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Amodern computer algebra system (CAS) is primarily a workbench offering an extensive
set of computational tools from various field of mathematics and engineering. As most
of these tools have an advanced and complicated theoretical background they often are
hard for an unexperienced user to apply successfully. The idea of a SOLVE facility in
a CAS is to find solutions for mathematical problems by applying the available tools in
an automatic and invisible manner. In REDUCE the functionality of SOLVE has grown
over the last years to an important extent.

In the circle of REDUCE developers the Konrad–Zuse–Zentrum Berlin (ZIB) has been
engaged in the field of solving nonlinear algebraic equation systems, a typical task for
a CAS. The algebraic kernel for such computations is Buchberger’s algorithm for com-
puting Gröbner bases and related techniques, published in 1966, first introduced in
REDUCE 3.3 (1988) and substantially revised and extended in several steps for RE-

DUCE 3.4 (1991). This version also organized for the first time the automatical invo-
cation of Gröbner bases for the solution of pure polynomial systems in the context of
REDUCE’s SOLVE command.

In the meantime the range of automatically soluble system has been enlarged substan-
tially. This report describes the algorithms and techniques which have been implemented
in this context. Parts of the new features have been incorporated in REDUCE 3.4.1 (in
July 1992), the rest will become available in the following release.

�E-mail address: melenk@sc.zib-berlin.de
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Some of the developments have been encouraged to an important extent by colleagues
who use these modules for their research, especially Hubert Caprasse (Liège) [4] and
Jarmo Hietarinta (Turku) [10]. The author expresses his thanks to them, to the members
of the REDUCE team and especially to A.C. Hearn for a long and fruitful cooperation.

� Introduction

The REDUCE SOLVE package is able to handle nonlinear equation systems of the fol-
lowing types:

• pure polynomial systems,

{axq − lxq− mx, ax− gxq− lx, bxq2 + cxq − jxq − nx,

q(−axq + lxq+ mx), q(−ax+ gxq+ lx)}

• equations and systems with trigonometric functions,

cos (x1)x3 − sin (x1)x2 + 5 sin (x1) ,

−2 cos (x1) + 2x23x2 + 2x32 + x2 − 5,

−2 sin (x1) + 2x33 + 2x3x
2
2 + x3

• equations and systems with surds,

{
e = b

4 , ed =
√
πc√
2
, c = a

2 , a =
√
π, bd = π

√
2
}

• systems with invertible transcendental functions, as long as these don’t establish
transcendental, variable dependencies,

a2x − a
x
2 + a

x
3 = 2

• systems which can be reduced to one of the above types by factorization or sepa-
ration.

{
−e

y
2x− u,−y − 2 ∗ v

}
wrt {x, y}
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The structure of the solver for these systems in REDUCE is given in the following dia-
gram:

REDUCE SOLVE interface

SOLVE ALG: map algebraic system to a
pure polynomial system

SOLVE POL: solve a polynomial system
automatically

Gröbner package:

Buchberger algorithm
Ideal quotients
Möller’s decompose algorithm
Kredel Weispfennig algorithm

REDUCE support:

polynomial arithmetic
factorizer
polynomial roots finder
REDUCE algebraic language

The algorithmic heart is the Gröbner package of REDUCE; it is based on the REDUCE

polynomial system and has direct access to many of the advanced algebraic algorithms
such as polynomial factorization, roots calculation, various coefficient domain arith-
metics, resultants etc. The Gröbner package is fully described in [8] and [18].
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On the next higher level the polynomial system solver SOLVE POL uses the facilities
of the Gröbner package directly for finding solutions of pure polynomial systems.

The algebraic system solver SOLVE ALG extends of SOLVE POL to systems which
can be mapped to pure polynomial systems. These are systems containing surds, trigono-
metric functions and other transcendental functions as long as they do not establish
transcendental relations.

The purpose of this document is the description of the levels SOLVE POL and
SOLVE ALG. The various examples in this text have been selected to demonstrate
one aspect with each example as compact as possible. Of course the REDUCE system
has been designed for significantly larger systems. The main limitation in the size of
solvable systems is found in the Buchberger algorithm itself and any future progress
there increases the scope of automatically solvable systems.

� Algebraic Background for Polynomial Systems

2.1 Ideals, Bases, Solutions

Let P = {fi(x), i = 1 . . .k}, x = (x1 . . . xn) be a set of multivariate polynomials in the
ring Q[x1 . . . xn], with a solution set

S = S(fi · · ·fk) = {x|fi(x) = 0 ∀i = 1 . . .k}

All polynomials u(x) =
∑

j gj(x)fj(x) for arbitrary polynomials gj will vanish in all
points of S. The set of all u establishes a polynomial ideal

I = I(f1 · · ·fk) =
⎧⎨
⎩
∑
j

gj(x)fj(x)

⎫⎬
⎭

and classical algebra tells that S is invariant if we replace the set {fi · · ·fk} by any other
basis for the ideal I(f1 · · ·fk).

2.2 Lexicographical Gröbner Bases

The Buchberger Algorithm allows one to transform the set of polynomials into a canoni-
cal basis of the same ideal, the Gröbner basis GB = GB(I). The Buchberger Algorithm
and the general properties of Gröbner bases are described in [2],[3],[5]. For the pur-
pose of equation solving especially Gröbner bases computed under lexicographical term
ordering are important; they allow one to determine the set S directly.
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If I has dimension zero (S is a finite set of isolated points), GB has in most cases the
form

g1(x1, xk) = x1 +c1,m−1x
m−1
k + c1,m−2x

m−2
k + · · ·+ c1,0

g2(x2, xk) = x2 +c2,m−1x
m−1
k + c2,m−2x

m−2
k + · · ·+ c2,0

. . .

gk−1(xk−1, xk) = xk−1 +ck−1,m−1x
m−1
k + ck−1,m−2x

m−2
k + · · ·+ ck−1,0

gk(xk) = xmk +ck,m−1x
m−1
k + ck,m−2x

m−2
k + · · ·+ ck,0

A basis in this form has the elimination property: the variable dependency has been
reduced to a triangular form, just as with a Gaussian elimination in the linear case. The
last polynomial is univariate in xk. It can be solved with usual algebraic or numeric
techniques; its zeros xk then are propagated into the remaining polynomials, which then
immediately allow one to determine the corresponding coordinates (x1, . . . , xk−1).

Example: the system

{y2 − 6y, xy, 2x2− 3y− 6x+ 18, 6z − y + 2x}
has for {x, y, z} the lexicographical Gröbner basis

{g1(x, z) = x− z2 + 2z − 1, g2(y, z) = y − 2z2 − 2z − 2, g3(z) = z3 − 1}
The roots of the third polynomial are give by{

z = 1, z =
1−√

3i

2
, z =

√
3i− 1

2

}

If we propagate one of them into the basis, we generate univariate polynomials of degree

one which can be solved immediately; e.g. selecting 1−
√
3i

2 for z the basis reduces to

{
x− 3

√
3i+ 3

2
, y, 0

}

such that the final solution for this branch is{
x =

3
√
3i+ 3

2
, y = 0, z =

1−√
3i

2

}

For zero dimensional problems the last polynomial will always be univariate. However,
in degenerate cases 1 the other polynomials can contain their leading variable in a higher
degree, then containing more mixed terms with the following variables. And there can

1A solution set is degenerate if one (or more) root(s) of the univariate polynomial appears in more
than one point of the solution set S.
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be additional polynomials with mixed leading terms (of lower degree) imposing some
restrictions. But the variable dependency pattern will remain triangular (eventually
with more than k rows). There is a special algorithm for decomposing such ideals using
ideal quotients. For details see [18].

The implementation of the Buchberger algorithm in REDUCE corresponds to [7]. Some
details and applications have been reported in [17] [14] [15].

2.3 Higher Dimensional Problems

Once a lexicographic Gröbner basis is given, the Kredel-Weispfennig algorithm [13]
can be used to compute the dimension. If a system has dimension ≥ 1, there are free
parameters (the system is underdetermined), but nevertheless the lexicographic Gröbner
basis has a triangular variable dependency pattern. It is therefore often possible to use
the same decomposition as with zero dimensional problems.

Example: The system

{x+ y2z − 2y2 + 4y − 2z − 1,−x+ y2z − 1}

has for {x, y, z} the Gröbner basis

{x− y2 + 2y − z, y2z − y2 + 2y − z − 1}

Taking z as parameter the last polynomial can be rewritten as (z + 1)y2 + 2y − (z + 1)
and its formal roots are given by y = 1 and y = −z−1

z−1 .

Resubstituted into the first equation we find the corresponding values for x.

But this solution is only valid under the assumption z − 1 �= 0, because z − 1 has been
used as a denominator. Consequently the case z − 1 = 0 has to be inspected separately,
e.g. by computing the Gröbner basis of

{x− y2 + 2y − z, y2z − y2 + 2y − z − 1, z − 1} .

which is
{x, y− 1, z − 1}

leading to the additional isolated solution x = 0, y = 1, z = 1.

It is very important for a polynomial solver to detect and handle such cases for systems
with nonzero dimension (“denominator propagation”). These describe parts of S of
lower dimension. Often isolated point solutions are found in that way which represent
“stable” solutions of technical systems. Fortunately these can be easily detected in the
Gröbner basis: if a basis polynomial can be written as u(xm)xnj + · · · with m < j and n
highest power of xj, the polynomial can be viewed as polynomial in xj and coefficients
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in xm and u(xm) exactly generates the subcase. Of course, a subcase can generate more
subcases in a finite tree.

In the case dimension >= 1 the decomposition into single solutions can fail. In such a
case the Kredel-Weispfennig algorithm [13] helps: This algorithm allows one to compute
sets of independent variables for the given ideal and (lexicographical) term ordering.
If we select a maximal set of these and remove its variables from the actual variable
sequence the new ideal is of dimension zero with the independent variables as parameters
in the coefficient domain. Example: the following system given by J. Hietarinta [9] has
dimension 6 and cannot be decomposed under most variable sequences:

{
ax q− lx q−mx, ax− gx q− lx, bxq2 + cx q− jx q− nx ,

q(−ax q + lxq +mx), q(−ax+ gx q+ lx)}

With the variable sequence

{ax, bx, cx, gx, jx, lx,mx, nx, q}

under lexicographical term order it has independent sets ( “left” independent sets in the
terminology of [13])

{cx, jx, lx,mx, nx, q}
{cx, gx, jx, lx,mx, nx}
{bx, cx, gx, jx, lx, nx}

If we select the first set as parameters the Gröbner basis over the remaining variables
{ax, bx, gx} is

{
ax q− lx q−mx, bx q2 + cx q− jxq − nx,−gx q2 +mx

}
and this zero dimensional system is easily decomposed into the solution branches.

If run with parametric coefficients the Buchberger algorithm in REDUCE automatically
collects all leading coefficients of the intermediate polynomials because the Gröbner
basis is only valid under the assumption that these terms are nonzero. In the context of
the reduced variable sequence these coefficients play the same role as the denominators
during decomposition: the cases that they vanish have to be considered in separate
computation branches. Taking these into account the complete solution set is given by

{
ax = gx q+ lx, bx = (−cx q+ jx q+ nx)/q2, mx = gx q2

}
{ax = lx,mx = 0, nx = 0, q = 0}

Here the solution with q = 0 has been generated by denominator propagation (subcase
q = 0).
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2.4 Factorization

If a polynomial has nontrivial factors in a domain without zero divisors it vanishes at a
point only if one of its factors vanishes there:

p(x) = q(x) ∗ r(x); p(x̄) = 0 → q(x̄) = 0 ∨ r(x̄) = 0

If a set oc polynomials contains a factorizable we can decompose it into two (or more)
subproblems:

S(p1, . . . , q ∗ r, . . . , pk) ≡ S(p1, . . . , q, . . . , pk) ∪ S(p1, . . . , r, . . . , pk)

In the Gröbner package of REDUCE the Buchberger algorithm has been implemented
such that each intermediate polynomial is inspected for factorization [17] [14]; the algo-
rithm contains specific data structures for handling multiple factorizations. This type
of decomposition is of big importance for the business of equation solving:

• as the factors have lower degrees than the product, the partial problems are of
substantial lower complexity than the full problem,

• the final bases have lower degrees and thus much fewer terms,

• often a nonzero dimensional problem leads to a contiguous variety plus some iso-
lated points; these points typically establish zero dimensional ideal factors and
often are isolated already during the Buchberger algorithm.

Example:

{x1x2 − 8 = 0, x21 − 5x1 + x2 + 2 = 0}

lexicographical Gröbner basis:

8x1 + x22 + 2x2 − 40,

x32 + 2x22 − 40x2 + 64

factored Gröbner basis:

{{x1 + 1, x2 + 8}, {x1 − 2, x2 − 4}, {x1 − 4, x2 − 2}}

immediate solution:

{{x1 = −1, x2 = −8}, {x1 = 4, x2 = 2}, {x1 = 2, x2 = 4}}

Example: system describing the molecular geometry of C6H12 ([6]):
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{−81y22y
2
1 + 594y22y1 − 225y22 + 594y2y

2
1 − 3492y2y1 − 750y2 − 225y21 − 750y1 + 14575 ,

−81y23y
2
2 + 594y23y2 − 225y23 + 594y3y

2
2 − 3492y3y2 − 750y3 − 225y22 − 750y2 + 14575 ,

−81y23y
2
1 + 594y23y1 − 225y23 + 594y3y

2
1 − 3492y3y1 − 750y3 − 225y21 − 750y1 + 14575 ,

81y23y
2
2y1 + 81y23y2y

2
1 − 594y23y2y1 − 225y23y2 − 225y23y1 + 1650y23 + 81y3y

2
2y

2
1 − 594y3y

2
2y1

−225y3y
2
2 − 594y3y2y

2
1 + 2592y3y2y1 + 2550y3y2 − 225y3y

2
1 + 2550y3y1 − 3575y3 − 225y22y1

+1650y22 − 225y2y
2
1 + 2550y2y1 − 3575y2 + 1650y21 − 3575y1 − 30250}

factored Gröbner Basis:

{{3y1 − 11, 3y2 − 11, 3y3 − 11},
{3y1 + 5, 3y2 + 5, 3y3 + 5},
{3y3y2 + 3y3y1 − 22y3 + 3y2y1 − 22y2 − 22y1 + 121, 27y23y2 + 27y23y1 − 198y23 − 198y3y2

−198y3y1 + 1164y3 + 75y2 + 75y1 + 250, 81y23y
2
2 − 594y23y2 + 225y23 − 594y3y

2
2 + 3492y3y2

+750y3 + 225y22 + 750y2 − 14575}}

Here two isolated solutions y1 = y2 = y3 = 11
3 and y1 = y2 = y3 = −1

3 have been
split off, while the third basis represents a variety with one free parameter. Without
decomposing by factorization the Gröbner basis for this problem contains polynomials
up to degree five.

2.5 Optimal Variable Sequence

The computing time for Gröbner base calculations depends significantly on the variable
ordering. The REDUCE Gröbner package offers as an option the optimization of a given
variable sequence which is evaluated as described in [1]: a variable is more “complicated”
than another one if it either appears in a higher degree or appears in the same maximal
degree more often. Variables are arranged with decreasing complexity.

However, if an external ordering among the variables is prescribed (e.g. for coding a
specific dependency among the variables - see below), the reordering prescribed by the
optimization is revised such that the external requirements are fulfilled. The REDUCE

depend syntax is used to transfer such reordering restrictions.

2.6 Ideal Operators

Once an algorithm for the computation of Gröbner bases is available, a complete set
of operators for ideal arithmetic can be easily implemented [3]. The REDUCE package
IDEALS is constructed in that manner [16]. For equation solving the following operations
are used:

• Ideal membership. p(x) ∈ I ↔ p(x) ≡ 0 mod GB(I)
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• Ideal subset property. For two ideals I1 = (p1, . . . , pk), I2 the property I1 ⊂ I2 is
true if pi ≡ 0 mod I2∀i; the relation p ≡ 0 mod I is decidable if a Gröbner basis
of I2 is known.

• Single ideal quotient. Let I be a polynomial ideal and p a polynomial: I : f =
{q | q ∗ f ∈ I}. This ideal is computed as intersection of I and the multiples of f ,
then dividing the elements of the basis by f . In REDUCE this algorithm has been
implemented using a cofactor technique.

2.7 Ideal Redundancy

Both, factorization and denominator propagation can produce isolated solutions which
are special cases of other solutions. E.g. {x = 0, y = 0} is a special case of {x = y}. In
order to have a result as compact as possible such redundant cases should be avoided.
The ideal algebra offers a tool for excluding redundancies:

S(f1 . . . fk) ⊂ S(g1 . . . gk) ⇐⇒ I(f1 . . . fk) ⊃ I(g1 . . . gk)

So we can avoid subsets of solutions by testing the (inverse!) ideal inclusion for the
ideals generated by the partial bases. Applied for the above case: As I(x− y) ⊂ I(x, y)
we can ignore the point {x = 0, y = 0} if (x− y) ∈ S.

The ideal subset can be applied only if one solution set is completely a subset of another
one. It fails in the case that the intersection of the solutions of two ideals is not empty.
E.g. in

I1 = {x2 − 1, y2}, I2 = {x2 − 2x+ 1, y}
neither I1 ⊂ I2 nor I2 ⊂ I1 holds, but their solution sets

S(I1) = {{x = 1, y = 0}, {x = −1, y = 0}} ,

S(I2) = {{x = −1, y = 0}}

have an intersection {x = −1, y = 0} and we don’t want to repeat this solution in the
output of solve (ignoring for the moment that the ideals in this simple example would
have been decomposed by factorization). In order to suppress such repetitions a method
proposed by J.Hietarinta [9] is used: if two solution sets S1 and S2 are both explicit
(that is a set of equations with single variables on the lefthand side and an algebraic
expression on the righthand side) S1 is substituted into S2; if then in the resulting S2
all equations are trivial (identical righthand and lefthand sides) we know that S1 is a
special case of S2, and S1 can be removed from the solution list. Logically this step is
equivalent to an ideal inclusion but with different technical support.
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2.8 Roots of Polynomials

The REDUCE Solve system (including the Roots package [12]) computes the roots of a
polynomial with respect to a given variable. Depending on the computational context
and on the polynomial the result can take various forms:

• Explicit forms:

– Integer/rational numbers: Solve(x2 − 16 = 0, x)⇒
{x = 4, x = −4}

– Complex numbers: Solve(x2 + 16 = 0, x) ⇒ {x = 4i, x = −4i}
– Algebraic Numbers: Solve(x2 − 8 = 0, x) ⇒

{x = 2
√
2, x = −2

√
2}

– Approximate Numbers: on rounded;Solve(x2− 8 = 0, x) ⇒
{x = −2.828, x = 2.828}

– Parametric Expressions: Solve(x2y − 4, x)⇒
{
x = 2√

y , x = − 2√
y

}
• Implicit form: Solve(x9 − x+ 1, x)⇒ {

x = root of(x 9 − x + 1, x )
}

The implicit form is used when no explicit form for the roots is available (e.g. non
decomposable polynomial of degree greater than four) or if the explicit form expression
with surds would be too big 2. The implicit root form has been introduced with REDUCE

3.4.1; with this form we can express algebraic relations with roots although these are
not available explicitly. This ability is especially useful for the context of polynomial
equation systems where solutions often can be expressed only in terms of a root of a
single polynomial of large degree.

� Solution of Pure Polynomial Systems

3.1 SolvePoly Macro Algorithm

The solver for pure polynomial systems is an algorithm using the tools described in the
previous section. The central part is a factorizing Buchberger algorithm with lexico-
graphic term order which leads to a set of Gröbner bases. These represent parts of the
solution set and are decomposed in the second phase to single solutions as explicitly
as possible. In this phase redundancy control and numerator propagation take place,
which may modify the initial set of bases.

2The size restriction is controlled by the REDUCE switch fullroots.
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SOLV E POLY :
Input : x = {x1 . . . xn}, P = {f1(x) . . . fk(x)} : polynomial system
Output : S = solution set of{fi(x) = 0}

1. optimize variable sequence x = {x1 . . . xn} for P

2. factorizing lexicographic Buchberger algorithm leads to an initial
set of Gröbner bases G = {Q1 . . .Qr} ⇐ GBfact(P )

3. for each Q̂ ∈ G collect the solutions S(Q̂) in R:

(a) reduce redundancy: ∀Q �= Q̂ ∈ G do
I(Q̂) ⊂ I(Q) → G ⇐ G \ {Q}, R ⇐ R \ S(Q)
I(Q) ⊂ I(Q̂) → ignore(Q̂)

(b) extract solutions R and denominators D from Q̂:
(R,D) ⇐ G EXTRACT (Q̂)

(c) new subcases: ∀d ∈ D : G ⇐ G ∪GB(Q̂ ∪ {d})
(d) S ⇐ S ∪R

4. return S

The subalgorithm G EXTRACT has two levels: the following simple approach extracts
the solution from a non degenerate basis (dimension zero or higher). If it is called with a
degenerate system, the fail exit is taken and the more complicated algorithm described
in [18] is used instead.

G EXTRACT :
Input : x = {x1 . . . xn}, G = {g1(x) . . . gk(x)} : Gröbner basis
Output : S = solution set of{gi(x) = 0}
Vi ⇐ V ars(gi), i = 1 · · ·k
Vi ⇐ Vi\Vj, i = 1 · · ·k − 1, j = i+ 1 · · ·k
if any Vi = ∅ exit FAIL
return G EX R(G, V, k)
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G EX R(G, V,m)

INPUT : G Gröbner basis
V Vi candidate variable(s) in gi
n actual level

OUTPUT : solution set of system {g1 · · ·gm}

if m=0 return {}
v ⇐ first(Vm) % candidate variable
denominators ⇐ Lc(gm, v) ∪ denominators
S = {sj} ⇐ SOLV E UNI(gm, v)
return

⋃
j(sj ∪G EX R(sub(sj , G), V,m− 1))

The following operations are cited in the above algorithm:

• V ars extracts the variables occurring in a polynomial,

• Lc isolates the leading coefficient with respect to the given variable,

• SOLVE UNI computes the roots of a polynomial in one variable as described
before.

At the end of the first phase each Vi contains exactly those variables of gi which do
not occur in any of the following polynomials. Each of these can be used to construct
a solution. In a non-degenerate zero dimensional case each Vi contains exactly one
variable. If one Vi is empty, a degeneracy has been detected. In the recursive part of the
subalgorithm on every level one polynomial is solved with respect to its leading variable.
If the ideal does not have dimension zero, the leading coefficient will be the denominator
of the solution.

For each solution value sj a separate recursive branch is used because the substitution of
sj in the remaining polynomials establishes a local subcase. Of course, such substitutions
can be performed only if explicit roots have been found. If no explicit form for the root(s)
is available, the roots are formally described as generic solutions by the REDUCE form
roots of ; such forms are not propagated and the corresponding variable v remains as a
formal parameter in the subsequent solutions.

3.2 Coefficient Domains

Although the REDUCE Gröbner package can handle for computations over different coef-
ficient domains, in the context of automatic equation solving it uses exclusively the ring
ZZ (resp. the Gaussian integers if the equations have explicit imaginary components); if
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the equation system has formal parameters a,b,c, · · ·, the polynomial ring ZZ(a, b, c · · ·) is
used as coefficient domain (resp. the Gaussian integer polynomial ring over the param-
eters). Input expressions with coefficients from other domains (e.g. rational or rounded
numbers) are converted to quotients of integer polynomials with common denominators
and the numerator part is extracted for the ideal computations: on the one hand Buch-
berger’s algorithm is most efficient when executed in the ring variant, on the other hand
it is highly unstable if executed with truncated floating point numbers.

The actual REDUCE domain mode is used only during the final decomposition of uni-
variate polynomials leading to different result forms:

• Default mode, rational mode: the roots are computed according to the standard
strategy of SOLVE: if the polynomial has roots which can be expressed as explicit
exact algebraic expression of limited size, the explicit form is used for the result
and for the propagation to other polynomials of the result system. Example:

solve({x**2+y**2=1,a*x+b*y=c},{x,y});

2 2 2

SQRT(A + B - C )*A + B*C

{{Y=----------------------------,

2 2

A + B

2 2 2

- SQRT(A + B - C )*B + A*C

X=-------------------------------},

2 2

A + B

2 2 2

- SQRT(A + B - C )*A + B*C

{Y=-------------------------------,

2 2

A + B

2 2 2

SQRT(A + B - C )*B + A*C

X=----------------------------}}

2 2

A + B
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Otherwise the roots are expressed as implicit expressions using the operator root of ,
which leads to a result form very close to the original Gröbner basis. Example:

solve({x**2+y**2=1,x**3+y**4},{x,y});

8 6 4 2

{{Y=ROOT_OF(Y_ + Y_ - 3*Y_ + 3*Y_ - 1,Y_),

6 4 2

X= - Y - 2*Y + 2*Y - 1}}

Even if the equation system has only real coefficients the solution can have complex
components. These are not suppressed independent of the current value of the
switch complex.

• Rounded mode: the roots are computed as numerical approximations of high accu-
racy using the REDUCE package ROOTS [12] for those parts of the result which
do not depend of formal parameters. As in standard mode eventually complex
components of the result are returned. Example:

on rounded,complex;

solve({x**2+y**2=1,x**3+y**4},{x,y});

{{Y=1.62162206656*I,X= - 1.90516616771},

{Y=-1.62162206656*I,X= - 1.90516616771},

{Y=0.828166126903 - 0.38194280897*I,X =0.788104887232 + 0.401357867369*I},

{Y=-0.828166126903 + 0.38194280897*I,X =0.788104887232 + 0.401357867369*I},

{Y=0.828166126903 + 0.38194280897*I,X =0.788104887232 - 0.401357867369*I},

{Y=-0.828166126903 - 0.38194280897*I,X =0.788104887232 - 0.401357867369*I},

{Y=0.741417883452,X= - 0.671043606704},

{Y= - 0.741417883452,X= - 0.671043606704}}

It should be stressed here that although the results in this mode look like approx-
imations, the heart of the algorithm is performed with exact arithmetic and only
the final phase is approximate.

• Complex mode: if the mode complex is active and if the equation system contains
explicit imaginary components the ideal computations are performed using the
ring of Gaussian integers.

� Mapping Algebraic Equations to Polynomials

Several classes of algebraic equation systems can be transformed into equivalent pure
polynomial systems which then can be solved by the polynomial solver. The methods
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differ from case to case. They have in common that sub-expressions are replaced by new
indeterminates to be added to the variable list and additional equations are generated.

The first step in the algorithm is a factorization of the input equations (transformed
into expressions equated to zero); the system is split into smaller subsystems.

SOLV E ALG :

INPUT : x = {x1 · · ·xn}, F = {fi(x) = 0} algebraic equation system
OUTPUT : solution set S of system F

fi ⇐ lhs(fi) − rhs(fi)
{Fj} ⇐ Factorize(F )
return

⋃
j SOLV E ALG ∗ (Fj)

Later in the Gröbner phase again all systems will be inspected for possible factorizations;
in the input phase the factorization is performed mainly to separate variables or different
levels of nonlinearity: e.g. in the form (ex − y2) ∗ (x2 − y) each factor can be solved by
polynomial methods while the complete expression cannot be converted to a polynomial
system.

SOLV E ALG∗ :

INPUT : x, F algebraic equation system
OUTPUT : solution set S of system F

while ∃ non polynomial term u in F
select transformation Tu; if no Tu exit FAIL
F ⇐ Tu(F ); TT ⇐ TT ∪ {Tu}

S ⇐ SOLV E POLY (F )
for each T in TT do S ⇐ T�1(S)
return(S)

This phase transforms the system until all non polynomial relations have been resolved.
The transformations are recorded in a database TT . The rewritten system is solved as
a polynomial system and the inverse transformations are applied to the solutions. The
transformations are described in the rest of this section.
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4.1 Surds, Rational Exponents

Surds are a simplified notation for computations with elements which are solutions of
algebraic equations. Consequently we can convert an equation system containing surds
into an equivalent system free of surds by handling the surds as independent variables
and adding their defining relation. E.g. the equation

x + 3
√
x + 1− 2 = 0

can be converted to the pure polynomial system

{x+ y − 2 = 0, y3 = x+ 1}

which leads to the Gröbner basis

{x+ y − 2, y3 + y − 3}

The last polynomial has one real root y ≈ 1.21341 and 2 complex roots; the first poly-
nomial assigns x ≈ 0.78659 as the sole real solution of the original equation.

It is obvious that such transformations can be performed automatically: as long as a
surd is found in the system, it is eliminated by substituting a new variable and adding
a defining equation. Formally:

TR SURD:
Input : n, k, x = (x1 . . . xn), algebraic P = {f1(x) . . . fk(x)}
Output : n̂, k̂, x̂ = (x1 . . . xk̂), polynomial P̂ = {f̂1(x̂) . . . f̂k̂(x̂)}

IF some m
√
u(x) ∈ fj(x), fj(x) ∈ P :

P ⇐ { xm
n+1 − u(x)} ∪ (subst m

√
u(x) by xn+1 in P )

x ⇐ x ∪ {xn+1}, n ⇐ n+ 1, k ⇐ k + 1
REPEAT

If the surds are nested, this process is iterated, e.g.

x+
√
x+

√
x+ 1− 2 = 0 =⇒

{x+ y − 2 = 0, y2 = x+
√
x+ 1} =⇒

{x+ y − 2 = 0, y2 = x+ z, z2 = x+ 1}

This system has the Gröbner basis

{x− z2 + 1, y+ z2 − 3, z4 − 7z2 − z + 10}
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where the last polynomial has the roots z ≈ 1.274, z ≈ −1.651, z ≈ 2.377, z = −2.
Only z ≈ 1.274 leads to a real solution x ≈ 0.6227.

The transformation TR SURD is not restricted to cases where one of the variables appears
in the inner part of the root expression. E.g. the system

{
e =

b

4
, ed =

√
πc√
2
, c =

a

2
, a =

√
π, bd = π

√
2

}

describes a polynomial ideal over a domain with one transcendental and two algebraic
extensions ZZ[π][y, z]/(y2− 2, z2 − π). TR SURD completes the system by

{
s2 ⇐

√
2, s22 − 2 = 0, sπ ⇐ √

π, s2π − π = 0
}

which now describes an ideal in ZZ(π) and variables a,b,c,d,e,s2,sπ. The system has one
unique solution {

c =

√
π

2
, d =

√
2π

4e
, a =

√
π, b = 4e

}

The solution has e as a free parameter.

From a purely algebraic standpoint TR SURD is a weak transformation; by raising
an expression u = m

√
w to the mth power we introduce an m-fold ambiguity caused by

the mth roots of unity. Normally the user means the real positive root if he enters a surd.
In order to prevent “false” solutions we eliminate all solutions which obviously don’t lead
to real positive values for surds. E.g. the full system for the equation 3

√
x+

√
x− 2 = 0

has the formal solutions x = 1, x = 8i, x = −8i, but the selection mechanism here
is applicable and allows only x = 1 as the sole solution. However, this distinction is
impossible if the roots are not available explicitly.

In REDUCE, rational exponents are represented internally as integer powers of ex-
pressions with numerator 1 in the exponent, e.g. x

3
2 → (x

1
2 )3; so they automatically are

in polynomial form and don’t need a special treatment.

If some base has different exponent denominators, e.g. u
3
2 + 2u

2
3 there is a choice:

we can transform every surd individually (here u
1
2 and u

1
3 ) or we can modify the ex-

ponents such that they have a common denominator (here u
9
6 + 2u

4
6 ) saving auxiliary

variables. Experiments have shown that the common denominator form does not reduce
the complexity of the Gröbner calculation; therefore this transformation is not used.

The following system (Richter, Leipzig) contains several
√
3. It can be solved alge-
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braically only if the constant surds are handled exactly.

128
√
3a2b+ 128

√
3b3 + 288a4 + 576a2b2 − 24a2n− 384a2 + 288b4 − 24b2n−

512b2 + m+ 40n+ 640

16a
(
16

√
3b+ 72a2 + 72b2 − 3n− 48

)

16
(
8
√
3a2 + 24

√
3b2 + 72a2b+ 72b3 − 3bn− 64b

)
128

√
3a2b+ 128

√
3b3 + 288a4 + 576a2b2 − 48a2n− 384a2 + 288b4 − 48b2n−

512b2 + 3m+ 80n+ 640

Full set of solutions:

b = 0, a = 0, n = −32, m = 640

b = root of
(
27b6 − 171b4 − 165b2 − 400, b

)
,

a = 0, n =
(
216b4 + 3672b2 − 8800

)
/255,

m =
(
11232b4 − 32640b2 + 42880

)
/51

b =
(
5
√
3
)
/14, a =

(√
215i

)
/14, n = (−272) /7, m = 54400/49

b =
(
5
√
3
)
/14, a =

(
−√

215i
)
/14, n = (−272)/7, m = 54400/49

b =
(
−5

√
3
)
/14, a =

(√
215i

)
/14, n = (−272)/7, m = 54400/49

b =
(
−5

√
3
)
/14, a =

(
−√

215i
)
/14, n = (−272) /7, m = 54400/49

4.2 Trigonometric Functions

For trigonometric function we have the choice between two different algebraic substitu-
tions:

• tangent substitution:

sin(α) ⇒ 2 tan(α
2
)

1+tan(α
2
)2

cos(α) ⇒ 1−tan(α
2
)2

1+tan(α
2
)2

generating a system in one variable “tan(α2 )” per angle.

• circle identity: couple sin(α) and cos(α) by adding the unit circle identity
sin(α)2 + cos(α)2 = 1 to the equation system.

While the tangent substitution is well suited for solving many univariate trigonometric
polynomials (and it is used in REDUCE in this context), many experimental calcula-
tions for robot systems have demonstrated the circle identity generates less complex
calculations for systems of equations. The bad behavior of the tangent substitution in
the Buchberger algorithm is probably caused by the denominator which introduces a
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singularity and higher degree polynomials. Consequently we use the circle identity for
completing a system with trigonometric functions.

TR TRIG1:
Input : n, k, x = (x1 . . . xn), trig. P = {f1(x) . . . fk(x)}
Output : n̂, k̂, x̂ = (x1 . . . xk̂), polynomial P̂ = {f̂1(x̂) . . . f̂k̂(x̂)}
IF some sin(α) ∈ fj(x) ∨ cos(α) ∈ fj(x), fj(x) ∈ P :
IF α ∈ {x1 . . . xn} exit FAIL
P ⇐ { x2

n+1+x2
n+2−1}∪(subst sin(α) by xn+1, cos(α) by xn+2 in P )

x ⇐ x ∪ {xn+1, xn+2}, n⇐ n + 2, k ⇐ k + 2
IF ¬independent(α, P ) exit FAIL

REPEAT

The FAIL exit is taken in cases where the system cannot be transformed to a polynomial
one because of transcendental dependencies:

• a variable appears inside and outside of sin or cos, e.g. y + sin(y),

• a variable appears inside of sin or cos in incompatible form, e.g. sin(z) + sin(z2).

In order to eliminate incompatibilites as far as possible the trigonometric solver first
applies a global set of rewriting rules which decomposes sums and integer multiples
of arguments by applying trigonometric identities; at the same time tan and cot are
transformed into quotients of sin and cos:

TR TRIG0:
sin(α+ β) ⇒ sin(α) cos(β) + cos(α) sin(β)
cos(α+ β) ⇒ cos(α) cos(β) − sin(α) sin(β)
sin(nα) ⇒ sin(α) cos((n − 1)α) + cos(α) sin((n− 1)α)∀n > 1 ∈ ZZ

cos(nα) ⇒ cos(α) cos((n − 1)α)− sin(α) sin((n− 1)α)∀n > 1 ∈ ZZ

sin(α)2 ⇒ 1− cos(α)2, tan(α) ⇒ sin(α)
cos(α)

, cot(α) ⇒ cos(α)
sin(α)

An additional problem with trigonometric functions is the back conversion of the
result: if the polynomial solver has found a solution for a transformed system giving an
explicit algebraic relation e.g. sin(α1) = fs(x), cos(α1) = fc(x) the angle α1 is uniquely
determined as soon as fs(x) and fc(x) are known. A more explicit form of these is the
system α1 = arcsin(fs(x)) or α1 = arccos(fc(x)). Unfortunately none of these equations
is sufficient because they only give access to α1 up to a multiple of π with different
principle value ranges. So we use acos for computing the absolute value of α1 and asin
for the sign. Fortunately the relation α > 0 ↔ arcsin(α) > 0 holds, so we can present
an explicit form as
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TR TRIG2: Input : expressions c, s
Output : α where s = sin(α), c = cos(α)

α = sign(s) arccos(c)

Note that the function sign applied to complicated formal expressions often allows a sig-
nificant simplification by rules of algebraic sign propagation. The mechanism currently
used in REDUCE is listed in the appendix.

Example for a trigonometric system ([11]):

cos (x1)x3 − sin (x1)x2 + 5 sin (x1) ,

−2 cos (x1) + 2x23x2 + 2x32 + x2 − 5,

−2 sin (x1) + 2x33 + 2x3x
2
2 + x3

The complete algebraic solution is

{x1 = (2j1 + 1)π, x3 = 0, x2 = 1} (1){
x1 = (2j2 + 1)π, x3 = 0, x2 =

(√
5i− 1

)
/2

}
(2){

x1 = 2j3π, x3 = 0, x2 =
(
−
√
5i− 1

)
/2

}
(3){

x1 = 2j4π, x3 = 0, x2 = root of
(
2q3 + q − 7, q

)}
(4){

x1 = one of

(
2j5π + arcsin

21i

20
, 2j6π − arcsin

21i

20
+ π

)
,

x2 = one of

(
− arccos

29

20
+ 2j7π + π, arccos

29

20
+ 2j8π − π

)
, (5)

x3 =
21i

10
, x2 =

21

10

}
{
x1 = one of

(
2j9π − arcsin

21i

20
, 2j10π + arcsin

21i

20
+ π

)
,

x2 = one of

(
− arccos

29

20
+ 2j13π + π, arccos

29

20
+ 2j11π − π

)
, (6)

x3 =
−21i

10
, x2 =

21

10

}

The solutions (2),(3),(5) and (6) represent some complex values and consequently for (5)
and (6) no unique angle can be assigned for x1. The roots of the polynomial 2q3+ q− 7
are {q ≈ 1.40873, q ≈ −0.70436 + 1.4101i, q ≈ −0.70436− 1.4101i}, so we can proove
algebraically that the system has exactly two real solutions (1) and (4) using q ≈ 1.40873
as root in (4). Note that the sign expressions have been eliminated completely from the
solutions in explicit form.
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Similar to the surd case the transformations TR TRIG0 and TR TRIG1 also apply for
“constant” expressions or parameters built with trigonometric functions; if e.g. in
a system there are constants sin(1) and cos(1) the computation has to be performed
modulo sin(1)2 + cos(1)2 − 1 = 0. The easiest way is to transform these by TR TRIG0

introducing auxiliary variables for the constants. Formally the system afterwards has an
additional degree of freedom increasing the dimension of the ideal by 1. This is no real
problem as long as the auxiliary variables are kept in the last position during Gröbner
calculations: they appear as “free” parameters in the bases and during backward conver-
sion they will be re-transformed as formal constants. Only if the original system had no
solution the transformed system might have a dimension > 0. But such cases are easily
detected as they then establish obviously false algebraic relations for the constants. E.g.
the system

{sin(1)x− 1 = 0, cos(1)y− 1 = 0, x2 − y = 0}
has no solution. If we add sin(1) and cos(1) as additional variables and extend the
system by sin(1)2 + cos(1)− 1 = 0 the Gröbner basis is

{x− sin(1) ∗ cos(1)− sin(1),

y − cos(1)− 1, sin(1)2 − cos(1),

cos(1)2 + cos(1)− 1}

The last polynomial proposes cos(1) as root of a quadratic polynomial which is an
obvious contradiction. Such false solutions can be sorted out automatically during post-
processing.

4.3 General Exponentials

If a variable z appears inside a transcendental function which has a general inverse,
this system can be solved as long as the variable z appears only in one context, which,
however, might occur more than once in the system and in different algebraic relations.
E.g. the system

ax − y, y(y− 1)

can be solved by handling ax as free variable u, solving the polynomial system u−y, (y−
2)(y− 1) invert the solution for u by logarithms:

{y = 2, x = (2j1iπ + ln 2)/ ln a}
{y = 1, x = (2j2iπ)/ ln a}

As this transformation is possible only if the variable appears only in one context,
transformation rules for unifying the transcendental function expressions are applied.
E.g. for exponentials with a common basis the exponents are separated automatically
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(that is done by REDUCE) and for each variable the exponential is transformed into a
common denominator form, e.g.

a2x − a
x
2 + a

x
3 ⇒ (a

x
6 )12− (a

x
6 )3 + (a

x
6 )2

which then is a polynomial in a
x
6 ; solutions for x then can be inverted using logarithms.

� Conclusion

The REDUCE SOLVE facilities for nonlinear equations and equation systems have reached
a rather complete level. The following types of systems can be solved fully automatically
as long as no removable transcendental dependencies are involved:

• pure polynomial systems,

• systems with trigonometric functions,

• systems with surds,

• systems with general exponentials and other invertible transcendental functions,

• mixtures of these,

• with numerical or parametric coefficients,

• with isolated, parametric or mixed solutions.

Of course, there are restrictions in capacity as Gröbner basis computations can require
enormous amounts of computing power - improving this important field of computer
algebra remains a global task. Another very important topic for future development will
be the simplification of formal expressions with transcendental functions, as the formal
solutions generated byt the automatism are often in an unpleasant and unnecessarily
complicated shape.

� APPENDIX

6.1 Sign Propagation

The following rules define an inference mechanism for the sign of a composite algebraic
form. The function sign takes values −1, 0, 1 for negative, zero resp. positive values.
For an algebraic expression u the expression sign(u) is a number if and only if the sign
of u is known; otherwise the expression sign(u) remains unevaluated. The rules are
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interpreted as a rewriting system: if the condition is fulfilled, the expression on the
lefthand side of ⇒ is replaced by the expression on the righthand side.

sign(x) ⇒

⎧⎪⎪⎨
⎪⎪⎩

−1 x < 0

0 x = 0

1 x > 0

IF x is real number

sign(−x) ⇒ −sign(x)
sign(x + y) ⇒ sign(x) IF sign(x) = sign(y)
sign(xy) ⇒ sign(x) ∗ sign(y) IF sign(x) ∈ ZZ ∨ sign(y) ∈ Z
sign(x

y
) ⇒ sign(x) ∗ sign(y) IF sign(x) ∈ ZZ ∨ sign(y) ∈ Z

sign(xn) ⇒ 1 IF n
2 ∈ ZZ ∧ n > 0

sign(xn) ⇒ sign(x) IF n+1
2 ∈ ZZ ∧ n > 0

sign(xy) ⇒ 1 IF sign(x) = 1
sign(x) ⇒ sign(approx.x) IF x is constant

The rule set terminates because all righthand sides are less complicated than the lefthand
sides. The conditions ensure that rewriting takes place only if the number of sign
operators is not increased. The last rule is specific for the algebraic context: Although
representing a constant value an expression can be composite, e.g 1 − 1√

2
; for sign

evaluation such expressions are approximated by usual numerical techniques. So we can
evaluate sign(1 − 1√

2
) ⇒ 1 although we have no rule for propagating the sign over a

sum with terms of different signs.
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[17] H. Melenk, H. M. Möller, and W. Neun. Symbolic solution of large stationary chem-
ical kinetics problems. Impact of Computing in Science and Engineering, 1(2):138–
167, June 1989.
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