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anderen Prüfungsbehörde vorgelegt.

Berlin, den 18. Januar 2014

Tom Walther.

i



Acknowledgements

The work on this thesis has been conducted at Konrad-Zuse-Zentrum für Informati-

onstechnik, Berlin, where I have gained invaluable insights into real-world mathematics

during my time as student assistant.

Most of all, I wish to thank Benjamin Hiller for his constant support, his useful sug-

gestions, critical comments and inspiring ideas. Our regular meetings and discussions

helped a lot!

Special thanks to Stefan Heinz for his instant troubleshooting whenever I had any issue

with SCIP. Without him, I would have been in desperation more than once.

Finally, I want to thank Prof. Martin Grötschel for supervising this thesis.

Berlin, July 2013.

Tom Walther

ii



Zusammenfassung

Diese Arbeit untersucht verschiedene Modellierungsansätze für stückweise lineare Funk-

tion mit besonderem Hinblick auf deren Anwendung in mathematischen Optimierungs-

problemen.

Zu Beginn werden klassische Modelle aus dem Gebiet der gemischt-ganzzahligen Pro-

grammierung (Mixed-Integer Programming, MIP) vorgestellt und anhand zweier Qua-

litätsmerkmale analysiert. Es stellt sich heraus, dass alle Ansätze bis auf die wohlbe-

kannte λ-Methode sowohl scharfe als auch lokal ideale Formulierungen liefern.

Der Hauptteil der Arbeit beschäftigt sich jedoch mit einer alternativen Modellierungs-

variante im Rahmen des sogenannten Constraint Programming (CP). Ziel ist es dabei,

eine stückweise lineare Funktionen enthaltende Klasse von Nebenbedingungen unter

Ausnutzung ihrer Struktur und ohne die Notwendigkeit zusätzlicher Hilfsvariablen di-

rekt im Lösungsprozess der Optimierungsaufgabe zu behandeln. Dazu wird eine Re-

laxierung der Nebenbedingung unter Verwendung ihrer konvexen Hülle vorgeschlagen

und ein auf selbige zugeschnittenes Branch-and-Bound -Lösungsverfahren entwickelt.

Dieses wird mitsamt aller seiner Komponenten ausführlich beschrieben und beurteilt.

Besonderes Augenmerk liegt auf der Entwicklung geeigneter Strategien für die Aus-

wahl der Branchingvariablen. Dabei werden verschiedene aus der MIP-Theorie bekann-

te Ansätze auf die vorgestellte Formulierung stückweise linearer Nebenbedingungen

übertragen und angepasst.

Eine wesentliche Komponente dieser Arbeit stellt die Implementierung des CP-Ansatzes

für den Spezialfall univariater Funktionen als Constraint Handler innerhalb der am

Konrad-Zuse-Institut Berlin entwickelten Optimierungssoftware SCIP dar. Für die

Analyse der Leistungsfähigkeit dieses Constraint Handlers hinsichtlich verschiedener

Aspekte wird eine Anwendung aus dem Bereich der Netzwerkoptimierung für Gastrans-

port betrachtet. Im sogenannten Nominierungsvalidierungsproblem werden stückweise

lineare Nebenbedingungen als Approximationen für nichtlineare gasphysikalische Zu-

sammenhänge eingesetzt. Die erzielten Rechenergebnisse zeigen, dass die vorgeschla-

gene CP-Formulierung zu einer Verringerung der benötigten Knoten im Branch-and-

Bound-Baum im Vergleich zu den gängigen MIP-Modellen führen kann. Als weitere

Erkenntnis ist festzuhalten, dass sich in der Bewertung von Branchingkandidaten eine

gemeinsame Evaluation fraktionaler Binärvariablen und stückweise linearer Nebenbe-

dingungen als vorteilhaft gegenüber der Priorisierung eines der beiden Typen erweist.

Aufgrund einer fehlenden Funktionalität in SCIP, die eine verlässliche Auswahl der bes-

ten Branchingentscheidung nur unter unverhältnismäßig großem Zeitaufwand zulässt,

ist es nicht gelungen, Probleminstanzen von praxisrelevanter Komplexität zu lösen.
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1 Introduction

Piecewise linear functions play an important role in many practical applications, either

occurring generically or as linearizing approximations to non-linear functions. An ex-

ample for the former can be found in the field of production planning, where some item

might be produced at different scales (e.g., small, medium and large scale) with each

of these yielding a distinct constant production cost per item [13]. Then, the revenue

as a function of items sold may be described in a piecewise linear manner. Lineariza-

tions, on the other hand, come into use whenever non-linear functions are undesirable,

for instance, due to their unfavourable computational properties. Mathematical Pro-

gramming can be named as one of these cases, in which the treatment of non-linear

functions is difficult with respect to numerical stability and computational efficiency.

1.1 Piecewise Linear Functions

There exist several ways of defining the concept of a piecewise linear function from

which we have chosen a very general one to be presented here:

Definition 1 (Piecewise linear function). Let D be a compact domain within Rd. A

function f : D → R is called piecewise linear if D can be partitioned into a finite set

of polytopes P with f being defined as affine function over each P ∈ P. That is, f can

be written as

f(x) := {fP (x)}P∈P = {mPx + nP}P∈P

for x ∈ P and with mP ∈ Rd and nP ∈ R for each P ∈ P.

For our purposes, we will require all piecewise linear functions to be continuous and the

partition P to be a simplicial triangulation which will be defined later. Furthermore,

we will distinguish between univariate and multivariate functions.

The main objective of this thesis is the study of mathematical optimization prob-

lems that contain piecewise linear dependencies between variables as part of their

constraints. In particular, we will discuss and evaluate several modelling and solving

approaches. For a practical analysis, we have implemented a constraint handler that

is capable of treating a certain class of piecewise linear constraints within the solution

framework SCIP that is being developed at Konrad Zuse Institute, Berlin.

1.2 Constraint Programming

As an introduction, we want to give a short overview of the terminology and fundamen-

tal concepts of mathematical optimization that we will make use of throughout this
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1.2 Constraint Programming

thesis. The starting point for all our considerations is the very general class of con-

straint programming problems. It consists of optimizing an objective function subject

to a finite set of constraints whose type or form is not further specified.

Definition 2 (Constraint program). Let f : D → R be an objective function defined

on a domain D ⊂ Rd and let C := {C1..Cm} denote a set of constraints. Then, a

constraint program can be defined as

min{f(x) | C(x), x ∈ D}. (CP)

With D := D1 × ..×Dd, x can be written as a tuple (x1..xd) where each xj ∈ Dj. For

any given x ∈ D and for each constraint C ∈ C, it must be possible to decide whether

x satisfies or violates C. We say that some x ∈ D is a feasible solution for (CP) if

x satisfies all constraints in C. A feasible solution x∗ is optimal if f(x∗) ≤ f(x) for

all feasible x. In this case, we write f ∗ := f(x∗). If no feasible solution exists, the

entire problem (CP) is called infeasible. Finally, a problem can be unbounded if there

is no lower bound on the objective function for feasible x, which will be denoted by

f ∗ := −∞.

In accordance with Hooker [18], A general solving procedure for (CP) can be de-

scribed as the combination of three main interacting ingredients:

• The search component is responsible for finding the best solution within the

domain that satisfies all existing constraints. This may be achieved by branching,

i.e., recursively splitting the searched region into smaller pieces, thus creating a

branching tree with each node representing a restricted version of the original

problem. A primal solution of (CP) is found once that the domain of each variable

has been reduced to a single value. By contrast, a subproblem is infeasible and

can be discarded if the domain of any variable has become empty.

• Inference helps directing the search into the right direction by gathering and

exploiting information that arises during the solving process. This information

can either be deduced directly from the constraints or from the objective function

together with a feasible solution. As a typical example, bound propagation may

be performed at every node of the branching tree in order to reduce the vari-

ables’ domains. Inference plays a crucial role for the performance of constraint

programming solvers in practice.

• By relaxation, we understand the enlargement of the search space that may

facilitate the solving process whenever the feasible region of the problem is, in

some manner, difficult to handle. For example, a continuous linear relaxation

creates a polyhedron that contains the original search space. The optimal solution

of the relaxed problem may then either be feasible (and thus optimal) for the

original problem or provide a lower bound on its objective value that may be

used to prune the branching tree.

2



1.3 Outline

As a special case of (CP) with all constraints and the objective function being linear

and all variables being either integral or real-valued, mixed-integer programs (MIP)

have become a significant topic of research due to their practical applicability:

Definition 3 (Mixed-integer program). Let A ∈ Rm×d be a matrix of constraint coef-

ficients, b ∈ Rm and c ∈ Rd vectors and I ⊆ {1..d} a set of indices. A mixed-integer

program can then be stated as

c∗ = min{cTx | Ax ≤ b, x ∈ Rd, xi ∈ Z for all i ∈ I}. (MIP)

Mixed-integer problems, too, can be solved by iteratively considering subproblems in

a branching tree, i.e., by a branch-and-bound or branch-and-cut method. For each of

those subproblems, the linear programming (LP) relaxation is solved and, in case that

some integrality condition is violated, subsequently strengthened by valid inequalities

that cut off the current LP solution. Therefore, such inequalities are called cutting

planes.

Usually, LP relaxations yield stronger bounds than those that the propagation methods

of a CP solver can provide. Moreover, highly specific algorithms have been developed

in the context of mixed-integer programming, e.g., for computing cutting planes. By

contrast, constraint programming allows for greater modelling flexibility such that the

structure of a problem can be captured more directly.

1.3 Outline

In chapter 2, we will present several classical methods of modelling piecewise linear

functions either using binary variables or special ordered sets, thereby analysing some

of their properties such as sharpness and local ideality. Afterwards, chapter 3 deals with

issues of piecewise linear functions in the context of mathematical optimization with

special focus being laid on various aspects and techniques of constraint programming.

That is, we will introduce a convex hull relaxation as a way of directly incorporating

constraints involving piecewise linear functions into optimization problems without the

necessity of additional variables. Next, in chapter 4, we will explain in detail how the

presented ideas and concepts can be applied using SCIP and give some computational

results. Finally, we will summarize the insights and give a short outlook.
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2 MIP Models for Piecewise Linear Functions

Piecewise linear functions can be modelled via mixed-integer programming formula-

tions. We will thereby distinguish between two classes of functions, so-called separable

and non-separable functions, and present several approaches for both of them that can

be found in the literature. In general, we assume all functions to be continuous and to

be defined over compact domains as in definition 1.

Definition 4 (Separability). A function f : Rd → R is called (additively) separable if

it can be expressed as a sum of univariate functions fi : R→ R for i = 1..d, i.e.,

f(x) = f(x1..xd) =
d∑

i=1

fi(xi).

Otherwise, the function f is called non-separable.

In the case of separable functions, we can restrict our considerations to MIP models

for univariate functions as these can then easily be extended.

2.1 Univariate Piecewise Linear Functions

Considering functions of only one real variable, a continuous piecewise linear function

f : R → R can be defined by n+1 nodes x̄j with j = 0..n and the function values

ȳj := f(x̄j) at these nodes. Hence, the graph of such a function consists of n connected

line segments. The points {(x̄j, ȳj)}nj=0 are referred to as support points of f . An

example of a univariate piecewise linear function is given in figure 1. All MIP models

presented in the following introduce additional variables in order to describe the shape

of a piecewise linear function, together with a set of combinatorial constraints. An

overview of these models has been provided by Geissler [14].

x

y = f(x)

x̄0 x̄nx̄j

ȳj

Figure 1: A univariate piecewise linear function.
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2.1 Univariate Piecewise Linear Functions

2.1.1 Convex Combination Method

The most widely known MIP formulation of a piecewise linear function uses convex

combinations of two neighbouring nodes to compute the function values for all points

that lie in-between those nodes. We therefore introduce a set of multipliers Λ :=

{λ0 ..λn} with each λj ∈ [0, 1] corresponding to node x̄j. Due to these multipliers,

the formulation is sometimes also referred to as λ-method. Furthermore, one binary

variable zj is assigned to each interval [x̄j−1, x̄j], j = 1 ..n. In order to simplify the

formulation, we add fixed artificial variables z0 = zn+1 = 0 and finally arrive at the

following MIP model (CC) [11]:

x =
n∑

i=0

λix̄i (1)

y =
n∑

i=0

λiȳi (2)

n∑
i=0

λi = 1 (3)

n∑
i=1

zi = 1 (4)

0 ≤ λj ≤ zj + zj+1 j = 0 ..n (5)

zj ∈ {0, 1} j = 1 ..n (6)

From (4) we can conlude that only one binary variable zj is allowed to be 1 whereas

all others must be equal to 0. Constraints (5) then ensure that if zj = 1, only λj−1

and λj can have a positive value, which finally yields x ∈ [x̄j−1, x̄j]. Because all pairs

of subsequent intervals [x̄j−1, x̄j] and [x̄j, x̄j+1], j=1..n−1, share a common multiplier

λj at node x̄j, the given formulation is known as the aggregated version of the convex

combination method. Its functioning is illustrated in figure 2.

x̄j−1 x̄jx

λj−1 λjȳj−1

ȳj

y

λj−1

λj

Figure 2: The Convex Combination Method.
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2.1 Univariate Piecewise Linear Functions

By contrast, the so-called disaggregated version uses distinct λ-variables for each in-

terval, i.e., a set of multipliers Λ∗ := {λl1, λu1 ..λln, λun}. The MIP model (CC∗) resulting

from these changes can be formulated as follows:

x =
n∑

i=1

λlix̄i−1 + λui x̄i (1*)

y =
n∑

i=1

λliȳi−1 + λui ȳi (2*)

n∑
i=1

λli + λui = 1 (3*)

n∑
i=1

zi = 1 (4*)

λlj + λuj ≤ zj

λlj, λ
u
j ≥ 0

j = 1 ..n (5*)

zj ∈ {0, 1} j = 1 ..n (6*)

It uses considerably more variables than (CC), which, however, is outweighed by a gain

in terms of tightness of the formulation, as we will see in detail in section 2.2.

2.1.2 Incremental Method

For any point x ∈ [x̄j−1, x̄j], j = 1..n, its convex combination representation in x̄j−1

and x̄j can also be written as x = x̄j−1 + (x̄j − x̄j−1)δj, now using a set of variables

∆ = {δ1..δn} with all δj ∈ [0, 1] that gives rise to the model’s alternative name δ-

method. This time, employing n − 1 binary variables z1 ..zn−1, i.e., one less than

previously, leads to the following formulation (INC) [24]:

x = x̄0 +
n∑

i=1

(x̄i − x̄i−1)δi (7)

y = ȳ0 +
n∑

i=1

(ȳi − ȳi−1)δi (8)

δ1 ≤ 1

δj ≥ zj ≥ δj+1 j = 1 ..n− 1 (9)

δn ≥ 0

zj ∈ {0, 1} j = 1 ..n− 1 (10)

6



2.1 Univariate Piecewise Linear Functions

Constraints (9) imply that if zj = 1, all variables zi and δi with 1 ≤ i ≤ j will also be

set to 1. For having this property these constraints are called filling conditions. For

the smallest index j with zj = 0, δj is allowed to take any value between 0 and 1,

while all variables zi and δi with i > j are forced to 0. From this, again, it follows that

x ∈ [x̄j−1, x̄j].

x̄j−1 x̄jx

δjȳj−1

ȳj

y

ȳj−ȳj−1

x̄j−x̄j−1
δj

Figure 3: The Incremental Method.

2.1.3 Multiple Choice Method

A slight modification of the incremental model, in which several or even all binary

variables may have value 1, leads to another formulation, called multiple choice model

(MC) [4], that allows no more than one binary variable to be positive:

x = x̄0 +
n∑

i=1

[(x̄i−1 − x̄0)zi + (x̄i − x̄i−1)δi] (11)

y = ȳ0 +
n∑

i=1

[(ȳi−1 − ȳ0)zi + (ȳi − ȳi−1)δi] (12)

n∑
i=1

zi ≤ 1 (13)

0 ≤ δj ≤ zj j = 1 ..n (14)

zj ∈ {0, 1} j = 1 ..n (15)

The restriction mentioned above is ensured by (13). By constraint (14), a variable δj,

j = 1..n, may only take a positive value if zj = 1, thereby determining the position of

x within the interval [x̄j−1, x̄j].

7



2.1 Univariate Piecewise Linear Functions

2.1.4 Logarithmic Models

In general, with a set of n binary variables one can express 2n different states of

a system. Conversely, in order to represent n states it would be sufficient to use

only dlog2 ne binary variables. Based on this insight, Vielma and Nemhauser [33]

developped the idea of modelling piecewise linear functions as a MIP that only uses a

logarithmic number of binary variables in the number of line segments. In their original

paper, they concentrated on a logarithmic version of (CC), but the same approach can

be applied to other formulations as well.

As a start, it is useful to introduce the concept of so-called Special Ordered Sets (SOS)

that are characterised by their elements following a particular structure. They were

first mentioned by Tomlin and Beale [31] and typically come in two fashions:

• SOS-1: Set of variables where at most one variable may be non-zero.

• SOS-2: Set of variables where at most two variables may be non-zero. If two

variables are non-zero, then they must be adjacent.

Logarithmic formulation of (CC):

It follows from the constraint set of (CC) that the definition of SOS-2 applies to the

variables in Λ = {λ0..λn}. Since the SOS-2 conditions only allow for n different cases

of assigning zero or non-zero values to all λj, we should be able to model them with

dlog2 ne binary variables.

The basic tool making this possible will be a Gray code, i.e. a dual enconding scheme

in which neighbouring code words only differ by one dual digit. To generate this

code for each line segment of a piecewise linear function, we use an injective function

c : {1..n} → {0, 1}dlog2 ne which must furthermore guarantee that, for k = 1..n− 1, all

but one component of c(k) and c(k + 1) have the same values.

Assuming that we have found such a function, we now proceed with defining an inci-

dence relation for any number i ∈ {0..n}:

N(i) :=


{1} i = 0

{n} i = n

{i, i+ 1} otherwise

(16)

To make sure that for every function value of c(·) only those λ-values adjacent to the

corresponding line segment are allowed to be positive, we introduce the following index

sets for j = 1..dlog2 ne with supp(x) = {j : xj 6= 0} denoting the support of a vector:

I+(j, c) := {i : j ∈ supp(c(k)) ∀k ∈ N(i)}, (17)

I−(j, c) := {i : j /∈ supp(c(k)) ∀k ∈ N(i)}. (18)

8



2.1 Univariate Piecewise Linear Functions

The SOS-2 conditions can now be enforced via the inequalities∑
i∈I+(j,c)

λi ≤ zj ∀j = 1..dlog2 ne, (19)

∑
i∈I−(j,c)

λi ≤ 1− zj ∀j = 1..dlog2 ne. (20)

The logarithmic formulation of the convex combination model, denoted by (CClog), is

then obtained by replacing all inequalities (4)-(5) except the non-negativity constraints

on λj, j = 0..n, by (19)-(20).

As it might not be very intuitive to see that this procedure indeed works properly, we

will demonstrate its functioning with the help of an example:

Example 1 (Logarithmic MIP formulation of (CC)). Consider the following domain

partition consisting of n = 5 intervals and the values of the function c(·) assigned to

each of them. Note that we need a 3-bit encoding scheme as dlog2 5e ≈ d2, 32e = 3 and

that the proposed function values do well comply with the Gray code property.

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

k

c(k)

1

000

2

100

3

110

4

010

5

011

Figure 4: Example of a logarithmic formulation.

We start by explicitely writing down the incidence relation N(i) for all i = 0..5 as

defined in (16), and, for each k ∈ N(i), respectively, the support of the vector c(k):

i N(i) k ∈ N(i) c(k) supp(c(k))

0 {1} 1 (0, 0, 0) ∅

1 {1, 2} 1 (0, 0, 0) ∅
2 (1, 0, 0) {1}

2 {2, 3} 2 (1, 0, 0) {1}
3 (1, 1, 0) {1, 2}

3 {3, 4} 3 (1, 1, 0) {1, 2}
4 (0, 1, 0) {2}

4 {4, 5} 4 (0, 1, 0) {2}
5 (0, 1, 1) {2, 3}

5 {5} 5 (0, 1, 1) {2, 3}

Table 1: Incidence relation and support of Gray code vectors.

9



2.1 Univariate Piecewise Linear Functions

With all this, we can now construct the index sets I+(j, c) and I−(j, c) as in (17) and

(18) for all j = d1.. log2 ne and, hence, obtain the set of inequalities (19) and (20)

representing the SOS-2 conditions:

I+(1, c) = {2} → λ2 ≤ z1

I−(1, c) = {0, 4, 5} → λ0 + λ4 + λ5 ≤ 1− z1

I+(2, c) = {3, 4, 5} → λ3 + λ4 + λ5 ≤ z2

I−(2, c) = {0, 1} → λ0 + λ1 ≤ 1− z2

I+(3, c) = {5} → λ5 ≤ z3

I−(3, c) = {0, 1, 2, 3} → λ0 + λ1 + λ2 + λ3 ≤ 1− z3

Finally, we can verify that these conditions indeed work as they should by inserting the

Gray code values c(k) into the system. Exemplarily, with (z1, z2, z3) = c(3) = (1, 1, 0)

we obtain, as expected,

λ2 ≤ 1, λ3 ≤ 1, λ2 + λ3 ≤ 1,

λ0 = λ1 = λ4 = λ5 = 0.

Logarithmic formulation of (MC):

Whereas (CC) was based on the SOS-2 conditions, with (MC) we also have at hand a

MIP formulation whose continuous auxiliary variables ∆ = {δ1..δn} follow the structure

of SOS-1. In order to give a logarithmic variant of this model, we keep the idea of Gray

encoding but slightly modify the previously defined sets. First, as only one variable δi
is assigned to each interval, the incidence relation N(·) simplifies to

N(i) := {i} i = 1..n, (16*)

making itself dispensable for the following considerations. That is, the index sets I+

and I− can be reduced to

I+(j, c) := {i : j ∈ supp(c(i))}, (17*)

I−(j, c) := {i : j /∈ supp(c(i))}. (18*)

With this, we can express the SOS-1 conditions using the inequalities∑
i∈I+(j,c)

δi ≤ zj ∀j = 1..dlog2 ne, (19*)

∑
i∈I−(j,c)

δi ≤ 1− zj ∀j = 1..dlog2 ne. (20*)

10



2.1 Univariate Piecewise Linear Functions

The logarithmic multiple choice model (MClog) arises by replacing (13)-(14) by (19*)-

(20*) and imposing non-negativity constraints on all δj, j = 1..n.

2.1.5 Continuous Formulations

In all of the formulations mentioned so far, additional binary variables were introduced

together with linear constraints in order to model the characteristics of the continuous

variables. For example, as we have seen above, some models require the variables to

follow the structure of special ordered sets. As an alternative to enforcing the respective

combinatorial constraints via binary variables, Tomlin and Beale [31] suggested a

constraint programming approach that directly incorporates the SOS conditions into

the problem and provides specific branching rules. That is, every time the current

LP solution of the branch-and-bound algorithm does not satisfy the SOS requirement,

subproblems may be created such that this solution is excluded until, finally, a feasible

solution is found. In order to demonstrate the idea, we will now derive continuous

SOS-based constraint programming formulations from (CC) and (INC).

Continuous formulation of (CC):

The aggregated version of the convex combination method requires the set of continuous

variables Λ = {λ0..λn} to be of type SOS-2, which is enforced by the constraints (5).

We now eliminate these constraints and all binary variables, and instead state the

model that we will call (CCSOS) as follows:

x =
n∑

i=0

λix̄i (21)

y =
n∑

i=0

λiȳi (22)

n∑
i=0

λi = 1 (23)

λj ≥ 0 ∀j = 0..n (24)

Λ = {λ0..λn} is SOS-2 (25)

Assuming that we have obtained a solution that does not comply with the SOS-2

conditions at some node of the branch and bound tree, one can create two child nodes

by imposing the additional constraints
∑k

i=0 λi = 1 and
∑n

i=k λi = 1, respectively.

Thereby, the index k is chosen such that the current solution is made infeasible for

both of the resulting subproblems.

11



2.2 Properties of the Models

Continuous formulation of (INC):

In the incremental model, all but one variable is allowed to take a value other than 0 or

1. Furthermore, if such a variable exists, all preceding variables must be 1 whereas all

variables that follow must be set to 0. Keha et al. [23]refer to these requirements on

the set ∆ = {δ1..δn} as SOS-X conditions. By similar means as in the previous case,

we obtain the continuous formulation (INCSOS):

x = x̄0 +
n∑

i=1

(x̄i − x̄i−1)δi (26)

y = ȳ0 +
n∑

i=1

(ȳi − ȳi−1)δi (27)

δj ≥ 0 ∀j = 1..n (28)

∆ = {δ1..δn} is SOS-X (29)

To illustrate a reasonable branching strategy, we assume that there exists a variable

δj < 1 and a variable δk > 0 for some k > j in the current LP solution, which obviously

violates the SOS-X conditions. We can then create two subproblems, adding δj = 1 to

one of them and δj+1 = .. = δn = 0 to the other.

2.2 Properties of the Models

In this section, we want to study some properties related to the strength of the presented

MIP formulations. In order to do so, we first need to give a formal definition of a binary

MIP model and apply it to the context of piecewise linear functions:

Definition 5 (Binary MIP model). A polyhedron P ⊂ Rd × R × Rp × Rq is called

binary MIP model for a set S ⊂ Rd × R, if

(x, y) ∈ S ⇔ ∃ (µ, z) ∈ Rp × {0, 1}q s.t. (x, y,µ, z) ∈ P. (30)

In our case, the set S represents the graph of a function f , i.e., S := {(x, y)} ⊂ Rd×R
for all x ∈ D and y := f(x). As for the analysis of univariate piecewise linear functions

with D ⊂ R, we get S = {(x, y)} ⊂ R2. The definition, in other words, states that

every point of the function graph must correspond to a feasible point of the MIP model

and vice-versa. The continuous auxiliary variables are denoted by µ ∈ Rp whereas the

variables z ∈ Rq are binary. Notice that P can also be seen as the LP relaxation of the

formulation.

By construction, each of the classical models (CC), (CC∗), (INC) and (MC) as well as

their logarithmic reformulations comply with the definition of a binary MIP model. We

12



2.2 Properties of the Models

will begin with studying the strongest property of a MIP formulation with respect to

its tightness, called local ideality [27], followed by a study of a weaker property which

is referred to as sharpness.

2.2.1 Local Ideality

Definition 6 (Locally ideal MIP formulation). A MIP formulation is called locally ideal

if all extreme points of its LP relaxation satisfy the original integrality constraints.

By P
(·)
LP we will denote the feasible region of the LP relaxation of each of the presented

non-logarithmic formulations. Thereby, for simplicity, we consider the projections onto

the auxiliary variables, since x and y are only used for value assignments and do

not occur in any other dependencies. Moreover, instead of aggregating the respective

multipliers in sets Λ and ∆, from now we will regard them as vectors λ and δ. That

is, we obtain

P
(CC)
LP = {(z,λ) ∈ R2n+1 : (z,λ) satisfies (3), (4), (5), z ∈ [0, 1]n},

P
(CC∗)
LP = {(z,λ) ∈ R3n : (z,λ) satisfies (3*),(4*),(5*), z ∈ [0, 1]n},

P
(INC)
LP = {(z, δ) ∈ R2n−1 : (z, δ) satisfies (9), z ∈ [0, 1]n−1},

P
(MC)
LP = {(z, δ) ∈ R2n : (z, δ) satisfies (13), (14), z ∈ [0, 1]n−1}.

With all of the occurring variables being bounded, each of these sets represents a

polytope.

In the following, we want to show that (CC∗), (INC) and (MC) are locally ideal MIP

formulations whereas (CC) is not. Before being able to do so, however, we need to

show some preliminary properties based on the notion of total unimodularity.

Definition 7 ((Totally) Unimodular matrix).

• A square matrix M is unimodular if all its entries are integer and det(M) = ±1.

• A matrix M is called totally unimodular if all square non-singular submatrices of

M are unimodular.

In the proofs that follow below, a theorem known as Cramer’s Rule will play an im-

portant role. As it is a classical result from linear algebra whose proof can be found in

many textbooks and which is not of immediate interest here, we will only state it as a

lemma.

13



2.2 Properties of the Models

Lemma 1 (Cramers Rule). Consider a square matrix M ∈ Rd×d having full rank.

Then the linear system of equations Mv = b has a unique solution v∗ ∈ Rd whose

components v∗j , j = 1..d, are given by

v∗j =
det(Mj)

det(M)
,

where Mj is the matrix obtained by replacing the j-th column in M by the vector b.

With the help of Cramers Rule and using the definition of total unimodularity, we

can now derive a very convenient characterization of the extreme points of a polytope

defined by a set of linear inequalities:

Lemma 2. If M is a totally unimodular matrix of dimension m× d and b ∈ Zm, then

every vertex solution of the system Mv ≤ b is integral.

Proof. The proof is standard in Linear Algebra. Let d := dim(v). First of all, we know

that every vertex solution v∗ of Mv ≤ b is defined by a set of d linearly independent

tight inequalities. Let M̃ denote the square submatrix of M corresponding to those

inequalities and b̃ the vector of the respective entries in b, such that it holds M̃v∗ = b̃.

As we have assumed M to be totally unimodular, it follows that det(M̃) = ±1. With

b being an integer vector, applying Cramers Rule finally assures integrality of v∗.

Lemma 3. Under the same presumptions as in lemma 2, all vertex solutions of the

system {Mv = b,v ≥ 0} are integral.

Proof. Again, the proof comes from Linear Algebra. We begin with expressing the

system equivalently using inequalities only, i.e., as a system Nv ≤ c with

N =

 −I

M

−M

 and c =

 0

b

−b

 ,

where I denotes the identity matrix and 0 a zero vector of matching dimension. In

analogy to the previous proof, we denote by Ñ the matrix that consists of all rows in

N corresponding to tight inequalities at some vertex solution of the system. Obviously,

Ñ must contain all rows belonging to M and −M, plus some rows of −I. Since M

is of rank m, there exists a non-singular square matrix M̃ of dimension d × d in Ñ

that fully contains M and, additionally, a part of −I. From the total unimodularity of

M it follows that M̃ is unimodular, which, again, yields integrality of all vertices by

Cramers Rule.

In the special case of matrices that only consist of entries 0, +1 or −1, we can find an

easy-to-validate sufficient condition for total unimodularity:
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2.2 Properties of the Models

Lemma 4. A matrix M whose entries are exclusively 0, +1 and −1 is totally unimod-

ular if it contains no more than one positive and one negative entry per column.

Proof. The proof can be found in standard Linear Algebra textbooks.

With the help of the two previous lemmas, we can now return to showing local ideality

of some of the formulations presented above. The ideas for this have been given by

Vielma et al. [32] and Padberg [26].

Theorem 1. The disaggregated convex combination model (CC∗), the incremental

model (INC) and the multiple choice model (MC) are locally ideal MIP formulations.

Proof. We restrict ourselves to showing that the result is true for (INC), because the

arguments remain the same for the other two formulations.

At first, consider the set of constraints defining P
(INC)
LP which can be reformulated as

a system of linear inequalities of the form Av ≤ b with

v =



z1

...

zn−1

δ1

...

δn


, A =



0 · · · · · · 0 1 0 · · · · · · 0

1 0 · · · 0 −1 0 · · · · · · 0

0 1
. . .

... 0 −1
. . .

...
...

. . . . . . 0
...

. . . . . . . . .
...

0 · · · 0 1 0 · · · 0 −1 0

−1 0 · · · 0 0 1 0 · · · 0

0 −1
. . .

...
...

. . . 1
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 · · · 0 −1 0 · · · · · · 0 1

0 · · · · · · 0 0 · · · · · · 0 −1



, b =



1

0
...

0

0
...

0

0


.

We observe that the matrix A fulfills the assumptions of Lemma 4, thus it is totally

unimodular. Hence, by Lemma 2, every vertex of the LP polytope of (INC) must be

integral.

For the proof of (CC∗), notice that we can use constraint (3*) to get equality in (5*),

i.e., λlj + λuj = zj for j = 1..n. Then, Lemma 3 applies instead of Lemma 2.

In contrast to that, it can be shown that the property of local ideality does not hold

for the aggregated version of (CC), and, additionally, that (CC) is strictly dominated

by (INC) [26]. In order to be able to compare these two models, we will now develop

an equivalent formulation for (CC) that uses the same sets of variables as (INC).
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2.2 Properties of the Models

In a first step, we use constraints (3) and (4) to eliminate the variables λ0 and zn from

the model:

λ0 = 1−
n∑

i=1

λi

z1 = 1−
n∑

i=2

zi

Note that with z1 ∈ {0, 1} we immediately get
n∑

i=2

zi ∈ {0, 1}.

Next, we consider the following variable substitutions and their respective inverse map-

pings:

δj :=
n∑

i=j

λi j = 1 ..n ⇐⇒

{
λj = δj − δj+1 j = 1 ..n− 1

λn = δn
(31)

z̃j :=
n∑

i=j+1

zi j = 1 ..n− 1 ⇐⇒

{
zj = z̃j−1 − z̃j j = 2 ..n− 1

zn = z̃n−1

(32)

Obviously, all new variables z̃ = (z̃1..z̃n−1) are restricted to be binary. Furthermore,

the original z-variables being binary translates into additional constraints from which,

however, all but z̃j ≥ z̃j+1, j = 1 ..n−1, are redundant.

For simplicity, again, we add fixed artificial variables z̃0 = 1 and z̃n = 0. Applying all

this to (CC) yields a new formulation which we will denote by (CC’):

x = x̄0 +
n∑

i=1

(x̄i − x̄i−1)δi (33)

y = ȳ0 +
n∑

i=1

(ȳi − ȳi−1)δi (34)

δ1 ≤ 1

δj ≥ δj+1 j = 1 ..n− 1 (35)

δn ≥ 0

z̃j ≥ z̃j+1 j = 1 ..n− 2 (36)

δ1 ≥ z̃1

δj − δj+1 ≤ z̃j−1 − z̃j+1 j = 1 ..n− 1 (37)

δn ≤ z̃n−1

z̃j ∈ {0, 1} j = 1 ..n− 1 (38)
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2.2 Properties of the Models

All variables being explicitly or implicitly bounded, let P
(CC′)
LP be the LP polytope of

the reformulated convex combination model, i.e.,

P
(CC′)
LP = {(z̃, δ) ∈ R2n−1 : (z̃, δ) satisfies (35), (36), (37), z̃ ∈ [0, 1]n−1}.

The (CC’) formulation is, by its construction, equivalent to (CC). However, it is based

on the same variables as those used in (INC), making a comparison of both models

possible. Therefore, in the following, we will simply denote the set of variables z̃ by z.

Theorem 2. P
(INC)
LP ⊂ P

(CC′)
LP . Furthermore, the convex combination model is not

locally ideal.

Proof. The proof follows the steps presented in [26]. Let (z, δ) ∈ P (INC)
LP . The set of

constraints (9) implies that 1 ≥ δ1 ≥ .. ≥ δn ≥ 0, which makes it easy to see that (z, δ)

is also contained in P
(CC′)
LP . Hence, P

(INC)
LP ⊂ P

(CC′)
LP .

Next, let (z, δ) ∈ P (CC′)
LP such that z ∈ [0, 1]n−1. As the constraints (4*) jointly imply

z1 ≥ .. ≥ zn−1, let k be the highest index for which zj = 1, or, if all zj = 0, set

k := 0. With this, we can derive from the constraints (3*) that 0 ≤ δk+1 ≤ 1,

δk+2 = .. = δn−1 = 0 and, in the case of k ≥ 1, δ1 = .. = δk = 1. The variables (z, δ)

being restricted in this manner fulfill the constraints (9) of the incremental formulation,

thus (z, δ) ∈ P (INC)
LP .

At this stage, we know that P
(CC′)
LP fully contains P

(INC)
LP . Apart from this, it does not

include any further points with binary values for z. It remains to show that there are

non-integral points that belong to P
(CC′)
LP but not to P

(INC)
LP . Consider therefore (z, δ)

given by z1 = z2 = 1
2
, z3 = .. = zn−1 = 0, δ1 = 1

2
and δ2 = .. = δn = 0. It can easily be

verified that (z, δ) ∈ P (CC′)
LP and (z, δ) /∈ P (CC′)

LP . As P
(CC′)
LP is a polytope, this finally

tells us that some of its vertices must have fractional values in z. Hence, (CC’) is not

locally ideal.

2.2.2 Sharpness

Definition 8 (Sharp MIP formulations). A MIP model P ⊂ Rd+1+p+q of a set S =

(x, y) ⊂ Rd+1 is said to be sharp if P | (x,y) = conv(S), i.e., the projection of the

polytope P onto the first d+1 variables is exactly the convex hull of S.

The goal of this section that largely builds upon the paper by Vielma et al. [32] is

to show that all of the presented MIP formulations are sharp. For most of them, this

follows from the fact that their local ideality implies sharpness. Beyond that, we will

find an alternative way to prove that the property even holds for the only non-locally

ideal model (CC).
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2.2 Properties of the Models

As a first step, we can state the following lemma which is an adapted version of a

theorem in the article of Jeroslow and Lowe [20].

Lemma 5. For any closed set S ⊂ Rd+1 and for any MIP model P ⊂ Rd+1+p+q for S,

the projection of P onto the variables (x, y) contains the convex hull of S.

Proof. Let (x̄, ȳ) ∈ conv(S). Then it can be expressed as a finite convex combination

of points (x(i), y(i)) ∈ S, i.e.,

∃ γ ∈ Rt, t <∞,
t∑

i=1

γi = 1 s.t. (x̄, ȳ) =
t∑

i=1

γi(x
(i), y(i)).

Since P is a MIP model for S, each of these points (x(i), y(i)) ∈ S corresponds to a

point in P . That is, for all i = 1..t,

∃ µ(i) ∈ Rp, z(i) ∈ {0, 1}q s.t. (x(i), y(i),µ(i), z(i)) ∈ P.

From the convexity of P , using the same multipliers γ as above and with µ̄ =
∑t

i=1 µ
(i)

and z̄ =
∑t

i=1 z(i), we can conclude that

t∑
i=1

γi(x
(i), y(i),µ(i), z(i)) = (x̄, ȳ, µ̄, z̄) ∈ P.

Hence, (x̄, ȳ) ∈ P |(x,y).

With this, in order to show that a MIP formulation is sharp, it remains to prove that

the opposite inclusion also holds, i.e., P | (x,y) ⊂ conv(S) [32].

Theorem 3. All locally ideal MIP formulations are sharp.

Proof. Let P ∈ Rd+1+p+q be the polytope defining the MIP formulation of a set S =

(x, y) ∈ Rd+1 according to definition 5 and let (x̄, ȳ) ∈ P | (x,y). Then, there exist

µ̄ ∈ Rp and z̄ ∈ [0, 1]q such that (x̄, ȳ, µ̄, z̄) ∈ P .

Since P is locally ideal, all its extreme points fulfil the binary integrality constraints

of the z-variables. Assuming that P is bounded and, hence, a polytope, as is the case

for all of the presented MIP models, any point of P can be expressed as a convex

combination of these extreme points. Hence,

∃ γ ∈ RI
+,
∑
i∈I

γi = 1 s.t. (x̄, ȳ, µ̄, z̄) =
∑
i∈I

γi (x(i), y(i),µ(i), z(i)),

for | I |< ∞ and with (x(i), y(i),µ(i), z(i)), i ∈ I, being the extreme points of P , i.e.

z(i) ∈ {0, 1}q. By the definition of a binary MIP model, we know that (x(i), y(i)) ∈ S
for all i ∈ I. Thus, (x̄, ȳ) ∈ conv(S).
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2.3 Multivariate Non-Separable Piecewise Linear Functions

It remains to show that (CC) is sharp as well, which will not be difficult [32]:

Theorem 4. The convex combination method yields a sharp MIP model.

Proof. Let S := {(x, y)} ⊂ R2 be the graph of a piecewise linear function f ,

P := {(x, y,λ, z) ∈ R× R× Rd+1 × [0, 1]d : (1)− (5)}

be the polytope of the LP relaxation of (CC) and let

P̃ := {(x, y,λ) ∈ R× R× Rd+1 : (1)− (3), λj ≥ 0 ∀j = 0..n}

be derived from P by simply dropping the variables z and all of the dependencies in

which they occur. Clearly, it holds that P |(x,y,λ)⊂ P̃ and P̃ |(x,y)⊂ conv(S). Combined

together, the last two statements yield P |(x,y)⊂ conv(S).

2.3 Multivariate Non-Separable Piecewise Linear Functions

Until now we have only considered MIP models for univariate piecewise linear functions

which can straightforwardly be extended to cover the class of multivariate additively

separable functions. In order to handle general multivariate functions, however, we

have to adapt the previously presented models using modelling techniques for functions

of arbitrary higher dimension. A broad review on the topic of multivariate piecewise

linear functions from which we have taken many ideas can be found in the Phd thesis

by Geissler [14].

In definition 1 we have specified the domain D of a piecewise linear function to be the

union of finitely many polytopes. For the models that we are going to derive in the

following, however, it is necessary to be slightly more restrictive. That is, let D now

be partitioned into a finite number of simplices S ∈ S and let n :=| S |. Thereby, a

d-simplex is defined as d-dimensional polytope having exactly d+1 vertices. We denote

the set of vertices of a simplex S by

V (S) := {x̄S
0 ..x̄

S
d} with x̄S

i ∈ Rd,

and, with m being their total number, the set of all vertices of the partition S by

V (S) = {x̄1..x̄m} :=
⋃
S∈S

V (S).

Furthermore, we assume the simplicial partition S to be a triangulation, which will be

useful for some of the formulations and fundamental for others.
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2.3 Multivariate Non-Separable Piecewise Linear Functions

Definition 9 (Triangulation). A set S of d-simplices is called triangulation if the

following two properties hold:

1. For all simplices Si, Sj ∈ S, i 6= j, the intersection Si ∩ Sj is either a facet of Si

and Sj, a single point or empty.

2. For all subsets ∅ 6= T ⊂ S there exist at least one simplex T ∈ T and one simplex

S ∈ S \ T such that S and T share d common vertices.

Notice that if S is a partition of a convex compact domain D, the second condition is

automatically fulfilled. Examples of valid and non-valid triangulations in two dimen-

sions are given in 5.

(a) Violation of 1. (b) Violation of 2. (c) Valid triangulation.

Figure 5: Examples of 2-dimensional triangular partitions. Figures (a) and (b)
violate the first and the second condition of definition 9, respectively,
whereas (c) shows a valid triangulation.

With these preparations, we are now ready to state the generalized MIP models for the

class of multivariate non-separable piecewise linear functions. Thereby, we will proceed

in the same order as in section 2.

2.3.1 Generalized Convex Combination Method

In analogy to the univariate case, this method is based on the idea that, for a d-simplex

S, every point x ∈ S can be written as a convex combination of the d+1 vertices of S.

Again, we will distinguish between an aggregated and a disaggregated version of the

convex combination method. In the aggregated case, exactly one multiplier λj ∈ Λ is

introduced at each vertex x̄j ∈ v(S), j = 1..m. By contrast, the disaggregated version

uses separate variables for each simplex, i.e., a set of variables Λ∗ := {Λ∗S}S∈S with

Λ∗S := {λS0 ..λSd} for all S ∈ S. In addition to that and for both variants alike, each

simplex S ∈ S is assigned a binary variable zS.

20



2.3 Multivariate Non-Separable Piecewise Linear Functions

Beginning with the aggregated convex combination method, we arrive at the following

MIP formulation (GCC):

x =
m∑
i=1

λix̄i (39)

y =
m∑
i=1

λiȳi (40)

m∑
i=1

λi = 1 (41)

∑
S∈S

zS = 1 (42)

0 ≤ λj ≤
∑

{S:x̄j∈V (S)}

zS j = 1 ..m (43)

zS ∈ {0, 1} S ∈ S (44)

The disaggregated version, denoted by (GCC*), can be formulated as:

x =
∑
S∈S

∑
v∈V (S)

λSv x̄S
v (39*)

y =
∑
S∈S

∑
v∈V (S)

λSv ȳ
S
v (40*)

∑
S∈S

∑
v∈V (S)

λSv = 1 (41*)

∑
S∈S

zS = 1 (42*)

∑
v∈V (S)

λSv ≤ zS S ∈ S (43a*)

λSv ≥ 0
S ∈ S
v ∈ V (S)

(43b*)

zS ∈ {0, 1} S ∈ S (44*)

Notice that no ordering of the simplices is required for these formulations. As we will

see, this will not be the case for the generalizations of (INC) as well as (MC).
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2.3 Multivariate Non-Separable Piecewise Linear Functions

2.3.2 Generalized Incremental Model

In the incremental model, we use the fact that every point x of a simplex S can be

expressed as

x = x̄S
0 +

d∑
j=1

(x̄S
j − x̄S

0 )δSj

with non-negative multipliers ∆S := {δS1 ..δSd } that are restricted by
d∑

i=1

δSi ≤ 1. See

figure 6 for an illustration.

x̄0

x̄1

x̄2

(x̄1 − x̄0)δ1

(x̄2 − x̄0)δ2

x

Figure 6: δ-representation of an interior simplex point.

As another main characteristic feature of the incremental model, the so-called filling

conditions relied on an ordering of the underlying simplices. This ordering was trivially

induced in the one-dimensional case by labelling the subintervals according to their po-

sition, whereas for general dimensionality additional considerations become necessary.

In order to formulate a generalization of (INC) we need the triangulation to fulfill two

properties:

• The set of simplices S = {S1..Sn} is ordered such that Si ∩ Sj 6= ∅ for all i 6= j.

• The vertices x̄
Sj

0 ..x̄
Sj

d of each simplex Sj, j = 1..n− 1, can be labelled such that

x̄Si
d = x̄

Si+1

0 , i.e., the first vertex of every simplex corresponds to the last vertex

of the previous one.

We assume at this point that we have such a triangulation at hand. In fact, it can

be shown that, given an arbitrary triangulation, an ordering fulfilling the required

properties can be computed in O(n2 + nd2) time [14].

With this, it is possible to reach the first vertex x̄
Sj

0 of any simplex Sj via a path along

the edges of the simplices preceding Sj. That is, we can write x̄
Sj

0 as

x̄
Sj

0 = x̄S1
0 +

n∑
i=1

(x̄Si
d − x̄Sk

0 ).
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2.3 Multivariate Non-Separable Piecewise Linear Functions

Combining this with the representation of a point inside a single simplex given above,

we can now state the generalized incremental model that will be denoted by (GINC).

Besides the continuous variables ∆ = {∆S1 ..∆Sn} with ∆Sj = {δSj

1 ..δ
Sj
n }, one binary

variable zj is used in correspondence to each simplex Sj, j = 1..n− 1.

x = x̄S1
0 +

n∑
i=1

d∑
k=1

(x̄Si
k − x̄Si

0 )δSi
k (45)

y = ȳS1
0 +

n∑
i=1

d∑
k=1

(ȳSi
k − ȳ

Si
0 )δSi

k (46)

d∑
k=1

δS1
k ≤ 1 (47)

δ
Sj

d ≥ zj ≥
d∑

k=1

δ
Sj+1

k j = 1..n− 1 (48)

δ
Sj

k ≥ 0
j = 1..n

k = 1..d
(49)

zj ∈ {0, 1} j = 1..n− 1 (50)

Constraints (47)-(49) ensure that if zj = 1 for any j, then the point x cannot lie inside

of simplex Sj. Instead, since δ
Sj

d is forced to be equal to 1, the path leads directly

from x̄
Sj

0 to x̄
Sj

d = x̄
Sj+1

0 , i.e., to the first vertex of the next simplex. Therefore, we call

these constraints generalized filling conditions. Furthermore, the interior of a simplex

Sj can only be reached if zj−1 = 1 and zj = 0. Figure 7 illustrates the idea on which

the generalized incremental model relies.

x

S1

S2

S3

0 1

2
0

1

2 0

1

2

(δS1
2 ) (δS2

2 )

Figure 7: The Generalized Incremental Method. For simplicity, the figure only
shows the relevant information. The remaining part of the given trian-
gulation can easily be labelled in such a way that the two requirements
on the ordering scheme are met.
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2.3 Multivariate Non-Separable Piecewise Linear Functions

2.3.3 Generalized Multiple Choice Model

The generalized multiple choice model (GMC) can be derived from (GINC) by jumping

directly to the simplex that contains x instead of following a path along the edges of the

preceding simplices. Hence, this procedure in itself does not require an explicit ordering

of the simplices and could be sufficiently described by choosing a global starting point

x̄0 and labelling the vertices of each simplex, but for simplicity we will keep the notation

used in (GINC).

x̄ = x̄S1
0 +

n∑
i=1

[(x̄Si
0 − x̄S1

0 )zi +
d∑

k=1

(x̄Si
k − x̄Si

0 )δSi
k ] (51)

y = ȳS1
0 +

n∑
i=1

[(ȳSi
0 − ȳS1

0 )zi +
d∑

k=1

(ȳSi
k − ȳ

Si
0 )δSi

k ] (52)

d∑
k=1

δ
Sj

k ≤ zj j = 1..n (53)

δ
Sj

k ≥ 0
j = 1..n

k = 1..d
(54)

zj ∈ {0, 1} j = 1 ..n (55)

Constraints (53) couple the δ-variables of each simplex Sj to its respective binary

variable zj, only allowing the point x to be inside Sj if zj = 1. This idea, which is

illustrated in 8, is closely related to the disaggregated convex combination method with

the only difference being the representation of a point x.

x̄0

x

S1

S2

S3

0 1

2
0

1

2 0

1

2

Figure 8: The Generalized Multiple Choice Method.
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2.3 Multivariate Non-Separable Piecewise Linear Functions

2.3.4 Generalized Logarithmic Models

As with the MIP models for univariate functions, it is also possible to find formulations

having a logarithmic number of binary variables in the multivariate case. This can be

achieved by exploiting special structures of the constraint sets of those models. That

is, using triangulations with a number of n simplices, all models restrict the values of

their variables to conform to one of n different classes, depending on which simplex the

point x lies in. As we have already seen, n states can be encoded using dlog2 ne binary

variables.

Logarithmic formulation of (GCC*):

In the disaggregated version of the generalized convex combination method, exactly

one binary variable is allowed to be 1 while all others are 0. Thereby, it is determined

which simplex contains x. In the following, we will then speak of this simplex as being

active.

The idea behind converting a conventional formulation into a logarithmic one is to

introduce an injective function c : S → {0, 1}dlog2 ne. I.e., every simplex is assigned a

binary code having enough digits to let it be unique over the whole set S. If, as in the

case of (GCC*), there are no other requirements like, e.g., precedence constraints on

the simplices and their variables, we need no further restrictions on the function c. An

example is shown in figure 9.

0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

Figure 9: Binary encoding of n = 12 simplices in a triangulation by a binary
encoding scheme using dlog2 12e = 4 bits.
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2.4 Extension to Lower-Semicontinuous Functions

According to Vielma and Nemhauser [33], the logarithmic model which we will

denote by gCC∗log can be stated as follows:

x =
∑
S∈S

d∑
i=0

λSi x̄S
i (56)

y =
∑
S∈S

d∑
i=0

λSi ȳ
S
i (57)

∑
S∈S

d∑
i=0

λSi = 1 (58)

∑
S∈S

d∑
i=0

c(S)jλ
S
i ≤ zj j = 1 ..dlog2 ne (59)

∑
S∈S

d∑
i=0

(1− c(S)j)λ
S
i ≤ 1− zj j = 1 ..dlog2 ne (60)

λSj ≥ 0
S ∈ S
j = 0 ..d

(61)

zj ∈ {0, 1} j = 1 ..dlog2 ne (62)

By c(S)j, we mean the j-th component of the function value of c at simplex S. The

constraints (59) and (60) guarantee that exactly the simplex whose binary encoding

corresponds to the values of (z1..zdlog2 ne) is made active. This can be seen from the

fact that, for every j = 1 ..dlog2 ne, only those λ-variables belonging to simplices whose

binary code at bit j equals zj are allowed to be positive.

2.4 Extension to Lower-Semicontinuous Functions

The formulations introduced until now are all based on the function f being continuous

over a compact domain D. However, it is not difficult to extend the underlying ideas to

semicontinuous functions. This section is supposed to have a supplementary character

only, since we are not going to concentrate further on issues of semicontinuity in the

remainder of this thesis. Moreover, we will focus on the class of lower-semicontinuous

functions. These are often used in the context of minimization problems in order

to make sure that the optimum is attained. See figure 10 for an example of such a

function. Analogously, for maximization problems one would prefer to consider upper-

semicontinuous functions.
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2.4 Extension to Lower-Semicontinuous Functions

Definition 10 (Lower-semicontinuous function). A real-valued function f is called

lower-semicontinuous at a point x̄ ∈ D if, for any small positive number ε, f(x) >

f(x̄)− ε for all x in some neighborhood of x̄.

In general, the set of points representing the graph of a semicontinuous function is not

closed. Therefore, it can not be modelled as a binary MIP by a polyhedron P according

to definition 5. In order to cure this problem, we will switch to modelling the epigraph

of the function.

Definition 11 (Epigraph). The epigraph of a function f : Rn → R is the set of points

lying on or above its graph, i.e.,

epi(f) := {(x, y) | x ∈ Rn, y ∈ R, y ≥ f(x} ⊂ Rn+1.

Then, the minimization of f on a domain D is equivalent to minimizing y under

the condition (x, y) ∈ epi(f). Figure 10 shows an example of a univariate lower-

semicontinuous piecewise linear function and its epigraph.

x

f(x)

x̄0 x̄n
x

f(x)

x̄0 x̄n

Figure 10: A lower-semicontinuous piecewise linear function and its epigraph.

The main difficulty we face when considering semicontinuous functions is that they

are no longer affine on closed subsets of the domain like polytopes or simplices. For

example, univariate functions may now only be affine on open or semi-open intervals

such as [x̄i, x̄i+1) or (x̄i, x̄i+1), or even on discrete points {x̄i}. A simple and natural

extension is to work with so-called copolytopes that are, according to Kannan [21],

defined by finitely many strict and non-strict inequalities. More formally, a set of points

C is referred to as copolytope if it can be written as

C = {x ∈ Rn | A1x ≤ b1, A2x < b2},

where A1, A2 are coefficient matrices and b1, b2 are vectors of appropriate dimension.

We obtain the closure C̄ of C by using A2x ≤ b2 instead of A2x < b2. By V (C̄), we

denote the set of vertices of C̄. Note that a copolytope does not necessarily need to be

of full dimension d, and, hence, it is possible that |V(C̄) |≤ d.
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2.4 Extension to Lower-Semicontinuous Functions

Let C denote the set of copolytopes on which f is affine, representing a partition of

its domain, i.e., D =
⋃

C∈C. With this, we slightly modify definition 1 such that a

semicontinuous function is called piecewise linear if it can be written as

f(x) := {mCx + nC}C∈C

with mC ∈ Rd and nC ∈ R for all C ∈ C.

Working with copolytopes instead of simplices finally allows to modify the standard

models such that they become valid for lower-semicontinuous functions in a straight-

forward manner. Details can be found, for example, in [32].
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3 Piecewise Linear Optimization

Until now, we have studied various possibilities of modelling piecewise linear functions

without explicitly focussing on issues of optimization. In particular, we have neither

set an objective function nor taken into account any constraints on the feasible region

other than those directly imposed by the formulation of the piecewise linear function.

The largest part of this section will be dedicated to a constraint programming approach

for a certain class of univariate piecewise linear constraints, paving the way towards our

implementation of a constraint handler in SCIP. Thereafter, we briefly want to point

out some issues that would occur if multivariate functions were considered in the same

context, which may be taken as an inspiration for further work. At the beginning,

however, we want to give a brief overview of the topic of piecewise linear objective

functions.

3.1 Piecewise Linear Objective Functions

Using the notation of section 2, let f : D → R be a continuous piecewise linear function

on a compact domain D ⊂ Rd and S := {(x, y) | x ∈ D, y = f(x)} the set representing

the graph of f . Furthermore, let P ⊂ Rd+1+p+q be a sharp MIP model for S according

to definition 8.

As a first step, we assume that f is to be minimized without any other constraints

being present. Then, the following holds [32]:

min
x∈D

f(x) = min{y | (x, y) ∈ S} (63)

= min{y | (x, y) ∈ conv(S)} (64)

= min{y | (x, y,µ, z) ∈ P} (65)

Hence, under these presumptions, it is sufficient to simply solve the LP relaxation of

an arbitrary sharp formulation to obtain the solution to the original MIP. Notice that

S being a closed set is required in equality (64) and the sharpness of P is needed for

step (65).

If, by contrast, additional constraints are considered, the property of sharpness will no

longer be preserved on the restricted domain X ⊂ D. Provided that X is a convex

set, however, the sharpness of a MIP model on the whole domain D at least helps to

obtain a characterization of the LP bound [32]:
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3.1 Piecewise Linear Objective Functions

min
x∈X

f(x) = min{y | (x, y) ∈ S ∩ (X × R)} (66)

≥ min{y | (x, y) ∈ conv(S) ∩ (X × R)} (67)

= min{y | (x, y,µ, z) ∈ P, x ∈ X} (68)

= min
x∈X

convenvDf(x) (69)

Here, (69) follows from the definition 12 of convex envelopes given below in combination

with the sharpness of P . Figure 11 shows an example of a function to be minimized

on a restricted domain that illustrates this estimate. For restricted domains, as we can

see, it can not be ensured that the minimum of the convex envelope lies on the function

graph.

Definition 12 (Convex underestimator and convex envelope). A convex underestima-

tor of a function f : D → R is a convex function c such that f(x) ≥ c(x) for all x ∈ D.

The largest convex underestimator of f over D is called convex envelope of f , denoted

by convenvDf(x).

x

y = f(x)

a bX

(x∗, y∗) = min
x∈X

convenvDf(x)

Figure 11: Lower bound for minimization on a restricted domain X = [a, b].
The convex envelope is equal to the lower boundary of the convex
hull of the function.

In the following, we want to study a special case of such problems that is of particular

practical relevance. With the function f being continuous and additively separable and

all constraints being linear inequalities, it is referred to as separable piecewise linear

optimization problem (SPLOP):

min f(x) =
d∑

i=1

fi(xi)

Ax ≤ b

xj ∈ [lj, uj] j = 1..d
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3.2 Univariate Piecewise Linear Constraints

For each of the univariate functions fi, i = 1..d, let ni denote the number of its affine

segments. If all fi, i = 1..n, are convex, then (SPLOP) can be solved in polynomial

time. This is because, under these circumstances and regarding the affine segments of

each fi as parts of functions f
(k)
i , k = 1..ni, we can establish the equivalence

min
d∑

i=1

fi(xi) ⇔


min

d∑
i=1

yi

yj ≥ f
(k)
j (xj)

j = 1..d

k = 1..nj
.

Hence, the convex (SPLOP) can be formulated as a linear program and solved, e.g.,

by a polynomial interior point method. By contrast, as shown by Keha et al. [22],

only one fi being non-convex makes (SPLOP) NP-hard.

3.2 Univariate Piecewise Linear Constraints

Besides being the objective to be minimized or maximized, piecewise linear functions

often occur as constraints of optimization problems and special approaches have been

developed to address this topic. In this part, we are going to study a type of constraint

that involves a univariate piecewise linear function:

Definition 13 ((Univariate) Piecewise Linear Constraint). A constraint in the vari-

ables x ∈ R and y ∈ R is called piecewise linear if it is of the form

g(x) ≤ ay + b or g(x) = ay + b,

where g : D → R with D ⊂ R is a piecewise linear function defined by a finite number

of discrete support points {(x̄i, ȳi)}ni=0 ⊂ R2, and a > 0, b ∈ R are parameters.

Notice that a constraint of the type g(x) ≥ ay+b can be modelled via the substitutions

y′ := −y and g′ := −g as g′(x) ≤ ay′ − b. The feasible region of a piecewise linear

inequality constraint can be described as a polyhedron in the (x, y)-space bounded on

one side by an affine transformation of g. In the equality case, the feasible region

follows exactly the graph of the piecewise linear function. In both cases, in general,

the feasible region is a non-convex set.

By applying one of the approaches presented in chapter 2, piecewise linear constraints

can easily be incorporated into a mixed-integer program. We will later use such formu-

lations for the purpose of benchmarking. In this section, however, we are going to study

a way of treating piecewise linear constraints that has been described by Hooker [18],

based on the idea of working with a convex hull relaxation which avoids the necessity

of additional variables.
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3.2 Univariate Piecewise Linear Constraints

3.2.1 Convex Hull Relaxation

By replacing the graph of the function g(x)−b
a

with its (partial) convex hull, valid relax-

ations for the constraints of the above type can be stated as follows:

g(x) ≤ ay + b ⇒ (x, y) ∈ epi convenvD

(
g(x)− b

a

)
, (70)

g(x) = ay + b ⇒ (x, y) ∈ conv ({(x̄i, ȳi)}ni=0) . (71)

Figure 12 illustrates the two cases.

x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

(a) g(x) ≤ ay + b

x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

(b) g(x) = ay + b

Figure 12: Piecewise linear constraints. In figure (a), an inequality constraint
is shown, whose feasible region is represented by the area shaded
in light gray, whereas its relaxation additionally comprises the dark
gray part. For the equality constraint in figure (b), the feasible
region is given by its function graph and the convex hull relaxation
by the area shaded in dark gray.

As we will see in detail in section 4.3, the convex hull of a two-dimensional set of p

points can be computed in O(p log p) or, by some output-sensitive method, even in

O(p log h) time with h being the number of convex hull vertices.

3.2.2 Branching Methods

Using the above LP relaxation, we want to consider the LP solution (x̂, ŷ) of the

optimization problem for the constraint variables that has been obtained at some node

in the process of a branch-and-bound algorithm. Assuming that (x̂, ŷ) violates the

original constraint, one way of resolving the infeasibility is branching, i.e., creating

subproblems with tighter LP relaxations.
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3.2 Univariate Piecewise Linear Constraints

There are several possibilities of how branching can be performed and we want to refer

to these as branching methods. First of all, if x̂ is identical to some x̄k belonging to

the set of support points, a very intuitive strategy would be to create two child nodes

by imposing x ≤ x̄k and x ≥ x̄k, respectively. By contrast, if x̂ lies inside an interval

(x̄k, x̄k+1), the selection of a branching point is not equally obvious such that we have

different options to choose from. Throughout the remaining part of this thesis, the

following variants will be referenced by the name given in typewriter font:

• 2-CHILD-LEFT: Given a solution value x̂ ∈ (x̄k, x̄k+1), create two child nodes

with x ≤ x̄k and x ≥ x̄k. As an exception, if x̂ ∈ (x̄0, x̄1),

choose x̄1 as branching point.

• 2-CHILD-RIGHT: Similarly, create two child nodes with x ≤ x̄k+1 and x ≥ x̄k+1.

However, if x̂ ∈ (x̄n−1, x̄n), choose x̄n−1 as branching point.

• 2-CHILD-EXACT: Add (x̂, g(x̂)) to the set of support points of g and create two

child nodes with x ≤ x̂ and x ≥ x̂. However, if x̂ ∈ (x̄0, x̄1) or

x̂ ∈ (x̄n−1, x̄n), better relaxations can be achieved by choosing

x̄1 or x̄n−1, respectively, as branching point.

• 3-CHILD: If k ≥ 1 and k ≤ n−2, create three child nodes with x ≤ x̄k,

x ∈ [x̄k, x̄k+1] and x ≥ x̄k+1. Otherwise, i.e., if x̂ lies in the

left- or rightmost interval, create only two child nodes with

x̄1 or x̄n−1 being the branching points.

Among the variants that generate two child nodes in each branching decision, only

2-CHILD-EXACT ensures that the current LP solution is excluded from both subprob-

lems. However, this property is potentially paid for by a successive increase in the

number of support points. This can partly be avoided by a combination of the pre-

sented methods that, in turn, requires some more computational effort:

• 2-CHILD-FLEX: Determine whether the current LP solution would be excluded

from both resulting subproblems if either 2-CHILD-LEFT or

2-CHILD-RIGHT was applied. If this is not the case, perform

branching according to 2-CHILD-EXACT.

Strategy 3-CHILD automatically guarantees that neither of the generated subproblems

contains (x̂, ŷ). Additionally, it even leads to an exact representation of the constraint

over the interval that the solution belongs to. This is illustrated by figure 13.

In addition to branching on the x-variable of a constraint, one might have the idea of

taking into account y as branching candidate as well. This, however, besides being a

somewhat unintuitive approach, may cause the domain of x in the resulting subprob-

lems to have holes. In order to avoid such complications of the solving process, we

refrain from further investigation into this direction.
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3.2 Univariate Piecewise Linear Constraints

x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

(x̂, ŷ)

(a) Convex hull relaxation

x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

(b) Branching example

Figure 13: Example of 3-CHILD branching on a piecewise linear equality con-
straint g(x) = y. Since x̂ lies between x̄2 and x̄3, the new branches
have been created by imposing x ≤ x̄2, x ∈ [x̄2, x̄3] and x ≥ x̄3,
respectively.

3.2.3 Branching Candidate Selection

Another important aspect in the context of branching is the selection of the most

suitable branching variable in case that there are several options. Since the solving

process may be considerably influenced by the choice of branching variables, the topic

of employing a good branching strategy is of great importance. For mixed-integer

programs, this question has been intensively studied and a variety of fundamental

approaches have evolved. A good summary on these can be found, for example, in

[1, 2]. Most of the approaches rely on a quality measure known as score value that

allows for ranking possible branching decisions, while differing in the way this score is

computed.

In the following, we will present some of these strategies as described in [1] and show

how the underlying ideas can be transferred to the continuous variables in piecewise

linear constraints.

Most infeasible branching

A very intuitive but, unfortunately, not particularly effective strategy for branching on

binary variables is to choose the one that is farthest from integrality. This is motivated

by the hope of eliminating as much integrality violation as possible. The score of a

branching candidate xj is computed as

sintj := min{x̂j − bx̂jc, dx̂je − x̂j}.

Computational experiments have shown that most infeasible branching does not per-

form significantly better than a random selection of branching variables [2]. The same

holds true for least infeasible branching in which the variable that is closest to an

integral value is selected as branching candidate.

34



3.2 Univariate Piecewise Linear Constraints

As an analogue procedure for piecewise linear constraints, a distance measure of con-

straint violation could be designed as follows: First, let dconsj be the euclidean distance

from the constraint variables’ LP solution (x̂j, ŷj) to the feasible region of the con-

straint. Similarly, let drelj be the distance from (x̂j, ŷj) to the boundary of the feasible

region of the LP relaxation. With this, a score value in [0, 1] for branching on xj can

be obtained by

spwl
j :=

dconsj

dconsj + drelj

.

Since sint ∈ [0, 1
2
], it is advisable to consider spwl/2 instead of spwl in order to compare

scores when branching candidates in a problem can be both integer or piecewise linear

constraint variables.

Strong branching

Most and least infeasible branching do not take into account any information related to

the objective function of the problem. However, with the goal of keeping the branching

tree as small as possible in mind, it makes sense to consider the impact of possible

branchings on the dual objective bound. Therefore, the idea of strong branching,

as first mentioned by Benichou et al [7], is to tentatively solve the subproblems

that would arise if branching was performed on some branching candidate. Then, the

most promising variable in the sense of dual bound progress is chosen for the actual

branching. Since we are later going to apply strong branching to piecewise linear

constraints and also use it as part of another branching strategy, we will go a bit into

detail at this place.

In the context of mixed-integer programming and following the notation in [1], let Q be

the problem at some node with x̂j /∈ Z being the (fractional) LP solution of an integer

variable xj and ĉQ the LP objective value. Furthermore, assuming that xj is selected

as branching variable, let Q−j and Q+
j be the resulting child problems with restrictions

xj ≤ bx̂jc and xj ≥ dx̂je, respectively. Solving the LP relaxations of Q−j and Q+
j may

then have three different outcomes:

• If both subproblems are infeasible, it can immediately be concluded that Q is

also infeasible and, hence, can be cut off from the branch-and-bound tree.

• If either Q−j or Q+
j is infeasible while the other one is not, the LP solution (x̂j, ŷj)

can be separated by adding xj ≥ dx̂je or xj ≤ bx̂jc to Q. Thus, no branching is

required at all in this step.

• If neither Q−j nor Q+
j is found to be infeasible, we denote by ĉQ−j and ĉQ+

j
the

respective LP objective values and compute the progress in terms of dual objective

as

∆−j := ĉQ−j − ĉQ and ∆+
j := ĉQ+

j
− ĉQ.
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3.2 Univariate Piecewise Linear Constraints

Since, from a minimization perspective, the dual objective value of some problem

can not decrease when imposing further restrictions, it is ensured that ∆−j ≥ 0

and ∆+
j ≥ 0. Finally, the two values are combined to a single score sj by a

scoring function, i.e., sj := score(∆−j ,∆
+
j ). A commonly used example of a

scoring function that has proven to work well in practice is the multiplicative

form

score(q1, q2) = max{q1, ε} ·max{q2, ε} (72)

with a small ε > 0 that allows the score to be positive even if there is no objective

gain in one of the subproblems [1].

On a local scale, this concept yields the best possible branching variable. Its main

drawback, however, is the large computational effort required to solve all the resulting

LPs. In part, this can be alleviated by restricting the set of branching candidates by

some criterion or by only performing a few simplex iterations on each subproblem.

Strong branching can easily be adapted to piecewise linear constraints by generating

child nodes according to one of the above methods and working with the respective

convex hull relaxations. However, there are some issues that need to be taken care

of. First, as seen above, the branching methods 2-CHILD-LEFT and 2-CHILD-RIGHT

do not guarantee that the LP solution (x̂j, ŷj) is excluded from both subproblems that

are generated. Since solving some child node LP relaxation that still contains (x̂j, ŷj)

would be redundant, it should be checked whether this is the case before performing

strong branching. At the same time, it could still make sense to choose xj as branching

variable, for example, if a large objective gain is achieved at the child node that excludes

(x̂j, ŷj). The second issue with strong branching on piecewise linear constraints is

related to the scoring function used to rank branching candidates. In order to be able

to apply branching method 3-CHILD and to compare the scores of several possible

branching decisions on an undistorted basis, we propose

score(q1..qk) =

(
k∏

i=1

max{qi, ε}

)1/k

(72*)

as a generalization of (72), with k being the number of child nodes to be created.

Notice that while (72) and (72*) do not yield the same score value for one and the

same branching decision in the case of k = 2, the ranking of the candidates remains

unaffected. As an alternative, one might also think of using (72) with the two minimal

values in {q1..qk} as arguments.

Pseudocost branching

With the goal of keeping the branching tree small and the running time low in mind, yet

another perspective on selecting a branching candidate is introduced by keeping record

of the success of previous branching decisions. Based on this idea, a method known
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3.2 Univariate Piecewise Linear Constraints

as pseudocost branching has been developed for mixed-integer programs. Assuming,

again, that some variable xj has been selected as branching variable in problem Q, let

f−j := x̂j −bx̂jc and f+
j := dx̂je− x̂j. A normalized gain in objective can be computed

for both of the resulting subproblems Q−j and Q+
j as

ς−j :=
∆−j
f−j

=
ĉQ−j − ĉQ
x̂j − bx̂jc

and ς+
j :=

∆+
j

f+
j

=
ĉQ+

j
− ĉQ

dx̂je − x̂j
. (73)

Then, in the course of the branch-and-bound algorithm and for each integer variable xj,

the averages ψ−j and ψ+
j of these gains over all problems Q where xj has been selected

as branching variable are calculated. These are referred to as pseudocosts. Evidently,

only problems whose child nodes’ LP relaxations have been solved and found feasible

can be taken into account. With the aid of pseudocosts, the dual bound progress for

subsequent branching decisions can then be estimated by f−j ψ
−
j and f+

j ψ
+
j , respectively.

Finally, these predictions are passed as arguments to a scoring function as described

above.

Pseudocost branching is a computationally fast way to judge branching possibilities

with increasing quality as the algorithm learns from its previous decisions. However,

since no information on the possible success of branching on any variable is available

beforehand and all necessary data can only be acquired throughout the solving pro-

cess, it relies on some suitable initialization procedure for the values of ψ−j and ψ+
j . In

a trivial strategy, one could set some uninitialized pseudocost value for downward or

upward branching to the average of all initialized pseudocosts of the same direction,

starting with a value of 1 in case that all pseudocosts are uninitialized. The simplicity

of doing so is paid for by making rather unfunded decisions in the upper part of the

branch-and-bound tree where the quality of the judgement matters most. As an option

to cure this drawback, pseudocost branching can be combined with strong branching

in different ways. For example, one may apply strong branching up to a certain depth

of the branching tree or use strong branching results for the initialization of the pseu-

docosts. One of the most sophisticated variants of these hybrid branching strategies,

known as reliability branching, will be presented below in a separate paragraph.

Before pseudocost branching can be applied to piecewise linear constraints in a similar

manner, there are two aspects that need to be revised. At first, the definition of the

variable value changes f−j and f+
j as stated above is obviously no longer meaningful in

the presence of continuous variables. Since there is no unique equivalent, Berlotti

et al [6] propose a variety of suitable formulations, for example considering the new

bound intervals or the Euclidean distance from the parent node LP solution to those of

the child nodes. We will assume for now that only two child nodes are to be generated

and we distinguish between the two different situations in which the values of f−j and

f+
j are needed:
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3.2 Univariate Piecewise Linear Constraints

• For the purpose of updating the pseudocosts in analogy to (73), we have opted

for a variant that takes both constraint variables into account by defining

f−j :=

∥∥∥∥(x̂jŷj
)
−
(
x̂−j
ŷ−j

)∥∥∥∥
2

and f+
j :=

∥∥∥∥(x̂jŷj
)
−
(
x̂+
j

ŷ+
j

)∥∥∥∥
2

,

with (x̂−j , ŷ
−
j ) and (x̂+

j , ŷ
+
j ) denoting the child LP solutions. As already men-

tioned, it may happen that (x̂j, ŷj) is still feasible for one of the child problems

when using branching method 2-CHILD-LEFT or 2-CHILD-RIGHT. In this case,

f−j or f+
j will be zero such that ς−j or ς+

j is undefined and no update is possi-

ble, making both of these branching methods an inferior choice in the context of

pseudocost branching.

• In order to compute the estimated dual bound progress as f−j ψ
−
j and f+

j ψ
+
j , we set

f−j and f+
j to the Euclidean distance from the parent LP solution to the feasible

region of the respective child node relaxation. Notice that if 2-CHILD-LEFT or

2-CHILD-RIGHT is used, either f−j or f+
j may again be zero for the same reasons

as just explained. This time, however, the implication of the dual bound progress

being zero is correct given that the child LP solution remains the same as in the

parent node.

As the second issue arising in the context of piecewise linear constraints, we have to

take special care of the 3-CHILD branching method, for which at least three different

treatments are conceivable:

• Let Q◦j denote the subproblem at the middle child node after branching on vari-

able xj in some problem Q and keep track of the success of these middle branches

by introducing pseudocost variables ψ◦j . Thereby, similar as above, the variable

value change is defined as

f ◦j :=

∥∥∥∥(x̂jŷj
)
−
(
x̂◦j
ŷ◦j

)∥∥∥∥
2

.

In this case, however, ψ◦j may contain less information than ψ−j and ψ+
j since

no middle child node is generated every time the solution x̂j is equal to the

x-coordinate of some support point.

• Incorporate the normalized gain in the objective of the middle branch in the

computation of ς−j and ς+
j in case that three child nodes are to be generated, e.g.,

ς−j :=
2

3
·

∆−j
f−j

+
1

3
·

∆◦j
f ◦j

and ς+
j :=

2

3
·

∆+
j

f+
j

+
1

3
·

∆◦j
f ◦j
.

• Ignore all pseudocost information of the middle branches and proceed with only

considering ψ−j and ψ+
j .
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Reliability branching

As a remedy for the problem of uninitialized pseudocosts at the beginning of the

branch-and-bound procedure, pseudocost branching is often used in combination with

strong branching. Doing so, at the same time, helps to keep within limits the high

computational costs that pure strong branching would incur. A very dynamic way of

combining the two strategies is referred to as reliability branching, based on a simple

principle. As long as some candidate xj has not been selected as branching variable

at least η times, its corresponding pseudocosts are considered unreliable. In this case,

strong branching is performed on xj, otherwise the score value of xj is computed from

the available pseudocosts. Consequently, η is called reliability parameter. In practice,

the results of strong branching attempts count towards the reliability of the pseudocosts

of some variable even if it is not chosen as branching variable in the end.

3.2.4 Propagation

Using the proposed relaxation together with one of the branching rules suffices for

eventually obtaining an optimal solution of an optimization problem with piecewise

linear constraints. However, the solving process will be very slow since no further

information on the constraint variables is exploited. Therefore, we will now present

several ideas about how variable bounds and constraint relaxations can be tightened

as a result of propagating relevant information among constraints. Propagation is an

essential part of the inference component in the context of constraint programming as

introduced in section 1.2.

There are two views onto the topic of propagation that we will take care of: First,

information can be deduced from a piecewise linear constraint to be provided to the

rest of the model and, second, a constraint may be modified due to newly gathered

knowledge from other parts of the model.

As a start, the domain D of the piecewise linear function g can be used to tighten the

bounds of the variable x. More precisely, we can impose x ≥ x̄0 and x ≤ x̄n since the

constraint is only defined between these two points. In order to obtain restrictions on

y, we need to determine ymin := min{ȳ0..ȳn} and ymax := max{ȳ0..ȳn}. Then we can

derive y ≥ ymin−b
a

from an inequality constraint and, additionally, y ≤ ymax−b
a

if the

constraint is an equation. These bounds on y are, of course, implicitly incorporated

into the model by the convex hull relaxation itself. Despite that, explicitly updating the

variable bounds may be useful if not all convex hull inequalities shall be inserted into

the LP from the start and in order to give other constraint handling methods access

to this information even before an LP is solved. We will refer to the two propagation

steps as PROPAGATE(x) and PROPAGATE(y), respectively.
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3.2 Univariate Piecewise Linear Constraints

Next, we want to study how a piecewise linear constraint and its relaxation can be

modified once a new bound on either x or y becomes known. Given a bound of the

type x ≤ c, there are three different cases that may occur:

• c ≥ x̄n: The new bound is redundant.

• c < x̄0: The current problem is infeasible.

• c ∈ [x̄0, x̄n): The domain of g can be updated to D := [x̄0, c] by removing all

support points (x̄k, ȳk) with x̄k > c and adding the point (c, g(c))

if it is not equal to an already existing one. Then, a tighter convex

hull relaxation can be computed for the modified constraint.

In the following, we call this procedure UPDATE(x). If a bound x ≥ c becomes known,

we can proceed analogously, whereas x = c implies y ≥ g(c)−b
a

or y = g(c)−b
a

, depending

on the type of the piecewise linear constraint. An example of UPDATE(x) is shown below

in figure 14a. In general, if a constraint’s relaxation has successfully been tightened by

this method, it would make sense to update the values of ymin and ymax with respect

to the new set of support points and to call PROPAGATE(y) in case they have changed.

For the following considerations on the propagation of y-variable bounds, we want to

restrict ourselves to piecewise linear inequality constraints g(x) ≤ ay + b. By treating

equations as two opposing inequalities, the presented ideas can easily be applied to

this type of constraint as well. Assuming that a new bound y ≥ d becomes known and

using the previously computed minimum and maximum y-values ymin and ymax of the

function g, again, we have to distinguish between several cases:

• d ≤ ymin−b
a

: The new bound is redundant.

• d ≥ ymax−b
a

: The new bound renders the piecewise linear constraint re-

dundant, such that it can be removed from the current

subproblem.

• d ∈ (ymin−b
a

, ymax−b
a

): The new bound can be incorporated into the constraint in

order to obtain a tighter relaxation. Therefore, we update

the piecewise linear function g by modifying its set of sup-

port points as follows: First, compute all points at which

the straight line y = d intersects the graph of the function
g−b
a

. This can be done by considering all of its linear pieces

individually. If (x̃, ỹ) is such a point, add (x̃, ad+b) to the

set of support points of g. Then, remove all support points

(x̄k, ȳk) with ȳk−b
a

< d. Finally, if (x̄0, ȳ0) or (x̄n, ȳn) have

been eliminated, add (x̄0, ad+b) or (x̄n, ad+b), respectively.

This procedure will be named UPDATE(y) and an illustration is given in figure 14b.
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x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

(c, g(c))

x ≤ c

(a) UPDATE(x)

x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

y ≥ d

(b) UPDATE(y)

Figure 14: Update of constraints due to variable bound changes. In both pic-
tures, the area shaded in light gray depicts the new relaxation that
has been obtained by cutting off the dark gray part from the old
one.

If, by contrast, a bound of the form y ≤ d arises from the current problem, we can not

follow the same steps as in UPDATE(y) but have to proceed differently. The reason for

this is that such a bound in combination with an inequality constraint g(x) ≤ ay+b can

cause some x-values within the domain D to be infeasible, which happens wherever d is

smaller than the function value of g−b
a

. However, we can at least apply a simple strategy

for deducing tighter bounds on x or detecting infeasibility of the whole subproblem. It

will be referred to as PROPAGATE(x,y).

• d > ymax−b
a

: The new bound does not affect the piecewise linear con-

straint in the sense that it may not be used to tighten the

relaxation.

• d < ymin−b
a

: The current subproblem is infeasible.

• d ∈ [ymin−b
a

, ymax−b
a

]: Starting from the leftmost point x̄0 of D and moving to the

right, search the first value (x̃l ∈ D for which g(x̃l)−b
a
≤ d

is fulfilled. In other words, we want to find x̃l such that
g(x)−b

a
> d for all x < x̃l. Analogously, determine x̃r by

starting from the rightmost point x̄n and moving leftwards.

Having done this, we can restrict the domain of the x-

variable to x ∈ [x̃l, x̃r].

A successful call to PROPAGATE(x,y), as shown in figure 15, might be followed by a

constraint data update of type UPDATE(x) in order to immediately incorporate the

new information into the relaxation. In our implementation of a constraint handler in

SCIP, as we will see later, only the three PROPAGATE() methods are performed in the

propagation step, whereas the UPDATE() methods are used for separation.
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x

y

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

y ≤ d

x ≤ x̃r

Figure 15: Inference of x-variable bound from y-variable bound according to
PROPAGATE(x,y). From y ≤ d a new bound x ≤ x̃r has been de-
duced, which allows to cut off the dark gray part of the relaxation.
The remaining relaxation is shaded in light gray.

3.2.5 Separation

In mixed-integer programming, cut separation has been shown to be a very powerful

extension to the basic branch-and-bound procedure. Given a fractional solution of the

LP relaxation, the goal is to find further inequalities that cut off this solution from the

set of feasible values. Hence, such inequalities are referred to as cutting planes, with

the resulting algorithm being known as branch-and-cut method. Repeatedly adding

cutting planes to the LP continually improves the dual bound of the problem and

may eventually lead to an integral solution. In general, as shown by Gomory [16],

it is possible to determine a cutting plane for every non-integral LP solution of a

mixed-integer program. However, these cuts sometimes yield numerical issues and are

often not the best that one can do. There has been extensive research on the topic of

separation that led to a variety of ideas for cutting planes that are adapted to specific

problem types, such as, for example, cover cuts for Knapsack problems.

As for the case of piecewise linear constraints, a-priori, it is not possible to generate valid

cutting planes. Since we are working with the convex hull relaxation, cutting off an LP

solution that is not feasible for the original constraint would invariably mean cutting

off part of the feasible region as well. That is, we can only hope to find cutting planes if

the current problem bounds on the constraint variables are tighter than those induced

by the constraint itself. If this is the case, we proceed similarly as in the methods

UPDATE(x) and UPDATE(y) but without actually modifying the constraint data: Given

the current variable domains, the set of support points of the piecewise linear function

is tentatively updated such that it incorporates the new bound information. Then,

after having computed the convex hull relaxation of the constraint with respect to

this set of points, each convex hull segment that differs from the original relaxation is

checked for whether it separates the current LP solution. If yes, it is added as a linear

inequality to the subproblem.
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3.3 Multivariate Piecewise Linear Constraints

3.3 Multivariate Piecewise Linear Constraints

When dealing with constraints involving multivariate piecewise linear functions, some

of the constraint programming components presented above can easily be generalized

while others need more attention. Although our constraint handler for the SCIP frame-

work will not be able to treat multivariate piecewise linear constraints, we still want

to present some work related to this topic that might be useful for a future implemen-

tation.

Definition 14 ((Multivariate) Piecewise Linear Constraint). A constraint in the vari-

ables x ∈ Rd, d ≥ 2, and y ∈ R is called piecewise linear if it is of the form

g(x) ≤ ay + b or g(x) = ay + b,

where the piecewise linear function g : D → R is defined by a finite number of discrete

points {(x̄i, ȳi))}ni=0 ⊂ Rd+1 on a simplicial triangulation S of a rectangular domain

D ⊂ Rd according to definition 9, a > 0 and b ∈ R.

The convex hull relaxations of multivariate equality and inequality constraints are

essentially the same as in the univariate case and we only want to state them again for

the sake of completeness:

g(x) ≤ ay + b ⇒ (x, y) ∈ epi convenvD

(
g(x)− b

a

)
,

g(x) = ay + b ⇒ (x, y) ∈ conv({(x̄i, ȳi)}ni=0).

In general, given a number of p points in Rq, the computation of their convex hull can

be done in O(p log p + pbq/2c) time. Hence, for q > 3, the second term is dominating,

which drastically increases the time complexity and even makes it exponential in the

dimensionality if q is considered as part of the input. For details, again, see section 4.3.

Making use of the fact that convex hulls can be determined faster in low dimensions,

separable functions are computationally advantageous to non-separable ones. It can be

shown that the convex hull of a multivariate separable piecewise linear function may

be expressed using the convex hulls of all its univariate function parts separately [18].

This, of course, extends to the relaxations of piecewise linear constraints. Hence, from

now on, let us assume that we are working with non-separable multivariate functions.

If, during the branch-and-bound process, a multivariate piecewise linear constraint is

violated by the constraint variables’ LP solution (x̂, ŷ) at some node and branching

becomes necessary, we can not rely on the same methods as described in 3.2.2 for the

univariate case. First of all, the x-variable now consists of several components, each

of which can be used for branching. Most of the additional complication, however,

is introduced by the underlying triangulation S. Instead of relying on the natural

ordering of intervals, we now have to handle d-dimensional simplices. For example,
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once some branching component xj has been determined, simply imposing xj ≤ x̂j and

xj ≥ x̂j in order to create two subproblems would obviously conflict with the simplicial

structure of the domain. Generally, the problem comes down to two main tasks that

may be sketched as follows, with an illustration given in figure 16 below.

• Compute the intersection of a triangulation S and a hyperplane H. This can be

done by considering each simplex S ∈ S separately and will result in a set of

intersection points that subsequently need to be incorporated into the triangula-

tion.

• Update a triangulation and restore its simplicial structure with respect to added

or removed vertices. For the class of so-called Delaunay triangulations that are

often used in practice due to their numerical favorability, such updates can be

performed, e.g., by a simple edge-flip algorithm in O(n2) or by a more sophisti-

cated randomized incremental algorithm in O(n log n) time. For details on these

methods we refer to some textbook on Computational Geometry such as [8].

H

Figure 16: Intersection of a triangulation and a hyperplane.

With the help of this intersection and update procedure, we are now able to generate

branching subproblems. It only remains to determine the function values of g at

the newly inserted triangulation vertices and to compute the convex hull relaxations

on both of the restricted domains. Alternatively, if the triangulation is of a special

structure, other branching strategies not relying on a single variable are conceivable.

As an example in two dimensions, see the ”Union Jack” triangulation described in the

paper of Nemhauser and Vielma [33], allowing for branching on diagonals.

By the same update and refinement steps as described above, it is possible to establish

an adapted version of the UPDATE(x) method. The other topics presented above, i.e.,

propagation, branching candidate selection and separation, quite naturally extend to

multivariate piecewise linear constraints. For a more detailed consideration of multi-

variate piecewise linear functions, see for example [14].
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In this chapter, we are going to demonstrate how our convex hull-based approach for

handling piecewise linear constraints can be implemented in SCIP, a non-commercial

mathematical programming framework developed at the Konrad Zuse Institute in

Berlin [19]. SCIP is built upon the concept of constraint integer programming (CIP)

that has been developed by Achterberg [1]. By employing ideas and features of

both mixed-integer (MIP) and constraint programming (CP), SCIP can be used as a

fast and flexible solver for a wide variety of mathematical optimization problems. For

all topics related to SCIP as well as an extensive description of the various solving

techniques that are applied, we refer the reader to [1]. Meanwhile, we will content

ourselves with a brief introduction to the basic concepts of SCIP before describing in

detail our implementation work on piecewise linear constraints.

4.1 Basic Concepts of SCIP

SCIP provides the basic infrastructure for solving constraint integer problems by means

of branch-and-bound techniques. Thereby, the search for a solution is directed by

algorithms contained in various plugins. Some plugins are already included by default

in a SCIP distribution, e.g. those required for solving MIPs, whereas in general they

can be implemented by the users according to their specific problem requirements.

The most important type of plugin are so-called constraint handlers that are responsible

for the representation and treatment of a single class of constraints each. The primary

task of a constraint handler is to ensure that a problem solution is feasible with respect

to all constraints of its type. However, in order to enhance the solving process, it should

contain further means of exchanging information with the SCIP framework, such as

presolving and propagation methods, a linear relaxation and branching strategies.

Other plugins that can be provided for SCIP are, for example, presolvers, variable

pricers or primal heuristics, depending on the problem structure and the user’s pref-

erences. Since the focus of this work is on a constraint handler for piecewise linear

functions, we will not go into detail with these other plugin types.

In a typical run of SCIP, several different stages are passed through during the solving

process. After some initialization and the problem specification by the user, a working

copy of the original problem is created. This copy is referred to as transformed problem

and will be subject to modifications in the course of the search procedure, whereas

the original problem is kept unchanged. Before the main solving process is started,

presolving methods are called with the aim of reducing the size of the problem, e.g., by

detecting redundant constraints or variables that might be fixed. A constraint handler

may come into action in each of these stages and should provide the relevant methods

for its constraint type for all tasks that are implied.
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4.2 Implementation of the Constraint Handler

In this section, we will explain the internal structure of a constraint handler along with

the specific methods that have been added for the case of piecewise linear constraints

of the form

l ≤ g(x)− y ≤ r.

The SCIP framework is implemented in C, and, hence, we are also using C as pro-

gramming language for our constraint handler although it would have been possible to

choose C++ as well. A documentation of SCIP is available on its webpage [19]. In

the following, when introducing a component of a constraint handler in SCIP, we will

make use of this documentation for a general description before explicitly focussing on

aspects of our implementation.

4.2.1 Constraint Handler Properties

First of all, some fundamental properties that determine the overall behavior of the

constraint handler have to be set. These include

• CONSHDLR NAME: a name by which the constraint handler is addressed,

• CONSHDLR DESC: a short description,

and several others that will be mentioned at the places at which they are used.

4.2.2 Constraint Data

After that, everything that is required for the representation of a single piecewise linear

constraint needs to be specified and stored in a data structure called SCIP ConsData.

In our case and using SCIP data types, it contains:

SCIP VARS*

int

vars

nvars

An array containing the variables occuring in the constraint,

together with their number. There should be exactly two

variables, one taking the role of x and one of y. Hence,

although variable names can be arbitrary, we shall refer

to the variables as ’x’ and ’y’ throughout our following

explanations.

SCIP Real*

SCIP Real*

int

xvals

yvals

npoints

Arrays containing the abscissa and ordinate values of the

support points of the piecewise linear function, respectively.

The values are stored in increasing order with respect to their

x-coordinate. The array size must correspond to the total

number of points.
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SCIP Real

SCIP Real

lhs

rhs

The left-hand and right-hand side of the constraint, corre-

sponding to l and r in the above constraint pattern.

int*

int

uhull

uhpoints

An array that contains the indices of the support points be-

longing to the upper part of the convex hull, together with

its size. If the upper hull is not required, the value is NULL.

int*

int

lhull

lhpoints

Analogously, the lower part of the convex hull.

Moreover, SCIP ConsData contains some auxiliary properties for storing the mono-

tonicity and the curvature of the piecewise linear function as well as its minimum and

maximum y-values, such that these information can be accessed whenever required.

4.2.3 Constraint Handler Data

Similarly, all data that are not specific to a single constraint but belong to the constraint

handler as a whole, e.g., parameters controlling certain features, can be stored in

SCIP ConshdlrData. Here, we only want to briefly mention the constraint handler data

that we used while explaining the meaning of the entries in more detail on occurrence:

SCIP Bool addcutsinit If set to TRUE, add all bounding inequalities of the

convex hull relaxation on constraint initialization;

otherwise only add them when required/violated.

SCIP Bool splitcons Split constraints into one lower- and one upper-

bounded constraint in case that both lhs and rhs

are finite.

SCIP Bool sepallcons Try to find separating cuts for all constraints or

stop when first cut has been found.

SCIP Bool updateconslocal Tighten the relaxation using local or global variable

bounds.

enumType branchmethod The branching method to be used.

enumType branchcandsel The strategy for branching candidate selection.

SCIP Real*

SCIP Real*

SCIP Real*

pscostdown

pscostmid

pscostup

Arrays for storing the pseudocosts for downward,

middle and upward branches, respectively, for each

piecewise linear constraint.

int*

int

reliability

relparam

An array for storing the degree of reliability of the

pseudocosts for each constraint, and the reliability

threshold value.
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4.2.4 Fundamental Callback Methods

The interactions between a constraint handler and the solution framework are realized

via a variety of callback methods that each provide a certain service to the solver.

Some of the callbacks are classified as fundamental such that their implementation

is compulsory, whereas all additional callbacks may or may not be included. The

fundamental callbacks contain the semantic representation of the constraint class that

is considered, enabling SCIP to find a correct optimal solution when constraints of this

class are present. However, the solving process may be very slow without additional

callbacks being implemented.

CONSCHECK:

The CONSCHECK callback is responsible for determining whether a given primal

solution candidate is feasible with respect to all constraints of the constraint handler’s

type. If this is the case, SCIP FEASIBLE is returned as a result, whereas the violation

of at least one constraint yields SCIP INFEASIBLE.

In order to check the feasibility of a solution (x̂, ŷ) for the variables of a piecewise

linear constraint, we start by considering x̂. Following the notation of section 2.1

and assuming that the left- and rightmost support point (x̄0, ȳ0) and (x̄n, ȳn) of the

piecewise linear function g induce bounds on x, we declare the solution infeasible if

x̂ /∈ [x̄0, x̄n]. Otherwise, we go through all line segments and determine the index k

such that x̂ ∈ [x̄k−1, x̄k]. Then, with

ỹ :=
ȳk − ȳk−1

x̄k − x̄k−1

(x̂− x̄k−1) + ȳk−1

the solution is feasible for the constraint if and only if ŷ ∈ [ ỹ−r, ỹ−l ].

The priority of calls to CONSCHECK relative to other constraint handlers’ check meth-

ods can be determined using the constraint handler property CONSHDLR CHECKPRIORITY.

CONSENFOLP:

With a solution of the LP relaxation of the problem at hand, the CONSENFOLP

method can be called. Similar to CONSCHECK, its first task is to investigate whether

the solution is feasible for all constraints. If so, SCIP FEASIBLE is returned and nothing

else happens. If some constraint is violated, however, the callback may not only return

SCIP INFEASIBLE but provide means to resolve the infeasibility.

In our setting, if some constraint itself is not satisfied, we check whether the solution

(x̂, ŷ) of the constraint variables lies within the convex hull of the constraint’s fea-

sible region. This will automatically be the case if the constraint handler property

addcutsinit has been set to TRUE, since, then, all convex hull inequalities have al-

ready been included in the LP by the CONSINITLP callback. Otherwise, one or more

violated bounding inequalities are computed and added as separating cuts to the LP.
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On the other hand, i.e., if (x̂, ŷ) violates the constraint but satisfies its convex hull

relaxation, the constraint is marked as a branching candidate since no other means for

resolving the infeasibility can be provided. Once that all constraints have been checked

and no separating cuts have been found, this list of branching candidates is evaluated

in order to determine the branching to be initiated. This happens according to the

branching rule given by the branchcandsel parameter, with the following options

being possible:

• RANDOM: A random selection of the branching candidate using the built-in

C rand() function.

• MOSTINFEAS: Most infeasible branching following the description in section

3.2.3. In order to obtain the values dcons and drel, we need to

compute the distance from the LP solution to every line segment

of the piecewise linear function and the convex hull relaxation

and find the respective minimum. Thereby, the distance from

a point (x̂, ŷ) to some line segment with end points (x̄j, ȳj) and

(x̄k, ȳk) is determined by a projection method: Let

t :=

(
x̂− x̄j
ŷ − ȳj

)
·
(
x̄k − x̄j
ȳk − ȳj

)
∥∥∥∥(x̄k − x̄jȳk − ȳj

)∥∥∥∥2 .

If t ≤ 0, the distance is
∥∥( x̂−x̄k

ŷ−ȳk

)∥∥, while it is
∥∥( x̂−x̄k

ŷ−ȳk

)∥∥ in the

case t ≥ 1. Finally, if t ∈ (0, 1), with(
x̃

ỹ

)
:=

(
x̄j
ȳj

)
+ t ·

(
x̄k − x̄j
ȳk − ȳj

)
being the projection of (x̂, ŷ) onto the line segment, the distance

amounts to
∥∥( x̂−x̃

ŷ−ỹ
)∥∥. For computational efficiency, it is possible

to work with squared distances, since this does not affect the

ranking of the branching candidates.

• LEASTINFEAS: Least infeasible branching in analogy to MOSTINFEAS.

• RELPSCOST: Reliability pseudocost branching whose behaviour can be spec-

ified via the constraint handler property relparam representing

the reliability parameter η introduced in section 3.2.3. Until the

required reliability is reached, strong branching is performed in

order to initialize the pseudocosts.
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• STRONG: Strong branching, as introduced earlier, relies on solving the LP

relaxations of the subproblems to be generated. For branching

on binary variables, SCIP allows to tentatively change the prob-

lem bounds and solve the resulting LPs efficiently by using the

previously computed basis in what is called a warm start in LP

theory. Thus, it is usually possible to arrive at a new optimum

after relatively few iterations. However, SCIP does not provide

the functionality to temporarily insert cuts into the LP as would

be required in the context of piecewise linear constraints. As a

workaround for this problem, we can only create a copy of the

entire SCIP instance at the parent node, insert the tightened

convex hull cuts and solve the problem from scratch. This un-

derstandably takes an enormous amount of time, since it has to

be done at every branching decision and for each branching can-

didate, and thus is a crucial point for the overall performance of

the constraint handler as we will see later.

The branching method to be applied can be specified by the branchmethod parameter

of the constraint handler, with possible values as presented in 3.2.2. Furthermore,

every child node that is generated is given a score value that indicates its importance

of being processed to the SCIP framework. In order to compute this so-called node

selection priority, we use built-in SCIP functions.

In the case of more than one type of constraint being present in the problem, the usual

way of controlling the sequence in which the participating constraint handlers are

called is through indicating a priority value for each of them. The priority belonging

to the CONSENFOLP callback is stored in the CONSHDLR ENFOPRIORITY constraint

handler property. However, following this principle, when it comes to a branching

decision, the branching candidates found by the piecewise linear constraint handler

will not be judged jointly with candidates provided by other constraint handlers. For

example, if the model contains binary variables and as long as at least one of them has

a fractional LP value, branching to enforce their integrality would always be performed

before branching on piecewise linear constraints or vice-versa. This lets our constraint

programming approach be at a disadvantage compared to pure MIP models based

on one of the formulations given in section 2, in which all branching candidates are

considered simultaneously. In order to circumvent this restriction and to allow for

an integrated evaluation of binary and piecewise linear branching candidates, we have

introduced the parameter branchlpcands. If set to TRUE, it enables our constraint

handler to jointly treat both candidate sets and select the overall best branching option.

At the end of the CONSENFOLP callback, depending on what measures have been

taken, an appropriate SCIP result is returned. Precisely, SCIP CUTOFF is used in case

that infeasibility has been detected for the current node, e.g., by strong branching. Oth-

erwise, if the domain has been reduced or if the solution has been separated, the result
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is set to SCIP REDUCEDDOM or SCIP SEPARATED, respectively. If none of these apply and

child nodes have been generated, SCIP BRANCHED is returned. Finally, in case that no

constraint has been found to be violated, the result can be set to SCIP FEASIBLE.

CONSENFOPS:

In some cases, e.g., if there were numerical difficulties in the solving process, no LP

solution is available for the current subproblem. In this situation, SCIP is able to resort

to a pseudo solution that arises from solving the LP relaxation without any constraints

but the variable bounds. Basically, the CONSENFOPS callback accomplishes the

same tasks with the pseudo solution as CONSENFOLP does with the LP solutions.

That is, it checks the solution against the existing constraints and, if required, tries to

resolve infeasibilities. However, it may not add cutting planes to the LP and return

SCIP SEPARATED.

Since it has almost never been necessary for our test instances to call the CONSEN-

FOPS callback, we have only provided it with some minimal working functionality. If

given a pseudo solution, it simply returns SCIP FEASIBLE if all constraints are satisfied

and SCIP INFEASIBLE, otherwise.

CONSLOCK:

The last of the fundamental callbacks, CONSLOCK, provides information to SCIP

about whether the feasibility of a constraint may potentially be compromised when

the value of any of the variables involved is increased or decreased.

As for piecewise linear constraints of the above type, in general, infeasibility may be

caused by modifying x or y in either direction. However, there are a number of cases

that allow for a more precise statement:

• If l = −∞, then y can be increased arbitrarily.

If r = +∞, then y can be decreased arbitrarily.

• If g is monotonically increasing and l = −∞, then x can be increased arbitrarily

within the bounds induced by the constraint, i.e., as long as x ≤ x̄n.

If g is monotonically decreasing and r = +∞, then x can be decreased arbitrarily

within the bounds induced by the constraint, i.e., as long as x ≥ x̄0.

The information about the monotonicity of the piecewise linear function g is stored in

the monotonicity property of the constraint data. It may take the values MONO INC,

MONO DEC, MONO NONE and MONO UNKNOWN. In the latter case, the callback tries to deter-

mine the monotonicity before setting the variable locks.
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4.2.5 Additional Callback Methods

In the following, we are going to present a selection of the additional callbacks provided

by SCIP that are of use in the context of piecewise linear constraints.

CONSTRANS:

If a constraint handler is capable of modifying the constraint data during preprocessing

or the solving process, the original constraint needs to be copied in advance in order

to keep an instance of the initial model in memory.

In our example, the CONSTRANS callback has been implemented since the data of a

piecewise linear constraint that represents the mathematical formulation of the prob-

lem, i.e., the set of support points and the convex hull information, may be subject

to modifications. In particular, updates are performed in the CONSSEPALP callback

due to bound changes of the constraint variables.

CONSINITLP:

The CONSINITLP callback is responsible for making preparations with respect to the

LP to be solved. Primarily, this means adding the LP relaxations of all constraints.

As described above, we have introduced the constraint handler property addcutsinit

to control whether or not to insert all bounding inequalities of each constraint’s convex

hull relaxation.

CONSSEPALP:

With a valid LP solution at hand, the CONSSEPALP callback tries to find linear

inequalities that separate this solution from the set of feasible points.

In our implementation, the separation procedure is mainly controlled by the constraint

handler parameter updateconslocal:

• If set to TRUE, given a constraint that is violated by the LP solution, we first

check whether the local bounds on the constraint variables are tighter than those

induced by the constraint itself. If not, as explained in section 3.2.5, the relax-

ation already is as strong as possible and, hence, there is no chance for cutting

planes to be found. Otherwise, we update the relaxation according to the local

variable bounds by calling UPDATE(x) and/or UPDATE(y), whichever of the two

applies. Thereby, it is often not necessary to recompute the constraint’s con-

vex hull from scratch but only at regions where it has changed. While doing

so, we verify whether the solution has been separated by one of the new convex

hull inequalities. However, as a price for obtaining the locally best relaxation,

the constraint data must be copied in advance such that the constraint remains

unchanged at all other nodes of the branch-and-bound tree. In large problem

instances, this may lead to a critical increase in memory usage.
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• By contrast, if the parameter is set to FALSE, only the weaker global bounds on

the constraint variables are used in UPDATE(x) and UPDATE(y), thus avoiding the

necessity of copying the constraint data while at the same time strengthening

the relaxation at all branch-and-bound nodes. Potentially, this already entails

a separating cut. If not, we can still use the local variable bounds to derive a

cutting plane by tentatively updating the set of support points and the convex

hull relaxation without actually modifying the constraint data.

It is easy to see that UPDATE(y) can only be applied to a constraint if either l = −∞ or

r = +∞, since the SCIP ConsData structure as defined above does not allow the lower

and upper boundary of a constraint’s feasible region to be modified independently from

each other.

By the second parameter related to separation, separateallcons, it can be spec-

ified whether all constraints should be checked for cutting planes or whether the

search should be stopped as soon as the first cut has been found. The callback re-

turns SCIP SEPARATED in the case that some separating cut could be generated and

SCIP DIDNOTFIND, otherwise. The frequency of calls to CONSSEPALP can be adjusted

via the constraint handler option CONSHDLR SEPAFREQ, whereas the priority relative to

other constraint handlers’ separation methods is indicated by CONSHDLR SEPAPRIORITY.

CONSPROP:

The CONSPROP callback is one of the most powerful means of a constraint handler

with respect to the enhancement of the solving process. Its task is the propagation of

information on variable bounds induced by a single constraint at each node, thereby

possibly tightening some variable’s domain (return value SCIP REDUCEDDOM) or detect-

ing that the current subproblem is infeasible (return value SCIP CUTOFF).

In order to implement the propagation methods PROPAGATE(x) and PROPAGATE(y),

given a piecewise linear constraint, our goal is to find a rectangular box that contains

its feasible region in the plane. That is, we set xclb := x̄0 and xcub := x̄n, assuming

that the support points of g are ordered according to their x-coordinate. As for the

values stored in SCIP ConsData, this is ensured by our implementation at the moment

the constraint object is created. Furthermore, let yclb := min{ȳi | i = 1..n} − r and

ycub := max{ȳi | i = 1..n} − l. Notice that both yclb and ycub may be infinite depending

on the value of r and l, respectively. Then, we can use a built-in SCIP function that

compares these bounds with the local bounds of the current subproblem and, if possible

or necessary, automatically tightens the domains accordingly or states infeasibility. If

no infeasibility has been detected, the next step is a call to PROPAGATE(x,y).

Similar to the constraint enforcement and separation callbacks, the frequency of calls

to CONSPROP can be controlled using the CONSHDLR PROPFREQ constraint handler

property.
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CONSPRESOL:

In the CONSPRESOL callback, presolving methods can be called that are supposed

to help making the problem easier to solve. This may include, for example, infer-

ring domain reductions for variables, deleting redundant constraints or upgrading con-

straints to more specific types. Presolving is usually done in rounds, thus allowing for

a successive decrease of the problem complexity in each round. In our case, we have

implemented the following presolving steps:

• Propagation: Trying to strengthen the variable bounds, propagation is applied

as described in CONSPROP. This may already yield global infeasibility.

• Constraint upgrade: If some piecewise linear constraint consists of one sup-

port point only, we simply remove it from the set of constraints since all necessary

information for the correctness of the model has been provided by the previous

propagation. Moreover, constraints that have two support points are upgraded to

the more specific type of linear constraints and subsequently be treated by their

own constraint handler. The same holds true if there are multiple support points

that are all collinear. The reason for doing so is that most constraint-specific

methods for general piecewise linear constraints do not yield any advantage com-

pared to the more specific ones that are included in the linear constraint handler.

• Probing: Another powerful presolving feature that has been developed in the

context of mixed-integer programming is so-called probing. Originally, the con-

cept simply was to tentatively fix some binary variable z to either of its possible

values 0 and 1 and, each time, perform propagation in the entire model. Then,

the newly obtained variable bounds from both cases are compared, hoping that

they allow for the inference of useful information that is valid for the initial prob-

lem without z being fixed. For example, if the problem is infeasible for z = j,

j ∈ {0, 1}, z can immediately be set to 1− j. Furthermore, new bounds on some

other variable y can be deduced as follows:

z = 0 ⇒ y ∈ [y0
lb, y

0
ub]

z = 1 ⇒ y ∈ [y1
lb, y

1
ub]

}
y ∈ [min{y0

lb, y
1
lb},max{y0

ub, y
1
ub}].

These ideas can easily be transferred to piecewise linear constraints in order to

implement a probing procedure on the x-variable. Therefore, we consider the

intervals induced by the support points {x̄i}ni=1 from left to right and, for an

interval j ∈ {1..n}, introduce the bounds x ∈ [x̄j−1, x̄j]. Then, if propagation

states infeasibility, we can remove the interval from the constraint as long as

no feasible interval has been found until this point. Of course, we proceed the

same way from right to left, thus pruning the constraint from both sides. For

all intervals that have not been declared infeasible, we compare the respective

domains of the other variables and for each one choose the minimum lower and

maximum upper bound as new globally valid bounds.
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• Convexity upgrade: If the feasible region of a piecewise linear constraint is

convex, the constraint is identical to its relaxation. Thus, it can be removed

after having added all convex hull facets as linear constraints to the model.

The maximum number of presolving rounds that a constraint handler participates in

can be specified by the MAXPREROUNDS parameter, also allowing to entirely disable the

CONSPRESOL callback.

CONSINITPRE:

The CONSINITPRE callback is called before CONSPRESOL and may be used for

the initialization of the preprocessing data. Furthermore, since it is executed even if

presolving has been turned off, all constraint modifications that are necessary for the

solving steps to follow can be done here.

In our case, we use this callback for splitting a constraint into a lower- and an upper-

bounded part if the parameter splitcons has been set to TRUE and both l > −∞ and

r < +∞. While removing the original constraint, two new constraints

l ≤ g(x)− y ≤ +∞ and −∞ ≤ g(x)− y ≤ r,

are generated. At the cost of increasing the problem size, this allows for exploiting the

constraint structure in a more flexible way at some points of the solving process.

CONSINITSOL:

This callback is executed after the presolving step and before the beginning of the

actual solving process. It may be used to initialize branch-and-bound specific data.

In CONSINITSOL, our constraint handler allocates memory for storing reliability pseu-

docost branching information in case that the parameter branchcandsel has been

assigned the value RELPSCOST.

CONSPRINT:

The CONSPRINT method is responsible for generating an output string that represents

a constraint of the constraint handler’s type in CIP format. In our case, such a string

generically looks as follows, containing all information that is necessary for uniquely

defining a piecewise linear constraint:

<consname> : lhs <= pwl(<x>)[(x0,y0) .. (xn,yn)] - <y> <= rhs

CONSPARSE:

The CONSPARSE callback is the counterpart method of CONSPRINT for parsing a

CIP formatted input string that specifies a piecewise linear constraint.

55



4.3 Convex Hull Computation

4.3 Convex Hull Computation

An efficient computation of the convex hull of a given set of points plays a crucial role

in the proposed solution framework since it needs to be done repeatedly in the process

of determining constraint relaxations. There has been extensive work on convex hull

algorithms for several decades with major achievements in terms of running time and

storage optimization. In the following section, we will concentrate on methods for

computing planar convex hulls as required in our constraint handler.

The two-dimensional convex hull problem can be stated as the task of finding a convex

hull representation of a given set P of n points in the plane. A very intuitive repre-

sentation would be a clockwise or counterclockwise enumeration of the vertices of the

convex hull, but we could, e.g., also think of a set of inequalities defining intersecting

half spaces. By a reduction to the problem of sorting real numbers, it can be shown

that Ω(n log n) is a lower bound on the time complexity of the planar convex hull

problem [30]. That is, no algorithm can be faster than that in the worst case.

Graham’s Search:

The most famous approach for efficiently computing a planar convex hull is called

Graham’s Search and runs in O(n log n) time [17]. Thus, it achieves the lower time

complexity bound. The algorithm works incrementally, meaning that all points of P are

considered one after another while updating the convex hull at each step. Andrew [3]

proposed a slight modification of Graham’s Search that we will present in algorithm 1,

based on separately constructing the lower and the upper part of the convex hull.

Algorithm 1 Graham’s Search.

Input: A set P of n points in the (x, y)-plane.
Output: A list C of the vertices of the convex hull in clockwise order.

1: Sort and relabel all points p ∈ P increasingly according to their x-coordinate, using
y-coordinates as tie-breakers. This yields a sequence p1..pn.

2: Create and initialize two ordered lists, U := (p1, p2) for the upper part of the convex
hull and L := (pn, pn−1) for the lower part.

3: for i = 3→ n do
4: U := U + pi
5: while | U |> 2 and the last three points in U do not form a right turn do
6: Delete the second-to-last point in U .
7: end while
8: L := L+ pn−i+1

9: while | L |> 2 and the last three points in L do not form a right turn do
10: Delete the second-to-last point in L.
11: end while
12: end for
13: Remove p1 and pn from L.
14: return C := U + L.
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Notice that the operator ’+’ is used to append a new element to an ordered list and to

join two such lists together. Figuratively spoken, the algorithm exploits the fact that a

clockwise walk along the edges of a convex polygon yields a right turn at every vertex.

For a more detailed description, see for example [8].

It remains to specify how to test whether a given sequence of three points p1 = (x1, y1),

p2 = (x2, y2) and p3 = (x3, y3) makes a right turn or not. This can be done by evaluating

the sign of the determinant

D :=

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1).

If D is negative, then the points form a right turn, i.e., they follow a clockwise orienta-

tion. If it is equal to zero, then p1, p2 and p3 are collinear. Otherwise, they form a left

turn. However, the operation of computing a determinant is known to be numerically

unstable in the sense that it might yield the wrong sign for some critical input. This

could result in the output representing a non-convex set or even in a part of the correct

convex hull being erroneously cut off. Alternatively, one could use a trigonometric

approach by defining

D := arctan

(
y2 − y1

x2 − x1

)
− arctan

(
y3 − y1

x3 − x1

)
.

The interpretation of the sign of D is similar as above. For a correct computation

of arctan, many programming languages provide numerically stable implementations

such as the atan2 function in C.

Sorting the points in increasing order of their x-coordinates can be performed in

O(n log n) time, using, e.g., HeapSort. The outer for-loop is executed n−2 times. In

each of those iterations, both inner while-loops are executed at least once. If they are

executed more than once, then one point is deleted from the respective list at each iter-

ation. Since every point can only be deleted once, the loops take a total of O(n) time.

This finally proves the total time complexity of Graham’s Search to be O(n log n).

With regard to our SCIP constraint handler, Graham’s Search is a very suitable option

for computing a constraint’s convex hull relaxation. The support points of the piecewise

linear function g may be given to the CONSPARSE callback in arbitrary order as

problem input. However, since many of the implemented methods rely on the ordering

of the points according to the x-coordinate, they will only be stored in SCIP ConsData

after having been sorted. Thus, the sorting step, if at all necessary, is performed

independently from convex hull computation and will be done no more than once for

each constraint. Then, on the basis of a sorted set of points, Graham’s Search allows for

determining all convex hulls in linear time, as seen above. Whenever only a part of the

convex hull needs to be computed, e.g., if not the entire hull is affected in UPDATE(x),

we only apply Graham’s Search to the support points that are concerned.
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4.4 Application in Gas Network Optimization

Dynamic convex hull computation:

Graham’s Search is a static method in a way that it computes the convex hull of a set

of points P that is fully known from the beginning. However, it provides no means

for updating the result if, later on, points are added to or removed from P , apart

from recomputing the convex hull from scratch each time P has been modified. Since

the relaxations of the piecewise linear constraints that are to be dealt with receive

constant refinement during the solution process, for example due to calls to UPDATE(x)

or UPDATE(y), it might therefore be worthwhile to consider methods of dynamic convex

hull computation as part of future work. At this place, we will only briefly review some

of the existing approaches related to this topic.

We want to begin with a special case of the dynamic convex hull problem, known as its

on-line variant, that only allows for the insertion but does not support the deletion of

points. Using Graham’s Search, an update of the convex hull due to the insertion of a

single point would take O(n) time which is not the best that one can do. By changing

the data structure for representing the convex hull to a height-balanced binary search

tree, Preparata showed that the time complexity can be improved to O(log n) [29].

Going one step further, Overmars and van Leeuwen proposed an algorithm that is

capable of handling both point insertions and deletions in O(log2 n) time per transac-

tion, making it a fully dynamic maintenance procedure for convex hulls [25]. Thereby,

again, a search tree is used for storing the points.

Convex hulls in higher dimensions:

In arbitrary dimension d, the time complexity of computing the convex hull of a set P

of n points can be shown to be at least O(n log n + nb
d
2
c). For d = 3, similar to the

planar case, this yields O(n log n) which can be achieved, for example by an algorithm

proposed by Chan [9]. This algorithm, moreover, has the property of being output-

sensitive, meaning that its time complexity can be stated more precisely as O(n log h)

where h denotes the number of vertices in the convex hull.

There exist several methods for computing convex hulls in higher dimensions d > 3, in-

cluding randomized algorithms like, for example, the one presented by Clarkson and

Shor [10]. Pursuing part of their ideas, Barber, Dobkin and Huhdanpaa devel-

opped a higher-dimensional variant of the renowned planar QuickHull algorithm [5].

4.4 Application in Gas Network Optimization

In order to study the computational properties of our constraint handler for piecewise

linear functions and to compare it with the classical MIP approaches, we have used

test instances of so-called nomination validation problems that occur in the context of

gas network optimization: Given a gas transmission network that consists of active,

controllable elements (e.g. valves and compressor stations) and passive pipelines, and
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4.4 Application in Gas Network Optimization

given a nomination that describes the in- and outflow of gas at each node, the question

is whether the network can be operated in a way such that all physical, technical and

legal restrictions are fulfilled [28]. While this definition by itself only indicates the

search for a feasible solution, adding an objective function yields a true optimization

problem. For example, one could choose to minimize the pressure loss within the

network or to find a network configuration that incurs minimum costs.

A gas network can be modelled as a directed graph G = (V,E) with each node in V

being either entry, exit or intermediate point, whereas all active and passive elements

are represented by arcs. For all nodes v ∈ V , pressure variables pv ∈ R+ are introduced

that are lower- and upper-bounded due to technical matters. Furthermore, each arc

e ∈ E is assigned a flow variable qe with the help of which simple flow-conservation

constraints can be imposed at each vertex.

The flow of gas through a pipeline e = (v, w) ∈ E is determined by the difference in

pressure at its end points v and w. There exists a non-linear relation between flow and

pressure in a pipe that can be described by the so-called Weymouth equation

qe · |qe| = αe · (p2
v − βe · p2

w),

where αe and βe are pipe specific constants depending on the diameter, length and

altitude difference of the pipe. Using pressure square variables πv := p2
v and πw := p2

w,

the Weymouth equation can be equivalently expressed as

qe · |qe| = αe · (πv − βe · πw) ⇔

 z = αe · (πv − πw)

qe · |qe| = z
.

Hence, considering the pressure square relation as well as the second part of the split

Weymouth equation, we are now facing two different non-linear dependencies. Further

and more complicated non-linearity is introduced by the models for the remaining

network elements. See [28] for details.

In order to deal with non-linear functions, we will work with their piecewise linear

approximations. That is, for some relation y = f(x) with f being non-linear, we

consider restrictions of the form

−ε ≤ g(x)− y ≤ ε,

where g is a piecewise linear approximation of f and ε ≥ 0 some approximation error.

Obviously, this complies with the type of constraint that our SCIP constraint handler

is able to process. Notice that we have performed all computational studies on existing

data and that the approximation procedure has not been a topic of this thesis. Figure

17 shows an exemplary piecewise linear approximation of the non-linear part of the

Weymouth equation.
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q

z

z = q · |q|

Figure 17: Piecewise linear approximation of a non-linear function. The area
shaded in gray represents the feasible region of the resulting con-
straint.

4.5 Computational Results

In this section, we finally want to present some computational results of running our

piecewise linear constraint handler as part of the SCIP framework and put them into

perspective with those obtained by the classical MIP formulations introduced in chap-

ter 2.1.

For our tests, we are using a small network that consists of 2 entry and 38 exit nodes,

40 pipes and 2 compressor stations and control valves, respectively. Compared to

real-world gas networks, its structure is very simple as can be seen from figure 18.
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Symbols:

+ : entry node

− : exit node

CS : compressor station

CV : control valve

Figure 18: Example network.
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The test set that we are working with contains 15 different scenarios, i.e., specific flow

nominations at all nodes. For the generation of the mathematical formulations, we have

relied on the LAMATTO++ framework for modelling and solving mixed-integer non-

linear programming problems on networks, developed at Erlangen-Nürnberg University

[12]. The theory on how the piecewise linear approximations of the non-linear functions

are computed can be found in [14, 15]. When translated into a mathematical model

and after some internal LAMATTO++ preprocessing that exploits certain network

structures to reduce the modelling complexity, each of the considered scenarios yields

40 piecewise linear constraints originating from the approximation of the Weymouth

equation for all pipes. On average, the approximations consist of 36 support nodes. As

objective function, we have opted for a pressure loss minimization.

First of all, in table 2 we want to compare the average number of variables and con-

straints in our models. Throughout this section, let our constraint programming ap-

proach using convex hull relaxations be denoted by (PWL), while the MIP models will

be referred to by their abbreviations as introduced.

(INC) (CC) (MC) (INClog) (PWL)

Variables 2419 2571 2507 2703 742

- binary 883 971 971 260 104

- continuous 1536 1600 1536 2443 638

Constraints 3939 2589 3168 1874 1443

- PWL 2536 1186 1765 471 40

- others 1403 1403 1403 1403 1403

Table 2: Mean number of variables and constraints in test instances.

As expected, all non-logarithmic formulations have roughly the same number of vari-

ables, whereas (INClog) uses significantly less binaries. However, this goes along with

an increase in continuous variables. With its direct modelling of piecewise linear con-

straints, our model needs the fewest variables. Above all, binary variables are only used

for modelling discrete decisions as part of the nomination validation problem and not as

auxiliary variables. Similarly, many additional constraints are needed for representing

piecewise linear functions in the MIP models, which is not the case for (PWL).

Next, we want to study the running times of the MIP instances. SCIP is very well

suited for solving pure mixed-integer programs without further constraint types, since

it provides sophisticated methods for all aspects of a branch-and-bound procedure. In

particular, it features a very powerful presolving process. Table 3 lists the statistics of

running the MIP instances, both with presolving enabled and disabled.
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(INC) (CC) (MC) (INClog)

(1) Presolving enabled (unlimited rounds)

total solving time [s] 7.0 19.8 29.9 11.4

total solving nodes 25.5 592.4 345.5 749.6

presolving time [s] 2.5 1.2 4.0 0.2

- binary vars fixed [%] 77.6 16.9 45.6 22.3

- constraints removed [%] 79.1 34.2 47.5 31.3

(2) Presolving disabled

total solving time [s] 14.9 17.2 21.8 8.9

total solving nodes 320.8 717.4 522.2 574.5

Table 3: Computational results of MIP test instances. The values shown are
averages over all test instances, with the geometric mean being used
for solving time and nodes in order to weaken the influence of outliers.

It can be seen from the table that the (INC) formulation and its logarithmic variant

clearly yield the best results with respect to total running time. Surprisingly, (INClog)

thereby does not generate less branch-and-bound nodes than (CC) and (MC). The

comparatively bad performance of (CC) may be attributed to the formulation being not

locally ideal, whereas there is no obvious reason for (MC) being the slowest model. The

major insight, however, is that presolving seems to work extraordinary well for (INC),

reducing the size of the models by more than 3
4
. This leads to a drastic decrease of the

required solving nodes compared to the other formulations and largely contributes to

the low amount of time that is spent after presolving was finished. By contrast and

quite unexpectedly, presolving slightly negatively influences the average running times

of (CC) and (MC) despite reducing the number of nodes, which is outweighed by an

increase in the number of required LP iterations.

We now want to proceed with stating results obtained by our piecewise linear con-

straint handler. Since there are multiple options in SCIP Conshdlrdata that allow for

controlling different aspects of the solving process, we can not experiment with every

thinkable combination of these but try to test them as independent parameters. The

following parameter values will be considered as default settings that are used if not

explicitly stated otherwise:

addcutsinit TRUE

splitcons TRUE

sepallcons FALSE

updateconslocal TRUE

branchmethod 2-CHILD-EXACT

branchcandsel MOSTINFEAS

MAXPREROUNDS 10
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4.5 Computational Results

The largest impact on the outcome, as we have found, is caused by the rule for selecting

a branching variable. In table 4 we will distinguish between two cases:

• FRACPRIO: If there are fractional binary variables at some node, always let the

integrality constraint handler create a branching on one of them

before piecewise linear constraints are considered.

• JOINT: Jointly consider fractional variables and violated piecewise linear

constraints as branching candidates and score them according to

comparable branching rules.

We will omit the case of prioritizing piecewise linear constraints since some of the

binary variables represent true network decisions like, for example, opening or closing

a valve. It does not make sense to take these decisions only after each piecewise linear

constraints has been satisfied.

FRACPRIO JOINT

time [s] nodes time [s] nodes

RANDOM 2.9 46.1 2.8 68.5

MOSTINFEAS 2.9 47.8 2.8 44.0

LEASTINFEAS 2.9 48.6 3.1 91.6

STRONG 51.4 37.1 133.7 27.9

RELPSCOST-3 14.1 37.5 34.5 32.3

RELPSCOST-6 24.6 37.2 42.6 29.9

Table 4: Computational results of (PWL) test instances by branching rule.
Again, the geometric mean has been used. In RELPSCOST-X branching,
the value of X denotes the reliability parameter η.

As we can see, the best results in terms of running time have been obtained by the

branching rules RANDOM, MOSTINFEAS and LEASTINFEAS with their average solving times

being nearly equal. Furthermore, the instances were solved faster than by any MIP

formulation. There is, however, a problem of scale, since none of these three branch-

ing rules yield acceptable results when applied to more complex real-world instances.

They all result in huge branch-and-bound trees without finding good solutions. Hence,

in order to keep the number of solving nodes as small as possible, we need to rely

on some strong branching approach. The values in the table show that the size of

the branching tree can indeed be reduced by using STRONG or RELPSCOST-X branching.

Moreover, we can see that a joint strong or reliability branching evaluation of fractional

variables and piecewise linear constraints is advantageous to a separate consideration

based on prioritizing either one above the other. In our tests, when there were both

types of branching candidates available at some node, the ratio of joint strong branch-
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ing choosing a fractional variable to choosing a piecewise linear constraint was about

53.1% to 46.9%. The main drawback that, until now, prevents us from solving larger

instances is the lacking infrastructure of the SCIP framework for performing strong

branching on piecewise linear constraints. As described above, SCIP is not capable of

performing warm-started LP iterations after a tentative cut insertion, which would be

required for computing the convex hull relaxations of potential child nodes. The de-

tour that we have implemented excessively slows down the solving process even in our

relatively small test instances. In part, this can be remedied by reliability pseudocost

branching that yields comparable results to strong branching in less time, without,

however, leading to satisfactory results in real-world examples.

Finally, in table 5 we want to show the impact of running the test instances with

parameter values different from the default settings. The most interesting insight is that

the branching method 3-CHILD yields a decrease in both running time and number of

solving nodes compared to 2-CHILD-EXACT. By contrast, the solution process is slower

and needs considerably more nodes when either 2-CHILD-LEFT or 2-CHILD-RIGHT is

used, which may be ascribed to the fact that both of these methods do not guarantee

the LP solution to be excluded from all of the generated subproblems. Likewise, all

other parameter value changes do not lead to an enhancement of the solving process,

with a particularly bad performance being caused by not splitting the constraints into

their upper- and lower bounded parts.

parameter value time [s] change nodes change

DEFAULT 2.8 - 44.0 -

addcutsinit FALSE 2.9 +1.7% 46.9 +6.6%

splitcons FALSE 3.2 +12.9% 53.8 +22.2%

sepallcons TRUE 2.8 -0.8% 46.5 +5.8%

updateconslocal FALSE 2.8 -1.3% 54.6 +24.1%

branchmethod 2-CHILD-LEFT 3.1 +11.0% 59.0 +34.0%

2-CHILD-RIGHT 2.9 +2.8% 58.5 +32.9%

3-CHILD 2.6 -7.8% 40.7 -7.4%

Table 5: Computational results of (PWL) parameter tests. The percental
changes are computed with respect to the default settings given above.
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5 Summary

In this thesis, we have studied different modelling approaches for piecewise linear func-

tions, in particular with respect to their occurrence in mathematical optimization prob-

lems. Reviewing the quality of the classical MIP models from the literature, we have

seen that all but the disaggregated convex combination method yield both sharp and

locally ideal formulations. In the main part, we have presented an alternative approach

for modelling constraints involving piecewise linear functions, based on ideas of con-

straint programming and using a convex hull relaxation. For the purpose of developing

a branch-and-bound procedure specifically adapted to our constraint formulation, all

required components such as propagation, branching and separation have been dis-

cussed. In particular, we have focussed on adapting well-known MIP strategies for the

selection of branching variables to our type of piecewise linear constraints.

For the special case of univariate piecewise linear functions, we have implemented a

constraint handler within the SCIP optimization framework. In order to test its perfor-

mance with respect to various aspects, we have considered an application of piecewise

linear constraints in gas network optimization where they are used as approximations

to non-linear functions. It could be shown that, besides drastically decreasing the

number of variables and constraints in the model, our CP approach may potentially

reduce the number of nodes in the branch-and-bound tree compared to the standard

MIP formulations. However, due to some unavailable SCIP functionality that would

be required for taking reliable branching decisions in a reasonable amount of time, it

has not been possible for us to solve large real-world problem instances. Nevertheless,

we have gained the insight that it is preferable to jointly consider piecewise linear and

fractional binary branching candidates instead of prioritizing one above the other, since

either type may yield the locally best decision in terms of dual bound progress.

As a topic for future work, one might consider extending our constraint handler to more

general classes of constraints, e.g., involving multivariate or semicontinuous piecewise

linear functions. This would necessitate more complex data structures for storing the

constraint information as well as modified constraint programming techniques for the

branch-and-bound procedure. Concerning the development of the SCIP framework, it

would be very useful to provide more flexible means for applying the idea of strong

branching to a wider set of constraint types.
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