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Abstract . The C- implementa t in of KASKADE, an adaptive solver for 
linear e l l i t i c differential equatons in 2D, is object of a set of numerical ex
periments to analyze the use of resources (time and memory) with respect to 
numerical accuracy. We study the dependency of the reliability, robusness, 
and e f e n c y of he program f o m the parameters controling the a l g o r h m . 
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Introduction 
The finite element method KASKADE [13] handles scalar lnear e l p t c two-
dimensional partial differential equations of the form 

{Piux) {p2Uy)y + qu in 0 
on T0 C du Q j \ 

— + r]u on 11 
On 

with r 0 U r i = dft and q(x} y) > 0 and 0 < n(x}y)}0 < C < pi(x,y)}p2(x}y). 
Here 0 denotes a polygonal domain in IR and T0 is composed of edges of 
(90. Furthermore -^ denotes th conormal derivative associated with pi,p2 

The first implementation in PASCAL is described n [16]. The second imple
mentation in C [22] is studied in this paper. This version was extended to 
the convecon-diffuson equation [14], time-dependent PDEs [3], and obsta 
cle problems in device simulation [15]. In this context alternative refinement 
strategies (blue refinement and the BPX-preondi t ioner of B r a m b e , P a s i a k 
Xu [11] wer implemented 

Subject of thi paper are results of a set of test problems applied to KASKADE 
and the choi of some KASKADE parameters. Reliability, robusness, and 
efficency are tudied. Further the results are compared with th popular 
adaptive F E M o d e PLTMG of R. Bank [6] 

1.1 The KASKADE Algorithm 

The KASKADE algorithm is an adaptive mul t i - lve l method using linear 
finie elements. A flow chart of its general loop can be een in igur 1.1. 

On a given triangulation 70 (level 0) the first finite element solution is com
puted by a direct solver. KASKADE supports the usage of two different 
versions of a sparse Cholesky decomposition: A fully parse elimination with 
the nested disset ion numbering and an envelope elimination with the re
verse Cuthill-McKee numbering of the nodes. The usage of a sparse solver 
for the initial triangulation is of particular interest in applications where th 
problem geometry demands an initial grid with rather many nodes. 

The next steps ar an error estimation (ESTIMATE) and a closely coupled 
efinement process (REFINE). In the first tep we get an approximate value 

eest of the global error (energy norm). This value is used stop the adap
tive ie ra t ion c y l e i the user-requesed global accuracy etoi is reached. Th 



ESTIMATE process generates addi t ina l ly a local error e s t imae £A for each 
riangl (or edge) of the mesh. These values are used in the REFINE tep 
o select triangles for local, regular refinement if £A > c • 0 , where 0 is 

some sort of average error and a a user-supplied constant. In [13] 0 is com
puted as the mean value of all local errors ( h o r t form 0mean)- Bornemann 
4, Section 2.4.3] contributed to KASKADE the computation of 0 by ex
rapolation of the local errors of the different refinement levels (short form 
extrap)- Essentially this strategy goes back t Babuska/Rheinboldt [1] 

After each REFINE tep it is checked if the maximum of nodes NmSLX is 
eached or if enough w nodes are found. In this case the iterative solver 

( T E R A T E ) is called therwise the E S T I M A T E R E F I N E cycle i repeated 

The iterative solver is a p recondioned conjugate gradient method which 
solves the l i e a r s y s e m esulting om the finite element approach on th 
mesh Ti 

Ui = bi . (1. 

The eration process should top if the solution of the system is as accurate 
as the discretization error which is predictedhy e"s

e
t
w. For safety reasons we 

introduce a factor p and s o p the eration process f th error of the near 
system is less than e req = gS

e
t
w * p. 

The CG-method needs only a device for matrix-vector multiplications Ax 
and thus n xplicit representation of the matrix A. There is an option either 
to maintain A completely in a parse form or to store the local stiffness matri 
ces for each triangle. Hierarchical Basis [13] and BPX n the implementaton 
of Bornemann [4] are the availabl preconditoners. 

T a b e 1.1 shows the combination of parameters that are tested systematically 
and he abbreviations to denote these tests. 
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1.2 The PLTM Algorithm 

We use the well-known nite Element program PLTMG [6] as a refer 
ence system (P). PLTMG resembles KASKADE, it uses the same adap
ive efinement techniques but has different STIMATE [10], REFINE, and 

ITERATE steps. The ESTIMATE/REFINE loop is optimized to reach th 
user-supplied Nmax, normally it needs an xpansion factor = 4 at each 

vel We note that PLTMG addresses non-linear probems. 

1.3 Norms and Notation 

Let u be the exact solution of the problem (1.1), ÜL the iterative solution of 
he lnear FEM equations, and || || the energy norm. Then we define 

| | U L | | (1.3) 

eest he e s a t e d (1-4) 

Furthermore egrid is defined as the maximal error at the nodes, the centers of 
the triangles and the points h a l f a y between the center and the nodes, thus 
a p p r o x i a t i n g the real maximum norm. 

We introduce some a d d i o n a l abbreviations: 

i\ number of i teratons on efinement l v e l / 

total P U t i m e onds for solving the p robem 

ercentage of total me for error e s t i a t o n 

f ercentage of total me for refinement 

t ercentage of total me for assemblng and erative soluton 

accumulated P U t i m e econds for al erations, up to l v e l / 

t PU-t ime i econds per ie ra t ion and point 

1.4 Tes 

We use the test set recommended by W. M c h e l l 18] (see Appendix A). It 
contains problems of different complexity including peaks, boundary layers, 
discontinuities, sngularities, and non-quadra tc domains ( e e T a b e 1 . ) . 



name ype rem 
ss harp p a k s 

H e m h o t z b o u n d r y laye 
Helmhotz mi peaks 

oisson wavefont 
Laplac moderat peak, geometry 
Lapla ngula 
Lapla d i s n t n u o u s boundary c n d i 
VaVu = 0 disontinuous a 

e 1.2: Tes 

1.5 Breakng Conditions 

ne problem area is to define a break condition for the adaptive process. Th 
mathematca l ound method is o top if the estimated error eest i below 
user suppled etoi. We compare the estimation in our experiments with the 
rue error SL in order to test the reliability of the a lgor ihm (Chapter 2). This  

also important in the c o n t x t of the evaluaton of e f i e n c y ( e e Chapter 3). 

In PLTMG the error is computed in the i 1 - n o r m , i KASKADE in th 
energy norm. Thus the handling of the break condition makes the comparison 
of the two solvers difficult. Hence in tables where both the methods are 
mentioned, we didn't consider the Tests 2 and 3 and changed the other ones 
a little by adding the solution u on both des of the equations. On the right 
ide of (1.1) we replaced u by the known expresson of the solution ge t tng 
est equations for which he i - n o r m agrees wi he energy norm. 

In ome real life problems it might be useful to take the number of nodes 
ax as break ondition due to lmi t s of memory. 

1.6 Computing Environment 

All computations are done on a Sun Sparc 1+ s t a ton under OS, Release 4.1 
using the f 77 and cc compiler with their highes optimization level. This 
configuration should yield about 1.4 MFops for th Fortran doube precision 
L I A C K benchmark 

3 2 b i t real data types (real respectively float) are used. For better accuracy 
double precison computation (64-bi a r i h m e t c ) s recommended 



1. Delicate Testing Questions 

The comparison of different a l g o r i t h s or implementations s extremely del 
icate, eg . , for the folowing reasons 

Small changes in parameters of the algorithms might totally change 
the adaptive development, e.g., produc a different sequence of refined 
triangles. 

The solution process might depend very sensitive on the initial trian-
gulation. An improper choi of the i n i a l triangulation could easly 
poil the soluton. 

An improper choice of the break conditon could dominate th over 
all time because each new step of the adaptive process is much more 
xpensive than he ones before. 

The algorithms may be optimized for a certain problem class, thus a 
comparison of a code for linear problems with a code for n o n - n e a r 
problems might be ineviably biased 

Memory can be allocated for purposes other than he here e s e d 
e.g., graphical processng. 

Runtime results can be dominated by hardware structure and c o m p e r 
q u a l y , e.g., a wrong model of the optimization rocess of the c o m p e r 
can ad to bad mpementat ions. 

Particular attention should be paid the fact that we ompare imple
mentations i diferent programming languages, i e , ORTRAN and 
C 

These problems in mind we want to compare the behavior of KASKADE and 
PLTMG as carefully as possible and to prove that the KASKADE algorithm 
runs w i h easonable effiency, reliabiity, and robusness. 
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igure 1.1: Ma t e r n loop of KASKADE 
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ccurcy 
In this chapter we investigate the convergence behavior and the error esti 
mation device of the adaptive KASKADE algor ihm which are essential for 
e l i a b i y robusness, and effciency. 

We stress the importance of the interplay between the error estimator and 
the refinement trategy. The error estimator should produce local and global 
estimates for a given tr iangulaton. Local estimations provide information 
for the refinement strategy, deciding which and how many triangles to re

ne. A method achieves high accuracy with a minimal number of nodes only 
f the error estimator represents the local error qualitatively well and the 
efinement strategy defines efficient rules for selecting triangles. A quantita
ive good estimate of the global error is needed in order to obtain a reliable 

break condition. An underestimation might lead to stop the solution with
out getting the requested accuracy and an overestimation may l a d to more 
efinement l v e l and much heavier use of computer resoures) . 

2.1 Convergen havior 

The adaptive refinement should reduce the ize of the linear s y s e m and 
retai a small discetization error. Thus it seems reasonable (in view of 
optimal approximaton properties with linear elements) to evaluate the ratio 
of log(N) and | log(£,) | with respect to the different refinement strategies 
elying on the mean value or on extrapolation. However, the number of 

nodes used to reach the requested accuracy gives only a hint of the efficiency 
of the method. One reason is he time spent on assembling stiffness atrices, 
in particular for the error estimator. Thus a method selecting only few ew 
points at each level might reach the accuracy with less nodes but spend too 

uch time by esimations. W e ' l look into this question in the next chapter 

We start with the evaluation of the convergence history for our test problems. 
Some typical e s l t s are noted Appendix C. As the break ondition 

e e s t / | | £ | | e t o i = 0.05 2.1) 

as selected Each of the solvers achived this accuracy 

A quantitative comparison of the accuracy is practically impossible because 
different error estimators and refinement strategies produce diferent meshes. 
However, the algor ihm how qualitatively an equivalent ehavior O 



meshes wi oughly the me numbe of nodes most tests h t me 
accuracy. 

A signficant discepancy of th accuracy was seldom observed. In Exampl 
6c the efinement rategy (K2) is inferior to the other methods. Strikingly 
PLTMG achieved in all examples smaller values for egrid on the mesh nodes, 
due to a more accurate solution of the linear y s e m . 

We wi not analyze these results further in a fashion which might pretend 
a non-existing continuity. The success of a method just depends strongly 
on the discrete selection of triangles to refine, which is best demonstrated 
by the different results of the mean value refinement strategy and and the 
extrapolation strategy, which use nevertheless the same error e s t i a t o r , see 
Tabes and Figures i he Appendix C 

The resuts show only in the Examples 6a, 6b and 6c a significant drawback 
of the mean value strategy. Al tests show comparable fast convergence for 
he extrapolation strategy with parameter choi K4) and PLTMG. 

2.2 The Gloal Etimate rror 

A method hould give a good es imat ion of the global error for a reliabl 
stopping criterion. The error e s t i a t o r can be characerized by the e f t i v i 
ndex [1] defined by 

(eest eet/L . 2. 

We folow [0] and choo as a measure of the relative error 

£ e ) £ e s t ) 1 • (2-3 

Having ( near or converging to zero is clearly the most desirable situation. 
Positive values of ( indicate an overestimate of the true error and are accept 
able as long as ( is not too much larger than one. N e a t i v e values of ( mean 
the error indicator has given an optimistic e s t i a t e of the error. Here th 
value of ( houl not be below /2 . 

We measured the e f c t i v i t index ( for the methods K2), ( 4 ) , and P). 
Some r e s l t s are o l t e d in Appendix C 

Only for Problem 6c the values for ( how significant differences between 
the methods. In all other cases the global error is estimated omparatively 
well. We observe a certain tendency of the KASKADE error estimator to 
underestimate he error and therefore to stop the olution process in some 
cases too early. Example 6c exemplifies this: the mean value efinement 
trategy leads to meshes where the KASKADE error estimator s way off 

the real error. However, the extrapolaton refinement strategy generates 
meshes with far better results. We use the results from [0] o confirm thei 
evaluation for e a m p l 6c, see Tabes 2.1-2.3. 



'-•e o g ( | l o g ( L ) 
2 . 5 0 1 4 . 8 6 0 1 0.47 3. 

21 2 . 4 5 0 1 4 . 3 8 0 1 0.441 3.69 
44 2 . 3 1 i 0 1 3 . 9 3 0 1 0.41 4.05 
202 1 . 8 4 0 1 3 . 0 3 0 1 0.393 4.45 
58 1 . 4 0 1 2 . 2 4 i 0 1 0 . 7 5 4.26 
745 1 . 2 4 0 1 1 . 9 3 0 1 0.358 4.02 

ble 2 . : E nalysis K2) b l m 6c, natur boundary lues 

o g ( | l o g ( 
2 . 5 0 1 4 . 8 6 0 1 0.47 3. 
2 . 4 0 1 4 . 5 0 0 1 0.46 4.13 

47 2 . 2 7 i 0 1 3 . 6 7 i 0 1 0.381 3.84 
151 1 . 7 8 0 1 2 . 7 i 0 1 0.216 3.38 
207 1 . 6 0 1 1 . 8 9 0 1 0.138 3.20 
447 I . I 8 O I 1 . 2 8 0 1 0 . 7 8 2. 
912 8 . 6 0 2 9 . 1 8 0 2 0.054 2.85 

ble 2.2: E nalysis 4) b l m 6c, natur boundary lues 

'-'e o g ( | l o g ( L ) 
3 . 0 4 0 1 4 . 0 1 0.390 3.31 

41 2 . 0 1 3 . 6 8 0 1 0.19 3.71 
161 2 . 2 1 i 0 1 2 . 0 8 0 1 0.065 3.23 
681 1 . 0 1 1 . 2 0 0 1 0.026 3.08 

T a e 2.3: E r o r nalysis (PLTMG) r P r b l c, natural boundary v l u e s , 
e s t s om 0] 
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im Efciency 

In this chapter we tudy the P U - t m e necessary to solve the problems of 
Appendix A. 

We consider the number of grid points and the CPU-t ime necessary to reach 
the required accuracy etoi = 0.1 (cf. Chapter 2) using the error e s t i a t o r s . 
In those cases where the required accuracy is reached but u n d e r e s a t e d 
we ontinue omputing unti he true error fills 

/ | Ä L £ toi 

We observed such an unrelable behavior only in the Examples 4 and 6c, 
where the KASKADE e s a t o r u n d e r e s t i a t e s the error. PLTMG always 
yields an o v e r e s a t i o n . 

In some examples the requred accuracy is reached with quite a different 
number of grid points which is caused by the arbitrarily choice of the de
termination threshold etoi. In some cases the error on one level is estimated 
a little over this threshold, and on the next it is already lying considerably 
under it. In such nfortunate accidents we take als the preceding evel into 
account. 

Usng PLTMG we set the maximal size of grid points much higher than 
necessary for reaching the required accuracy. Thus the number of grid points 
nceases by th factor 4 from one l v e l to the n x t . 

Solver '-•e uL est t 

4.63e-03 5.68e-0 051 5.3 34 
3015 2.64e-03 3.70e-0 052 17. 57 37 

K2 3.95e-03 4.11e-0 052 5.3 39 
K3 1105 4.7e-03 5.85e-0 051 6 60 34 
K3 2498 3.04e-03 4.91e-0 051 8. 24 

899 3.91e-03 4.18e-0 052 6.6 
K5 899 3.91e-03 4.18e-0 052 8.7 

51 4.52e-03 4.11e-0 052 3.5 29 

ble 3 . : P r b l 



Solver '-•e üL est t 

2271 1.08e-01 1.73e-01 1.43 18.8 
561 52e-02 1.30e-01 1.43 51. 59 

K2 1672 1.04e-01 1.69e-01 1.44 16. 47 
K2 4166 32e-02 1.19e-01 1.43 47. 47 
K3 489 1.7e-01 2.61e-01 1.43 
K3 176 8.54e-01 1.13e-01 1.43 45. 76 22 

46 1.13e-01 1.35e-01 1.43 14.4 20 
K5 475 1.13e-01 1.35e-01 1.43 17.7 57 

51 1.40e-01 1.30e-01 1.43 29.8 50 21 27 

ble 3.2: P r m 6 

problem Solver 
1051 
899 

4 . 1 1 I 0 3 

4 . 1 8 0 3 
21. 
9. 

P 
KK 

1055 
817 

1 . 3 5 0 1 
1 . 5 5 0 1 

22.4 
9.8 

1591 
075 

2 . 1 0 0 1 
2 . 3 2 0 1 

32.3 
0. 

361 
437 

2 . 1 2 0 1 
I . 6 8 O I 

5.3 
2. 

951 
467 

1 . 3 0 0 1 
1 . 3 5 0 1 

29.8 
177 

1561 
901 

2 . 0 6 0 1 
2 . 7 0 0 1 

31.8 
6.6 

52 
53 

< 1 . 1 6 0 1 
I . I 6 O I 

8. 
2.6 

e 3.3: KASKADE ( = K 5 versus PLTMG 

3.1 KASKADE nternai 

We start with the analysis of KASKADE to find a good parameter set. This 
verson will be ompared wi the PLTMG-solver i the next ection. 

In KASKADE we may choose between two refinement strategies. We studied 
the resul ing accuracy in Chapter 2. Using the same notation we analyze th 
influence on the time effciency of the mean valu rategy (Solver l, K2 
and he extrapolation strategy (Solver K3, 4). 



In the tests we also varied the safety facto p (0.25 and 0.01) in rder to study 
the influence of accuracy in the iteration rocess on the time requirement 
Here we always used preconditioning by hierarchical bases. A ompar ion 
with the BPX-preondi t ioner follows in Chapter 5. 

The election of p = 0.01 (versions K2 and K4) i he iteration process seems 
to be better than the p = 0.25 in the versions Kl and K3. Though t needs 
more (up to 4 ) iteration eps, the approximate soluton i found in mo 
examples on a oarser grid e.g. higher accuracy) in a shorter time. In th 
other problem there is only little additional work, because one i te ra ton step 
takes only a mall amount of t m e compared with other parts of the solver 
Therefore we propose the smaller safety factor 0.01. In Chapter 5 we efer  

ome more results we made in he ourse of our experiments w i h p. 

A comparison of versions K2 and K4 show only in the Tests b, 6c and 
7 significant differences. The extrapolation strategy, discussed in Chapter 
2, has the advantage of finding the solution in a shorter time. Though th 
extrapolation s ra tegy needs more refinement steps and error estimations, i 
most examples it generates a sufficient accurat solution on a coarser grid 
than the mean value strategy.iln this context it is crucial that the extrap
olation strategy does not require the doubling of grid points from level to 
level as the mean value strategy. The effect of the higher accuracy of the 
extrapolation strategy is very clear in Example 6c. In Example lb we have 
to notice an exception of this rule. In this problem the mean value strategy 
s more accurate and yields an advantage in runtime. Both versions, K2 and 

K4, need he same number of refinement s eps , but K2 generates less gri 
points. 

Thus we realize that it is reasonabe to include both strategies n the program. 
The user can select the most e f i e n t one for his type of problems. 

3.2 KASKADE ersus PLTM 

We recal ome results from Chapter 2: 

1. Every solver reaches the required accuracy. There are no failures. In 
most of the testskKASKADE yields the required accuracy with fewer 
points than PLTMG. The reason for this behavior is not a higher accu
racy of KASKADE, but the unfortunately tuned refinement strategy of 
PLTMG requiring an incease of points by a facor 4 for ach refinement 
tep. 

2. The solvers how different accuracy only in the E a m p l e s 4 and 6c. Th 
approximat olution of KASKADE in Problem 6c is more accurat 
than that of LTMG. 

12 



In thi secti we study the influence of the different methods on the runtime 
of the olver. Solutions with coarser grids are often generated by more refine
ment steps, each including the solution of a linear system, an error e s t i a t i o n 
or some in tero la t ion work Obviously we get the folowing result: 

Differences in the runtime between the versions of KASKADE and 
PLTMG are significant in all tests. For each problem there is a varian 
of KASKADE which is much faster (u to factor 5) than the soler 
PLTMG. 

To simplify the comparison of KASKADE and PLTMG, we only consider 
he version K5 of KASKADE. It uses he same refinement strategy as K4, 
he more robust one. K5 needs nearly as much memory as K4 due to th 

storing of the local stiffness matrices at each triangle. Therefore we prefe 
the faster version KJf. In order to extract other effectswwe decided to us 
K5 here cause it handles the assembling of the stiffness matrix similar to 
PLTMG, e.g. it r eomputes all elements on a grid without u sng values of 
former grids. 

The clear advantage of KASKADE is caused by the special C -mplemen ta ton 
and he s a l e r problem ass. We analyze some details 

1. The evaluation of the problem describing functions is in PLTMG much 
more expensive (up to factor 3-4) than in KASKADE. There is only 
one function in KASKADE which computes all values at a point, whil 
in PLTMG different values are evaluated in diferent functions. In 
addition PLTMG uses another formulation of the problem (PLTMG is 
a solver for nonlinear problems too), which needs each of these functions 
for five different parameters. Furthermore these values are used in th 
integration formulas yielding superfluous arithmeti operatons in th 
case of a near problem. 

Such numerical ntegrations and funcion evaluations are necessary for 
the assembling (stiffness matrix and the right-hand side) and the 
error estimation. We point out that PLTMG needs nearly he same 
number of evaluations of the right-hand side, but twice the number 
of evaluations of the coefficients per point. These additional function 
calls are necessary for the eror esimation process in PLTMG. (Th 
valuations of a function in LTMG w i h five different parameters ar 
ounted as one f u n c o n c a l ) 

n our examples the evaluation t m e for these functions yields about 
10% of total time. Note hat we have constant coefficient problems 
and right-hand sides with few floating-point operations, conditional 
ontrol statements and andard funcion calls. In real life problems 

13 



ensive functon evaluations can domnae the total time, hus ruling 
th efficiency of the solvr. If only th right-hand sides are xpensive 
both solvrs will have similar runim but if a lot of tim is spend by 
computing the coefficient function ect KASKADE to be faster. 

We found no further hints on significant numerical superiority of one of 
the solvers. The runtime advantage is homogeneous in all parts (error 
estimation, integration, linear solution) of the programs. A more de
tailed analysis of his question is intricate because of the very different 
mplementations. 

2. The way of handling he data s ructures (used for d e s c b i n g the de
pendencies of different values on the geometry) seems to have an im
mense influence on the costs of the analyzed solvers. Comparisons 
showed that the structural data types and the pointer structures in C 
allow a very natural programming of an adaptive algorithm. While the 
Fortran-coded PLTMG needs a lot of index computations to get the re
lation between certai values and the geometry, the C-implementation 
of KASKADE uses a faser access by structured types and pointers. 
We did not analyze thes effects quantitatively. We just depict some 
details with consderabl nfluence on he speed: 

PLTMG spends much more time than KASKADE handling the 
grids and the refinement (both solvers use the same geometrical 
refinement rules) after an error es imat ion, even in the case of 
uniform efinement when both a lgor thm generate the same grids. 

Though both solvers use the same integration formulas, the inte
gration process (stifness matrix right-hand sde) is much faster 
n KASKADE than in PLTMG, even in the case of uniform grids. 
(We took into account the more expensive evaluaton of he prob
em desr ibing funcions i PLTMG, ee above.) 

The speedup of using structured types and pointers in the C-version of 
KASKADE seems to correspond w i h higher requirements in memory, 
ee Chapter 4. 

3. The runtime of a code depends immensely on the computer architec 
ture and he related optimization of the ompilers. For example, on 
our computer the advantage of KASKADE will decrease when we use 
no optimization. We suppose that the difference in the runtime be
tween PLTMG and KASKADE might disappear on special machines, 
e.g. computers with vecor units (the array formulaton in the Fortran-
coded PLTMG might be better suited for vecor iza ton than the truc 
tured types i he KASKADE-code). 

14 



4. In our tests we onsidered public domai p r o g m s , whose purpose i 
to solve a wide cass of problems (PLTMG even nonlinear problems) in 
a comfortable way. Specially PLTMG is not optimized for solving our 
test problems. We already mentoned some details, aybe ther ar 
more. 

nal remarks 

Saving of the local stiffness matrices n KASKADE (version K4) or us 
ing the exact integration in the case of problems with constant coeffi
cients will accelerate the verson K5. Corresponding options of PLTMG 
are unknown. 

The variation of the safety facor p in the iteration process of KASKADE 
il lusrates that even inside a solver a reasonable s e l e c o n of parame
ters may cause considerabl differences n he runtime ( he examples 
with he versions K3 and K4 up to 2 0 ) . 

In our test problems none of the solvers s o w s a significant numerical 
drawback neither in the error estimation nor in the solution of th 
linear systems. Specially both linear solvers (in PLTMG a Multigrid 

ethod, in KASKADE a preconditioned CG-method need only about  
(ncluded i ) of the total time. 

15 



hapter 

Storag ciency 

4.1 KASKADE nternal 

KASKADE stores the triangulation nformation in data s ructures for points, 
edges, and triangles, each needing A p o n t , Aedge, Atiangie bytes respectively. 
The data to hol the iffness matrix and vectors is stored i associated 
arrays of lengths Apoint, Aedge, Atriangie at the corresponding data structures. 
Table 4.1 gives a t of these values when to rng he ocal tiffness m a t r i e s 
at triangles. 

re p o n t edge t i a n g l p o n t edge t i a n g l 

float 
doubl 

52 
52 

60 
60 

36 
68 

16 
32 

36 
72 

able 4.1: L o c l s a g e q u i m e n t s (bytes 

To get some estimate A of the amount of storage needed o compute a o lu ton 
at one point we use Euler formul 

p o n t ge T ' t i a n g l 

where npoint nedge, ^triangle are the number of points, edges, and trangles. 
For larger t r angu la tons the relations 

t i ang le ~ ^ ^ p o n t t ^ g e ~ ^ p o n t 

hold approximately. Taking nto account that the hierarchy of trangles is 
tored too, we get 

t i a n e ~ ^ ^ p o n t t ^ e ~ p o n t 

Thus 

A = ( A p 0 n t + A p o n t ) + 4 ( A + A g e ) + ( 3 A t i a n g l 2 A t i a n g l 

with the values 596 for ngle and 772 for double precisons. 

Mo of the memory requests are handled dynamically: the program allocates 
only as much memory as used (e.g. for ne oints, edges, and riangles). 

16 



uch an administraion of memory corresponds well to an adaptive m e h o d  
which the structure and size of mesh is not known a priori 

In order to make the allocation of memory eficient, memory fetched in 
buckets big enough to hold 1.000 points. This means that on coarser grids 
the requirements per point are much higher than the asymptotic value. This 
effect and the requiements for tat variables ar negligibl with inceasing 
number of points. 

Some values of the really alocated memory an n one e a m p e i lus t ra te 
his behavior, see Table 4.2. 

pont ge tiangl o c e d [Bytes] al 

20 81 73 30182 25 
64 1846 20 70182 200 

1639 4796 315 1606182 80 
08 2049 7964 322182 813 

920 7325 181 7334182 
2078 61859 73 16051782 72 

ble 4.2: A l o c e d memory, u sng 6 4 - B i - f l o a n g p o n t numbers 

The data structures used n KASKADE are not free of redundancy. This 
allows more flexibility in the description of the problem (complex geometry) 
and ease of implementation for advanced methods (iterative solvers) and 
additional features (graphis) . The redundancy sometimes also yields a faster 
code. An optimization for an actual application wi l be possible, if only 
subset of KASKADE features is used. Then the user can remove not needed 
edundancies or can mplement short cuts to get a faster and s a l e r code. 

4.2 PLTM 

PLTMG administrates he memory requirements atcally. Before compiling 
he program we have to fix the maximal length LENWS of an array used for 

the typical informations (points, edges, t rangles) . Corresponding to th 
expeced grid refinement, we can compute L E N S by the formula [6] 

E N S = 2(NV + NC + 4 NB + 12 + (50 + KP + KS)*MXV + 64 

50 * MXV + 640, 

MAXV is a number of points in the finest grid, and we have NV points, N 
triangles, NB boundary edges, and NC curved boundary edges in the frs 
coars triangulation. KS and KP are zero i lnear problems. 

17 



We see that PLTMG only requires about 50 words (200, 400 bytes i as of 
3 2 - B i , respectively 64-Bit floating point numbers) per grid point 

There are some other arrays, but their length is negligible with an i n c e a s n g 
number of grid points. 

18 



hap te r 

ore erical E x e r i e n t s 

In this chapter we will analyze the influence of certain special options of the 
KASKADE program. Some n Chapter 3 already mentoned results wi be 
confirmed 

5.1 Preonditioners: H i e r a c h i c l Bases BPX 

As already mentioned the arisng near y s e m s are solved usng the precon
ditioned CG-method. 

Two preconditioners are implemented in KASKADE: F r s the hierarchcal 
bases method (HB), which was theoretically investigated by Yserentant [23] 
The second preconditioner (BPX) was suggested by Bramble, Pasciak, and 
Xu [11]. This method was further investigated for nonuniform triangul 
tions by Yserentant [24] Bornemann [5], and Dahmen/Kunoth [12]. The 
implementation of BPX for the case of highly nonunifor tr iangulatons of 
KASKADE as developed by Bornemann [4] 

We observe their qualt ies in our test problems (Appendix A). The iteration 
is continued until the error is under a fixed threshold defined as product of 
the estimated global error and two further parameters. One is the quotient 
of actual and previous number of grid points after the last refinement, th 
other one is the safety factor /?, well-known from Chapter 3. We choose 
p = 0.01 in Table 5.1 and = 10~6 in Table 5. and T a b e 5.3. The grids 
were generated by the mean value strategy. 

The computation is stopped, when the energy norm of the estimated error 
(relating to the norm of the a p p r o x i a t e solution) is s a l e r than a p r e s r i e d 
error toleranc etoi 

eest/ | 

We note the results on the final level 

Table 5.1 shows slightly less iteration steps for BPX, an effect which is even 
more observable for more accurate solutons of the linear y s e m s (f . Tabl 
5.2 and 5.3). This corresponds wel with the theory. 

However we observe a clear advantage in runtime for HB, which needs less 
ime in all our test problems without loosng accuracy in the energy norm. 

Obviously the higher runtime for BPX is caused by more expensive itera
on steps. Thi s s o w n in detai for Problem lb , see Tables 5.2 and 5.3. 



probl re depth 
HB 

BPX 
2954 
2962 

2. 
7. 

16. 
20. 

HB 
BPX 

2311 
2221 

1.6 
4.5 

13. 
15. 

HB 
BPX 

2402 
2432 

2. 
6.5 

11.7 
16. 

HB 
BPX 

3134 
2616 

2.8 
6.8 

15.7 
17.6 

HB 
BPX 

4425 
13 

3. 
7.6 

18.3 
20.3 

HB 
BPX 

1876 
1831 

2.5 
5. 

9.6 
12. 

HB 
BPX 

20305 
19720 

18 
18 

9. 
6. 

139. 
192. 

HB 
BPX 

3984 
3568 

4.2 
11. 

19.6 
5.3 

HB 
BPX 

159 
162 

0.4 
1.7 

5. 
7. 

ble 5.1: P r n d i n e r s HB and BPX 

depth H ^ 
18 1.e-04 0.3 
78 1.3e-04 1.6 

2221 1.5e-04 5.5 
7543 1.5e-04 18. 

able 5.2: HB P r b l 

We measured 2.75 times as much time per iteration and point as for HB. 
This corresponds well with the complexity analysis of the implementation [4, 
Section 6.5], which predicts a value between two and three. 

Though BPX is not the optimal preconditioner in our context, it should be 
mentioned that the important advantage of BPX is its generality, e.g. it can 
in contrast t the HB method be extended to 3D-[11] and time dependent 

roblems [3] 
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depth H ^ 
18 4.e-04 0.6 
78 4.0e-04 3. 

2221 4.e-04 9.4 
7543 4.2e-04 34. 

ble 5.3: BPX Pr 

5.2 uen of the eratio rror 

In this section we tudy once more the aspec of accuracy in the i te ra ton 
process and present some results i addi ion to hos i Chapter 3. 

The multi-level strategy of KASKADE relates the estimated discretization 
error to the error of the solution of he linear system. It is senseless and 
not efficient o generate a solution in the iteration process which is more 
accurate than the discretization. Becaus we do not know the exact errors 
of the discretization and the iteration, it is necessary t relate both by a 
afety factor p. It is well chosen if further iterations in the linear solver 
preconditioned CG-method) have no or only little effect on the accuracy of 

the solution on the actual grid. In the first version [13] of KASKADE th 
authors worked w i h p = 0.25. However, the results from Chapter 3 and from 
this section uggest that a value of p = 0.01 is safer. ially we recognize 
an mproved e f e n c y index of the error estimation. 

The effect on the runtime by some additional iteration steps is small com
pared with the total time including error e s t i a t o n and integration. Spe
cially in Chapter 3 we saw that the setting of a smaller p on the lower level 
often improves he convergence h i sory by reachng the requred accuracy on 
a coarser grid 

In some xamples (Tables 5.4 - 5.7) we oted the accuracy to computation 
with p = 0.25, afterwards we continued the iteration process by choosing 
smaler values for p and noted the improved accuracy. We counted the ac 
cumuated number of iterations i. The accuracy is measured in the energy 

orm {SL) and a kind of aximum nor grid, see Chapter 1). 
a le r value of p o fen deceases the maximu error. 
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' -•est £grid 

0.50 
0.100 
0.010 
0.001 

8.65e-0 
7.65e-0 
7.36e-0 
7.34e-0 

9.92e-03 
8.04e-03 
7.67e-03 
7.62e-03 

1.81e-0 
1.07e-03 
8.31e-04 
8.15e-04 

ble 5.4: Pr a, m e n ) on l v e 5 , N = 301 

'-'est £grid 

0.50 
0.100 
0.010 
0.001 

7 
13 
15 

1.72e-01 
1.46e-01 
1.29e-01 
1.28e-01 

1.87e-01 
1.55e-01 
1.38e-01 
1.36e-01 

6.67e-02 
6.30e-02 
9.38e-0 
9.33e-0 

ble 5.5: Pr 2, (me v e l 5 , N = 47 

'-'est £grid 

0.250 
0.100 
0.010 
0.001 

1.71e-01 
1.83e-01 
1.87e-01 
1.86e-01 

3.24e-01 
3.00e-01 
2.95e-01 
2.95e-01 

2.43e-01 
2.26e-01 
2.20e-01 
2.19e-01 

ble 5.6: P r b l m 6c, ( m e ) o v e l 5 , N 307 

5.3 plicit S r s e Form versus L o a l Stiffness a
t r ices 

By defaul the KASKADE program does not compute the values of th 
stiffness matrix explicitly, only the local stiffness matrix of each t r ang l 
s saved at the orresponding triangle data structure. If the stiffness matrix 

is used in the iera t ion process, these local matrices must be added up for 
every matrix-vector multiplicaton. By special selecion of a parameter in 
he program here is the possbility to assemble and save the stiffness matrix 
i sparse form) on each level. Thus we get rid of summing of ocal mat rces 

in every matrix multiplication, which accelerates each iteration step. In 
addition the local stiffness m a t r i e s are not saved in order to reduce th 
memory equirements. Therefor they must b ecomputed on each level 
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' -•est £grid 

0.250 
0.100 
0.010 
0.001 

7.57e-01 
6.94e-01 
6.60e-01 
6.58e-01 

65e-01 
7.09e-01 
6.75e-01 
6.72e-01 

8.01e-02 
7.87e-02 
7.7e-02 
7.7e-02 

ble 5.7: Pr , (me v e l 6 , N = 237 

even for trangles which have not changed on he latest refinement l v e l 

We studied the runtime behavior of KASKADE version (K5) which uses the 
explicit form of the stiffness matrix. The results are shown in Chapter 3. We 
ealize that the time of the iteration process (multiplcation with the stiffness 

matrix) is shortened but the loss in the integration process (integration is 
epeated on each level even on triangles which did not change) dominates 

the runtime We need about 30% more time than in the version K4 working 
with local siffness matrices. K5 should be used in cases where the number 
of ie ra t ion steps is much higher than our test problems. 

The complete-matrix verson K5 requires less memory than the saving of 
all stiffness matrices in K4 (see Chapter 4), but comparedwwith he total 
amount of memory this advantage eems to be negligible. 



hapter 

Su 

6.1 nalysis of KASKAD 

O the test et KASKADE as proved to be a r e l a b l , robust and 
efc ient a lgorthm. 

The refinement trategy based on local extrapolation turns out to be 
more robust and accurate than the refinement strategy based on the 
mean value. Further it generates triangulations with far fwer nodes 
and is s e r i o r i r u n t m e . 

The edge oriented error estimator turns out to be e f e n t and accu
rate. In tendency it underestimates the error lightly. On the solution 
triangulation it agrees with the true error a difference of only 

- 7 % xtrapolation t r a t g y used!). 

The hierarchical bases preconditioner is as robust and accurat as th 
BPX preconditioner, but has runtime advantages. 

6.2 C o m p r i s o n of KASKAD and PLTM 

As a rul of thumb one ay conclude: 

KASKADE is 3-5 times faster han PLTMG, but uses 2-3 times as 
much emory as PLTMG while they ar comparabl robust and reli 
able. 

ore detaied we observed the folowing: 

In both programs the near olver needs only about 1 of the total 
runtime. 

The triangle oriented error estimator of PLTMG needs roughly twice 
as many evaluations per point of the coefficient functions of the elliptic 
operator as the edge oriented error es imator of KASKADE. This could 
be a serious drawbac for eal applcations w i h expensive funcion 
valuations. 

Integration process and grid refinement are much faster in KASKADE 
than in PLTMG for reasons of data ructure and mplementation (C 
versus F R T R N ) . 
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For the ame reasons PLTMG has he memory advn tage . Th i 
rad betwen sped and memory requiremen 



ppendi Test Prob 
We use the Dirchlet boundary condition in all examples, except i ampl 
6c, where we have addiionally natural boundary c o n d i o n s . 

1. The solution of this problem has a harp peak. Two r i a n s of th 
problem run on different domains. 

source 
equation 
peak at (0.5,0.117) 
domain 
initial triangles 
angle bounds 

solution 
peak at (0,0 
domai 

initial t r ianges 
angle bounds 
olution 

21] 
Poisson 

unit square 
isosceles right 
m i m u m 18.43°; maximum 116.57° 
x(x 1) (y 1 ) e ( ) 2 + ( ) 2 ) 

h e a g o n with corners (1,0), ( | v 3 / ) , 
(- i , V / ) , (1,0) , ( i V ) , 
and (|, - V 
equilateral 
minimum 30°; maximum 90° 
(x + l)(x l ) ( y + l ) ( y 1 ) e ( 

2. The solution of this ro has a b o u n d r y layer a n g the lnes 
and y = 1. 

source 6, 21, 19] 
equation V lOOu = / 
domain uni square 
initial triangles isosceles right 
angle bounds minimum 18.43°; m a x i u m 116.57° 

h(10x) + cosh(0y) 
ut 

2 cos 

3. The solution of this problem has four mild peaks. It is fairly smoo 
so that a uniform grid should do nearly as wel as adaptive grids. Th 
equation h nonons tan t coeffiient. 



sourc 
equation 
domain 
initial triangles 
angle bounds 
olution 

21] 
V (100 + C S 2 X + y)u = / 

unit square 
isosceles right 
minimum 18.43; m a x i u m 116.5 

0.31(5.4 cos 4rx)(m(y y) 
(5.4 c o s 4 y ) ( ( l + $4) 0.5 

= 4(x 0. 4 ( y 0 . 5 ) 

4. The solution of this proble has a wavefront along the lines x = 0.5, 
0 < y < 0.5 and y = 0.5, 0 < x < 0.5. The in i ia l t rangulat ion c o n s t s 
of tall isosceles triangles. 

sourc 
equation 
domai 

initial triangles 
angl bounds 
o lu ton 

:M (0 

21] 
Poisson 
hexagon with corners 
( | , 0 ) , and ( | , 0 
isosceles height | width | 
m i n m u m 4.04°; maximum 129.09° 
$ (a )$ (y ) 

$(x = 1 for x < 0.4 
$(x) 0 for x > 0.6 
$ is a qu in tc polynomial for 0.4 < x < 0.6 
uch that $ has two continuous derivatives 

5. The solution of this problem is an eighth-degree harmonic polynomial 
with moderate peaks at the four corners of the domain. The nitial 
triangulation contains 3 shapes of trangles with ome relatively al 
angles. 

source 
equation 
domain 
initial triangles 
angle bounds 
olution 

[21] 
Laplac 
( 1 , 1 ) x ( 1 , 1 ) 
3 types of isosceles trangles 
minimum 9.46°; maximuml43.97° 
1 .17860 .1801p + 0.006g 

n ? i 

p = x ox + y 
q = x 2Sx + 70x 2Sx + y 

6. The solution of this problem has a singularity a the origin, which is 
a reentrant orner of the domain. As in Problem 1, two variations of 
this problem are used for different initial triangles. The strength of th 
ingularity is different for the two versons. 
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sourc 
equation 

a) domai 
initial triangles 
angle bounds 
solution  
domai 

initial triangles 
angle bounds 
solution 

c) domai 

initial triangles 
angle bounds 
olution 

[2, 7, 8, 19, 20] 
Laplace 
L-shaped ( -1 ,1 ) x ( 1 , 1 ) ( 0 , 1 ) x ( 1 , 0 
isosceles right 
minimum 18.43; maximum 116. 
r2'3 sin ^p (polar coordinates) 
hexagon as in l with a t along the l n e 
(y = 0,x > 0) 
equiateral 
minimum 30°; maximu 90° 

1 4 n v 
circ wi along the l n e 
(y = 0,x > 
equiateral 
minimum 30°; maximu 90° 

1 4 j 

. The so lu t i n of this problem is harmonic, but drops very sharply nea 
(0.01, 0). If the domain were extended to 0, there would e a jump 
disontinui ty i the boundary condition. 

source 
equation 
domain 
initial triangles 
angle bounds 
olution 

[17] 
Laplace 
(0.01,1) x ( 1 , 1 ) 
right triangles with legs of length 1 and 0.495 
minimu 2.43°; maximuml35.29° 
arctan -

8. The oefficient func t in in the operaor of this equation is discontinu
ous. a(x, y) is piecewise constant with the values 1 and 100 on alternate 
triangles of the in t ia l triangulation. The olution is contnuous, but 
the firs derivative as a jump d i s o n t i n u t y where a is discontnuous. 

source 6] 
equation Va'Vu = 0 

where a is piecewise constant as d e s c b e d above 
domain hexagon as in lb 
initial triangles equiateral 
angle bounds minimum 30°; maximum 90° 

lu 
y(3x 



ppendi : Grid 
The initial coarse tr ianguation used for al our computation is depicted by 
slightly thicker pensize in the following drawings. Figures 6.6-6.9 show the 
meshes for the mean value refnement r a t g y and the extrapolation refine
ment trategy. 

igure B . : P b l a, me 275, gr;d 7.73 



igure B.2: P r b l b, m e n , 313, id 2.8 

igure B.3: P r b l 2, e x t p , 526, gr;d 
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igure B.4: P r o b e m 4, mean, 529, grid 3. 

igure B.5: P r o b l m 5, e x t r p , N3 = 253, gr;d 3.37 
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igure B.6: P b l e m 6a, me 32, grid 8.17 

igure B.7: Probl a, e x t r a , N 134, £g;d = 9. 
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igure B.8: P r b l b, m e n , 8, id = 4.17 

i g u e B.9: P b l b, e x t a p , N7 = 7, egr;d 3. 



igure B . 0 : Pr , m e n , 90, grid 6.51 

igure B . l : P r b l m 8, e x t , N 535, egid = 114 
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ppend i C o n e n c istor 

Tables of Appendix C include the levels for which a solution was computed 

because for the levels resulting from the inner ESTIMATE/REFINE cyc 

only an nterpolated olution xists. 

ev dep c-est ÜL 
2.15e-02 4.e-02 1.56e-02 0.530 

04 1.34e-02 1.45e-02 4.7e-02 0.76 

75 46e-03 7.80e-0 5.4e-02 0.044 

857 3.95e-03 4.11e-0 5.16e-02 0.039 

2954 2.0e-03 2.21e-0 5.17e-02 0.050 

bl l: E r r a l y s (me bl 

ev dep £-est üL 
37 2.15e-02 4.e-02 1.e-02 0.530 

61 2.09e-02 2.7e-02 4.54e-02 0.18 

1.39e-02 1.52e-02 4.99e-02 0.086 

45 1.05e-02 1.25e-0 5.02e-02 0.160 

6.7e-03 6.99e-0 5.2e-02 0.03 

899 3.91e-03 4.18e-0 5.15e-02 0.065 

1966 2.72e-03 2.99e-0 5.16e-02 0.090 

78 2.19e-03 2.41e-0 5.16e-02 0.091 

3472 11 1.7e-03 2.16e-0 5.16e-02 0.088 

4829 11 1.74e-03 1.88e-0 5.16e-02 0.74 

ble C 2 : E r r analyss ( x t P r b l 



'-•e üL 
64 

261 

051 

828 

2.86e-02 

9.48e-03 

4.52e-03 

2.00e-03 

2.09e-02 

8.06e-0 

4.11e-0 

1.92e-0 

4.73e-02 

5.11e-02 

5.16e-02 

5.17e-02 

0.368 

0.176 

0.100 

0.04 

ble C 3 : E r r analys PLTMG) f Pr 

ev dep c-est üL 
50 3.51e-01 5.52e-01 1.50e-00 0.364 

201 2.26e-01 3.59e-01 1.46e-00 0.70 

634 1.53e-01 2.44e-01 1.44e-00 0.73 

1672 1.7e-01 1.70e-01 1.44e-00 0.71 

4224 52e-02 1.19e-01 1.43e-00 0.368 

abl 4: E r r analysis (me P r b l m 6 

ev dep est 

3.54e-01 5.64e-01 1.50e-00 0.72 

51 3.7e-01 4.69e-01 1.48e-00 0.345 

62 2.69e-01 4.06e-01 1.46e-00 0.33 

81 2.42e-01 3.46e-01 1.45e-00 0.301 

94 2.22e-01 3.00e-01 1.44e-00 0.260 

2.0e-01 2.86e-01 1.43e-00 0.266 

13 2.00e-01 2.52e-01 1.43e-00 0.206 

167 1.79e-01 2.24e-01 1.43e-00 0.201 

75 13 1.50e-01 1.78e-01 1.43e-00 0.15 

467 18 1.13e-01 1.35e-01 1.43e-00 0.163 

453 19 13 34e-02 8.7e-02 1.43e-00 0.172 

2002 24 17 5.77e-02 6.46e-02 1.43e-00 0. 
2670 20 4.99e-02 5.31e-02 1.43e-00 0.060 

bl 5: E r r a l y s (ext P r b l m 6 


