively.  Then, Eq. (1) and Eqs. (3) through (7) are reduced to 
 

  (10) 

where f0 and fk denote the terms composed of the design and operation variables, 

respectively, in the objective function of Eq. (3).  g0 denotes the inequality constraints 

of Eq. (1) which relate design variables.  gk denotes the inequality constraints of the 

second and third equations in Eq. (5), and Eqs. (6) and (7) which relate design and 

operation variables.  hk denotes the equality constraints of Eq. (4) and the first equation 

in Eq. (5) which relate design and operation variables. 

If the values of the design variables γ  are assumed, the constraints gk and hk 

become independent at each period.  Namely, γ  acts as coupling constraints for all the 

operation variables.   

   

γ ij
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, η 11, , η IJ I

)T
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min. z = f0(γ) + fk(δ(k), x(k))Σ
k = 1

K

sub. to g0(γ) ≤ 0

gk(γ, δ(k), x(k)) ≤ 0 (k = 1, 2, , K)

h k(γ, δ(k), x(k)) = 0 (k = 1, 2, , K)
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3. Solution in consideration of hierarchical relationship 

3.1. Basic concept 

Some commercial MILP solvers which are recently available can solve large scale 

problems in practical computation times.  However, the MILP problem under 

consideration has the feature that it becomes extremely large scale with increases in the 

numbers of types and capacities of equipment, and periods, I, J, and K, respectively.  

In such cases, even commercial MILP solvers may not derive the optimal solutions in 

practical computation times.  In this paper, a special solution method is proposed in 

consideration of the hierarchical relationship between the design and operation variables.  

A flow chart for the solution method is shown in Fig. 5.   

 

Fig. 5  Flow chart for solution method in consideration of hierarchical relationship 

between design and operation variables 
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The optimal design problem of Eqs. (1) through (4) has the hierarchical relationship 

between the design and operation variables.  The reformulated MILP problem also has 

a similar relationship.  The design variables at the upper level are the binary and 

integer variables γ , while the operation variables at the lower level are the integer 

variables δ(k) and the continuous variables x(k) at each period k.  The values of these 

design and operation variables at all the periods should be optimized simultaneously.  

However, if the values of the design variables are given tentatively at the upper level, 

the values of the operation variables can be optimized independently at each period at 

the lower level.  This feature leads to the following hierarchical solution process.  

In place of the original problem of Eq. (10), the optimal design and operation 

problems at the upper and lower levels are defined as follows:  
 

Optimal design problem at upper level  
 

  (11) 

 

Optimal operation problems at lower level 
 

  (12) 
 

respectively.  The optimal design problem at the upper level is defined by relaxing 

       

min. z = f0(γ) + fk(δ(k), x(k))Σ
k = 1

K

sub. to g0(γ) ≤ 0

gk(γ, δ(k), x(k)) ≤ 0 (k = 1, 2, , K)

h k(γ, δ(k), x(k)) = 0 (k = 1, 2, , K)

with δ(k) relaxed to continuous variables

 

min. fk(δ(k), x(k))

sub. to gk(γ, δ(k), x(k)) ≤ 0

h k(γ, δ(k), x(k)) = 0

with γ given tentatively at upper level

(k = 1, 2, , K)
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δ(k) to continuous variables in the original problem of Eq. (10), while the optimal 

operation problem at the lower level is defined at each period by adopting fk as the 

objective function and giving the values of the design variables γ .   

The optimal values of γ  are searched at the upper level through the branching and 

bounding operations used in the branch and bound method.  During this search, when 

the values of the design variables γ  are given tentatively, they are transferred to the 

optimal operation problems, and the optimal operation problem is solved independently 

at each period at the lower level by the branch and bound method under the values of γ  

given tentatively, and its result is returned to the optimal design problem.  If an 

optimal operation problem at a period is infeasible, for example, because the deficit in 

energy supply arises, the tentative values of γ  cannot become the optimal ones and are 

discarded, and thus the bounding operation is conducted between the two levels.  

Otherwise, i.e., if the optimal operation problems at all the periods are feasible, the 

optimal values of the operation variables δ(k) and x(k) are determined, the part of the 

objective function fk is evaluated correspondingly, and the value of the objective 

function z is evaluated by adding f0 using the tentative values of γ .  If the value of z is 

larger than or equal to an upper bound for the optimal value of z, or the value of z for 

the incumbent obtained previously, the tentative values of γ  cannot become the optimal 

ones and are discarded, and thus the bounding operation is conducted between the two 

levels.  Otherwise, the solution corresponding to the tentative values of γ  becomes a 

new incumbent, and the previous incumbent is replaced with this new one.  When all 

the branches are searched in the optimal design problem, the incumbent results in the 

optimal solution of the original problem of Eq. (10).   

The number of all the variables in the optimal design problem is the same as that in 
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the original problem of Eq. (10).  However, the number of the binary and integer 

variables in the optimal design problem is much smaller than that in the original 

problem.  Therefore, the optimal design problem needs a smaller memory size as well 

as a shorter computation time to conduct the branching and bounding operations in the 

branch and bound method.  In addition, the number of the variables in the optimal 

operation problem at each period is quite small, and the optimal operation problem can 

be solved easily.  As a result, the proposed method has better features in memory size 

and computation time as compared with the direct solution of the original problem.  

 

3.2. Evaluation of lower bounds 

It is possible to conduct the optimization calculations for the optimal design 

problem at the upper level and the optimal operation problems at the lower level using 

the branch and bound method.  However, it is suitable to introduce bounding 

operations to conduct the optimization calculations efficiently.  Here, lower bounds for 

parts of the objective function are derived in consideration of the hierarchical 

relationship.  In addition, bounding operations using the lower bounds are proposed in 

consideration of the hierarchical relationship.  

Since the objective function is divided into the terms composed of the design and 

operation variables, lower bounds are also evaluated for the corresponding terms 

independently.  First, the following critical design problem at each period is 

considered: 
 

  (13) 

       

min. f0(γ)

sub. to g0(γ) ≤ 0

gk(γ, δ(k), x(k)) ≤ 0

h k(γ, δ(k), x(k)) = 0

(k = 1, 2, , K)
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This problem is obtained by considering the design variables γ  and only the operation 

variables at the kth period δ(k) and x(k) as well as the term composed of only the design 

variables in the objective function f0.  This means that the coupling constraints by γ  for 

the operation variables other than those at the kth period are removed, and that the 

objective function is adopted only for the design variables.  The optimal solution of 

this problem gives the minimum of f0 subject to the constraints for the operation 

variables at the kth period.  Thus, the maximum among the minimums of f0 for all the 

K critical design problems becomes a lower bound for f0 in the original problem of Eq. 

(10).  This lower bound is designated by  to show the process of conducting 

bounding operations below. 

Second, the following critical operation problem at each period is considered: 
 

  (14) 

This problem is obtained by replacing f0 with fk in the aforementioned critical design 

problem.  This means that the coupling constraints by γ  for the operation variables 

other than those at the kth period are removed, and that the objective function is adopted 

only for the operation variables at the kth period.  The optimal solution of this problem 

gives the minimum fk subject to the constraints for the operation variables at the kth 

period.  Thus, this minimum becomes a lower bound for fk in the original problem of 

Eq. (10).  This lower bound is designated by  to show the process of conducting 

bounding operations below. 

The number of binary and integer variables in each of these critical design and 

operation problems is much smaller than that in the original problem of Eq. (10), and 

 

f0
D

       

min. fk(δ(k), x(k))

sub. to g0(γ) ≤ 0

gk(γ, δ(k), x(k)) ≤ 0

h k(γ, δ(k), x(k)) = 0

(k = 1, 2, , K)
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each problem can be solved easily.  In addition, if the optimal values of the design 

variables γ  for all the critical design and operation problems coincide with one another, 

the obtained solutions give the optimal solution of the original problem, although such a 

case rarely arises.  This is because the coupling constraints by γ  removed in the critical 

design and operation problems are satisfied, and the lower bounds  and  become 

the optimal values of f0 and fk, respectively. 

 

3.3. Bounding operations 

3.3.1 Optimal design problem 

As aforementioned, the optimal design problem at the upper level of Eq. (11) is 

considered in place of the original problem of Eq. (10) by relaxing the binary operation 

variables δ(k) to continuous ones.  The optimal values of the design variables γ  are 

searched by the branch and bound method.  During this search, the bounding operation 

is conducted at each branching node at the upper level using a conventional method.  

The continuous relaxation problem corresponding to each branching node is usually 

solved, and the value of the objective function z for its optimal solution is used as a 

lower bound for the bounding operation.  In the problem under consideration, this 

value can be divided into those for the design and operation variables.  Thus, these 

values are also used as lower bounds for the optimal values of f0 and fk.  These lower 

bounds are designated by  and .  On the other hand, the aforementioned lower 

bounds  and  are used at all the branching nodes.  Therefore, more effective 

lower bounds for the optimal values of f0 and fk can be selected from the two ones.  As 

a result, a lower bound for the optimal value of the objective function z is evaluated as 

follows: 
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  (15) 

If this value is larger than or equal to an upper bound for the optimal value of z, or the 

value of z for the incumbent , the bounding operation is conducted at the 

corresponding branching node at the upper level.  Otherwise, the branching operation 

is further continued.  

3.3.2. Optimal operation problems 

The optimal operation problem at each period at the lower level of Eq. (12) is 

considered by giving the values of the design variables γ  tentatively.  Each optimal 

operation problem can be solved independently from the other ones.  This is because 

the values of the design variables γ  are given tentatively, and the coupling constraints 

by γ  are removed.  Thus, the optimal operation problems are solved sequentially.  

Here, the following bounding operation between the two levels can be applied.  Before 

solving each optimal operation problem in the specified order, a lower bound for the 

optimal value of the objective function z is evaluated as follows: 
 

  (16) 

where S and U are the sets for the solved and unsolved optimal operation problems, 

respectively.  This equation means that the first term in the right hand side is 

calculated from the values of the design variables γ , that the second term is calculated 

from the optimal values of the objective functions fk for the solved optimal operation 

problems, and that the third term is calculated from the lower bounds for the unsolved 

optimal operation problems, where  is a lower bound for the optimal value of fk 

evaluated by the continuous relaxation problem after the values of all the design 
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variables are given tentatively.  If this value is larger than or equal to an upper bound 

for the optimal value of z, or the value of z for the incumbent , it is judged that the 

values of the design variables cannot give the optimal solution of the original problem.  

Thus, the bounding operation is conducted between the two levels without solving the 

unsolved optimal operation problems, and this information is transferred to the optimal 

design problem.  Else if the optimal operation problem is infeasible, the bounding 

operation is conducted between the two levels without solving the unsolved optimal 

operation problems, and this information is also transferred to the optimal design 

problem.  Otherwise, the next optimal operation problem is solved.  This same 

procedure is repeated until the last optimal operation problem is solved.  Since the 

value of  is replaced with the optimal value of fk after the kth optimal 

operation problem is solved, the lower bound  increases as the optimal operation 

problems are solved sequentially, which heightens the possibility of conducting the 

bounding operation before solving the next optimal operation problem. 

When each optimal operation problem is solved by the branch and bound method, 

the bounding operation is conducted at each branching node at the lower level using the 

conventional method.  The continuous relaxation problem corresponding to each 

branching node is usually solved as aforementioned.  To conduct this bounding 

operation more efficiently during the solution of an optimal operation problem, say, the 

mth one, an initial upper bound for the optimal value of the objective function fm is 

evaluated as follows: 
 

  (17) 

If a lower bound for the optimal value of fm is larger than this initial upper bound, the 
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mth optimal operation problem is infeasible, and the bounding operation is conducted at 

the lower level.  In addition, the bounding operation is conducted between the two 

levels without solving the unsolved optimal operation problems, and this information is 

transferred to the optimal design problem. 

 

3.4. Implementation into solvers 

3.4.1 Open solver 

The proposed method is implemented into an open MILP solver published in [22].  

This MILP solver is a simple one using the branch and bound method based on the 

depth first rule for selecting the branching node, and is applicable to small scale 

problems with small numbers of variables.  Here, this MILP solver is used to solve all 

the optimization problems necessary for the proposed method, or not only the optimal 

design and operation problems at the upper and lower levels, respectively, but also the 

critical design and operation problems.  Two sets of the solver are prepared to consider 

the optimal design and operation problems interactively.  In addition, a program is 

prepared to control the flow of the optimization calculations for the optimal design and 

operation problems.  It is called by the solver for the optimal design problem and 

exchanges information between the optimal design and operation problems.   

The evaluation of the lower bound by Eq. (15) and the bounding operation based 

on it are incorporated into the solver for the optimal design problem.  The evaluation 

of the lower bound by Eq. (16) and the bounding operation based on it are incorporated 

into the program for controlling the flow of all the optimization calculations.  The 

evaluation of the upper bound by Eq. (17) is incorporated into the solver for the optimal 

operation problems.   
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3.4.2 Commercial solver 

The proposed method is also implemented into a commercial MILP solver IBM 

ILOG CPLEX Optimization Studio V12.5.1 [23].  Since this MILP solver is one of the 

powerful commercial solvers using the linear programming based branch and cut 

method, and is applicable to large scale problems with large numbers of variables.  

Here, this MILP solver can be used to solve the optimal design problem at the upper 

level as well as the critical design and optimal operation problems.  Since the optimal 

operation problems at the lower level are small scale, the aforementioned open MILP 

solver is used to solve them.  In addition, some functions for CPLEX are utilized to 

control the flow of the optimization calculations for the optimal design and operation 

problems.  They are called by the solver for the optimal design problem and exchanges 

information between the optimal design and operation problems.   

The evaluation of the lower bound by Eq. (15) and the bounding operation based 

on it cannot be incorporated into the commercial solver for the optimal design problem.  

The evaluation of the lower bound by Eq. (16) and the bounding operation based on it 

are incorporated into the program for controlling the flow of all the optimization 

calculations.  The evaluation of the lower bound by Eq. (16) and the bounding 

operation based on it with U = , or without solving any optimal operation problems 

are used in place of the evaluation of the lower bound by Eq. (15) and the bounding 

operation based on it.  The evaluation of the upper bound by Eq. (17) is incorporated 

into the open solver for the optimal operation problems.   

In order to use CPELX as a solver for the optimal design problem at the upper 

level, the following three features have to be implemented. 

1) Reject all the solutions found in CPLEX not to renew the incumbent at the upper 

∅
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level, although the corresponding values of the design variables are used to solve 

the optimal operation problems at the lower level. 

2) Set a cutup value to remove branching nodes with their lower bounds larger than 

the value of the objective function for a new incumbent, if it is found by solving 

the optimal operation problems at the lower level. 

3) Prohibit generating the same solutions more than once to find a new incumbent 

efficiently. 

Features 1) and 2) can be implemented using the incumbent callback of CPLEX.  The 

incumbent callback is called when an integer solution is found but before this solution 

replaces the incumbent during the CPLEX solution procedure.  It interrupts the 

solution procedure to reject the solution, invokes a solver for the optimal operation 

problems at the lower level, sets a cutup value if a new incumbent is found, and 

continues the solution procedure.  Feature 3) can be implemented using the cut and 

lazy constraint callbacks of CPLEX.  When a solution is found during the CPLEX 

solution procedure, the corresponding constraint which prohibits generating the same 

solutions is added for the continued solution procedure.  This constraint is obtained by 

expressing all the integer variables with binary ones and using the values of the binary 

variables corresponding to the solution as shown in [24, 25].  However, it is not 

allowed to add this constraint in the incumbent callback because of the restriction of the 

library.  Thus, the incumbent is stored in the incumbent callback, while the 

corresponding constraint is added in the cut or lazy constraint callback.   
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4. Case studies 

4.1. Illustrative case study using open solver 

4.1.1 Summary 

As an illustrative case study, the proposed method is applied to the optimal design 

of a gas engine cogeneration system for electricity and hot water supply [17].  Since 

the super structure is very simple, and the number of periods is relatively small, only the 

open solver is used in this study.  The optimal design problem is solved by not only the 

proposed method but also the conventional method, and the results obtained by these 

methods are compared with each other.  The following three cases are investigated by 

the proposed method to show the effect of the bounding operations based on the lower 

bounds on the computation efficiency:  In case I, Eqs. (15) through (17) are not 

considered;  In case II, Eqs. (16) and (17) are considered;  In case III, Eqs. (15) 

through (17) are considered.  The optimal design problem has already been solved in 

case I and the case that the maximum demands of electricity and city gas are considered 

as continuous variables [17].  Both the design and operation variables are 

simultaneously optimized by the conventional method using the same open solver.  All 

the optimization calculations are conducted on a MacBook Air with Mac OS X 10.6.7.   

4.1.2. Conditions 

Figure 6 shows the super structure for the cogeneration system, which has two gas 

engine cogeneration units with a same capacity and two gas-fired auxiliary boilers with 

a same capacity.  Table 1 shows the capacities and performance characteristic values 

of candidates of equipment for selection.  Although the performance characteristic 

values are shown only at the rated load level, their changes at part load levels are also 

taken into account.  In addition to the equipment, the maximum demands of electricity 
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and city gas purchased from outside utility companies are also determined.  However, 

the proposed method allows only binary and integer variables in the optimal design 

problem at the upper level.  Thus, the maximum demands of electricity and city gas are 

treated using integer variables, and are selected among discrete values by 10.0 kW and 

1.0 Nm3/h, respectively.   

 

 

Fig. 6  Configuration of gas engine cogeneration system in illustrative case study 

 

Table 1  Capacities and performance characteristic values of candidates of equipment 

for selection in illustrative case study 

 
Equipment Capacity/performance* Candidate 

Gas engine 
cogeneration 
unit 

# 1 2 
Max. power output  kW  25.0  35.0 
Max. hot water output  kW  38.4  52.7 
Power generating efficiency 0.335 0.340 
Heat recovery efficiency 0.515 0.511 

Gas-fired 
auxiliary 
boiler 

# 1 2 
Max. hot water output  kW  99.0 198.0 
Thermal efficiency 0.886 0.900 

*At rated load level 
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Table 2  Capital unit costs of equipment, and unit costs for demand and energy charges 

of utilities in illustrative case study 
Equipment/utility Unit cost 

Gas engine cogeneration unit 225.0×103 yen/kW 
Gas-fired auxiliary boiler 9.0×103 yen/kW 

Electricity Demand charge 1685 yen/(kW·month) 
Energy charge 12.08 yen/kWh 

City gas Demand charge 630 yen/(Nm3/h·month) 
Energy charge 60.0 yen/Nm3 

 

The annual total cost is adopted as the objective function.  Table 2 shows the 

capital unit costs of equipment as well as the unit costs for demand and energy charges 

of electricity and city gas.  In evaluating the annual total cost, the capital recovery 

factor is set at 0.778 with the interest rate 0.02 and the life of equipment 15 y. 

A hotel with the total floor area of 3 000 m2 is selected as the building which is 

supplied with electricity and hot water by the cogeneration system.  To take account of 

seasonal and hourly variations in energy demands, a typical year is divided into three 

representative days in summer, mid-season, and winter whose numbers of days per year 

are set at 122, 122, and 121 d/y, respectively, and each day is further divided into 3, 6, 

and 12 sampling time intervals of 8, 4, and 2 h, respectively.  Thus, the year is divided 

into 9, 18, and 36 periods correspondingly.   

4.1.3. Results and discussion 

Table 3 shows the optimal values of the design variables obtained by the proposed 

method.  In the case with the number of periods 9, two units of gas engine 

cogeneration unit #1 are installed.  In the cases with the number of periods 18 and 36, 

a unit of gas engine cogeneration unit #1 and a unit of gas-fired auxiliary boiler #1 are 

installed.  These are because in the former case the electricity and hot water demands 
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are averaged and resultantly balanced, which is advantageous to cogeneration, and in 

the latter cases the electricity and hot water demands are not balanced in some periods. 

 

Table 3  Optimal values of capacities and numbers of equipment, and maximum 

demands of utilities in illustrative case study 
Number of 
periods Equipment/utility Candidate Number Capacity 

 9 (3×3) 

Gas engine cogeneration unit #1 2 50.0 kW 
Gas-fired auxiliary boiler – –   – 
Electricity maximum demand – – 50.0 kW 
City gas maximum demand – – 13.0 Nm3/h 

18 (3×6) 

Gas engine cogeneration unit #1 1 25.0 kW 
Gas-fired auxiliary boiler #1 1 99.0 kW 
Electricity maximum demand – – 80.0 kW 
City gas maximum demand – – 10.0 Nm3/h 

36 (3×12) 

Gas engine cogeneration unit #1 1 25.0 kW 
Gas-fired auxiliary boiler #1 1 99.0 kW 
Electricity maximum demand – – 80.0 kW 
City gas maximum demand – – 13.0 Nm3/h 

 

Table 4  Comparison of conventional and proposed methods in terms of solution and 

computation time in illustrative case study 

Number of 
periods 

Conventional method Proposed method 
Solution 
and 
objective 
×106 yen/y 

Compu- 
tation time 
s 

Solution 
and 
objective 
×106 yen/y 

Case 
Compu- 
tation time 
s 

 9 (3×3) Optimal 
10.45 3072.4 Optimal 

10.45 

I 1.9 
II 1.3 
III 0.7 

18 (3×6) Feasible 
10.54 3600.0* Optimal 

10.44 

I 5.3 
II 4.5 
III 2.0 

36 (3×12) Feasible 
10.90 3600.0* Optimal 

10.49 

I 9.2 
II 7.4 
III 4.6 

*Attains limit for computation time 
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Table 5  Numbers of candidate solutions and optimal operation problems in illustrative 

case study 

Number of 
periods 

Number of candidate solutions Number of optimal 
operation problems 

All 
Removed 
at upper 
level 

Removed 
at lower 
level 

Renewed 
incumbents All Solved 

 9 (3×3) 246 171 73 2 2214  347 
18 (3×6) 203 136 61 6 4428  663 
36 (3×12) 190 133 54 3 8856 1052 

 

Table 4 shows the results obtained by both the methods to compare with each other 

in terms of solutions and computation times.  In the case with the number of periods 9, 

both the methods derive the optimal solution.  However, the conventional method 

needs a much longer computation time.  In the cases with the number of periods 18 

and 36, the proposed method derives the optimal solutions in practical computation 

times.  However, the conventional method does not derive the optimal solutions but 

only feasible ones within the limit for the computation time.  Although the 

computation times in cases I by the proposed method are short, the addition of the 

bounding operations by the lower bounds shortens the computation times in cases II and 

III.  

Table 5 shows the numbers of all the candidate solutions which can be generated at 

the upper level, the candidate solutions removed by the bounding operations at the 

upper and lower levels, the renewed incumbents, and all the optimal operation problems 

and the solved ones.  The first and fifth numbers are obtained in case I.  The second 

through fourth and sixth numbers are obtained in case III.  This result shows that the 

bounding operations at the upper and lower levels remove 67 to 70 and 28 to 30 %, 

respectively, of the candidate solutions.  As a result, the number of the renewed 
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incumbents is only less than 3 % of that of the candidate solutions.  In addition, the 

number of the solved optimal operation problems is only 11 to 16 % of that of all the 

optimal operation problems.   

 

4.2. Practical case study using commercial solver 

4.2.1 Summary 

As a practical case study, the proposed method is applied to the optimal design of a 

gas turbine cogeneration system for electricity, cold water, and steam supply [16].  

Since the super structure is relatively complex, and the number of periods is relatively 

large, both the commercial and open solvers are used in this study.  The optimal design 

problem is solved by not only the proposed method but also the conventional method, 

and the results obtained by these methods are compared with each other.  Here, only 

cases I and II are investigated by the proposed method to show the effect of the 

bounding operation based on the lower bound on the computation efficiency, because 

Eq. (15) cannot be incorporated into the commercial solver as aforementioned.  Both 

the design and operation variables are simultaneously optimized by the conventional 

method using the same commercial solver.  The optimal design problem has already 

been solved by the conventional method in the case that the number of periods is only 

20, and the capacity of the receiving device for purchasing electricity as well as the 

maximum demands of electricity and city gas are considered as continuous variables 

[16].  All the optimization calculations are conducted on a MacBook Air with Mac OS 

X 10.6.7. 
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Fig. 7  Configuration of gas turbine cogeneration system in practical case study 

 

4.2.2. Conditions 

Figure 7 shows the super structure for the cogeneration system, which has four gas 

turbine generators with a same capacity, four waste heat recovery boilers with a same 

capacity, four gas-fired auxiliary boilers with a same capacity, four electric compression 

refrigerators with a same capacity, four steam absorption refrigerators with a same 

capacity, a receiving device for purchasing electricity, and pumps for supplying cold 

water.  It is assumed that the gas turbine generators and waste heat recovery boilers are 

selected together as cogeneration units.  Table 6 shows the capacities and performance 

characteristic values of candidates of equipment for selection.  Although the 

performance characteristic values are shown only at the rated load level, their changes 

at part load levels are also taken into account.  In addition to the equipment, the 

maximum demands of electricity and city gas purchased from outside utility companies 

are also determined, and are selected among discrete values by 1.0 MW and 0.5×103 
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Nm3/h, respectively.  The capacity of the receiving device for purchasing electricity is 

also selected among discrete values by 1.0 MW correspondingly.  The pumps are 

common to all the possible structures, and only their power consumption is considered.   

 

 

Table 6  Capacities and performance characteristic values of candidates of equipment 

for selection in practical case study 

 
Equipment Capacity/performance* Candidate 

Gas turbine 
cogeneration 
unit 

# 1 2 3 4 
Max. power output  MW 1.29 1.60 2.00 2.40 
Max. steam output  MW 5.69 3.34 4.10 4.57 
Power generating efficiency 0.140 0.173 0.169 0.179 
Heat recovery efficiency 0.617 0.362 0.347 0.341 

# 5 6 7 8 
Max. power output  MW 2.93 3.50 3.54 4.36 
Max. steam output  MW 6.44 6.97 6.89 8.92 
Power generating efficiency 0.256 0.271 0.273 0.273 
Heat recovery efficiency 0.563 0.540 0.531 0.559 

# 9 10   
Max. power output  MW 5.23 5.32   
Max. steam output  MW 8.91 9.05   
Power generating efficiency 0.301 0.306   
Heat recovery efficiency 0.513 0.521   

Gas-fired 
auxiliary 
boiler 

# 1 2 3 4 
Max. steam output  MW 5.24 6.55 7.86 9.82 
Thermal efficiency 0.92 0.92 0.92 0.92 

Electric 
compression 
refrigerator 

# 1 2 3 4 
Max. cooling output  MW 2.82 3.52 4.22 5.28 
Coefficient of performance 4.57 4.73 4.76 5.04 

Steam 
absorption 
refrigerator 

# 1 2 3 4 
Max. cooling output  MW 3.46 5.18 6.91 8.64 
Coefficient of performance 1.20 1.20 1.20 1.20 

*At rated load level     
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Table 7  Capital unit costs of equipment, and unit costs for demand and energy charges 

of utilities in practical case study 

 
Equipment/utility Unit cost 

Gas turbine generator 230.0×103 yen/kW 
Waste heat recovery boiler 9.6×103 yen/kW 
Gas-fired auxiliary boiler 6.6×103 yen/kW 
Electric compression refrigerator 34.4×103 yen/kW 
Steam absorption refrigerator 30.1×103 yen/kW 
Receiving device 56.3×103 yen/kW 

Electricity 
Demand charge 1740 yen/(kW·month) 

Energy charge 10.77 yen/kWh (Summer) 
9.79 yen/kWh (Others) 

City gas Demand charge 2033 yen/(Nm3/h·month) 
Energy charge 30.88 yen/Nm3 

 

The annual total cost is adopted as the objective function.  Table 7 shows the 

capital unit costs of equipment as well as the unit costs for demand and energy charges 

of electricity and city gas.  In evaluating the annual total cost, the capital recovery 

factor is set at 0.964 with the interest rate 0.05 and the life of equipment 15 y. 

Two hotels and four office buildings with the total floor area of 383.7×103 m2 are 

selected as the buildings which are supplied with electricity, cold water, and steam by 

the cogeneration system.  To take account of seasonal and hourly variations in energy 

demands, a typical year is divided into three representative days in summer, mid-season, 

and winter whose numbers of days per year are set at 122, 122, and 121 d/y, 

respectively, and each day is further divided into 24 sampling time intervals of 1 h, 

respectively.  Thus, the year is divided into 72 periods correspondingly.   

4.2.3. Results and discussion 

Table 8 shows the optimal values of the design variables obtained by the proposed 

method.  Three units of gas turbine cogeneration unit #8 are selected.  This is because 
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the power generating and waste heat recovery efficiencies at the rated load level are the 

second and first highest among the ten candidates, and additionally these efficiencies at 

part load levels are relatively high among the candidates.  A unit of electric 

compression refrigerator #4 is selected.  This is because the coefficient of performance 

at the rated load level is highest among the four candidates.  A unit of gas-fired 

auxiliary boiler #3 and four units of steam absorption refrigerator #2 are selected to 

supplement steam and cold water supply, respectively.   

 

Table 8  Optimal values of capacities and numbers of equipment, and maximum 

demands of utilities in practical case study 
Equipment/utility Candidate Number Capacity 

Gas turbine cogeneration unit #8 3 13.08 MW 
Gas-fired auxiliary boiler #3 1 7.86 MW 
Electric compression refrigerator #4 1 5.28 MW 
Steam absorption refrigerator #2 4 20.72 MW 
Receiving device – – 4.00 MW 
Electricity maximum demand – – 4.00 MW 
City gas maximum demand – – 4.50 ×103 Nm3/h 

 

 

Table 9  Comparison of conventional and proposed methods in terms of solution and 

computation time in practical case study 

 
Conventional method Proposed method 

Solution 
and 
objective 
×109 yen/y 

Compu- 
tation time 
s 

Solution 
and 
objective 
×109 yen/y 

Case 
Compu- 
tation time 
s 

Feasible 
1.451 10599.5* Optimal 

1.451 
I 945.1 
II 529.4 

*Attains limit for computation memory 
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Table 9 shows the results obtained by both the methods to compare with each other 

in terms of solution and computation time.  The proposed method derives the optimal 

solution in a practical computation time even in case I.  The addition of the bounding 

operation by the lower bound shortens the computation time in cases II.  On the other 

hand, the conventional method also derives the optimal solution, but it cannot be 

ascertained whether the derived solution is optimal or not because the limit for 

computation memory is attained.  In addition, it takes an extremely long computation 

time.   

 

Table 10  Numbers of candidate solutions and optimal operation problems in practical 

case study 

Number of candidate solutions Number of optimal 
operation problems 

All 
Removed 
before 
lower level 

Removed 
at lower 
level 

Renewed 
incumbents All Solved 

636 171 463 14 45792 15708 

 

Table 10 shows the numbers of all the candidate solutions which can be generated 

at the upper level, the candidate solutions removed by the bounding operations before 

and while solving the optimal operation problems at the lower level, the renewed 

incumbents, and all the optimal operation problems and the solved ones.  The first and 

fifth numbers are obtained in case I.  The second through fourth and sixth numbers are 

obtained in case II.  This result shows that the bounding operations before and while 

solving the optimal operation problems at the lower level remove more than 26 and 

72 %, respectively, of the candidate solutions.  As a result, the number of the renewed 

incumbents is only less than 3 % of that of the candidate solutions.  In addition, the 
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number of the solved optimal operation problems is only less than 35 % of that of all 

the optimal operation problems.   

 

5. Conclusions 

A MILP method utilizing the hierarchical relationship between design and 

operation variables has been proposed to solve the optimal design problem of energy 

supply systems efficiently.  At the upper level, the optimal values of design variables 

have been searched by the branch and bound method.  At the lower level, the values of 

operation variables have been optimized independently at each period by the branch and 

bound method under the values of design variables given tentatively during the search at 

the upper level.  Especially, lower bounds for the optimal value of the objective 

function have been evaluated by solving critical design and operation problems defined 

using the hierarchical relationship.  Then, bounding operations with these lower 

bounds have been conducted in the branch and bound methods used at both the levels.  

This method has been implemented into open and commercial MILP solvers, and has 

been applied to illustrative and practical case studies on the optimal design of 

cogeneration systems.  The validity and effectiveness of the method have been 

investigated through these case studies.  The following main results have been 

obtained: 

1) Through the illustrative case study using the open solver, it has turned out that the 

proposed method can derive the optimal solutions in much shorter computation 

times as compared with the conventional method. 

2) Through the practical case study using the commercial solver, it has turned out that 

the proposed method can derive the optimal solutions in practical computation 
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times, although the conventional method may not do it because of the limit for 

computation memory. 

3) Through the illustrative and practical case studies, it has turned out that the 

bounding operations based on the lower bounds are very effective to reduce the 

computation times in the proposed method. 

These results will enable one to use the proposed method as an effective tool for 

providing rational design and operation solutions of energy supply systems.  In 

addition, although the proposed method has been intended for the optimal design of 

energy supply systems, it will be applicable to that of other systems with the 

hierarchical relationship between design and operation variables. 
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Nomenclature 

 c : capital cost of equipment 

 f : part of objective function 

 g : vector for inequality constraints 

 h : vector for equality constraints 

 I :  number of types of equipment 

 J :  number of capacities of equipment 

 K :  number of periods 
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 k :  index for periods 

 N :  maximum number of selected equipment 

 p :  slope of linear relationship between flow rates of input and output energy of  

  equipment 

 q :  intercept of linear relationship between flow rates of input and output energy of  

  equipment 

 R :  capital recovery factor 

 S : set of indices for solved optimal operation problems 

 T :  duration per year of period 

 U : set of indices for unsolved optimal operation problems 

 x :  flow rate of input energy of equipment 

 x : vector for continuous operation variables 

  :  lower limit for flow rate of input energy of equipment 

  : upper limit for flow rate of input energy of equipment 

 Y :  energy demand 

 y :  flow rate of output energy of equipment 

 z :  annual total cost (objective function) 

 γ :  binary variable for selection of equipment 

 γ  :  vector for binary and integer design variables 

 δ :  number of equipment at on status of operation 

 δ  :  vector for integer operation variables 

 ζ :  product of γ and δ 

 η :  number of selected equipment 

 ξ :  product of γ and x 

x

x
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 ϕ :  unit cost for energy charge of input energy 

  :  lower bound 

  :  upper bound 

 

Subscripts 

 i :  index for types of equipment 

 j :  index for capacities of equipment 

 k, m :  part of objective function composed of operation variables for kth or mth  

  optimal operation problem 

 0 :  part of objective function composed of design variables  

 

Superscripts 

 C :  continuous relaxation problem 

 D :  critical design problem 

 O :  critical operation problem 
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