Konrad-Zuse-Zentrum flr Informationstechnik Berlin

F. Bornemann

R. Roitzsch

B. Erdmann

KASKADE

Numerical Experiments

(December 1991)

1

Technical Report TR 91—

KASKADE

Numerical Experiments

B. Erdmann R. Roitzsch F. Bornemann

Abstract. The C—implementation of KASKADE, an adaptive solver for
linear elliptic differential equations in 2D, is object of a set of numerical ex-
periments to analyze the use of resources (time and memory) with respect to
numerical accuracy. We study the dependency of the reliability, robustness,
and efficiency of the program from the parameters controlling the algorithm.

Contents

1 Introduction
1.1 The KASKADE Algorithm
1.2 The PLTMG Algorithm
1.3 Norms and Notation
1.4 Test Set oo
1.5 Breaking Conditions
1.6 Computing Environment
1.7 Delicate Testing Questions

2 Accuracy
2.1 Convergence Behavior

2.2 The Global Estimated Error

3 Time Efficiency
3.1 KASKADE Internals
3.2 KASKADE versus PLTMG

4 Storage Efficiency
4.1 KASKADE Internals
42 PLTMG . .. o e

5 More Numerical Experiments
5.1 Preconditioners: Hierarchical Bases versus BPX
5.2 Influence of the Iteration Error
5.3 Explicit Sparse Form versus Local Stiffness Matrices

6 Summary
6.1 Analysis of KASKADE
6.2 Comparison of KASKADE and PLTMG

Appendix A: Test Problems
Appendix B: Grids
Appendix C: Convergence History

References

10
11
12

16
16
17

19
19
21
22

24
24
24

26

29

35

39

Chapter 1

Introduction

The finite element method KASKADE [13] handles scalar linear elliptic two—

dimensional partial differential equations of the form

—(pts)e = (p2uy)y +qu = g in O

u = v on IoCIN (1.1)
I +nu = & on Iy.

with ToUT'y = 9Q and ¢(x,y) > 0and 0 < n(x,y), 0 < C < pi(z,y), p2(z,y).

Here © denotes a polygonal domain in IR? and Iy is composed of edges of

d). Furthermore % denotes the conormal derivative associated with pq, p,.

The first implementation in PASCAL is described in [16]. The second imple-
mentation in C [22] is studied in this paper. This version was extended to
the convection—diffusion equation [14], time-dependent PDEs [3], and obsta-
cle problems in device simulation [15]. In this context alternative refinement
strategies (blue refinement) and the BPX—preconditioner of Bramble,Pasciak,
Xu [11] were implemented.

Subject of this paper are results of a set of test problems applied to KASKADE
and the choice of some KASKADE parameters. Reliability, robustness, and
efficiency are studied. Further the results are compared with the popular

adaptive FEM—code PLTMG of R. Bank [6].

1.1 The KASKADE Algorithm

The KASKADE algorithm is an adaptive multi-level method using linear
finite elements. A flow chart of its general loop can be seen in Figure 1.1.

On a given triangulation 7Ty (level 0) the first finite element solution is com-
puted by a direct solver. KASKADE supports the usage of two different
versions of a sparse Cholesky decomposition: A fully sparse elimination with
the nested dissection numbering and an envelope elimination with the re-
verse Cuthill-McKee numbering of the nodes. The usage of a sparse solver
for the initial triangulation is of particular interest in applications where the
problem geometry demands an initial grid with rather many nodes.

The next steps are an error estimation (ESTIMATE) and a closely coupled
refinement process (REFINE). In the first step we get an approximate value
€est Of the global error (energy norm). This value is used to stop the adap-
tive iteration cycle if the user-requested global accuracy e is reached. The

1

ESTIMATE process generates additionally a local error estimate ex for each
triangle (or edge) of the mesh. These values are used in the REFINE step
to select triangles for local, regular refinement if céo > o - O, where O is
some sort of average error and o a user—supplied constant. In [13] © is com-
puted as the mean value of all local errors (short form ©pean). Bornemann
[4, Section 2.4.3] contributed to KASKADE the computation of © by ex-
trapolation of the local errors of the different refinement levels (short form
Oextrap)- Essentially this strategy goes back to Babuska/Rheinboldt [1].

After each REFINE step it is checked if the maximum of nodes Ny is
reached or if enough new nodes are found. In this case the iterative solver

(ITERATE) is called. Otherwise the ESTIMATE-REFINE cycle is repeated.

The iterative solver is a preconditioned conjugate gradient method which
solves the linear system resulting from the finite element approach on the
mesh 7;

The iteration process should stop if the solution of the system is as accurate
as the discretization error which is predicted by e25". For safety reasons we
introduce a factor p and stop the iteration process if the error of the linear

system is less than e, := i * p.

The CG—method needs only a device for matrix—vector multiplications Az
and thus no explicit representation of the matrix A. There is an option either
to maintain A completely in a sparse form or to store the local stiffness matri-
ces for each triangle. Hierarchical Basis [13] and BPX in the implementation
of Bornemann [4] are the available preconditioners.

Table 1.1 shows the combination of parameters that are tested systematically
and the abbreviations to denote these tests.

C) s o p | matrix

K1 | mean | 2.0 | 0.95 | 0.25 | local

K2 | mean | 2.0 | 0.95 | 0.01 | local

K3 | extrap | 1.1 | 1.0 | 0.25 | local

K4 | extrap | 1.1 | 1.0 | 0.01 | local

K5 | extrap | 1.1 | 1.0 | 0.01 | sparse
P Bank’s PLTMG

Table 1.1:

1.2 The PLTMG Algorithm

We use the well-known Finite Element program PLTMG [6] as a refer-
ence system (P). PLTMG resembles KASKADE, it uses the same adap-
tive refinement techniques but has different ESTIMATE [10], REFINE, and
ITERATE steps. The ESTIMATE/REFINE loop is optimized to reach the
user—supplied Ny ax, normally it needs an expansion factor s = 4 at each
level. We note that PLTMG addresses non—linear problems.

1.3 Norms and Notation

Let u be the exact solution of the problem (1.1), @y, the iterative solution of

the linear FEM equations, and || - || the energy norm. Then we define
e, = ||u—1uygl| (1.3)
Cest the estimated ¢,

Furthermore g4q is defined as the maximal error at the nodes, the centers of
the triangles and the points halfway between the center and the nodes, thus
approximating the real maximum norm.

We introduce some additional abbreviations:

7; number of iterations on refinement level [
T total CPU~time in seconds for solving the problem
Yest percentage of total time for error estimation
Y%ret percentage of total time for refinement
%ite percentage of total time for assembling and iterative solution
t; accumulated CPU-time in seconds for all iterations, up to level [

t, CPU-time in seconds per iteration and point

1.4 Test Set

We use the test set recommended by W. Mitchell [18] (see Appendix A). It
contains problems of different complexity including peaks, boundary layers,
discontinuities, singularities, and non—quadratic domains (see Table 1.2).

name | type remark

1 Poisson sharp peaks

2 Helmholtz | boundary layer

3 Helmholtz | mild peaks

4 Poisson wavefront

5 Laplace moderate peak, geometry

6 Laplace singularity

7 Laplace discontinuous boundary condition
8

VaVu =0 | discontinuous «a

Table 1.2: Test set

1.5 Breaking Conditions

One problem area is to define a break condition for the adaptive process. The
mathematical sound method is to stop if the estimated error e. is below a
user supplied e¢,1. We compare the estimation in our experiments with the
true error ¢, in order to test the reliability of the algorithm (Chapter 2). This
is also important in the context of the evaluation of efficiency (see Chapter 3).

In PLTMG the error is computed in the H'-norm, in KASKADE in the
energy norm. Thus the handling of the break condition makes the comparison
of the two solvers difficult. Hence in tables where both the methods are
mentioned, we didn’t consider the Tests 2 and 3 and changed the other ones
a little by adding the solution u on both sides of the equations. On the right
side of (1.1) we replaced u by the known expression of the solution getting
test equations for which the H!'-norm agrees with the energy norm.

In some real life problems it might be useful to take the number of nodes
Nmax as break condition due to limits of memory.

1.6 Computing Environment

All computations are done on a Sun Sparc 1+ station under OS, Release 4.1
using the £77 and cc compiler with their highest optimization level. This
configuration should yield about 1.4 MFlops for the Fortran double precision
LINPACK benchmark.

32-bit real data types (real respectively float) are used. For better accuracy
double precision computation (64-bit arithmetic) is recommended.

1.7 Delicate Testing Questions

The comparison of different algorithms or implementations is extremely del-
icate, e.g., for the following reasons:

e Small changes in parameters of the algorithms might totally change
the adaptive development, e.g., produce a different sequence of refined
triangles.

e The solution process might depend very sensitive on the initial trian-
gulation. An improper choice of the initial triangulation could easily
spoil the solution.

e An improper choice of the break condition could dominate the over-
all time because each new step of the adaptive process is much more
expensive than the ones before.

e The algorithms may be optimized for a certain problem class, thus a
comparison of a code for linear problems with a code for non-linear
problems might be inevitably biased.

e Memory can be allocated for purposes other than the here tested,
e.g., graphical processing.

e Runtime results can be dominated by hardware structure and compiler
quality, e.g., a wrong model of the optimization process of the compiler
can lead to bad implementations.

e Particular attention should be paid the fact that we compare imple-

mentations in different programming languages, i.e, FORTRAN and
C.

These problems in mind we want to compare the behavior of KASKADE and
PLTMG as carefully as possible and to prove that the KASKADE algorithm

runs with reasonable efficiency, reliability, and robustness.

N Number of nodes

Nmax Maximal number of nodes (user supplied)
Etol Requested global error (user supplied)
Cest Estimated global error

new

e Predicted global error on the new mesh
creq Required accuracy for the PCG iteration
s Factor for the number of new points (parameter)
p [teration safety factor (parameter)
DIRECT
noa = N
ESTIMATE

N < ngq *s

ITERATE

new

5req = gest * p

Figure 1.1: Main iteration loop of KASKADE

Chapter 2

Accuracy

In this chapter we investigate the convergence behavior and the error esti-
mation device of the adaptive KASKADE algorithm which are essential for
reliability, robustness, and efficiency.

We stress the importance of the interplay between the error estimator and
the refinement strategy. The error estimator should produce local and global
estimates for a given triangulation. Local estimations provide information
for the refinement strategy, deciding which and how many triangles to re-
fine. A method achieves high accuracy with a minimal number of nodes only
if the error estimator represents the local error qualitatively well and the
refinement strategy defines efficient rules for selecting triangles. A quantita-
tive good estimate of the global error is needed in order to obtain a reliable
break condition. An underestimation might lead to stop the solution with-
out getting the requested accuracy and an overestimation may lead to more
refinement levels (and much heavier use of computer resources).

2.1 Convergence Behavior

The adaptive refinement should reduce the size of the linear system and
retain a small discretization error. Thus it seems reasonable (in view of
optimal approximation properties with linear elements) to evaluate the ratio
of log(N) and |log(er)| with respect to the different refinement strategies
relying on the mean value or on extrapolation. However, the number of
nodes used to reach the requested accuracy gives only a hint of the efficiency
of the method. One reason is the time spent on assembling stiffness matrices,
in particular for the error estimator. Thus a method selecting only few new
points at each level might reach the accuracy with less nodes but spend too
much time by estimations. We’ll look into this question in the next chapter.

We start with the evaluation of the convergence history for our test problems.
Some typical results are noted in Appendix C. As the break condition

5est/||ﬁL|| < Etol = 0.05 (21)

was selected. Each of the solvers achieved this accuracy.

A quantitative comparison of the accuracy is practically impossible because
different error estimators and refinement strategies produce different meshes.
However, the algorithms show qualitatively an equivalent behavior. On

meshes with roughly the same number of nodes most tests reach the same
accuracy.

A significant discrepancy of the accuracy was seldom observed. In Example
6c the refinement strategy (K2) is inferior to the other methods. Strikingly
PLTMG achieved in all examples smaller values for 444 on the mesh nodes,
due to a more accurate solution of the linear system.

We will not analyze these results further in a fashion which might pretend
a non—existing continuity. The success of a method just depends strongly
on the discrete selection of triangles to refine, which is best demonstrated
by the different results of the mean value refinement strategy and and the
extrapolation strategy, which use nevertheless the same error estimator, see
Tables and Figures in the Appendix C.

The results show only in the Examples 6a, 6b and 6¢ a significant drawback
of the mean value strategy. All tests show comparable fast convergence for
the extrapolation strategy with parameter choice (K4) and PLTMG.

2.2 The Global Estimated Error

A method should give a good estimation of the global error for a reliable
stopping criterion. The error estimator can be characterized by the effectivity

index [1] defined by

f(gest) = gest/{‘:L . (22)
We follow [10] and choose as a measure of the relative error
C({‘:est) — f(gest) - 1 . (23)

Having (near or converging to zero is clearly the most desirable situation.
Positive values of (indicate an overestimate of the true error and are accept-
able as long as (is not too much larger than one. Negative values of (mean,
the error indicator has given an optimistic estimate of the error. Here the
value of (should not be below —1/2.

We measured the effectivity index (for the methods (K2), (K4), and (P).

Some results are collected in Appendix C.

Only for Problem 6¢ the values for (show significant differences between
the methods. In all other cases the global error is estimated comparatively
well. We observe a certain tendency of the KASKADE error estimator to
underestimate the error and therefore to stop the solution process in some
cases too early. Example 6c¢ exemplifies this: the mean value refinement
strategy leads to meshes where the KASKADE error estimator is way off
the real error. However, the extrapolation refinement strategy generates
meshes with far better results. We use the results from [10], to confirm their
evaluation for example 6¢, see Tables 2.1-2.3.

N Eest £l ¢ log(N)/[log(er)|
10 | 2.53,0—01 | 4.86,0—01 | —0.479 3.19
21 | 2.45,0—01 | 4.38,0—01 | —0.441 3.69
44 | 2.3110—01 | 3.93,,—01 | —0.412 4.05
202 | 1.8440—01 | 3.03,0—01 | —0.393 4.45
588 | 1.4019—01 | 2.24,,—01 | —0.375 4.26
745 | 1.24,0—01 | 1.93,0—01 | —0.358 4.02

Table 2.1: Error analysis (K2) for Problem 6¢, natural boundary values

N Eest £l ¢ log(N)/[log(er)|
10 | 2.53,0—01 | 4.86,0—01 | —0.479 3.19
27 | 2.4070—01 | 4.50,0—01 | —0.467 4.13
47 | 2.2710—01 | 3.67,5—01 | —0.381 3.84
151 | 1.78,0—01 | 2.27,0—01 | —0.216 3.38
207 | 1.6315—01 | 1.89,,—01 | —0.138 3.20
447 | 1.18,5—01 | 1.28,0—01 | —0.078 2.97
912 | 8.68,0—02 | 9.18;0—02 | —0.054 2.85

Table 2.2: Error analysis (K4) for Problem 6¢, natural boundary values

N Eest £l ¢ log(N)/[log(er)|
10 | 3.04,0—01 | 4.99,,—01 | —0.390 3.31
41 | 2.96,5—01 | 3.68,5—01 | —0.197 3.71
161 | 2.21,0—01 | 2.08;5—01 0.065 3.23
681 | 1.23,0—01 | 1.20,0—01 0.026 3.08

Table 2.3: Error analysis (PLTMG) for Problem 6¢, natural boundary values,

results from [10]

Chapter 3

Time Efficiency

In this chapter we study the CPU-time necessary to solve the problems of
Appendix A.

We consider the number of grid points and the CPU—time necessary to reach
the required accuracy €0 = 0.1 (cf. Chapter 2) using the error estimators.
In those cases where the required accuracy is reached but underestimated,
we continue computing until the true error ey, fulfills

e/ |liL]l < e

We observed such an unreliable behavior only in the Examples 4 and 6c,
where the KASKADE estimator underestimates the error. PLTMG always
yields an overestimation.

In some examples the required accuracy is reached with quite a different
number of grid points which is caused by the arbitrarily choice of the de-
termination threshold . In some cases the error on one level is estimated
a little over this threshold, and on the next it is already lying considerably
under it. In such unfortunate accidents we take also the preceding level into
account.

Using PLTMG we set the maximal size of grid points much higher than
necessary for reaching the required accuracy. Thus the number of grid points
increases by the factor 4 from one level to the next.

Solver N Eest €l wr| T Poest | Yovet | Yoite
K1 889 | 4.63e-03 | 5.68e-03 | .051 | 5.3 | 59 7 34
K1 3015 | 2.64e-03 | 3.70e-03 | .052 | 17.2 | 57 6 37
K2 857 | 3.95e-03 | 4.11e-03 | .052 | 5.3 | 56 5 39
K3 1105 | 4.27e-03 | 5.85e-03 | .051 | 7.6 | 60 6 34
K3 2498 | 3.04e-03 | 4.91e-03 | .051 | 28.9 | 71 5 24
K4 899 | 3.91e-03 | 4.18e-03 | .052 | 6.6 | 55 5 40
K5 899 | 3.91e-03 | 4.18e-03 | .052 | 8.7 | 40 4 56

p 1051 | 4.52e-03 | 4.11e-03 | .052 | 23.5 | 55 14 29

Table 3.1: Problem la

10

Solver N Eest €l wr| T Poest | Yovet | Yoite
K1 2271 | 1.08e-01 | 1.73e-01 | 1.43 | 18.8 | 53 5 42
K1 5614 | 7.52e-02 | 1.30e-01 | 1.43 | 51.9 | 59 5 36
K2 1672 | 1.04e-01 | 1.69e-01 | 1.44 | 16.9 | 49 4 47
K2 4166 | 7.32e-02 | 1.19e-01 | 1.43 [47.9 | 49 4 47
K3 489 | 1.27e-01 | 2.61e-01 | 1.43 | 7.0 | 70 4 26
K3 1767 | 8.54e-01 | 1.13e-01 | 1.43 | 45.1 | 76 2 22
K4 467 | 1.13e-01 | 1.35e-01 | 1.43 | 14.4 | 77 3 20
K5 475 | 1.13e-01 | 1.35e-01 | 1.43 | 17.7 | 57 2 11
p 951 | 1.40e-01 | 1.30e-01 | 1.43 | 29.8 | 50 21 27

Table 3.2: Problem 6¢

problem | Solver | N €L, T
la P 1051 | 4.114—03 | 21.2
K 899 | 4.1810—03 | 9.0
1b P 1055 | 1.3510—01 | 22.4
KK | 817 | 1.55;0—01 | 9.8
4 P 1591 | 2.1040—01 | 32.3
K 1075 | 2.3210—01 | 10.1
5 P 361 | 2.1290—01 | 5.3
K 437 | 1.6810—01 | 2.2
6c P 951 | 1.3010—01 | 29.8
K 467 | 1.350—01 | 17.7
7 P 1561 | 2.0610—01 | 31.8
K 901 | 2.70,0—01 | 6.6
8 P 523 | <1.1640—01 | 8.9
K 535 | 1.1690—01 | 2.6

Table 3.3: KASKADE (K=K5) versus PLTMG (P)

3.1 KASKADE Internals

We start with the analysis of KASKADE to find a good parameter set. This
version will be compared with the PLTMG-solver in the next section.

In KASKADE we may choose between two refinement strategies. We studied
the resulting accuracy in Chapter 2. Using the same notation we analyze the
influence on the time efficiency of the mean value strategy (Solver K1, K2)
and the extrapolation strategy (Solver K3, K4).

11

In the tests we also varied the safety factor p (0.25 and 0.01) in order to study
the influence of accuracy in the iteration process on the time requirement.
Here we always used preconditioning by hierarchical bases. A comparison
with the BPX—preconditioner follows in Chapter 5.

The selection of p = 0.01 (versions K2 and K4) in the iteration process seems
to be better than the p = 0.25 in the versions K1 and K3. Though it needs
more (up to 4) iteration steps, the approximate solution is found in most
examples on a coarser grid (e.g. higher accuracy) in a shorter time. In the
other problems there is only little additional work, because one iteration step
takes only a small amount of time compared with other parts of the solver.
Therefore we propose the smaller safety factor 0.01. In Chapter 5 we refer
to some more results we made in the course of our experiments with p.

A comparison of versions K2 and K4 shows only in the Tests 1b, 6c and
7 significant differences. The extrapolation strategy, discussed in Chapter
2, has the advantage of finding the solution in a shorter time. Though the
extrapolation strategy needs more refinement steps and error estimations, in
most examples it generates a sufficient accurate solution on a coarser grid
than the mean value strategy.iln this context it is crucial that the extrap-
olation strategy does not require the doubling of grid points from level to
level as the mean value strategy. The effect of the higher accuracy of the
extrapolation strategy is very clear in Example 6¢c. In Example 1b we have
to notice an exception of this rule. In this problem the mean value strategy
is more accurate and yields an advantage in runtime. Both versions, K2 and
K4, need the same number of refinement steps, but K2 generates less grid
points.

Thus we realize that it is reasonable to include both strategies in the program.
The user can select the most efficient one for his type of problems.

3.2 KASKADE versus PLTMG

We recall some results from Chapter 2:

1. Every solver reaches the required accuracy. There are no failures. In
most of the testskiKASKADE yields the required accuracy with fewer
points than PLTMG. The reason for this behavior is not a higher accu-
racy of KASKADE, but the unfortunately tuned refinement strategy of
PLTMG requiring an increase of points by a factor 4 for each refinement
step.

2. The solvers show different accuracy only in the Examples 4 and 6¢c. The
approximate solution of KASKADE in Problem 6c¢ is more accurate

than that of PLTMG.

12

In this section we study the influence of the different methods on the runtime
of the solver. Solutions with coarser grids are often generated by more refine-
ment steps, each including the solution of a linear system, an error estimation
or some interpolation work. Obviously we get the following result:

Differences in the runtime between the versions of KASKADE and
PLTMG are significant in all tests. For each problem there is a variant
of KASKADE which is much faster (up to factor 5) than the solver
PLTMG.

To simplify the comparison of KASKADE and PLTMG, we only consider
the version K5 of KASKADE. It uses the same refinement strategy as K4,
the more robust one. K5 needs nearly as much memory as K4 due to the
storing of the local stiffness matrices at each triangle. Therefore we prefer
the faster version K4. In order to extract other effectswwe decided to use
K5 here because it handles the assembling of the stiffness matrix similar to
PLTMG, e.g. it recomputes all elements on a grid without using values of
former grids.

The clear advantage of KASKADE is caused by the special C—implementation
and the smaller problem class. We analyze some details:

1. The evaluation of the problem describing functions is in PLTMG much
more expensive (up to factor 3-4) than in KASKADE. There is only
one function in KASKADE which computes all values at a point, while
in PLTMG different values are evaluated in different functions. In
addition PLTMG uses another formulation of the problem (PLTMG is
a solver for nonlinear problems too), which needs each of these functions
for five different parameters. Furthermore these values are used in the
integration formulas yielding superfluous arithmetic operations in the
case of a linear problem.

Such numerical integrations and function evaluations are necessary for
the assembling (stiffness matrix and the right-hand side) and in the
error estimation. We point out that PLTMG needs nearly the same
number of evaluations of the right-hand side, but twice the number
of evaluations of the coefficients per point. These additional function
calls are necessary for the error estimation process in PLTMG. (The
evaluations of a function in PLTMG with five different parameters are
counted as one function call.)

In our examples the evaluation time for these functions yields about
10% of total time. Note that we have constant coefficient problems
and right—hand sides with few floating—point operations, conditional
control statements and standard function calls. In real life problems

13

expensive function evaluations can dominate the total time, thus ruling
the efficiency of the solver. If only the right-hand sides are expensive,
both solvers will have similar runtime, but if a lot of time is spend by
computing the coefficient functions, we expect KASKADE to be faster.

We found no further hints on significant numerical superiority of one of
the solvers. The runtime advantage is homogeneous in all parts (error
estimation, integration, linear solution) of the programs. A more de-
tailed analysis of this question is intricate because of the very different
implementations.

. The way of handling the data structures (used for describing the de-
pendencies of different values on the geometry) seems to have an im-
mense influence on the costs of the analyzed solvers. Comparisons
showed that the structural data types and the pointer structures in C
allow a very natural programming of an adaptive algorithm. While the
Fortran—coded PLTMG needs a lot of index computations to get the re-
lation between certain values and the geometry, the C—implementation
of KASKADE uses a faster access by structured types and pointers.
We did not analyze these effects quantitatively. We just depict some
details with considerable influence on the speed:

e PLTMG spends much more time than KASKADE handling the
grids and the refinement (both solvers use the same geometrical
refinement rules) after an error estimation, even in the case of
uniform refinement when both algorithms generate the same grids.

e Though both solvers use the same integration formulas, the inte-
gration process (stiffness matrix, right-hand side) is much faster
in KASKADE than in PLTMG, even in the case of uniform grids.
(We took into account the more expensive evaluation of the prob-
lem describing functions in PLTMG, see above.)

The speedup of using structured types and pointers in the C—version of
KASKADE seems to correspond with higher requirements in memory,
see Chapter 4.

. The runtime of a code depends immensely on the computer architec-
ture and the related optimization of the compilers. For example, on
our computer the advantage of KASKADE will decrease when we use
no optimization. We suppose that the difference in the runtime be-
tween PLTMG and KASKADE might disappear on special machines,
e.g. computers with vector units (the array formulation in the Fortran—
coded PLTMG might be better suited for vectorization than the struc-
tured types in the KASKADE—-code).

14

4. In our tests we considered public domain programs, whose purpose is
to solve a wide class of problems (PLTMG even nonlinear problems) in
a comfortable way. Specially PLTMG is not optimized for solving our
test problems. We already mentioned some details, maybe there are
more.

Final remarks:

e Saving of the local stiffness matrices in KASKADE (version K4) or us-
ing the exact integration in the case of problems with constant coeffi-
cients will accelerate the version K5. Corresponding options of PLTMG
are unknown.

o The variation of the safety factor p in the iteration process of KASKADE
illustrates that even inside a solver a reasonable selection of parame-
ters may cause considerable differences in the runtime (in the examples
with the versions K3 and K4 up to 20%).

e In our test problems none of the solvers shows a significant numerical
drawback neither in the error estimation nor in the solution of the
linear systems. Specially both linear solvers (in PLTMG a Multigrid—
Method, in KASKADE a preconditioned CG—method) need only about
10% (included in %) of the total time.

15

Chapter 4

Storage Efficiency

4.1 KASKADE Internals

KASKADE stores the triangulation information in data structures for points,
edges, and triangles, each needing Apoint, Aedge, Atriangle Dytes respectively.
The data to hold the stifflness matrix and vectors is stored in associated
arrays of lengths Apoint, Aedge, Atriangle at the corresponding data structures.
Table 4.1 gives a list of these values when storing the local stiffness matrices
at triangles.

real Apoint Aedge Atriangle)\point)\edge)\triangle
float 36 52 60 36 16 36
double | 44 52 60 68 32 72

Table 4.1: Local storage requirements (bytes)

To get some estimate A of the amount of storage needed to compute a solution
at one point we use Euler’s formula

Npoint — MNedge + Ntriangle = 1

where npging, Nedge; Niriangle are the number of points, edges, and triangles.
For larger triangulations the relations

Ntriangle ~ anoint 5 Nedge ~ 3npoint

hold approximately. Taking into account that the hierarchy of triangles is
stored too, we get

Ntriangle ~ 3npoint 5 Nedge ~ 4npoint .
Thus
A= (Apoint +)\point) + 4(Aedge +)\edge) + (3Atriangle + 2)\triangle)

with the values 596 for single and 772 for double precisions.

Most of the memory requests are handled dynamically: the program allocates
only as much memory as used (e.g. for new points, edges, and triangles).

16

Such an administration of memory corresponds well to an adaptive method,
in which the structure and size of mesh is not known a priori.

In order to make the allocation of memory efficient, memory is fetched in
buckets big enough to hold 1.000 points. This means that on coarser grids
the requirements per point are much higher than the asymptotic value. This
effect and the requirements for static variables are negligible with increasing
number of points.

Some values of the really allocated memory Ao in one example illustrate

this behavior, see Table 4.2.

Mpoint Nedge | Mtriangle allocated [Bytes] Aalloc
209 581 373 530182 | 2537
642 | 1846 1205 770182 | 1200

1639 | 4796 3158 1606182 980

4086 | 12049 7964 3322182 813

9203 | 27325 | 18123 7334182 797

20787 | 61859 | 41073 16051782 772

Table 4.2: Allocated memory, using 64-Bit—floating point numbers

The data structures used in KASKADE are not free of redundancy. This
allows more flexibility in the description of the problem (complex geometry)
and ease of implementation for advanced methods (iterative solvers) and
additional features (graphics). The redundancy sometimes also yields a faster
code. An optimization for an actual application will be possible, if only a
subset of KASKADE features is used. Then the user can remove not needed
redundancies or can implement short cuts to get a faster and smaller code.

4.2 PLTMG

PLTMG administrates the memory requirements statically. Before compiling
the program we have to fix the maximal length LENWS of an array used for
the typical informations (points, edges, triangles). Corresponding to the
expected grid refinement, we can compute LENWS by the formula [6]

LENWS = 2(NV +NC)+4(NT+NB+12)+ (504 K P+ K S)* MAXV +640
~ 50 « MAXV + 640,

MAXYV is a number of points in the finest grid, and we have NV points, NT
triangles, NB boundary edges, and NC curved boundary edges in the first
coarse triangulation. KS and KP are zero in linear problems.

17

We see that PLTMG only requires about 50 words (200, 400 bytes in case of
32-Bit, respectively 64-Bit floating point numbers) per grid point.

There are some other arrays, but their length is negligible with an increasing
number of grid points.

18

Chapter 5

More Numerical Experiments

In this chapter we will analyze the influence of certain special options of the
KASKADE program. Some in Chapter 3 already mentioned results will be
confirmed.

5.1 Preconditioners: Hierarchical Bases versus BPX

As already mentioned the arising linear systems are solved using the precon-

ditioned CG-method.

Two preconditioners are implemented in KASKADE: First the hierarchical
bases method (HB), which was theoretically investigated by Yserentant [23].
The second preconditioner (BPX) was suggested by Bramble, Pasciak, and
Xu [11]. This method was further investigated for nonuniform triangula-
tions by Yserentant [24], Bornemann [5], and Dahmen/Kunoth [12]. The
implementation of BPX for the case of highly nonuniform triangulations of

KASKADE was developed by Bornemann [4].

We observe their qualities in our test problems (Appendix A). The iteration
is continued until the error is under a fixed threshold defined as product of
the estimated global error and two further parameters. One is the quotient
of actual and previous number of grid points after the last refinement, the
other one is the safety factor p, well-known from Chapter 3. We choose
p = 0.01 in Table 5.1 and p = 107% in Table 5.2 and Table 5.3. The grids

were generated by the mean value strategy.

The computation is stopped, when the energy norm of the estimated error
(relating to the norm of the approximate solution) is smaller than a prescribed
error tolerance e,

€est/||uLH < Etol -

We note the results on the final level.

Table 5.1 shows slightly less iteration steps for BPX, an effect which is even
more observable for more accurate solutions of the linear systems (cf. Table
5.2 and 5.3). This corresponds well with the theory.

However we observe a clear advantage in runtime for HB, which needs less
time in all our test problems without loosing accuracy in the energy norm.
Obviously the higher runtime for BPX is caused by more expensive itera-
tion steps. This is shown in details for Problem 1b, see Tables 5.2 and 5.3.

19

probl | prec N depth | o, | # T
la HB | 2954 7 41 21 | 16.0
BPX | 2962 7 41 7.1 | 20.9

1b HB | 2311 7 41 1.6 | 13.1
BPX | 2221 7 31 4.5 | 159

2 HB | 2402 7 51 2.2 | 11.7
BPX | 2432 7 41 6.5 | 16.0

4 HB | 3134 7 4| 2.8 | 15.7
BPX | 2616 7 41 6.8 | 17.6

3 HB | 4425 6 41 3.1 | 18.3
BPX | 3713 6 41 7.6 | 20.3

ba HB | 1876 6 81 25 | 96
BPX | 1831 6 61 5.0 | 121
6b HB | 20305 18 71393 |139.0
BPX | 19720 18 61969 | 192.3

7 HB | 3984 9 51 4.2 | 19.6
BPX | 3568 9 51 11.3 | 25.3

8 HB | 1597 5 2104 | 59
BPX | 1627 5 20 1.7 | 7.2

Table 5.1: Preconditioners HB and BPX

N | depth | 7 t, l
187 4 12 | 1.3e-04 | 0.3

787 6 121 1.3e-04 | 1.6
2221 7 12] 1.5e-04 | 5.5
7543 8 12] 1.5e-04 | 18.9

Table 5.2: HB for Problem 1b

We measured 2.75 times as much time per iteration and point as for HB.
This corresponds well with the complexity analysis of the implementation [4,
Section 6.5], which predicts a value between two and three.

Though BPX is not the optimal preconditioner in our context, it should be
mentioned that the important advantage of BPX is its generality, e.g. it can
in contrast to the HB method be extended to 3D—[11] and time dependent
problems [3].

20

N depth il tp tl
187 4 8 | 4.0e-04 | 0.6
787 6 8| 4.0e-04 | 3.1
2221 7 71 4.1e-04 | 94
7543 8 8 | 4.2e-04 | 34.9

Table 5.3: BPX for Problem 1b

5.2 Influence of the Iteration Error

In this section we study once more the aspect of accuracy in the iteration
process and present some results in addition to those in Chapter 3.

The multi-level strategy of KASKADE relates the estimated discretization
error to the error of the solution of the linear system. It is senseless and
not efficient to generate a solution in the iteration process which is more
accurate than the discretization. Because we do not know the exact errors
of the discretization and the iteration, it is necessary to relate both by a
safety factor p. It is well chosen if further iterations in the linear solver
(preconditioned CG—method) have no or only little effect on the accuracy of
the solution on the actual grid. In the first version [13] of KASKADE the
authors worked with p = 0.25. However, the results from Chapter 3 and from
this section suggest that a value of p = 0.01 is safer. Specially we recognize
an improved efficiency index of the error estimation.

The effect on the runtime by some additional iteration steps is small com-
pared with the total time including error estimation and integration. Spe-
cially in Chapter 3 we saw that the setting of a smaller p on the lower levels
often improves the convergence history by reaching the required accuracy on
a coarser grid.

In some examples (Tables 5.4 — 5.7) we noted the accuracy to computation
with p = 0.25, afterwards we continued the iteration process by choosing
smaller values for p and noted the improved accuracy. We counted the ac-
cumulated number of iterations 7;. The accuracy is measured in the energy
norm (g7,) and a kind of maximum norm (egq, see Chapter 1).

A smaller value of p often decreases the maximum error.

21

P il Eest Er Egrid
0.250 | 2 | 8.65e-03 | 9.92e-03 | 1.81e-03
0.100 7.65e-03 | 8.04e-03 | 1.07e-03
0.010 7.36e-03 | 7.67e-03 | 8.31e-04
0.001 | 10 | 7.34e-03 | 7.62e-03 | 8.15e-04

- e

Table 5.4: Problem la, (mean) on level=5, N = 301

P il Eest Er Egrid
0.250 | 5 | 1.72e-01 | 1.87e-01 | 6.67e-02
0.100 | 7 | 1.46e-01 | 1.55e-01 | 6.30e-02
0.010 | 13 | 1.29e-01 | 1.38e-01 | 9.38e-03
0.001 | 15 | 1.28e-01 | 1.36e-01 | 9.33e-03

Table 5.5: Problem 2, (mean) on level=5, N = 479

P il Eest Er Egrid
0.250 | 1 | 1.71e-01 | 3.24e-01 | 2.43e-01
0.100 | 3 | 1.83e-01 | 3.00e-01 | 2.26e-01
0.010 | 6 | 1.87e-01 | 2.95e-01 | 2.20e-01
0.001 | 8 | 1.86e-01 | 2.95e-01 | 2.19e-01

Table 5.6: Problem 6¢, (mean) on level=5, N = 307

5.3 Explicit Sparse Form versus Local Stiffness Ma-
trices

By default the KASKADE program does not compute the values of the
stiffness matrix explicitly, only the local stiffness matrix of each triangle
is saved at the corresponding triangle data structure. If the stiffness matrix
is used in the iteration process, these local matrices must be added up for
every matrix—vector multiplication. By special selection of a parameter in
the program there is the possibility to assemble and save the stiffness matrix
(in sparse form) on each level. Thus we get rid of summing of local matrices
in every matrix multiplication, which accelerates each iteration step. In
addition the local stiffness matrices are not saved in order to reduce the
memory requirements. Therefore they must be recomputed on each level,

22

P il Eest Er Egrid
0.250 | 3 | 7.57e-01 | 7.65e-01 | 8.01e-02
0.100 | 4 | 6.94e-01 | 7.09e-01 | 7.87e-02
0.010 | 6 | 6.60e-01 | 6.75e-01 | 7.87e-02
0.001 | 8 | 6.58e-01 | 6.72e-01 | 7.87e-02

Table 5.7: Problem 7, (mean) on level=6, N = 237

even for triangles which have not changed on the latest refinement level.

We studied the runtime behavior of KASKADE version (K5) which uses the
explicit form of the stiffness matrix. The results are shown in Chapter 3. We
realize that the time of the iteration process (multiplication with the stiffness
matrix) is shortened but the loss in the integration process (integration is
repeated on each level even on triangles which did not change) dominates
the runtime. We need about 30% more time than in the version K4 working
with local stiffness matrices. K5 should be used in cases where the number

of iteration steps is much higher than in our test problems.

The complete-matrix version K5 requires less memory than the saving of
all stiffness matrices in K4 (see Chapter 4), but comparedwwith the total

amount of memory this advantage seems to be negligible.

23

Chapter 6

Summary

6.1

Analysis of KASKADE

On the test set KASKADE has proved to be a reliable, robust and

efficient algorithm.

The refinement strategy based on local extrapolation turns out to be
more robust and accurate than the refinement strategy based on the
mean value. Further it generates triangulations with far fewer nodes
and is superior in runtime.

The edge oriented error estimator turns out to be efficient and accu-
rate. In tendency it underestimates the error slightly. On the solution
triangulation it agrees with the true error up to a difference of only
5%—7% (extrapolation strategy used!).

The hierarchical bases preconditioner is as robust and accurate as the
BPX preconditioner, but has runtime advantages.

6.2 Comparison of KASKADE and PLTMG

As a rule of thumb one may conclude:

KASKADE is 3-5 times faster than PLTMG, but uses 2-3 times as
much memory as PLTMG, while they are comparably robust and reli-
able.

More detailed we observed the following:

e In both programs the linear solver needs only about 10% of the total

runtime.

o The triangle oriented error estimator of PLTMG needs roughly twice

as many evaluations per point of the coefficient functions of the elliptic
operator as the edge oriented error estimator of KASKADE. This could
be a serious drawback for real applications with expensive function
evaluations.

o Integration process and grid refinement are much faster in KASKADE

than in PLTMG for reasons of data structure and implementation (C

versus FORTRAN).

24

o [or the same reasons PLTMG has the memory advantage. There is a
trade off between speed and memory requirement.

25

Appendix A: Test Problems

We use the Dirichlet boundary condition in all examples, except in Example
6c, where we have additionally natural boundary conditions.

1. The solution of this problem has a sharp peak. Two variations of the
problem run on different domains.

source
equation

a) peak at (0.5,0.117)
domain
initial triangles
angle bounds
solution

b) peak at (0,0)

domain

initial triangles
angle bounds
solution

[21]

Poisson

unit square

isosceles right

minimum 18.43°; maximum 116.57°
:1;(:1; _ 1) y(y _ 1)e—100(($—0.5)2+(y—0.117)2)

hexagon with corners (1,0), (3, V3/2),
(_%7 \/§/2)7 (_170)7 (_%7 _\/§/2)7
and (£, ~v/3/2)

equilateral

minimum 30°; maximum 90°

(z+ 1)(z = 1)(y + 1)(y — 1)e 100" +)

2. The solution of this problem has a boundary layer along the lines x = 1

and y = 1.

source
equation
domain

initial triangles
angle bounds

solution

[6, 21, 19]

Viu —100u = f

unit square

isosceles right

minimum 18.43°; maximum 116.57°

cosh(10x) + cosh(10y)

2 cosh 10

3. The solution of this problem has four mild peaks. It is fairly smooth
so that a uniform grid should do nearly as well as adaptive grids. The
equation has a nonconstant coefficient.

26

source [21]

equation V2u — (100 + cos 27z + sin 37y)u = f
domain unit square

initial triangles isosceles right

angle bounds minimum 18.43°; maximum 116.57°
solution —0.31(5.4 — cos dmx)(sin7z)(y* — y)

4. The solution of this
0<y<0bandy=

(5.4 — cosdmy)(1/(1 + ®*) —0.5)
O = 4(z — 0.5) + 4(y — 0.5)?

problem has a wavefront along the lines © = 0.5,
0.5, 0 < x < 0.5. The initial triangulation consists

of tall isosceles triangles.

source
equation
domain

initial triangles

angle bounds
solution

5. The solution of this

21
Poisson

hexagon with corners (1, 1), (£,1), (5,1), (0,3),
isosceles height % width i

minimum 14.04°; maximum 129.09°

o2) (y)

O(x)=1"for 2 <04

O(z) =0 for x > 0.6

® is a quintic polynomial for 0.4 < = < 0.6
such that ® has two continuous derivatives

problem is an eighth—degree harmonic polynomial

with moderate peaks at the four corners of the domain. The initial
triangulation contains 3 shapes of triangles with some relatively small

angles.

source
equation
domain

[21]
Laplace
(_17 1) X (_17 1)

initial triangles 3 types of isosceles triangles

angle bounds
solution

6. The solution of this

minimum 9.46°; maximum143.97°
1.1786 — 0.1801p + 0.006¢

p= a2t — 6a2y? + y*

g =% — 282%¢% + T0x%y* — 282%¢5 + ¢

problem has a singularity at the origin, which is

a reentrant corner of the domain. As in Problem 1, two variations of
this problem are used for different initial triangles. The strength of the
singularity is different for the two versions.

27

source
equation
domain

initial triangles
angle bounds

(2, 7,8, 19, 20]

Laplace

L—shaped (—1,1) x (=1, 1)\(0,1) x (=1,0)
isosceles right

minimum 18.43°%; maximum 116.57°

solution r2/3 sin ? (polar coordinates)
b) domain hexagon as in 1b with a slit along the line
(y=0,2>0)
initial triangles equilateral
angle bounds minimum 30°; maximum 90°
solution rH/4sin %
¢) domain circle with a slit along the line
(y=0,2>0)
initial triangles equilateral
angle bounds minimum 30°; maximum 90°
solution rH/4sin %

7. The solution of this problem is harmonic, but drops very sharply near
(0.01,0). If the domain were extended to = 0, there would be a jump
discontinuity in the boundary condition.

source [17]
equation Laplace
domain (0.01,1) x (=1,1)

right triangles with legs of length 1 and 0.495
minimum 12.43°; maximum135.29°
arctan ¥

initial triangles
angle bounds
solution

8. The coefficient function in the operator of this equation is discontinu-
ous. a(x,y) is piecewise constant with the values 1 and 100 on alternate
triangles of the initial triangulation. The solution is continuous, but
the first derivative has a jump discontinuity where a is discontinuous.

source 6]
equation VaVu=10

where a is piecewise constant as described above
domain hexagon as in 1b
initial triangles equilateral
minimum 30°; maximum 90°
y(32? — y?)

a

angle bounds

solution

28

Appendix B: Grids

The initial coarse triangulation used for all our computation is depicted by
slightly thicker pensize in the following drawings. Figures 6.6-6.9 show the
meshes for the mean value refinement strategy and the extrapolation refine-

ment strategy.

Figure B.1: Problem la, mean, N5 = 275, €gia = 7.7310 — 3

29

A
\

\VAl

/N
A\
AN
/
/
N

Figure B.2: Problem 1b, mean, N5 = 313, cgria = 2.8319 — 1

?AM\V\V\V\V\V\V\V\V\

N g

%%M!\/MMMM

Figure B.3: Problem 2, extrap, N5 = 526, cgriq = 1.0919 — 1

30

[V

Figure B.4: Problem 4, mean, Ny = 529, £g1ia = 3.2610 — 1

Figure B.5: Problem 5, extrap, N3 = 253, cgria = 3.3710 — 1

31

Figure B.6: Problem 6a, mean, Ny = 332, egia = 8.1710 — 2

Figure B.7: Problem 6a, extrap, Ng = 134, €gria = 9.1010 — 2

32

JVAV/\VAVAN

VAVAV Avivviviviy

Figure B.8: Problem 6b, mean, Ny = 108, cgriq = 4.1719 — 1

Figure B.9: Problem 6b, extrap, Ny = 77, £gia = 3.2910 — 1

33

Figure B.10: Problem 7, mean, Ny = 90, £gpia = 6.5110 — 1

LIRS ARIITINT N NI FRIAFFFSIIN
/£ yi PN
Y SAVAAYAVAVAYAYA VAVAVAVAVAVAVAVAN

V
XS

AVAVAVAVAVAVAVAVAVAVAVAVAVA
AVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Figure B.11: Problem 8, extrap, Ny = 535, ggriq = 1.1419 — 1

34

Appendix C: Convergence History

Tables of Appendix C include the levels for which a solution was computed
because for the levels resulting from the inner ESTIMATE/REFINE cycle

only an interpolated solution exists.

N |lev | dep Cest e, ur| ¢
33 2 2 2.15e-02 | 4.57e-02 | 1.56e-02 | -0.530
104 4 4 1.34e-02 | 1.45e-02 | 4.97e-02 | -0.076
275 5 5 7.46e-03 | 7.80e-03 | 5.14e-02 | -0.044
857 6 6 | 3.95e-03 | 4.11e-03 | 5.16e-02 | -0.039
2954 | 7 7 | 2.10e-03 | 2.21e-03 | 5.17e-02 | -0.050

Table C.1: Error analysis (mean) for Problem la

N |lev | dep Cest e, ur| ¢
37 2 2 2.15e-02 | 4.57e-02 | 1.57e-02 | -0.530
61 3 3 2.09e-02 | 2.57e-02 | 4.54e-02 | -0.187
103 4 4 1.39e-02 | 1.52e-02 | 4.99e-02 | -0.086
145 5 5 1.05e-02 | 1.25e-03 | 5.02e-02 | -0.160
405 6 6 | 6.27e-03 | 6.99e-03 | 5.12e-02 | -0.103
899 7 7 | 3.91e-03 | 4.18¢-03 | 5.15e-02 | -0.065
1966 | 8 8 | 2.72e-03 | 2.99e-03 | 5.16e-02 | -0.090
2778 | 10 9 2.19e-03 | 2.41e-03 | 5.16e-02 | -0.091
3472 1 11 | 10 | 1.97e-03 | 2.16e-03 | 5.16e-02 | -0.088
4829 |1 12 | 11 | 1.74e-03 | 1.88e-03 | 5.16e-02 | -0.074

Table C.2: Error analysis (extrap) for Problem la

35

N | lev Cest e, ur| ¢
64 6 | 2.86e-02 | 2.09e-02 | 4.73e-02 | 0.368
261 6 | 9.48e-03 | 8.06e-03 | 5.11e-02 | 0.176
1051 | 7 | 4.52e-03 | 4.11e-03 | 5.16e-02 | 0.100
3828 | 9 | 2.00e-03 | 1.92e-03 | 5.17e-02 | 0.042

Table C.3: Error analysis (PLTMG) for Problem la

N |lev | dep Cest e, ur| ¢
50 2 2 3.51e-01 | 5.52e-01 | 1.50e-00 | -0.364
201 4 4 2.26e-01 | 3.59¢e-01 | 1.46e-00 | -0.370
634 6 6 1.53e-01 | 2.44e-01 | 1.44e-00 | -0.373
1672 | 8 8 1.07e-01 | 1.70e-01 | 1.44e-00 | -0.371
4224 1 10 | 10 | 7.52e-02 | 1.19e-01 | 1.43e-00 | -0.368

Table C.4: Error analysis (mean) for Problem 6¢

N |lev | dep Cest e, ur| ¢
38 2 2 3.54e-01 | 5.64e-01 | 1.50e-00 | -0.372
51 3 3 | 3.07e-01 | 4.69e-01 | 1.48e-00 | -0.345
62 4 4 2.69e-01 | 4.06e-01 | 1.46e-00 | -0.337
81 5 5 2.42e-01 | 3.46e-01 | 1.45e-00 | -0.301
94 7 6 2.22e-01 | 3.00e-01 | 1.44e-00 | -0.260
105 8 7 2.10e-01 | 2.86e-01 | 1.43e-00 | -0.266
135 9 8 2.00e-01 | 2.52e-01 | 1.43e-00 | -0.206
167 | 12 9 1.79e-01 | 2.24e-01 | 1.43e-00 | -0.201
275 | 13 | 10 | 1.50e-01 | 1.78e-01 | 1.43e-00 | -0.157
467 | 18 | 12 | 1.13e-01 | 1.35e-01 | 1.43e-00 | -0.163
1453 | 19 | 13 | 7.34e-02 | 8.87e-02 | 1.43e-00 | -0.172
2002 | 24 | 17 | 5.77e-02 | 6.46e-02 | 1.43e-00 | -0.107
2670 | 27 | 20 | 4.99e-02 | 5.31e-02 | 1.43e-00 | -0.060

Table C.5: Error analysis (extrap) for Problem 6¢

36

