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Abstract

This report presents the final realization and implementation of a global
inexact Newton method proposed by Deuflhard. In order to create a complete
piece of software, a recently developed iterative solver (program GBIT) due
to Deuflhard, Freund, Walter is adapted and serves as the standard iterative
linear solver. Alternative linear iterative solvers may be adapted as well,
e.g. the widely distributed code GMRES. The new software package GIANT
(Global Inexact Affine Invariant Newton Techniques) allows an efficient and
robust numerical solution of very large scale highly nonlinear systems. Due
to the user friendly interface and its modular design, the software package is
open for an easy adaptation to specific problems. Numerical experiments for
some selected problems illustrate performance and usage of the package.
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�� Introduction

For the numerical solution of systems of highly nonlinear equations

a) F (x) = 0, x ∈ R
n

b) x0 given initial guess
(0.0.1)

global affine invariant Newton techniques turn out to be quite efficient and
robust (compare Deuflhard [2] and the more recent monograph [3]). Within
the course of the Newton iteration a sequence of linear problems must be
solved. As long as the dimension n of the system (0.0.1) is of moderate size,
this can be done very efficiently by applying direct methods, e.g. Gaussian
elimination techniques. Using special implementations of direct methods,
like band mode elimination or sparse matrix techniques, even large systems
with special structures can be attacked. Based on global affine invariant
exact Newton techniques, software for this type of problem is presented in
Nowak/Weimann [10]. But for very large scale problems, e.g. discretized
partial differential equations in 2 or 3 dimensions, an iterative solution of
the linear systems may be the only method of choice. In this case, one has
two nested iteration processes: the Newton iteration, appearing as the outer
iteration, and the iterative solution of the arising linear systems appearing
as the inner iteration. In view of an efficient realization the question of
how to choose the (required) accuracy for the inner iteration is of essential
importance. Too weak accuracy requirements may destroy convergence (or
slow down convergence speed) of the outer (Newton) iteration. Too strin-
gent accuracy requirements will increase computing time drastically with-
out increasing convergence speed of the outer iteration. Besides this, note
that an only approximate solution of the linear systems means that only a
so called inexact Newton scheme is available. The derivation of a cheaply
implementable extension of affine invariant Newton methods to the case of
inexact Newton methods, including an accuracy matching strategy, has been
studied by Deuflhard [4].

It is the purpose of the present paper to describe the final realization and
implementation of these techniques within the software package GIANT
(mnemotechnically for Global Inexact Affine invariant Newton Techniques).
In order to get a running code, two iterative linear solvers are presently in-
cluded in the GIANT package. First, there is the well-known and widely used
”GeneralizedMinimumResidual” (GMRES) code due to Brown/Hindmarsh/
Seager from the SLAP package of Seager/Greenbaum [11, 7]. As the un-
derlying minimization principle of GMRES does not match the theoretical
background of global affine invariant Newton methods, a recently developed
iterative linear solver due to Deuflhard/Freund/Walter [5] has been imple-
mented and adapted for the use in GIANT. This fast secant method GBIT1,
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which uses so-called ”Good Broyden” updates and a special, adapted line
search principle, fits perfectly into the theoretical frame of GIANT. Both it-
erative methods for the solution of the linear systems may be combined with
preconditioning techniques to improve their convergence properties.

This paper is organized as follows: In Section 1.1 the GIANT algorithm is
presented in detail. The accuracy matching strategy for the inner and outer
iteration and the consequence for an ”optimal” iterative linear solver are
discussed. Section 1.2 presents the iterative linear solver GBIT1 and it’s
adaptation for use in GIANT. Section 1.3 deals with details and variants
of the algorithmic realization, e.g. choice of norms, internal scaling and
restricted damping strategy. Chapter 2 deals with the implementation of the
software package. First, a general overview is given in Section 2.1. Section 2.2
contains the description of the user interfaces and Section 2.3 describes some
special features of the package. Typical numerical experiments are reported
in Chapter 3. First, in Section 3.1, a set of test problems is established
and fully described. The numerical results of solving these test examples
with GIANT+GBIT1 and GIANT+GMRES respectively, are presented and
discussed in Section 3.2. Finally, some concluding remarks are made.
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�� Algorithms

��� Global Inexact Newton Scheme

The global inexact Newton methods proposed in [4] are extensions of the
global exact Newton techniques where the arising linear systems are solved
by direct (”exact”) methods (cf. [2, 3]). The term ”global” indicates that the
usual Newton scheme is combined with an affine invariant damping strategy
in order to extend the convergence domain of the method. Omitting details
which are of minor interest in this context, the exact damped affine invariant
Newton algorithm to solve (0.0.1) reads as follows:

Global Exact Affine Invariant Newton Scheme (Algorithm E)

Input:

x0 initial guess for the solution
λ0 initial damping factor
tol required accuracy for the solution
user routine to evaluate the nonlinear system function F (x)
user routine to evaluate the Jacobian of the system J(x) := ∂F

∂x

(may be dummy as internal numerical differentiation procedures
may be used)
standard routines for direct solution of linear equations

Start:

k := 0

evaluate system
Fk := F (xk)

Newton step:

evaluate Jacobian
Jk := J(xk)

compute ordinary Newton correction

Δxk := −J−1
k Fk (1.1.1)
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compute a priori damping factor

if (k > 0) λ
(0)
k := min

{
1,

1

[h
(0)
k ]

}
([h

(0)
k ] see below (1.1.6) )

else λ
(0)
k := λ0

(1.1.2)

j := 0

λ := λ
(0)
k

a posteriori loop

compute trial iterate
x
(j)
k+1 := xk + λΔxk

evaluate system
F

(j)
k+1 := F (x

(j)
k+1)

compute simplified Newton correction

Δx
(j)
k+1 := −J−1

k F
(j)
k+1 (1.1.3)

termination check
exit, if ‖Δxk‖ ≤ tol

compute a posteriori damping factor

λ
(j+1)
k := min

{
1,

1

[h
(j+1)
k ]

}
([h

(j+1)
k ] see below (1.1.7) ) (1.1.4)

monotonicity check

konv := ‖Δx(j)k+1‖ ≤ ‖Δxk‖ (1.1.5)

if konv : Δxk+1 := Δx
(j)

k+1

xk+1 := x
(j)
k+1

Fk+1 := F
(j)
k+1

λk := λ
k := k + 1
proceed at Newton step

else: j := j + 1

λ := min{λ(j)
k ,

λ

2
}

proceed at a posteriori loop
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To evaluate the damping factor λ
(j)
k in (1.1.2) and (1.1.4) the following local

estimates [h
(j)
k ] are used:

A priori estimate:

[h
(0)
k ] :=

‖Δxk −Δxk‖
λk−1‖Δxk−1‖ · ‖Δxk‖‖Δxk‖ (1.1.6)

A posteriori estimate:

[h
(j)
k ] :=

2

λ2
· ‖Δx

(j)
k+1 − (1− λ)Δxk‖

‖Δxk‖ (1.1.7)

Note that this scheme requires, at least, two linear system solutions (with
the same matrix) per Newton step — compared to just one in a ”classic”
Newton step. But within the implementation for systems of moderate size
or with special structure in the matrix Jk (Codes NLEQ1, NLEQ1S, NLEQ2
— see [10]) this additional amount of work is comparatively small. As the
matrix Jk is decomposed first, the solution of (1.1.1) and (1.1.3) reduces to
backward-forward substitutions only. Thus, the additional costs are usually
small compared to the total amount of work for one Newton step. Now, if
the direct solution of (1.1.1) and (1.1.3) is straightforward replaced by an
iterative solution, this additional amount of work for the computation of the
simplified Newton correction may be significant. Therefore, one objective of
the accuracy matching strategy of the global inexact affine invariant Newton
scheme presented in [4] is to overcome this difficulty. It is not the purpose
of this paper to repeat the detailed considerations made in [4] to derive
this scheme and an associated accuracy matching strategy. Nevertheless, the
basic ideas and consequences for the algorithm (E) are shortly summarized to
facilitate the understanding of the final algorithm and to support an efficient
application of the software package GIANT.

1.1.1 Adaptation of outer iteration

Using an iterative method for the computation of the ordinary and simplified
Newton correction means to replace the ”exact” solutions Δxk and Δxk+1 of
(1.1.1) and (1.1.3) respectively by only approximate ”inexact” solutions of
these systems. To be more precise, let sk denote the inexact ordinary Newton
correction and sk+1 the inexact simplified Newton correction. Assume that
reasonable error estimates εk , εk+1 are available for the relative errors of sk
and sk+1 :

a) εk ≈ εtruek :=
‖sk −Δxk‖

‖sk‖

b) εk+1 ≈ εtruek+1 :=
‖sk+1 −Δxk+1‖

‖sk+1‖
(1.1.8)
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Then, as a first consequence of the replacement

Δxk,Δxk+1 −→ sk, sk+1 (1.1.9)

in (E), the formulas for the computation of the optimal damping factors λ
(j)
k

( (1.1.2), (1.1.4) ) must be modified to

λ
(0)
k = min

{
1,

1 − ε̂k

[h
(0)
k ]

}
(1.1.10)

λ
(j)
k = min

{
1,

1 − ε̂k+1

[h
(j)
k ]

}
j = 1, 2, . . . (1.1.11)

where

ε̂k :=
εk

1 − εk
, ε̂k+1 :=

εk+1

1− εk+1
. (1.1.12)

Besides this partial consequence, the replacement (1.1.9) affects the algorithm
also as a whole. Errors of sk , sk+1 may disturb the damping strategy due to
(1.1.6) and (1.1.7), and due to (1.1.5) the convergence behavior, and finally,
the superlinear convergence of the inexact Newton iterates sk to the solution
x∗ of (0.0.1) may be destroyed.

1.1.2 Accuracy matching strategy

In order to retain the behavior of the exact Newton scheme also for the inex-
act scheme, a special accuracy matching strategy is used (see [4] for details).
Roughly speaking, this strategy sets only weak accuracy requirements for
the errors εk , εk+1 as long as the Newton iteration is ”far away” from the
solution ( λk < 1 , hk > 1 ) and sets successively more stringent accuracy
requirements for the error εk if the Newton iteration approaches to the so-
lution x∗ ( λk = 1 , hk < 1 ) , thus ensuring superlinear convergence. Note
that only εk is reduced, while εk+1 not. Due to this fact, the additional costs
for the computation of the inexact simplified Newton correction are again
comparatively small - as in the standard case.

Within this accuracy matching strategy the required accuracy (εreqk , εreqk+1) for
the solutions sk , sk+1 is set by

a) ε̂reqk := ρ ·min

(
1

1 + ρ
, [h

(0)
k ]

)

b) εreqk :=
ε̂reqk

1 + ε̂reqk

c) εreqk+1 :=
ρ

1 + 2ρ

with

d) ρ := safety factor, to be chosen ≤ 1

6

(1.1.13)
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Notice that the considerations made in [3] allow a minimum value of ρ = 1/2

( ⇒ εreqk = 1/4), which means that just one binary digit in [h
(j)
k ] and two

binary digits in sk , sk+1 must be correct. In spite of this theoretical upper
bound a maximum value ρmax = 1/6 should be used in order to synchronize
the inexact scheme with the exact one.

Concerning the evaluation of (1.1.13), note that sk enters via [h
(0)
k ] (c.f.

(1.1.6) ) into the right hand side of (1.1.13.a), which means, that the re-
quired accuracy for the solution sk of the iterative solver depends on this
solution itself. To overcome this difficulty, this iterative solution process is
split up into an a priori and an a posteriori part — see Section 1.1.3. The
robustness of the total global inexact Newton scheme strongly depends on
the assumption, that the prescribed accuracy is really achieved. Due to this
fact, the iterative linear solver should have a reasonable and robust error
estimate for it’s solution. Finally, one should mention, that under some cir-
cumstances the needed accuracy to have reasonable [h

(0)
k ]-estimates at hand

can be achieved without fulfilling (1.1.13). To utilize this fact, a special stop-
ping criterion for the iterative solver may be used — see formula (1.1.18.b)
of Section 1.1.3.

1.1.3 Adaptation of the inner iteration

In general, the efficiency of an iterative linear solver strongly depends on the
quality of the initial guess. Within the iterative Newton scheme quite natural
initial guesses for successive iterative linear system solutions are available.
For the iteration towards sk, k > 0, one may take sk as initial guess and for
the iteration towards sk+1 one may use (1−λk)sk. Due to the special accuracy
requirements of the inexact Newton iteration, a special formulation of the
inner iteration is suggested (c.f. [4]). Recall that within the computation of

the estimates [h
(j)
k ] j = 0, 1, . . . (c.f. (1.1.6),(1.1.7)), the differences

a) δsk := sk − sk

b) δsk+1 := sk+1 − (1− λk)sk
(1.1.14)

are required. With this in mind, an iteration with direct computation of
(1.1.14.a,b) would be preferable to avoid cancellation of leading digits. To
be precise, instead of an iteration in the form

a) s0k := sk

b) si+1
k := sik +Δi

k i = 0, 1, 2, . . .
(1.1.15)
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the inner iteration should be realized in the following way:

a) δs0k := 0 , s0k := sk

b) δsi+1
k := δsik +Δi

k i = 0, 1, 2, . . .

c) si+1
k := s0k + δsi+1

k

(1.1.16)

Accordingly, the inner iteration for sk+1 should read:

a) δs0k+1 := 0 , s0k+1 := (1− λk)sk

b) δsi+1
k+1 := δsik+1 +Δ

i
k i = 0, 1, 2, . . .

c) si+1
k+1 := s0k+1 + δsi+1

k+1

(1.1.17)

Furthermore, having an inner iteration of type (1.1.16) and (1.1.17) respec-
tively, the realization of a termination criterion which fits perfectly into the
requirements of the accuracy matching strategy is facilitated.

Let α(Δ
i
) denote an estimate of the absolute error of both sik+1 and δsik+1.

With εreqk+1 defined by (1.1.13.c,d) the inner iteration can be stopped if either

a) α(Δ
i

k+1) ≤ εreqk+1‖si+1
k+1‖

or

b) α(Δ
i
k+1) ≤ 1

4
‖δsi+1

k+1‖
(1.1.18)

holds. In both cases, sk+1 is accurate enough to yield reasonable a posteriori

estimates [h
(j)
k ], j = 1, 2, . . . via (1.1.7) and a satisfactory performance of

the inexact monotonicity test (1.1.22) — see Section 1.1.5.

For the iteration towards sk an analogue termination criterion is used first. In
order to overcome the problem of the implicit definition of εreqk via (1.1.13.a,b,d),
the inner iteration is split up into an a priori part which may be followed
by an a posteriori part. Let εreq,0k be defined by (1.1.13.c,d) - which is just

(1.1.13.a,b,d) ignoring the [h
(0)
k ] term. Then the inner iteration is stopped if

either
a) α(Δi

k) ≤ εreq,0k ‖si+1
k ‖

or

b) α(Δi
k) ≤ 1

4
‖δsi+1

k ‖
(1.1.19)

holds. Again, there is enough accuracy (now in sk) to get a reasonable a

priori estimate [h
(0)
k ] via (1.1.6) and a satisfactory performance of the inexact

monotonicity test (1.1.22).

But only in the case λ
(0)
k < 1 and stopping criterion (1.1.19.a) has been

activated, sk is accurate enough to allow a satisfactory performance of the
inexact Newton scheme. Thus, the iteration must be continued in other
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cases. But for this a posteriori inner iteration, an εreq,1k can now be defined

via (1.1.13.a,b,d), as a reasonable estimate [h
(0)
k ] is at hand. This a posteriori

inner iteration is continued until the criterion (1.1.19.a) is met — with εreq,0k

replaced by εreq,1k . In order to get a hint for a crude violation of the theoretical
assumptions which led to the above stopping conditions one may realize
a simple check. With sk from the a posteriori iteration at hand, one can
recompute [h

(0)
k ] and compare this value with that one computed with sk

from the a priori iteration.

1.1.4 Simplified adaptation

The above optimal adaptation of inner and outer iteration may exclude most
of the available software from a direct use within GIANT. Therefore one may
realize a simplified interaction between inner and outer iteration. Assume, an
iterative solver is at hand which requires an initial guess s0 and a prescribed
tolerance εreq and yields an approximate solution siter with an associated
error estimate εest. Then, the interaction between GIANT and such a solver
may be realized by the following simple procedures:

For simplified Newton correction:

εreqk+1 :=
ρ

1 + 2ρ

s0k+1 := (1 − λk)sk

iterative linear solution

↪→ siterk+1 , ε
est
k+1

sk+1 := siterk+1

proceed with inexact Newton scheme

(1.1.20)
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For ordinary Newton correction:

εreq,0k :=
ρ

1 + 2ρ

if (k > 0) s0k := sk

else s0k := 0
iterative linear solution

↪→ siter,0k , εest,0k

[h
(0)
k ]

0
:=

‖sk − siter,0k ‖
‖xk − xk−1‖ · ‖s

iter,0
k ‖
‖sk‖

λ
(0)
k := min

⎧⎨
⎩1, 1

[h
(0)
k ]

0

⎫⎬
⎭

if (λ
(0)
k < 1)

sk := siter,0k

proceed with inexact Newton scheme

else

εreq,1k := ρ · [h(0)k ]
0

s0k := siter,0k

iterative linear solution (continued)

↪→ siter,1k , εest,1k

[h
(0)
k ]

1
:=

‖sk − siter,1k ‖
‖xk − xk−1‖ · ‖s

iter,1
k ‖
‖sk‖

if ([h
(0)
k ]

1 − [h
(0)
k ]

0
) ”not small” → warning message

sk := siter,1k

proceed with inexact Newton scheme

(1.1.21)

As mentioned above, these schemes are simplifications of the optimal strat-
egy. But the the loss of efficiency and robustness is acceptable. Nevertheless,
for the adaptation of the standard iterative solver ”Good Broyden” (see Sec-
tion 1.2) the optimal strategy is realized.

1.1.5 Inexact monotonicity test

Instead of just replacing Δxk,Δxk+1 by sk, sk+1 in the exact monotonicity
test (1.1.5) an inexact monotonicity test in a less restrictive form turns out
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to be favorable:

‖sk+1‖ · (1− εk+1) ≤ ‖sk‖ · (1 + εreqk ) (1.1.22)

where

εreqk :=

{
εreq,1k , if a posteriori inner iteration is done

εreq,0k , else

εk+1 := max{εreqk+1, ε
est
k+1}

εestk+1 : estimated accuracy of solution sk+1

As long as the inner iteration yields solutions which really have the required
accuracy, (1.1.22) works quite satisfactory. In cases, when the true accu-
racy is too poor but the associated error estimate deceives enough accuracy,
the monotonicity test may make the ”wrong” decision. If (1.1.22) fails, the
damping factor will be reduced and the check is subsequently activated with
a recomputed simplified correction. But even with an exact solution for sk+1

at hand, this (and all further) test may fail, as the error of the ordinary
Newton correction sk may be too large. This difficulty may lead to a stop
of the Newton iteration due to successive failures of the monotonicity test
(1.1.22).

1.1.6 Inexact scheme

Based on the considerations above, one is now ready to present the whole
inexact Newton scheme (with the simplified adaptation procedures). In or-
der to have a direct connection to the associated software package GIANT
the following algorithmic representation includes also the formal evaluation
of the Jacobian. Note that within the Newton scheme this Jacobian is not
directly used; only the routine for solving the linear problem may use this
information. Therefore, GIANT is open for different ways of generating and
storing the Jacobian — in connection with an associated realization of the
iterative linear solver. A more detailed discussion of that topic can be found
in Chapter 2, especially in Section 2.3.

Global Inexact Affine Invariant Newton Scheme (Algorithm I)

Input:
x0 initial guess for the solution
λ0 initial guess of damping factor
tol required accuracy for the solution
user routine to evaluate the nonlinear system function F (x)
special routines for iterative solution of linear equations
[user routine to evaluate the Jacobian of the system J(x) := ∂F

∂x
]
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Start:

k := 0

evaluate system
Fk := F (xk)

Newton step:

evaluate Jacobian
Jk := J(xk)

compute ordinary Newton correction

εreq,0k :=
ρ

1 + ρ
, ρ ≤ 1

6

if (k > 0) : s0k := sk

else : s0k := 0

iterative linear solution procedure (see (1.1.21))

input : s0k , ε
req,0
k

output : siterk , εest,0k , [εreq,1k , εest,1k ]

sk := siterk

compute a priori damping factor

if (k > 0) ε̂estk :=
εestk

1 − εestk

[h
(0)
k ] :=

‖sk − sk‖
λk−1‖sk−1‖ · ‖sk‖‖sk‖

λ
(0)
k := min

{
1,

1− ε̂estk

[h
(0)
k ]

}

else λ
(0)
k := λ0

j := 0

λ := λ
(0)
k

a posteriori loop
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compute trial iterate
x
(j)
k+1 := xk + λsk

evaluate system
F

(j)
k+1 := F (x

(j)
k+1)

compute simplified Newton correction

εreqk+1 :=
ρ

1 + ρ
, ρ ≤ 1

6

s0k+1 := (1− λ)sk

iterative linear solution procedure (see (1.1.20))

input : s0k+1 , ε
req
k+1

output : siterk+1 , ε
est
k+1

s
(j)
k+1 := siterk+1

εk+1 := max{εreqk+1, ε
est
k+1}

termination check
exit, if ‖sk‖ ≤ tol

compute a posteriori damping factor

ε̂k+1 :=
εk+1

1 − εk+1

[h
(j+1)
k ] :=

2

λ2
· ‖s

(j)
k+1 − (1 − λ)sk‖

‖sk‖

λ
(j+1)
k := min

{
1,

1 − ε̂k+1

[h
(j+1)
k ]

}

monotonicity check (see (1.1.22))

konv := ‖s(j)k+1‖(1− εk+1) ≤ ‖sk‖(1 + εreqk )

if konv : sk+1 := s
(j)
k+1

xk+1 := x
(j)
k+1

Fk+1 := F
(j)
k+1

λk := λ
k := k + 1
proceed at Newton step

else: j := j + 1

λ := min{λ(j)
k ,

λ

2
}

proceed at a posteriori loop
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��� Good Broyden Scheme

The standard method to perform the inner iterations within GIANT is the
iterative linear solver ”Good Broyden” due to Deuflhard/Freund/Walter [5].
To be more precise, it is the storage restricted variant of the algorithm ”Good
Broyden” with update (A) and linesearch (a) (notation from [5]). Numerical
experiments with other variants of ”Good Broyden” within the frame of
GIANT confirm the observation in [5] that the above mentioned variant is
preferable.

To fix notation, assume that the linear system

a) As = b
b) s0 given initial guess

(1.2.1)

has to be solved. (One may identify A with Jk, b with Fk or F
(j)
k+1, and s

with sk or sk+1, to have the direct relation to Section 1.1). A preconditioning
matrix H may be available, i.e. H is an approximation of A−1 and H may
be easily computable. Furthermore, let < ·, · > denote an inner product and
let ‖ · ‖ denote an induced norm of < ·, · > — see Section 1.3 for further
discussion. Then, adapted for use in GIANT and omitting some technical
details, the algorithm reads:

Good Broyden Iterative Scheme (Algorithm GBIT)

Input:

s0 : initial guess for the solution
b : right hand side of the linear system
εreq : required accuracy for the solution
kmax : storage restriction parameter
user routine to perform a matrix vector multiply: y = Ax
user routine to perform preconditioning: y = Hx

Preprocess:

iter := 0
siter := s0
δsiter := 0

Start/Restart:

k := 0

14



r := b− Asiter
Δ := Hr
σ :=< Δ,Δ >

Iteration step:

iter := iter + 1
q := AΔ
z := Hq

Update loop: l = 1, 2, · · · , k (for k > 0 )

f1 := < Δ(l), z > /σ(l)
f2 := 1 − τ (l)
if (l < k) : z := z + f1(Δ(l + 1) − f2Δ(l))
else : z := z + f1(Δ− f2Δ(l))

end of update loop

γ :=< Δ, z >
τ := σ/γ

perform restart monitor (see below)

δsiter := δsiter−1 + τΔ
siter := s0 + δsiter

if (k < kmax)
Δ(k + 1) := Δ
σ(k + 1) := σ
τ (k + 1) := τ

endif

correction update: Δ := Δ− τz
k := k + 1

perform convergence monitor (see below)

if (k ≤ kmax) : proceed at iteration step
else : proceed at start/restart

The above mentioned procedures ”restart monitor” and ”convergence mon-
itor” are of essential importance for the applicability and efficiency of the
algorithm (GBIT). They have to be discussed in more detail.

Restart monitor

Theoretical considerations show, that the steplength parameter τ should be
positive and not ”too large”. This is ensured by checking the so-called restart
conditions:

a) τ < τmin

b) τ > τmax .
(1.2.2)
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In cases where either (1.2.2.a) or (1.2.2.b) is met, the iteration is proceeded
at ”restart”, just as if the restriction k > kmax has been activated. Numerical
experiments suggest the choice:

τmin := 10−8 , τmax := 100 . (1.2.3)

Indeed, the behavior of (GBIT) is not too sensitive against a change of these
thresholds. But another problem may occur. In critical examples the restart
condition may be activated for k = 0, i.e. just at the start or at a restart
of the iteration. To take this as an indicator for divergence and to stop the
iteration would reduce the applicability of (GBIT) significantly. To proceed
the iteration in such a case, a simple ad hoc device turns out to be quite
helpful.

if τ < τmin or τ > τmax and k = 0 :
τ̂ := τ
τ := 1

endif

After this resetting of τ the iteration is (re-)started as usual, with one ex-
ception. Instead of the usual correction update in (GBIT) a theoretically
backed variant (c.f. [5])

Δ := (1 − τ + τ̂ )Δ− τ̂z

is used (for k = 0).

Convergence monitor

The development of a robust convergence criterion turns out to be a rather
crucial problem. As already mentioned in [5] the simple and quite natural
estimation of the relative error

ε̃estGB :=
‖Δ‖
‖s‖ =

√
σ

‖s‖ (1.2.4)

may show an unpleasant behavior. Although the true error decreases nearly
monotone, the associated error estimate ε̃estGB shows an oscillatory decrease.
As an example take Figure 1.1, which is just Figure 5.5 of [5]. Especially
for the application within GIANT where only weak accuracy requirements
are claimed for the most linear system solutions this fact may disturb the
optimal matching of outer and inner iteration. To overcome this difficulty
a modified error estimator has been developed which furthermore nicely fits
into the requirements of GIANT, c.f. (1.1.19.a,b). First, to smooth the error
estimates a so called hanging window is used. As soon as three accepted
corrections Δ are available a smoothed value σ is computed via

σ :=
1

4
(σnew + 2σnew−1 + σnew−2) (1.2.5)
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Figure 1.1 Estimated (ε̃estGB) and true error for GBIT

where
σl :=< Δl,Δl > .

Herein Δnew denotes the newest available correction Δ and Δnew−1, Δnew−2

are the latest previous (accepted) corrections. Second, the smoothed norm,
i.e.

√
σ is enlarged by introducing a safety factor ρ (ρ = 4 turns out to be a

quite reasonable choice — see Section 3.2) :
√
σ −→ ρ

√
σ (1.2.6)

Finally, the iteration is terminated only if the termination criterion (1.2.7)
— see below — was met for two successive iterations. In order to realize the
optimal adaptation to GIANT (c.f. (1.1.18), (1.1.19) ) the final termination
criteria for (GBIT) in GIANT read:

a) ρ
√
σ ≤ εreq‖s‖

b) ρ
√
σ ≤ 1

4
‖δs‖

(1.2.7)

According to the requirements in GIANT one has to distinguish two cases. In
the first case, the Good Broyden iteration is stopped if (1.2.7.a) or (1.2.7.b)
holds. In the second case the iteration is stopped only if (1.2.7.a) holds. In
any case, the internally estimated error is computed by

εestGB :=
ρ
√
σ

‖s‖ . (1.2.8)
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Note that the scheme (GBIT) is realized in such a way that a continuation
iteration to perform an a posteriori iteration (c.f. (1.1.21)) must not necessar-
ily begin at ”Start/Restart” due to missing flexibility of the implementation.
Rather, the iteration is continued as if no exit has taken place.

In order to terminate a divergent iteration before an upper bound of itmax
iterations is reached two heuristic divergence criteria have been implemented.
One criterion checks for a certain cyclic behavior of the steplength parameter
τ . The other one checks for too large corrections Δ. Finally, one should men-
tion that the above described iterative linear solver is realized as a separate
piece of numerical software named GBIT1. Thus, it may be used, indepen-
dent of GIANT, as an iterative solver for large unsymmetric linear systems.
But note that the development of some essential details has been made in
view of the application within GIANT.

��� Details of Algorithmic Realization

In order to describe the underlying algorithms of GIANT some details of
the algorithmic realization are worth mentioning. In practical applications
the robustness and efficiency of the algorithms presented in Section 1.1 and
1.2 may e.g. strongly depend on the selected norm and scalar product, the
reasonable choice of termination criteria and the chance to select special
variants or modifications of the basic schemes.

1.3.1 Norm and scalar product

Generally speaking, to control the performance of the exact and inexact
Newton algorithms (E) and (I) smooth norms (such as the Euclidean norm
‖ · ‖2 ) are recommended. Non-smooth norms (such as the max-norm ‖ · ‖∞
) may lead to some non-smooth performance, e.g. alternating between com-
peting components of the iterates. Concerning the ”Good Broyden” iteration
the same general statement holds. Especially for the smoothing process in
the error estimation of ”Good Broyden” the choice of a smooth norm plays an
important role. For the termination criterion of the Newton iteration, how-
ever, the max-norm may be used. Within the actual realization of GIANT
the so called root mean square norm is used. This norm and the underlying
scalar product is defined by

a) ‖v‖rms :=
√
< v, v >

u, v ∈ R
n

b) < u, v >:=
1

n

n∑
i=1

uivi

(1.3.1)
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Note that for large scale systems this norm may significantly differ from the
usual ‖ · ‖2 or ‖ · ‖∞ norms, which are defined as follows:

‖v‖2 :=

√√√√ n∑
i=1

v2i (1.3.2)

v ∈ R
n

‖v‖∞ := max{|vi|} (1.3.3)

The choice of (1.3.1) is motivated by the following consideration. Assume
that the problem (0.0.1) represents a discretized PDE. In order to check
the quality of the discretization, one may solve the underlying continuous
problem on grids with different levels of fineness, i.e. varying dimension n
of the discretized problem. For adequate discretizations one may expect the
same behavior of the inexact Newton scheme — (almost) independent of n.
To achieve this aim, the algorithm must use quantities which are independent
of the dimension of the problem — like ‖·‖rms or ‖·‖∞. Note that for special
classes of applications, the use of (1.3.1) within GIANT is certainly not the
best choice, but for an algorithm which is designed to solve general problems
of the form (0.0.1) this choice turns out to be quite reasonable. Observe that
the Newton- and Good Broyden schemes as presented here, are exclusively
controlled by norms and scalar products to be evaluated in the space of the
iterates (and not in the space of the residuals) — a necessary condition for
an affine invariant method. Furthermore, in order to control the algorithmic
performance ratios of norms are used, whereas the absolute value of a norm is
just used for the termination criteria. These facts are of essential importance
for the reliability of the algorithms.

1.3.2 Scaling and weighting

A proper internal scaling plays an important role for the efficiency and ro-
bustness of an algorithm. A desirable property of an algorithm is the so called
scaling invariance. This means, e.g. regauging of some or all components of
the vector of unknowns x (say, from Å to km) should not effect the algorith-
mic performance — although the problem formulation may change. In order
to discuss this essential point consider a scaling transformation defined by:

a) x 	→ y := S−1x
with a diagonal transformation matrix
b) S := diag(s1, . . . , sn)

(1.3.4)

Insertion into the original problem (0.0.1) leads to a transformed problem

H(y) := F (Sy) = F (x) = 0 (1.3.5)
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where the associated solution y∗ and Jacobian matrix Hy are given by

y∗ = S−1x∗

Hy(y) = Fx(x) · S = J(x) · S (1.3.6)

The problem (0.0.1) is said to be covariant under the scaling transformation
(1.3.4) — a property which is shared by the ordinary Newton Method, as for
k = 0, 1, . . .

a) Δyk = −H−1
y (yk)H(yk) = −S−1J−1(xk)F (xk) = S−1Δxk

b) yk+1 = yk +Δyk = S−1xk + S−1Δxk = S−1xk+1

(1.3.7)

holds. Note that the theoretical covariance property yk = S−1xk may be
disturbed in real computations due to roundoff, except for special realiza-
tions like symbolic computations. As long as the Newton update is done via
(1.3.7b) the simplified Newton correction is covariant also:

Δyk+1 = −H−1
y (yk)H(yk+1) = −S−1J−1(xk)F (xk+1) = S−1Δxk+1 (1.3.7.c)

But, if norms (in the space of the iterates) enter into the algorithm, e.g. to
perform a damping strategy or an error estimation, the covariance property
of the algorithm is lost. As, in general

‖Δyk‖ = ‖S−1Δxk‖ 
= ‖Δxk‖ (1.3.8)

holds, the control and update procedures within the algorithms (E), (I) and
(GBIT) will generate a different algorithmic performance if they are applied
to problem (1.3.5) instead of (0.0.1). To overcome this difficulty one may
internally replace the usual norm (e.g. (1.3.1) ) by an associated scaled or
weighted norm:

‖v‖ −→ ‖D−1v‖ (1.3.9)

where D is a diagonal matrix to be chosen. Consider now the first Newton
step of algorithm (E). Assume, a choice

D := diag(x01, . . . , x
0
n) , x0 initial guess for x∗ (1.3.10)

is possible (x0i 
= 0, i = 1, . . . , n). Inserting (1.3.10) into (1.3.9) yields for
system (0.0.1):

‖Δx0‖ −→ ‖D−1Δx0‖ (1.3.11)

Applied to the transformed system (1.3.6) one has

D := diag(y01, . . . , y
0
n) , y0 initial guess for y∗

and due to
y0 = S−1x0
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one has
D

−1
= D−1S

thus:

‖Δy0‖ −→ ‖D−1
Δy0‖ = ‖D−1SS−1Δx0‖ = ‖D−1Δx0‖ . (1.3.12)

In contrast to the case of unscaled norms (c.f. (1.3.8)) for the scaled norms
(1.3.11) and (1.3.12) the norms of the first Newton corrections coincide. The
same holds for the norms of the first simplified Newton correction. From this
follows, that the first monotonicity test (1.1.5) will lead to the same algorith-
mic consequences independent of an eventual a priori transformation of type
(1.3.4). Even all subsequent decisions of algorithm (E) will be invariant. In
order to have invariance also for the algorithm (GBIT) one may interpret the
replacement (1.3.9) as the introduction of a scaled scalar product:

< u, v >−→< D−1u,D−1v > . (1.3.13)

With that, the fixed choice of (1.3.9) for the internal scaling matrix D will
yield invariance for all inexact Newton steps. But concerning the termination
criteria of the Newton- and the Good Broyden scheme an adaptive choice is
indispensable. Consider the natural stopping criterion for a Newton method
in its unscaled form:

err := ‖Δxk‖
stop, if err ≤ tol

tol : prescribed (required) tolerance (accuracy)

(1.3.14)

In this unscaled form, err is a measure for the absolute error of the numerical
solution xk. Using a scaled norm

err := ‖D−1
∗ Δxk‖ (1.3.15)

with
D∗ := diag(x∗

1, . . . , x
∗
n) (1.3.16)

err is a measure of the relative error of xk. Note that ‖D−1
∗ (x∗ − xk)‖ is

the true relative error of xk (still depending on the selected norm), whereas
‖D−1

∗ Δxk‖ is just an estimate of it, but a quite reasonable one, as Newton’s
method converges quadratically near the solution x∗. Again, similar to
(1.3.10), x∗

i 
= 0, i = 1, . . . , n is required, but in any case, x∗ is usually
not available. To avoid the difficulties coming from zero components and to
connect the natural scaling matrices D0, D∗ ( (1.3.10), (1.3.15) ) within the
course of the Newton iteration the following scaling strategy is applied. An
internal weighting vector xw is used to define local scaling matrices Dk by

Dk := diag(xw1, . . . , xwn) (1.3.17)
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and xw may be locally defined by:

xwi := max{|xk
i |, thresh} (1.3.18)

where
thresh > 0 : threshold value for scaling.

This scaling procedure yields reasonable values for the scaled norms used
in the algorithms (E), (I) and (GBIT) and xw is also used in the Good
Broyden scheme in order to realize scaled scalar products via (1.3.13). Note
that the actual value of thresh determines a componentwise switch from a
pure relative norm to a modified absolute norm. As long as xk

i > thresh
holds, this component contributes with

Δxki
|xki |

to the norm, whereas for xk
i ≤ thresh this component contributes with

Δxki
thresh

to the total value of the norm. In order to allow a componentwise selection of
thresh and to take into account that the damped Newton algorithm (I) uses
information from two successive iterates the following extension of (1.3.17)
and (1.3.18) is used in GIANT.

Input:

xwu := user given weighting vector

Initial check:

a) if (|xwu
i | = 0)

xwu
i :=

⎧⎪⎨
⎪⎩

rtol if problem is highly nonlinear
1 if problem is mildly nonlinear

(see Table 1.1 for problem type)

Initial update:

b) xw0
i := max{|xwu

i |, |x0i |}
Iteration update:

c) xwk
i := max

{
|xwu

i |, 12(|xk−1
i |+ |xki |)

}

(1.3.19)

Thus, the scaling matrix, scalar product and norm (weighted root mean
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square) used in GIANT are given by:

a) Dk := diag(xw1, . . . , xwn)

b) < u, v >:=
1

n

n∑
i=1

uivi
xw2

i

c) ‖v‖ :=
√
< v, v > .

(1.3.20)

Remarks:

(1) The final realization of scaling within (E) and (I) must be done carefully
to achieve properly scaled norms for terms which include values from
different iterates.

(2) In order to allow a scaling totally under user control, the updates
(1.3.19.b,c) can be inhibited optionally.

(3) Within the realization of algorithm (E) (Code NLEQ1) the linear sys-
tems to be solved with a direct method are internally scaled systems:

JkΔxk = −Fk −→ (D−1
k JkDk)(D

−1
k Δxk) = −(D−1

k Fk)

Thus, a user rescaling via (1.3.4) doesn’t change the performance of
the direct linear solver. To avoid an explicit usage of the Jacobian
within GIANT this transformation is omitted. Note that the Good
Broyden scheme is nevertheless invariant as a scaled scalar product
is used within (GBIT). A realization of GIANT with other iterative
methods may destroy the scaling invariance property of GIANT.

1.3.3 Termination criteria

First, recall that all norms in GIANT are evaluated in the space of the iterates
xk (and sik respectively) and not in the space of the residuals. Concerning
the termination criteria this means, that the associated error estimates yield
a direct measure for the error of the associated solution vector. As scaled
norms are used (relative error criterion) an interpretation in terms of correct
leading decimal digits is possible. Assume, a termination criterion of the
form

errrel ≈ ‖Δxk‖ ≤ tol (1.3.21)

holds, where ‖ · ‖ is the weighted root mean square norm (1.3.20). Then, one
has roughly

cld := − log10(tol)

correct decimal leading digits in the mantissa of each component xk
i , inde-

pendent of the actual exponent — except xki � xwk
i . In such a case the

number of correct digits in the mantissa is approximately

cld := −(log10(tol)− (log10(|xki |)− log10(xw
k
i ))) .
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In other words, the componentwise absolute error is, for both cases, approx-
imately given by

erriabs ≈ tol · xwk
i .

In contrast to this, an unscaled termination criterion in the space of the
residuals

‖F (xk)‖ ≤ tol

neither controls the error in the computed solution nor shows any invariance
property. A simple reformulation of the original problem (0.0.1) of the form

F −→ ŜF =: F̂ , Ŝ = diag(tol−1, . . . , tol−1)

will lead to
‖F̂ (xk)‖ ≈ 1

whereas a stopping criterion like (1.3.21) is not affected. In order to realize
invariance against such a rescaling one may again use a scaled check, e.g.

‖D̂−1F‖ ≤ tol

where
D̂ := diag(F1(x0), . . . , Fn(x0)) .

However, there is some arbitrariness in the choice of D̂ and it is not clear
how to develop an adaptive selection of further scaling matrices D̂k. In any
case, the disadvantage of checking in the wrong space is still remaining.

Remark: Assume that the problem (0.0.1) is well scaled, i.e. unscaled norms
yield meaningful numbers. If in such a situation

‖Δxk‖ ≤ tol with ‖F (xk)‖ ”large”

holds, the underlying problem is said to be ill-conditioned. That means,
‖F (x)‖ ”large” may occur even for x := float(x∗) — just because x∗ can’t
be represented exactly due to the finite length of the mantissa. For a badly
scaled problem a check for the condition of the problem must use scaled
norms, i.e.

‖D−1Δxk‖ ≤ tol with ‖D̂−1F (xk)‖ ”large” (1.3.22)

indicates an ill-conditioned problem, provided that D, D̂ are properly chosen.
Note that within GIANT an optional printout of ‖F (xk)‖ is possible — but
in unscaled form. Thus, situations like (1.3.22) may be pretended to users,
but due to D̂ = I the problem is well-conditioned but ill-scaled.

The actual implemented termination criterion for the Newton iteration in
GIANT is not directly the one presented in the basic schemes (E) and (I).
Analogous to the exact case, instead of using the inexact ordinary Newton
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correction sk, the criterion is realized in terms of the inexact simplified
Newton correction sk+1:

‖sk+1‖ ≤ tol . (1.3.23)

In order to overcome pathological situations, the above criterion (1.3.23) is
only accepted for termination if additionally the condition

‖sk‖ ≤
√
tol · 10 (1.3.24)

holds. Note that for the Newton iteration no heuristic divergence criterion
is needed. Clearly, a maximum number of iterations may be prescribed, but
usually an internal fail exit condition

λ
(j)
k < λmin (1.3.25)

will stop a divergent iteration before.

Concerning the termination criteria of the Good Broyden iteration the de-
tailed description in Section 1.2 just needs some further comments. The
general advantage of checking in the space of the iterates carries over. The
problem of getting good error estimates in a linear convergent scheme is a gen-
eral one and is attacked by introducing the safety factor ρ. The distinction of
this factor ρ and the safety factor ρ within the accuracy matching condition
(c.f.(1.1.13.d)) is worth to discuss. An increase of ρ generates more accu-
rate solutions sk,sk+1 of the inner iteration. But the error estimates yielded
from GBIT1 do not change. Furthermore, all linear solutions are affected by
changing ρ - as long as ρ is modified only once at the beginning. In contrast
to this, a decrease of ρ in (1.1.13) generates not only more stringent solution
requirements for the linear system solution accompanied by (hopefully) more
accurate solutions sk,sk+1 but also smaller error estimates. Besides this, due
to (1.1.13.a,b) and (1.1.13.c) respectively the influence of ρ depends on the

estimate [h
(0)
k ], i.e. as long as λ < 1 holds both accuracy requirements εreqk

and εreqk+1 are influenced in the same way, whereas for λ = 1 the effect on the
computation of εreqk changes. Roughly speaking, a decrease of ρ will force the
performance of the inexact Newton scheme towards the performance of the
exact one (trusting in error estimates of the linear solver) while an increase
of ρ will close a gap between true and estimated error of the iterative solver.

1.3.4 Damping strategy

In order to start the computation an initial damping factor λ0 is needed. For
mildly nonlinear problems, where an undamped Newton scheme converges,
the choice λ0 = 1 is optimal. Even for highly nonlinear problems λ0 = 1 may
be used, as the a posteriori damping strategy will correct a too optimistic
choice of λ0. The additional costs are usually low, but note that the a priori
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factor λ0 enters via (1.1.7) into the a posteriori estimate. Furthermore, in
critical applications the necessary evaluation of F (x0 + λ0Δx0) may cause
problems for λ0 = 1 (e.g. overflow, invalid operand) as the first undamped
trial iterate can be out of bounds. So, a ”small” initial guess λ0 is recom-
mended. As pointed out above, a further parameter of the damping strategy,
the minimal permitted damping factor λmin, has to be selected. Besides this,
for extremely sensitive problems a recently developed modification (see [3])
of the damping strategy may be selected. Within this restricted damping
strategy the estimates [hk] are replaced by [hk]/2. Note that this restricted
strategy shows some nice theoretical properties. In order to simplify the
choice of λ0 , λmin and the type of the strategy the following specification of
problem classes and associated internal selection of parameters is made.

problem class λ0 λmin λ-strategy
linear 1 — —

mildly nonlinear 1 10−4 standard
highly nonlinear 10−2 10−4 standard

extremely nonlinear 10−4 10−4 restricted

Table 1.1 Definition of problem classes

If no user classification of the problem is available the problem is assumed
to be ”highly nonlinear”. Observe that for the classification of a problem
not only the nonlinear function F is relevant but also the quality of x0.
The case ”linear” is realized in GIANT to allow the solution of a linearized
problem with the same piece of software as for the original nonlinear problem.
Because a specification ”mildly nonlinear” at least forces the computation
of the first simplified Newton correction, a problem specification ”linear”
includes the computation of the first ordinary Newton correction with the
update x1 := x0 + λ0Δx0 only. Thus, the computational overhead for the
solution of a linear problem with GIANT is small. Note that in such a case
the required tolerance tol is used as required accuracy for the iterative linear
solver (εreq0 := tol).
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�� Implementation

��� Overview

The algorithms presented in Chapter 1 are realized as two pieces of numer-
ical software, the codes GIANT and GBIT1 respectively. They belong to
the numerical software library CodeLib of the Konrad Zuse Zentrum Berlin,
thus they are available for interested users. Both codes are written in ANSI
standard FORTRAN 77 (double precision) and are realized as subroutines
which must be called from a user written driver program. All communica-
tion between the codes and the calling program is done via the arguments of
the calling sequence of the subroutines, except for some (optional) data- and
monitor output which is written to special FORTRAN units. Besides this
interface to the calling program GIANT has three further interfaces. There
is a call from GIANT to a subroutine named FCN which has to evaluate the
nonlinear function F of (0.0.1) and a call to a subroutine named JAC which
may evaluate the Jacobian Fx of the system. Finally, GIANT performs a
call to a subroutine named ITSOL which has to solve a linear system —
at least approximately. Note that no information from JAC is used within
GIANT but only passed to subroutine ITSOL. In order to have the software
as flexible as possible all three functions are input arguments of the calling
sequence of GIANT and are, in principle, not part of the GIANT package.
But the adaptation of an iterative linear solver for an efficient use by GIANT
may be quite cumbersome, thus the code GBIT1I (which is just the internal
core subroutine of the GBIT1 package) has been added to the basic GIANT
package. This extended package represents the algorithms and their optimal
telescoping as presented in Chapter 1. An internal interface from GIANT to
GBIT1I is realized in addition to the above mentioned standard interface to
an user supplied iterative solver. Thus, by setting an associated option one
may easily switch from the standard iterative linear solver to an user supplied
one — and vice versa. In order to have also sufficient flexibility for the itera-
tive linear solver software the usual functional units of such methods, namely
a subroutine named PRECON to perform the preconditioning and a subrou-
tine named MULJAC to perform a matrix times vector multiplication are
external subroutines for the code GBIT1 (i.e. GBIT1I). Consequently, these
subroutines are additional input arguments for GIANT. The subroutines are
not used within the basic GIANT package but just passed to both interfaces
for the iterative linear solver. The drawback of this modularization is that
an ”easy use” of GIANT/GBIT1I is prevented. But this structure reflects
the fact that the efficiency and robustness of GIANT strongly depends on
the iterative linear solver while the efficiency and robustness of this solver
may strongly depend on the preconditioner. Thus, the most efficient way to
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adapt GIANT to a special problem class is to supply well suited ITSOL and
PRECON/MULJAC routines respectively.

In order to facilitate the application, the codes GIANT and GBIT1 may
be used with a supplementary package, named EASYPACK. This package
contains some software from the Sparse Linear Algebra Package (SLAP) of
Seager/Greenbaum [11, 7] mainly some preconditioners and a special matrix
vector multiplication subroutine. Additionally, EASYPACK supplies appro-
priate interface subroutines to support the use of this software in combination
with GIANT/GBIT1. In order to have no dependency on this supplementary
package within GIANT the interface subroutines of EASYPACK are imple-
mented as a frame around the extended GIANT package. Thus, the com-
bination GIANT+GBIT1+EASYPACK reduces the flexibility but increases
easy applicability of the basic code GIANT. One essential consequence is
that now the storage mode of the user supplied Jacobian matrix is fixed to
SLAP Triad or SLAP Column format. Furthermore, the Jacobian must be
explicitly evaluated and stored within a subroutine with the prescribed name
JAC1.

Alternatively, writing own subroutines JAC, PRECON and MULJAC en-
ables the user to choose his own storage format as the workspace which may
contain the Jacobian is passed unchanged from the interface of JAC to the
interface of PRECON and MULJAC. Even a realization without an explicit
storage of a matrix is possible. Instead of evaluating the Jacobian in JAC one
may e.g. realize problem dependent subroutines PRECON and MULJAC.

Summing up, one may distinguish three levels of GIANT software:

Level 0 : basic GIANT code — no specification of an (iterative)
linear solver

Level 1 : extended GIANT code — software to perform the Good
Broyden iteration is internally
adapted

Level 2 : supplemented GIANT code — extended GIANT within an easy
to use frame

Besides this, in order to carry out the numerical experiments presented in
Chapter 3 a level 3 has been implemented. The iterative solver GMRES
is used as a user supplied iterative linear solver within GIANT level 2. To
a certain extend, this combination realizes the simplified adaptation given
by (1.1.20) and (1.1.21) — see Section 1.1.4. Figures 2.1 and 2.2 give a
schematic representation of the different GIANT levels. Detailed diagrams,
describing also the internal modularization, can be found in appendix A .
The following sections give a short introduction in how to use the GIANT
package. A detailed documentation including all technical details is part of
the code and is not reproduced here. Rather, the relation of the software
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to the underlying algorithms of Chapter 1 is pointed out and some general
comments are made.

��� Interfaces

The actual implemented user interface subroutine (to the calling program)
reads:

SUBROUTINE GIANT( N, FCN, JAC, X, XSCAL, RTOL, IOPT, IERR,
LIWK, IWK, LRWK, RWK, LIWKU, IWKU,
LRWKU, RWKU, MULJAC, PRECON, ITSOL )

Within this calling sequence one may distinguish three groups of arguments:
one group for the problem definition and the associated solution require-
ments, another which refers to the algorithm and finally one which is used
to define the linear system solution. The arguments of the first group are:

N integer, input :
dimension of the nonlinear system to be solved

FCN external subroutine, input :
evaluation of the nonlinear function F (x)

JAC external subroutine, input :
evaluation of the Jacobian matrix J = Fx(x)

X real array(N), in-out :
in : initial guess x0

out : actual approximation xk of the solution x∗

XSCAL real array(N), in-out :
in : initial user scaling vector xwu

out : actual internal scaling vector xwk

RTOL real, in-out :
required (in) / achieved (out) relative accuracy of xk

In order to make a proper initial setting for these arguments the strong in-
ternal coupling of the arguments XSCAL, RTOL, X and even N should be
observed. Recall that the internal scaling procedure (1.3.19) connects X-
input, XSCAL and RTOL. Due to (1.3.20) the actual scaling vector xwk

influences the whole algorithmic performance, especially all termination cri-
teria ( c.f. (1.3.23), (1.3.24), (1.2.7) ). Furthermore, an interpretation of the
achieved accuracy can only be made in connection with xwk and xk and with
regard of the internally used norm ( c.f. (1.3.20) ) — where N enters. A zero
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initiation of XSCAL is possible but may lead to an unpleasant behavior of
the algorithm — especially together with x0 = 0.

The second group of arguments is:

IOPT integer array(50), in-out :
selection of options

IERR integer, output :
error flag ( IERR > 0 indicates failure )

LIWK integer, input :
declared length of the integer work array IWK (LIWK ≥ 50)

IWK integer array(LIWK) - in-out :
first 50 elements: selection of special internal parameters (e.g. limits on
iteration counts) (in), statistics of the algorithmic performance (out)
elements up from the 51 th : integer workspace for an user supplied
iterative linear solver — if needed

LRWK integer, input :
declared length of the real array RWK
(LRWK ≥ 50+7N + 17+2KMAX+(4+KMAX)N), where KMAX is an
integer parameter of GBIT1, namely the storage restriction parameter
kmax of the algorithm (GBIT) c.f. Section 1.2

RWK real array(LRWK), in-out :
first 50 elements: selection of special internal parameters of GIANT
(e.g. starting and minimum damping factor) and possibly of the linear
solver (in), actual values of some internal parameters (out)
elements up from the 51 th : real workspace for GIANT and the linear
solver.

Besides providing workspace these arguments can be used to control and
monitor the performance of GIANT. This can be done by assigning special
values to (a part of) the first fifty elements of IOPT, IWK and RWK. Note
that a zero initiation forces an internal assignment with the default values.

Furthermore, some of these elements will hold helpful information after re-
turn — e.g. the minimum needed length of IWK and RWK to solve the given
nonlinear problem ( LIWKmin = IWK(18) , LRWKmin = IWK(19) ). Ob-

serve that the internal default values are chosen according to the suggestions
made in Chapter 1. The features of GIANT which can be influenced by this
type of option selection are described in Section 2.3 below.

The last group of arguments concerns the iterative linear solution. As GBIT1I
is part of the actual GIANT package the external subroutine ITSOL may be
a dummy argument.
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LIWKU integer, input :
declared length of the integer user workspace IWKU

IWKU integer array(LIWKU), in-out :
integer workspace array, reserved for user purposes

LRWKU integer, input :
declared length of the real user workspace RWKU

RWKU real array(LRWKU), in-out :
real workspace array, reserved for user purposes

MULJAC external subroutine, input :
subroutine which calculates w = J · v (J :=Jacobian matrix)

PRECON external subroutine, input :
subroutine for preconditioning z = Hy (H :=preconditioning matrix)

ITSOL external subroutine, input :
iterative linear solver subroutine (solves JΔx = F )

The above mentioned user workspace arrays RWKU and IWKU may serve
to store the Jacobian J and the preconditioning matrix H. GIANT and
GBIT1 do not alter or use these arrays. They are just passed from and to
the interfaces of FCN, JAC, PRECON and MULJAC.

From GIANT the following requirements are made:

FCN must provide the function value F (x) for that vector x which is input to
FCN. MULJAC must provide the result of the matrix vector multiplication
w = J · v for a given vector v. J must be the Jacobian evaluated at that spe-
cific point x which was input to JAC at the preceding call of JAC. PRECON
must solve the preconditioning system H−1z = y (or perform z = Hy respec-
tively) for a given vector y. Herein H should be a ”good approximation” of
J−1, again evaluated at that point x which was input to JAC at it’s preceding
call. The interfaces of these routines are:

SUBROUTINE FCN(N,X,F,RWKU,IWKU,NFCN,IFAIL)

X real array(N), input actual (trial) iterate x
(i)
k

F real array(N), output function values F (x
(i)
k )

NFCN integer, input counter
IFAIL integer, in-out error flag, =0 on input

on output: if < 0, GIANT ter-
minates

N, RWKU, IWKU see above

SUBROUTINE JAC(FCN,N,X,XSCAL,F,RWKU,IWKU,NJAC,IFAIL)
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XSCAL real array(N), input actual scaling vector xwk

F real array(N), input function values F (x
(i)
k )

NJAC integer, input counter
FCN, N, X,RWKU, IWKU, IFAIL see above

SUBROUTINE MULJAC(N,V,W,RWKU,IWKU)

V real array(N), input the vector to be multiplied with the Jacobian
W real array(N), output resulting vector w = J · v
N, RWKU, IWKU see above

SUBROUTINE PRECON(N,Y,Z,RWKU,IWKU)

Y real array(N), input the vector to be multiplied with the pre-
conditioning matrix H

Z real array(N), output resulting vector z = H · y
N, RWKU, IWKU see above

In order to facilitate the correct and efficient adaptation of an user pro-
vided iterative solver the ITSOL interface needs some general comments.
The ITSOL routine is used to solve the linear systems for the ordinary and
simplified Newton corrections sk and sk respectively, i.e. at least two linear
systems (of type As = b) have to be solved per Newton step — with the
same matrix but different right hand sides. The right hand side b passed to
ITSOL is just the output vector F from the last call to FCN. The matrix A
of the linear system must be the Jacobian of F (x) at that point x which was
input to JAC at the last call to JAC. Recall that the sequence of the linear
systems to be solved reads:

J(x0)s0 = F (x0)

J(x0)s
i
1 = F (xi1) , i = 0

ocassionally: J(x0)s
i
1 = F (xi1) , i = 1, 2, . . .

( x1 := xi1 )

J(x1)s1 = F (x1)

J(x1)s
i
2 = F (xi2) , i = 0

ocassionally: J(x1)s
i
2 = F (xi2) , i = 1, 2, . . .

( x2 := xi2 )

J(x2)s2 = F (x2)

...
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Observe that the vector X contains on input to ITSOL already a quite good
initial guess (except for the very first call) for the required solutions sk and
sk+1 respectively. Due to the accuracy matching strategy, the solution of a
specific linear system must be continued sometimes, in order to get a more
accurate solution. The in-out argument XDEL may facilitate the use of
iterative solvers, where the iteration is performed directly in the difference
δs := s−s0 (to avoid cancellation of leading digits). In any case, the values of

XDEL are directly used in GIANT for the computations of [h
(i)
k ], i = 0, 1, . . . .

Finally, note that the linear systems to be solved by ITSOL read Js = +F ,
i.e. the sign conversion necessary to get the associated Newton corrections
is done within GIANT.

SUBROUTINE ITSOL( N, B, X, XDEL, XSCAL, MULJAC, PRECON,
TOL, ITMAX, ITER, ERR, IERR, IOPT,
LRWK, RWK, NRW, LIWK, IWK, NIW,
LRWKU, RWKU, LIWKU, IWKU )

B real array(N), input
right hand side of linear system

X real array(N), in-out
on input: initial estimate of the solution
(if continuation call: output from previous ITSOL call) on output: final
approximation of the solution

XDEL real array(N), in-out
on input: (only, if continuation call) output from previous ITSOL call
on output: the difference X(out)−X(in)

TOL real, input
prescribed tolerance εreq, c.f. (1.1.19)

ITMAX integer, input
maximum number of iterations allowed

ITER integer, output
number of iterations done

ERR real, output
error estimate εest for the approximate solution X(out), c.f. (1.1.8)

IERR integer, output
error indicator (=0 means no error)

IOPT integer array(50), in-out
options vector for ITSOL (not the same as for GIANT !)
on output, element IOPT(50) should contain information about the
activated stopping criterion
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LRWKL integer, input
length of real workspace supplied for ITSOL

RWK real array(LRWKL), in-out
real workspace for ITSOL

NRW integer, output
amount of real workspace actually used

LIWKL integer, input
length of integer workspace supplied for ITSOL

IWK integer array(LIWKL), in-out
integer workspace for ITSOL

NIW integer, output
amount of integer workspace actually used

N, XSCAL, MULJAC, PRECON, LRWKU, RWKU, LIWKU, IWKU
see above

��� Options

Though the underlying algorithm (I) of GIANT is self-adaptive in the sense
that the damping factor λ is automatically adapted to the problem at hand,
there are still some algorithmic parameters and variants open for an adjust-
ment by the user. In general, the influence on the overall performance is
not dramatic but in special applications a skillful matching may increase effi-
ciency and robustness drastically. Concerning the internal options of GBIT1
the same statement holds. Besides these algorithmic options some other use-
ful options, e.g. output generation, are available for the user. As pointed out
in the preceding Section the adaptation can be easily performed by assigning
special values to specific positions of the arrays IOPT, IWK and RWK. As
far as possible, the input is checked for correctness.

Linear solver selection

The basic decision which iterative linear solver has to be used by GIANT
can be made by setting IOPT(8). The user supplied iterative solver ITSOL
is used if IOPT(8)=9 holds. An assignment of 0 or 1 to IOPT(8) causes
GIANT to use GBIT1.

Internal scaling

The internal update of the user scaling (weighting) vector XSCAL according
to (1.3.19) can be switched off by setting IOPT(9)=1. Note that the initial
check (1.3.19a) is done in any case. The problem classification which may
influence the performance of (1.3.19a) is done via IOPT(31) — see below.
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Output generation

The amount of output produced by GIANT is internally controlled by the ac-
tual values of some output flags and directed to associated FORTRAN units.
In order to monitor the algorithmic performance of the code, the internal flag
MPRMON can be modified by the user by setting the associated element of
the IOPT array (MPRMON corresponds to IOPT(13) and the associated
output unit LUMON to IOPT(14)). An user assignment IOPT(13)=0 pro-
duces no monitor print output, whereas a setting IOPT(13)=3 will generate
a detailed iteration monitor, i.e. the unscaled norm ‖F (xk)‖ (where F de-
notes the problem function introduced in (0.0.1) and xk the Newton iterate),
the scaled norms of the actual Newton corrections ‖sk‖, ‖sk+1‖ and the ac-
tual damping factor λk are written to FORTRAN unit IOPT(14). Similar
flag/unit pairs are available for error/warning printout, data output (actual
iterate vector xk) and output from the iterative solver GBIT1 — c.f. Table
2.1.

Option Selection Range Default Unit
error/warning messages IOPT(11) 0-3 0 IOPT(12)
Newton iteration monitor IOPT(13) 0-6 0 IOPT(14)
Solution output IOPT(15) 0-2 0 IOPT(16)
Good Broyden monitor IOPT(17) ≤ 1 0 IOPT(18)
Time monitor IOPT(19) 0-1 0 IOPT(20)

Table 2.1 Options for output generation

Modification of Newton iteration

The damping strategy of the inexact Newton scheme can be partially mod-
ified by the user. First, a general problem classification can be made by
the user by setting the parameter NONLIN (c.f. Table 1.1) to the desired
value (1 – linear problem, 2 – mildly nonlinear, 3 – highly nonlinear, 4 –
extremely nonlinear). But besides this, the values of some special internal
parameters can be set separately. The initial and minimum allowed damping
factors λ0, λmin may be set individually, whereas the general type of damp-
ing strategy (standard or restricted) still depends on NONLIN. Note that
due to (1.3.25) λmin is internally used as an emergency stopping criterion (in
addition to the selectable maximum iteration limit ITMAX) and the choice
of λ0 even influences the iterative linear solution as the initial value for the
simplified Newton correction computation s01 depends on λ0. The essential
safety factor ρ of the accuracy matching strategy (1.1.13) is under user con-
trol also. An assignment of a smaller value than the internal default value
ρ = 1/6 may help in critical applications whereas the theoretical upper bound
of ρmax = 1/6 should be observed even for noncritical problems. An overview
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on the options related to the inexact Newton scheme is given in Table 2.2.

Option Selection Range Default
problem classification IOPT(31) 0-4 3
Newton iteration limit IWK(31) ≥ 1 50
initial damping factor RWK(21) ≤ 1 see Table 1.1
minimum damping factor RWK(22) ≤ 1 see Table 1.1
accuracy matching factor RWK(32) ≤ 0.167 0.167

Table 2.2 Options for the inexact Newton iteration

Modification of Good Broyden iteration

The actual implementation of GIANT includes GBIT1I as the standard it-
erative linear solver. Thus, some of the options of the GIANT interface
concern this inner iteration scheme. In view of the storage requirements
of GIANT (level 1) the parameter KMAX of GBIT1I is certainly the most
important option. Note that the storage restriction parameter kmax of the
scheme (GBIT) of Section 1.2 is just KMAX. The restart monitor of (GBIT)
can be influenced by choosing values for the minimum (τmin) and maximum
(τmax) allowed steplength parameter τ — c.f. (1.2.2). Furthermore, the
safety factor ρ of (1.2.6) can be modified. On this occasion one may specify
different factors ρord and ρsim. They replace ρ in (1.2.7), (1.2.8) depending
on whether (GBIT) iterates for an ordinary or simplified Newton correction
computation.

Option Selection Range Default
workspace restriction IOPT(41) ≥ −2 9
iteration limit IWK(41) ≥ 2 1000
minimum steplength RWK(43) 0 < τmin < 1 10−8

maximum steplength RWK(44) > 1 100.
safety factor ρord RWK(41) ≥ 1 4
safety factor ρsim RWK(42) ≥ 1 4

Table 2.3 Options for the Good Broyden iteration

Workspace management

The essential part of workspace required by GIANT (level 0) consists of some
arrays of dimension N . Within the actual implementation a real workspace
RWK of roughly 7N elements is needed to perform the inexact Newton al-
gorithm (I) including the adaptive internal scaling procedure (1.3.19). All
further workspace is passed to the iterative linear solver interfaces. To be
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precise, the elements 1 up to LRWKN = 50 + 7N of RWK and the ele-
ments 1 up to LIWKN = 50 of IWK are checked and divided up within
GIANT (level 0). The remaining parts ( RWK(LRWKN + 1,...,LRWK) and
IWK(LIWKN + 1,...,LIWK) ) are supplied as RWK and IWK to the user
supplied ITSOL subroutine.

If GIANT is used in connection with GBIT1I, these remaining parts are
controlled and divided up within GIANT (level 1) also. Depending on the
storage restriction parameter KMAX of algorithm (GBIT) the remaining
part of RWK must be at least of length LRWKG = 17 + 2KMAX + (4 +
KMAX)N whereas no integer workspace is needed for GBIT1I. Recall that
KMAX can be set by the user via IOPT(41) (default value: KMAX=9). In
order to increase the flexibility of GIANT a special workspace distribution
device is available. A user setting of KMAX = −1 forces an internal a
priori computation of the maximum possible value of KMAX according to
the declared size LRWK of RWK. If KMAX ≥ 2 holds, this value is used for
the subsequent computations and returned as IOPT(41).

One step mode

Within special applications it may be useful to perform the Newton iteration
step by step, i.e. the program control is passed back to the calling program
after one Newton step. This mode can be selected by setting the mode flag
IOPT(2)=1. In order to distinguish the first call — certain initializations
and checks are made by GIANT — and successive calls an associated flag
IOPT(1) is used. IOPT(1)=0 indicates that this is the first call whereas
IOPT(1)=1 indicates a successive call. Note that GIANT internally sets
IOPT(1)=1 on return if it was called in stepwise mode. Furthermore, the
error flag IERR is set to −1 as long as the stopping criterion (1.3.23), (1.3.24)
does not yet hold. As an example for an application of this option, just this
internal stopping criterion can be substituted by a user defined one as the
continuation of the iteration is under user control.

Matrix free method

In order to realize GIANT as a matrix free method one may replace the usual
explicit multiplication of the Jacobian J with a given vector v (done within
MULJAC) by directly approximating the result with a difference quotient of
the form

J(x) · v = ∂F (x)

∂x
· v ≈ F (x+ σv)− F (x)

σ
. (2.3.1)

The application of this widely used trick avoids the storage of the matrix J
but inhibits the use of some standard preconditioners — like incomplete fac-
torization techniques. Beyond that, the increment σ must be chosen carefully
as the approximation error of (2.3.1) may disturb both iteration schemes —
the nonlinear Newton iteration as well as the linear solvers iteration e.g. the
Good Broyden iteration. As long as the approximation error is small com-
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pared to the required accuracy for the iterative linear solution (c.f. 1.1.13)
the inexact Newton scheme of Section 1.1 is still in its theoretical frame but
beyond that scope, at least the superlinear convergence is destroyed. Con-
cerning the Good Broyden iteration, an approximation error in the order of
the required accuracy may prevent convergence. The implementation of the
matrix free trick is left to the user — i.e. is not available as an option —
but a numerical experiment illustrating this technique is presented in Section
3.2.4. It should be mentioned that the function values F (x) in (2.3.1) have
been already computed within the course of the Newton iteration and may
be stored in RWKU for passing them to MULJAC. But when solving the
linear system for the simplified Newton correction (1.1.3) the preceding call
to FCN has an inappropriate argument. Therefore the function values F (x)
which are input to JAC must be used in order to approximate the correct
Jacobian J(x) for x = xk.

Time monitor

In order to get more detailed information concerning the performance of the
GIANT package together with the user supplied problem subroutines, a time
monitor package which is designed for time measurements of multiple pro-
gram parts is included within the GIANT (level 1) package and may easily
be used when running GIANT together with GBIT1I. In this case, before
using the monitor package for time measurements, because of the machine
dependency of that stuff, the user has to adapt the subroutine SECOND
in such a way that on output the only argument of this routine contains a
”time stamp”, measured in seconds. As distributed, SECOND is a dummy
routine which always returns zero to this argument. If the time monitor is
run together with a user supplied linear solver subroutine ITSOL the user ad-
ditionally must include time monitor calls into the linear solvers code in order
to the obtain correct measurements about the usage of ITSOL, PRECON and
MULJAC. Refer to the GIANT code documentation (description of ITSOL)
for technical details.

The monitor may be turned on by setting IOPT(19)=1. Its output will be
written to the FORTRAN unit IOPT(20). The printout includes the total
time used for solving the nonlinear problem and detailed statistics about
the following listed program sections: linear solver (e.g. GBIT1I) exclud-
ing PRECON and MULJAC, subroutines PRECON, MULJAC, FCN, JAC
(possibly including the preconditioner setup) and GIANT monitor- and data
output. Statistics about the remaining code pieces are summarized as the
item ”GIANT”. For each Section and for the remaining code the following
statistics are printed out before the GIANT subroutine exits: number of calls
of the code section, time used for all calls, average time used for one call,
percent of time related to the total time used and related to the summarized
time of the specific parts measured.
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Of course, the time monitor package distributed within GIANT may be used
as a separate piece of software within any program to print out statistics as
described above for program sections which may be arbitrary defined by the
user. These sections may even be nested — like GBIT1I with PRECON and
MULJAC. The usage of the monitor package is described in detail within its
code documentation.

Machine dependencies

One aspect of the modular structure of the GIANT package is the fact that
the machine dependencies of the whole program are concentrated in two
FORTRAN modules: the timing subroutine SECOND and the machine con-
stants double precision function D1MACH. The routine SECOND is only
called when the time monitor is switched on and therefore described within
the context of this monitor. The function D1MACH returns, dependent on
its input argument, typical machine dependent real constants, such as the
machine precision, the smallest positive and the largest real number. It con-
sists of comments which contain sets of FORTRAN data-statements with the
appropriate real constants for several different machine types. Before using
the GIANT code on a machine different from SUN, the user should comment
out the data-statements related to these machines and uncomment the set
of data-statements which is appropriate for the target machine.

Efficiency

Of course, the coding of GIANT/GBIT1 allows the automatic vectorization
of all essential loops. Indeed, all these loops are still in-line code. The
GIANT/GBIT1 version described in this paper, and applied for the numerical
experiments of Chapter 3, doesn’t use any routine from the BLAS-package.
Mainly, because some of the innermost loops have a too complex structure
for the standard BLAS interface. Consequently, these loops can’t be replaced
by just one call to a BLAS routine, and splitting up such a loop may slow
down the performance speed. On the other hand, the gain by using machine
adapted BLAS routines instead of in-line code seems to be extremely small
— if a ”good” compiler is available. As the overall computing time to solve
a nonlinear problem is usually dominated by the time spent in FCN, JAC,
MULJAC, PRECON and ITSOL this question is anyway of minor interest
as for GIANT.

For GBIT1 another questions turns out to be more essential. Recall the
discussion on scaling and weighting of Section 1.3, and the fact that the scalar
product < ·, · > used in algorithm GBIT1 is given by (1.3.20). Therefore, the
evaluation of a scalar product is quite costly. Within GBIT1 a lot of scalar
products have to be evaluated — even within the innermost update loop. In
order to reduce the additional costs resulting from the internal scaling the
algorithm GBIT1 is realized in such a way that the iteration is done directly
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in scaled variables, δsiter, i.e.

δsiter −→ D−1
k δsiter =: δsiter . (2.3.2)

As a consequence, the vectors which are passed to the routines PRECON
and MULJAC have to be descaled before the call and rescaled afterwards.
But as this descaling/rescaling update occurs less frequent than the scalar
product evaluation, the performance speed of GBIT1 is improved by about
a factor 2.
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�� Numerical Experiments

In this Chapter some computations illustrating the behavior of the algo-
rithms described in Chapter 1 are presented. The discussion will focus on
the performance of the inexact Newton scheme. But recall that the behav-
ior of GIANT may strongly depend on the iterative linear solver. Therefore
some attention is dedicated to this module of GIANT. For an efficient use of
GIANT the realization of the user routines for the evaluation of the nonlin-
ear function, the associated Jacobian and the matrix operations (c.f. Section
2.2) plays an important role. Concerning the solution of problems which
are discretized partial differential equations even the used discretization may
influence the performance of a Newton scheme — see [6]. Nevertheless, in
order to concentrate on the performance of GIANT, the test frame used for
the computations of this paper is as simple as possible, and thus certainly
not well suited to solve challenging real life problems.

��� Test examples

The 2-D-discretizations of three quite different PDE-problems are used to
generate test examples for the numerical experiments. For that purpose, the
underlying PDE’s are discretized with centered finite differences on tensor
product grids. The finite difference approximations needed to discretize the
test problems turn out to be:

Δu = uxx + uyy −→ 1

Δx2
(u(x−Δx, y)− 2u(x, y) + u(x+Δx, y))+

1

Δy2
(u(x, y −Δy)− 2u(x, y) + u(x, y +Δy))

ux −→ 1

2Δx
(u(x+Δx, y)− u(x−Δx, y))

uy −→ 1

2Δy
(u(x, y +Δy)− u(x, y −Δy)) .

(3.1.1)
All computations presented are on equidistant grids but some experiments
with slightly nonuniform rectangular grids show no essential change in the
performance of the algorithms. In order to avoid another source of trouble
for the interpretation of the numerical results, the analytical Jacobian of
the discretized problems is used for the computations. A comparison to
computations where the Jacobian is generated by numerical differentiation
shows that the algorithmic behavior is scarcely influenced.
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The following three boundary value problems are used to generate some test
problems for the new software package GIANT.

Artificial Test Problem (atp)

This first example is an artificially generated scalar PDE for the function

u(x, y) = exp(−q) ,
q = x2 + y2 .

(3.1.2)

The equation used for numerical testing within this paper is

Δu− (0.9 exp(−q) + 0.1u)(4x2 + 4y2 − 4) + s · g(x) = 0 (3.1.3)

where
a) g(x) = exp(u)− exp(exp(−q))

b) s =

{
+1 : problem atp2
−1 : problem atp1

.
(3.1.4)

The equation is solved in the domain Ω = [−3, 3]2 with the simplified bound-
ary conditions

u|∂Ω = 0 . (3.1.5)

The initial values are

u0(x, y) = 0.2 · exp(−q) for (x, y) ∈ Ω . (3.1.6)

The PDE is discretized on a tensor product mesh of dimension N = 312 =
961 which is just the dimension of the nonlinear system to be solved. The
distinction of the two cases (s = ±1) has been made in order to have a non-
trivial linear (sub)problem. The case s = +1 (atp2) creates an indefinite
(but still symmetric) Jacobian matrix — which may cause problems for the
iterative linear solver. Concerning the Newton scheme both problems are not
challenging.

SST Pollution (sst)

The following example is a straightforward extension of an instationary 1-D-
model for the pollution of the stratosphere by supersonic transports (SSTs)
— c.f. [12, 8]. The rather crude model describes the interaction of the
chemical species O, O3, NO and NO2 along with a simple diffusion process.

The equations for the stationary 2-D-model are:

0 = DΔu1 + k1,1 − k1,2u1 + k1,3u2 + k1,4u4 − k1,5u1u2 − k1,6u1u4 ,

0 = DΔu2 + k2,1u1 − k2,2u2 + k2,3u1u2 − k2,4u2u3 ,

0 = DΔu3 − k3,1u3 + k3,2u4 + k3,3u1u4 − k3,4u2u3 + 800.0 + SST ,

0 = DΔu4 − k4,1u4 + k4,2u2u3 − k4,3u1u4 + 800.0 ,
(3.1.7)
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where

D = 0.5 · 10−9 ,

k1,1, . . . , k1,6 : 4 · 105, 272.443800016, 10−4 , 0.007, 3.67 · 10−16, 4.13 · 10−12 ,

k2,1, . . . , k2,4 : 272.4438, 1.00016 · 10−4, 3.67 · 10−16, 3.57 · 10−15 ,

k3,1, . . . , k3,4 : 1.6 · 10−8, 0.007, 4.1283 · 10−12, 3.57 · 10−15 ,

k4,1, . . . , k4,3 : 7.000016 · 10−3, 3.57 · 10−15, 4.1283 · 10−12 ,

SST =

{
3250 if (x, y) ∈ [0.5, 0.6]2

360 otherwise.

The boundary conditions are

∂ui
∂n

∣∣∣∣∣
∂Ω

= 0 for i = 1, . . . , 4 (3.1.8)

and the domain Ω is just the unit square of R2. Two sets of initial values are
used for the numerical experiments with this example. The first set consists
of

u01(x, y) = 1.306028 · 106 ,
u02(x, y) = 1.076508 · 1012 ,
u03(x, y) = 6.457715 · 1010 ,
u04(x, y) = 3.542285 · 1010

(x, y) ∈ Ω . (3.1.9)

The task of solving (3.1.7) (after discretization) with this initial values (prob-
lem sst1) can be considered as a mildly nonlinear problem which shows up
in the fact that the undamped Newton method converges within a few iter-
ations. In contrast to this, the second set of initial values

u01(x, y) = 109 ,

u02(x, y) = 109 ,

u03(x, y) = 1013 ,

u04(x, y) = 107

(x, y) ∈ Ω (3.1.10)

creates a highly nonlinear problem named sst2 (an undamped Newton scheme
diverges). Both problems can be considered as ”badly” scaled problems since
the solution components are in the range from 106 upto 1012 and the residuals
are in the range from 103 upto 1012 , (r(u0) = 0.193 · 1012, r(u∗

GIANT ) =
0.181 · 104 where u∗

GIANT has approximately 5 correct decimal digits). Both
problems are discretized on an uniform mesh with 26 mesh lines in both
directions. Thus, the dimension of the discretized problems turns out to be
N = 4 · 262 = 2704. For some special experiments the test problem sst2 is
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solved on finer grids also. Results for grids of size 51 × 51 (N = 10404) and
101 × 101 (N = 40804) are presented.

Driven Cavity Problem (dcp)

The last test problem is the classical driven cavity problem from incompress-
ible fluid flow. The steady stream-function vorticity equations are

a) Δω + Re(ψxωy − ψyωx) = 0
b) Δψ + ω = 0

(3.1.11)

where ω is the vorticity, ψ is the stream function and Re represents the
Reynolds number — see e.g. [9, 1]. The domain Ω is the unit square [0, 1]2.
The usual boundary conditions are

a) ψ|∂Ω = 0

b)
∂ψ

∂n

∣∣∣∣∣
∂Ω

=

{
0 if 0 ≤ y < 1
1 if y = 1

.
(3.1.12)

In order to avoid a discontinuity of the vorticity at the corners and to impose
boundary conditions for the vorticity the formulation of [9] for (3.1.12.b) is
used:

∂ψ

∂y
(x, 1) = −16x2(1 − x)2 (3.1.13)

ω(x, 0) = − 2

Δy2
ψ(x,Δy)

ω(x, 1) = − 2

Δy2
[ψ(x, 1−Δy) + Δy

∂ψ

∂y
(x, 1)]

ω(0, y) = − 2

Δx2
ψ(Δx, y)

ω(1, y) = − 2

Δx2
ψ(1−Δx, y)

(3.1.14)

The equations (3.1.11) are discretized with usual finite differences on a uni-
form 31×31 mesh (c.f. [9]) which yields a nonlinear system withN = 2·312 =
1922 unknowns. For the basic set of test problems the cases Re=100, Re=400
and Re=1000 are used (problems dcp100, dcp400 and dcp1000). For the ex-
periments with larger Reynold numbers (Re=1000, 2000, 5000) a uniform
mesh with 632 grid points (c.f. [1]) is used (N = 7938). For all cases, the
initial estimates are given by

ψ(x, y) = ω(x, y) = 0 for (x, y) ∈ Ω . (3.1.15)
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��� Numerical results

All experiments have been carried out with the extended GIANT package
level 3 - c.f. Section 2.1. With that, the two linear solvers GBIT1 (c.f. Sec-
tion 1.1) and GMRES (from SLAP) and the standard routines of SLAP for
matrix-vector multiplication and preconditioning are available. If not oth-
erwise stated, the default options and parameters for GIANT and GBIT1
are active — i.e. all problems are specified as being highly nonlinear (c.f.
Table 1.1) and a value of ρ = 1/6 (c.f. (1.1.13)) is selected. For the re-
quired relative tolerance of the solution of the nonlinear problem a value of
RTOL=10−5 is prescribed. Recall that this value has to be interpreted in
connection with the associated scaling vector xscale. The internal scaling
update is done via (1.3.1.a) and an initial value of XSCALE≡1 is used for all
problems. Concerning the linear solvers two specifications are still open. For
GBIT1, the storage restriction parameter is set to kmax = 9 which allows (at
most) 10 iterations of the Good Broyden scheme before a restart is necessary.
As the standard preconditioner the incomplete LU (ILU) factorization is se-
lected. In order to apply the iterative linear solver GMRES within GIANT
the simplified accuracy matching strategy (c.f.Section 1.1.4) is used. Some
numerical testing suggested the following choice of the internal options of
GMRES. For all tests, the linear solver is called with left preconditioning
and without using the scaling vectors for the iterate and the right hand side.
Denoting with H the preconditioning matrix as introduced in Section 1.2
(i.e. H ”approximates” A−1), and with

ε̃req :=
εreq

ρ

the stopping criterion of GMRES reads as follows:

‖H(b−Asiter)‖ ≤ ε̃req‖Hb‖
and the error estimate returned by GMRES is defined by

ε̃estGMRES :=
‖H(b− Asiter)‖

‖Hb‖ .

Thus, disregarding the fact that the error is not really measured in the space
of the iterates, the final error estimate returned to GIANT is

εest := ρε̃estGMRES .

This simplification is made to avoid modifications of the GMRES code in
order to compute an error estimate directly for the iterates, which would be
quite cumbersome. As for GBIT1, at most 10 iterations are allowed in the
standard case before a restart occurs, thus setting KMAX=10.
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The above mentioned test examples atp1, atp2, sst1, sst2, dcp100, dcp400,
dcp1000 are used as a basic testset for GIANT. Although the dimensions of
these examples are comparatively small they are well suited to check some
features of the code. The observations and conclusions which can be derived
from the numerical experiments with this testset are confirmed by testing
the codes on larger and more critical problems. These examples are derived
from the basic examples by increasing the dimension of the grids and setting
more challenging problem parameter values. All numerical experiments have
been carried out either on SUN-SPARC1 workstations (16MB storage) in
FORTRAN double precision or on the CRAY X-MP of the Konrad-Zuse-
Zentrum Berlin using FORTRAN single precision. If not otherwise stated,
the results from the workstation computations are presented.

3.2.1 Accuracy matching strategy

The most important question to be discussed is certainly whether the ac-
curacy matching strategy works satisfactorily. As the examples are small
enough to allow a direct solution of the linear systems, e.g. with a bandmode
LU factorization, the performance of the inexact Newton scheme (algorithm
I of Section 1.1) can be compared with it’s exact counterpart (algorithm E).
But the performance of GIANT depends on both, the true and the estimated
error of the linear systems solution. To close the gap between the error es-
timate and the true error, the solver GBIT1 is used with different safety
factors ρ. The results of this first comparison are given in Table 3.1.

example exact ρ = 1 ρ = 4 ρ = 40 ρ = 400
atp1 5 5 5 5 5
atp2 7 failnew faillin faillin faillin
sst1 5 6 6 5 5
sst2 23 39 23 23 23

dcp100 6 8 6 6 6
dcp400 8 10 9 9 9
dcp1000 10 11 11 10 10

Table 3.1 Number of function evaluations for the exact and the inexact Newton

scheme (GBIT1 as linear solver)

The number of evaluations of the nonlinear function F (#F ) can be taken as
a quite good indicator for the performance of the Newton scheme. As long
as no corrector steps must be performed the number of Newton iterations
and the number of Jacobian evaluations (#J) are just #F −1. Furthermore,
the number of linear systems to be solved is usually (no corrector step) just
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2 · (#F − 1).

Analyzing the results presented in Table 3.1 one can state that already for
ρ = 4 there is a quite good agreement of the inexact and the exact Newton
scheme. For ρ = 1 a more distinct difference shows up, at least for the
example sst2. A further increase of the safety factor ρ beyond ρ = 4 obviously
doesn’t pay off. With ρ = 40, the last discrepancy between the behavior
of the inexact and the exact Newton scheme disappears and a choice of
ρ = 400 only increases the amount of work for linear algebra. The total
number of iterations of the linear solver GBIT1 for the runs with ρ = 4 and
ρ = 400 are summerized in Table 3.2. Within this Table, the number of
linear iterations required to solve for the ordinary Newton correction Δxk
and the simplified correction Δxk respectively are distinguished. Observe
that within this Section the notation Δxk and Δxk is used for the inexact
values sk and sk also.

Recall that the example atp2 is constructed in such a way, that divergence
of GBIT1 can be expected. Regarding the error message from GIANT, the
cases ρ = 1 and ρ ≥ 4 differ. In the first case, the monotonicity check
(1.1.22) fails repeatedly and the Newton iteration terminates as the minimum
damping factor is reached. Obviously, the Newton corrections ‖Δx0‖ and
‖Δx1‖ are not accurate enough. In the second case, the iterative linear solver
GBIT1 signals divergence during the iteration for the first simplified Newton
correction. From this example and some other testing the following hint is
derived. If GIANT signals failure of the Newton iteration the actual problem
should be solved again but with more stringent accuracy requirements for
the linear solver (decrease ρ) or more pessimistic error estimation within
the linear solver (increase of ρ). But a general setting of a too small value
for ρ (or too large ρ) may increase the number of linear iterations drastically
without any gain concerning the Newton iteration. Thus, the standard values
ρ = 1/6 and ρ = 4 are implemented in this code.

example #J #F #it-lin-ord #it-lin-sim #it-lin
atp1 4 4 5 5 33 48 22 37 55 85
atp2 fail
sst1 5 4 6 5 92 165 30 97 122 262
sst2 22 22 23 23 235 498 127 388 362 886

dcp100 5 5 6 6 102 288 38 168 140 456
dcp400 8 8 9 9 274 799 78 375 352 1174
dcp1000 10 9 11 10 376 2349 144 681 520 3030

Table 3.2 #J,#F and # linear iterations for ρ = 4 and ρ = 400 (GBIT1)

Using GMRES as an iterative linear within GIANT similar observations can
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be made. Table 3.3 shows the performance of the exact and inexact Newton
scheme, again for different values of ρ. A detailed statistic for ρ = 4 and
ρ = 400 is given in Table 3.4. For GMRES a safety factor of at least ρ = 40
is required in order to have good accordance of the inexact and the exact
Newton scheme.

example exact ρ = 1 ρ = 4 ρ = 40 ρ = 400
atp1 5 6 5 5 5
atp2 7 8 7 7 7
sst1 5 7 5 5 5
sst2 23 failnew faillin 24 22

dcp100 6 8 7 7 6
dcp400 8 16 10 9 9
dcp1000 10 61 12 11 10

Table 3.3 Number of function evaluations for the exact and the inexact Newton

scheme (GMRES as linear solver)

example #J #F #it-lin-ord #it-lin-sim #it-lin
atp1 4 4 5 5 27 42 16 29 43 71
atp2 6 6 7 7 85 120 38 73 123 193
sst1 4 4 5 5 117 205 16 77 133 282
sst2 − 21 − 22 − 420 − 285 − 705

dcp100 6 5 7 6 143 184 55 152 198 336
dcp400 9 8 10 9 218 442 99 281 317 723
dcp1000 11 9 12 10 223 437 100 293 323 730

Table 3.4 #J,#F and # linear iterations for ρ = 4 and ρ = 400 (GMRES)

Note that the differences show up especially for the non-trivial (concerning
the Newton iteration) examples sst2 and dcp1000. Thus, one should not
simply compare the tables 3.2 and 3.4 in order to judge the efficiency of
the new iterative solver GBIT1. The numerical experience from using both
codes within the GIANT package suggest that a comparison of GBIT1 with
ρ = 4 and GMRES with ρ = 400 is more adequate. But, recall that the
adaptation of GMRES for the application within GIANT is certainly not
optimal. A comparison of GBIT1 and GMRES (with corresponding values
for kmax) can be done in terms of the iteration count, as the number of
PRECON/MULJAC calls per iteration as well as the internal amount of
work per iteration is quite similar — with a slight advantage for GMRES.
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Relating to the example sst2, the results from GIANT+GMRES are quite
interesting. First, similar to the case GIANT+GBIT1 in example atp2, an
increase of ρ switches the error message of GIANT — but the reason for
the fails is quite different. For ρ = 1, the Newton iteration stops as the
maximum number of Newton iterations (50) is reached, and, for ρ = 4 the
failure of GMRES occurs after 48 Newton iterations. Obviously, the achieved
accuracy for the Newton corrections is not sufficient to allow convergence of
the Newton iteration and, moreover, the Newton iteration may diverge in
such a way that a point is reached where the iterative linear system solution
breaks down. The difficulties in solving sst2 are removed, if ρ is increased
further.

The results presented so far are open for two quite different interpretations.
Believing in the error estimator of the linear solver, one may conclude from
the above mentioned results that the accuracy requirements from GIANT for
the linear systems solution are not sufficient to guarantee a performance of
the inexact Newton scheme which is comparable with the exact one. Trusting
in the theoretical consideration which led to the accuracy matching strategy
of GIANT, one might conclude that the error estimation of the linear solver
is often too optimistic. For the example, which needs the most (damped)
Newton iterations (sst2), this question is analyzed in more detail. The per-
formance of the exact and the inexact iteration (with GBIT1, ρ = 4) is
illustrated in Figures 3.1 and 3.2. Figure 3.1 presents the so called level
functions ‖Δxk‖ of both iterations while Figure 3.2 shows the associated
damping factors λk. Up to the 15 th iterate there is a quite good agreement.
The first significant difference occurs for the level functions of the 16 th it-
erate which leads to an obvious disturbance of the damping factor λ16. But
after that, the inexact Newton iteration converges back to the exact itera-
tion. Figure 3.3 shows the number of linear iterations which are required to
solve the linear systems for ‖Δxk‖ and ‖Δxk+1‖ respectively. Observe the
drop in the iteration count just for k = 16. The required accuracy εreqk for
the computation of the ordinary Newton correction Δxk is given in Figure
3.4.

Now, in order to check the quality of the error estimation εest of the approx-
imation sk for Δxk, the linear iteration is continued with a smaller value for
the required accuracy, e.g. εreqnew := εestiter · 10−3. With the associated approx-
imation s̃k at hand the true error of the iterate siterk is estimated to be (c.f.
(1.1.8))

εtruek :=
‖siterk − s̃k‖

‖s̃k‖ .
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Figure 3.1 sst2: level functions ‖Δxk‖ for the exact and inexact scheme

Figure 3.2 sst2: damping factors λk for the exact and inexact scheme
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Figure 3.3 sst2: number of linear iterations

Figure 3.4 sst2: required accuracy εreqk
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Figure 3.5 shows the required accuracy εreqk , the associated error estimate
εestk (from GBIT1 with ρ = 4) and the approximation for the true error εtruek .
Just for the 16 th iterate, the true error is larger than the required one —
with the consequence of creating a distinct difference of the inexact and the
exact Newton iteration. Figures 3.6 and 3.7 present the true error εtruek of sk

Figure 3.5 sst2: required, estimated and true accuracy of ‖Δxiterk ‖ for ρ = 4

and the associated damping factors λk for the case ρ = 1. Strong violations
of the accuracy requirements of GIANT lead to drastically reduced damping
factors λk. But the achieved accuracy of the linear solutions is still sufficient
to guarantee convergence of GIANT— now within 33 instead of 22 iterations.
Things change, if one solves the standard example sst2 on a refined grid.
Using a mesh of dimension 51× 51 for the finite difference discretization one
ends up with a nonlinear system of dimension N = 10404. For the standard
case ρ = 4, the inexact Newton scheme stops after 23 iterations because
the monotonicity check fails repeatedly. Restarting GIANT, but now with
a safety factor ρ = 40 for GBIT1, the problem is solved within 22 Newton
iterations, just as before.
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Figure 3.6 sst2: required and true accuracy of the inexact ordinary Newton cor-

rections ‖Δxk‖ for ρ = 1

Figure 3.7 sst2: damping factors λk for ρ = 1
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Figure 3.8 illustrates for both cases the behavior of the required and the
true accuracy of the inexact ordinary Newton correction. In contrast to the
case of ρ = 1 on a 26 × 26 mesh, for the case ρ = 4 on a 51 × 51 mesh
the repeated violation of the accuracy bound εreq = 1/8 causes failure of
the inexact Newton iteration. The behavior of the Newton scheme for slight
violations of the accuracy bound nicely reflects the fact that the underlying
theoretical considerations (c.f. [4]) expect convergence even for εtrue = 1/4
(i.e. ρ = 1/2). Increasing the condition of the matrices Jk a second time by

Figure 3.8 sst2 (51× 51 grid): required and true accuracy of ‖Δxiterk ‖ for ρ = 4

and ρ = 40

solving the example sst2 on a 101 × 101 mesh (N = 40804), the problems
for the iterative solver GBIT1 increase again. For the case ρ = 40 the usual
Newton performance (#Newton-iter = 22) is disturbed as now 25 Newton
steps are required. By setting ρ = 400 the solution is achieved within 22
Newton steps again. Another quite interesting performance results from
changing the preconditioner. Using a block diagonal LU decomposition as
preconditioner, the performance of the iterative solver is improved. The
results for ρ = 4 and ρ = 40 are given in Table 3.5. For this specific example,
the block diagonal preconditioning not only reduces the number of linear
iterations but also increases the robustness of GBIT1.

The outcome of these results and some other testing is obvious. If the true
achieved accuracy of the linear solutions fits into the requirements made by
the accuracy matching strategy of GIANT, the performance of the inexact
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example status #J #F #it-lin-ord #it-lin-sim #it-lin
ρ = 4
sst2-26-ilu ok 22 23 235 127 362
sst2-26-bdiag ok 22 23 163 99 262
sst2-51-ilu failnew 23 26 146 162 308
sst2-51-bdiag ok 22 23 219 107 326
sst2-101-ilu faillin 22 22 205 95 300
sst2-101-bdiag faillin 1 2 4 3 7
ρ = 40
sst2-26-ilu ok 22 23 341 276 617
sst2-26-bdiag ok 22 23 212 115 327
sst2-51-ilu ok 22 23 440 212 652
sst2-51-bdiag ok 22 23 402 140 542
sst2-101-ilu ok 25 26 644 376 1020
sst2-101-bdiag ok 22 23 409 171 580

Table 3.5 Performance of GIANT/GBIT1 for the modified example sst2 (ILU vs.

blockdiagonal preconditioning, safety factors ρ = 4 and ρ = 40)

and exact Newton algorithm coincide extremely well. This experimentally
confirms the theoretical considerations of Deuflhard [4].

3.2.2 Iterative linear solvers

The code GIANT can be considered as a special test frame for an iterative
linear solver. As the efficiency and the robustness of GIANT strongly de-
pends on the performance of the linear solver, some experiments with GBIT1
and GMRES are worth mentioning. Due to the different adaptation for the
application within GIANT, a fair comparison of GBIT1 with GMRES is quite
difficult. Rather than, one may change the preconditioner or modify kmax
and compare the changes in the behavior of the codes. As the required stor-
age of both codes is dominated by the actual value for the parameter kmax,
one may study their performance for values different from kmax = 9 (GBIT1)
and KMAX=10 (GMRES) — the standard values used so far. Table 3.6
shows the result of using GBIT1 with kmax = 4 and kmax = 14 respectively.
In order to facilitate the interpretation of the results, the difference to the
standard case kmax = 9 is directly presented, moreover, in symbolic form.
An entry ”◦” means that the change is below 10%. ”+” and ”−” indicate
a difference in the range ±10% up to ±50% and ”++”,”−−” represent a
change beyond that range. In order to measure the different behavior, one
must look to different indicators. As the performance of GIANT may be af-
fected, the number of evaluations of the nonlinear function (#F) is given in
Table 3.6 also. The changes in the total number of linear iterations (#iter)
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are certainly the most important measure, but as the amount of work per it-
eration depends on kmax, the total CPU time for the linear iterations (CPU)
is given additionally. As this time dominates the total CPU time required to
solve the nonlinear problem, one can drop those numbers.

The results of Table 3.6 are somewhat surprising. An increase of kmax doesn’t
entails a better performance of GBIT1, even a change for the worth may
occur. Consequently, the reduction of kmax can improve or deteriorate the
behavior of GBIT1. Note that for dcp400 the slight reduction of the number
of iterations is accompanied with a more significant gain in the CPU time.

kmax=4 kmax=14
example #F #iter CPU #F #iter CPU
atp1 ◦ ◦ ◦ ◦ ◦ ◦
atp2 faillin faillin
sst1 ◦ + + ◦ + +
sst2 ◦ + + ◦ ◦ ◦

dcp100 + + + + + +
dcp400 ◦ ◦ − ◦ − −
dcp1000 ◦ ◦ ◦ ◦ − −

Table 3.6 Comparison of GBIT1 (ρ = 4) with different kmax (ref. to kmax=9)

Making the same experiment with GMRES the results are more uniform. An
increase of kmax yields a better performance of GMRES, while a reduction of
kmax leads to loss of efficiency and robustness (faillin for sst1, sst2). Again,
note that the influence may be different concerning the number of iterations
and the required CPU time (atp2, dcp1000). The effect of changing kmax is
studied again in the special experiments with the driven cavity problem —
see Section 3.2.3.

kmax=5 kmax=15
example #F #iter CPU #F #iter CPU
atp1 ◦ + + ◦ ◦ ◦
atp2 ◦ ++ ++ ◦ − ◦
sst1 faillin ◦ ◦ ◦
sst2 faillin ◦ − −

dcp100 ◦ ◦ ◦ ◦ ◦ ◦
dcp400 ◦ ◦ ◦ ◦ ◦ ◦
dcp1000 ◦ + ◦ ◦ ◦ ◦

Table 3.7 Comparison of GMRES (ρ = 400) with different kmax (ref. to kmax=10)

The performance of an iterative linear solver is strongly affected by the qual-
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ity of the preconditioner. A ”good” preconditioner may increase the con-
vergence speed and the convergence domain of the basic iterative method.
On the other hand, each linear iteration may be more expensive. The con-
sequences of changing the preconditioner are summerized in Table 3.8 (for
GBIT1) and Table 3.9 (for GMRES). Three alternatives for the standard ILU
preconditioning are checked: the diagonal and the lower triangle precondi-
tioner from the Sparse Linear Algebra Package (SLAP), as well as blockdiag-
onal preconditioning. These experiments show a clear result. Except for the
sst examples, the above mentioned alternative preconditioning techniques are
not competitive to ILU preconditioning. Even, if diagonal preconditioning
would be ”for free” (e.g. on vector machines), the ILU preconditioning still
yields the fastest linear iteration. Beyond that, the use of more sophisticated
preconditioners, e.g. an ILU factorization with fill-in, seems to be promis-
ing for the non-trivial examples of the basic testset. The good result of the
blockdiagonal preconditioner for the example sst2 (c.f. Table 3.5) are due
to the special structure of the underlying PDE — c.f. (3.1.7). A general
comparison of Table 3.8 with 3.9 indicates a more robust behavior of GBIT1
compared with GMRES — disregarding the fact that GBIT1 is still not able
to solve the linear subproblems of example atp2.

Blockdiagonal Diagonal Lower triangle
example #F #iter CPU #F #iter CPU #F #iter CPU
atp1 ◦ ++ ++ ◦ ++ + ◦ ++ ++
atp2 failnew failnew failnew
sst1 ◦ + + faillin ++ ++ ++
sst2 ◦ − − failnew faillin

dcp100 + ++ ++ + ++ ++ + ++ ++
dcp400 + ++ ++ + ++ ++ ◦ ++ ++
dcp1000 + ++ ++ ◦ ++ ++ ◦ ++ ++

Table 3.8 Comparison of different preconditioners used with GBIT1 (ρ = 4)
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Blockdiagonal Diagonal Lower triangle
example #F #iter CPU #F #iter CPU #F #iter CPU
atp1 ◦ ++ ++ ◦ ++ ++ ◦ ++ ++
atp2 ◦ ++ ++ ◦ ++ ++ ◦ ++ ++
sst1 ◦ − − faillin faillin
sst2 ◦ −− −− faillin faillin

dcp100 + ++ ++ + ++ ++ ◦ ++ ++
dcp400 faillin ◦ ++ ++ ◦ ++ ++
dcp1000 faillin faillin faillin

Table 3.9 Comparison of different preconditioners used with GMRES (ρ = 400)

3.2.3 Special experiments for the driven cavity problem

The driven cavity problem is a widely used test example for iterative methods
(linear and nonlinear), as well as for special discretizations schemes. In order
to check the performance of GIANT, this example is now solved also for more
critical Reynolds numbers. But this task requires at least a finer discretiza-
tion, hence, a 63 × 63 mesh is used from now on. But no attempt has been
made to use a more suitable discretization or to exploit the special structure
of the equations. The problem is still solved as a coupled system of two
PDE’s. Thus, after discretization, a nonlinear system with 7938 unknowns
arises. For comparison, the cases Re=1000, 2000 and 5000 are considered.

Table 3.10 gives the results of a whole sequence of runs. Herein, the stor-
age restriction parameter varies between the extremely storage saving value
kmax=2 and the quite large value kmax=24. The total CPU time (in seconds,
on SUN-SPARC1) used by GIANT (f77 optimization level 3) is presented
within the Table, as the average time per linear iteration may depend on the
prescribed kmax. As a consequence, a run with more linear iterations but
with a smaller kmax may be more efficient, because for a smaller kmax the
average time for an iteration is usually reduced.
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example status #J #F #it-ord #it-sim #it-lin CPU(s)

dcp1000-2 ok 13 14 1087 290 1377 972
dcp1000-4 ok 11 12 1056 309 1365 927
dcp1000-9 ok 12 13 1013 214 1227 902
dcp1000-14 ok 12 13 918 211 1129 913
dcp1000-19 ok 13 14 824 250 1074 939
dcp1000-24 ok 11 12 1009 193 1202 1090

dcp2000-2 ok 14 15 1317 2258 3575 2396
dcp2000-4 ok 13 14 1356 261 1617 1090
dcp2000-9 ok 14 15 1238 279 1517 1121
dcp2000-14 ok 14 15 1623 249 1872 1496
dcp2000-19 ok 15 16 1263 292 1555 1318
dcp2000-24 ok 15 16 1027 242 1269 1126

dcp5000-2 ok 23 24 1805 668 2473 1750
dcp5000-4 ok 15 16 1447 282 1729 1185
dcp5000-9 ok 17 18 1316 314 1630 1213
dcp5000-14 ok 18 19 1199 381 1580 1283
dcp5000-19 ok 18 19 1464 273 1737 1483
dcp5000-24 ok 17 18 1379 293 1672 1507

Table 3.10 dcp1000, 2000, 5000 with GBIT1 (ρ = 4)

In contrast to the observations made for the basic testset, the Newton it-
eration is now influenced by the variation of kmax — a clear hint that the
achieved accuracy of GBIT1 is not sufficient. Rerunning the sequence of
problems, but now with a safety factor ρ = 40 for GBIT1, retrieves the inde-
pendence of the GIANT performance with respect to variations within the
iterative linear solver — see Table 3.11.

Furthermore, the increasing difficulty of the problem for larger Reynolds
numbers requires now only one additional Newton iteration per increase of
the Reynolds number — independent of kmax. In contrast to this, for the
standard option ρ = 4 the difference between Re=1000 and Re=5000 may be
2 up to 12 Newton iterations — depending on kmax. For both experiments
the change of the GBIT1 performance due to the kmax variation shows again
a quite irregular pattern. Concerning the overall efficiency, a comparison of
the dcp5000 run with ρ = 4 and ρ = 40 respectively, shows a quite interesting
result. Although for ρ = 4 GIANT needs for all runs more Newton iterations,
all runs are faster than the runs with ρ = 40. This is due to the fact that
the total CPU time of GIANT is mainly spent in the iterative linear solver
(including preconditioning and matrix × vector routine). For ρ = 4, this
part uses about 92% of the total CPU time while for ρ = 40 this part is even
about 96%. The performance of GIANT/GBIT1 for the sequence of safety
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example status #J #F #it-ord #it-sim #it-lin CPU(s)

dcp1000-2 ok 10 11 1834 556 2390 1606
dcp1000-4 ok 10 11 1792 676 2468 1611
dcp1000-9 ok 10 11 1599 528 2127 1503
dcp1000-14 ok 10 11 1665 423 2088 1626
dcp1000-19 ok 10 11 1714 393 2107 1791
dcp1000-24 ok 10 11 1722 399 2121 1889

dcp2000-2 ok 11 12 1868 702 2570 1727
dcp2000-4 ok 11 12 1954 662 2616 1709
dcp2000-9 ok 11 12 1280 592 1872 1339
dcp2000-14 ok 11 12 1960 600 2560 2000
dcp2000-19 ok 11 12 1833 539 2372 1967
dcp2000-24 ok 11 12 1868 651 2519 2183

dcp5000-2 ok 12 13 3570 555 4125 2736
dcp5000-4 ok 12 13 2439 1087 3526 2293
dcp5000-9 ok 12 13 1509 667 2176 1567
dcp5000-14 ok 12 13 1652 524 2176 1714
dcp5000-19 ok 12 13 1684 531 2215 1858
dcp5000-24 ok 12 13 1444 624 2068 1806

Table 3.11 dcp1000, 2000, 5000 with GBIT1 (ρ = 40)

factors ρ = 1, 4, 40, 400 on the problem dcp5000 is given in Table 3.12.

example status #J #F #it-ord #it-sim #it-lin CPU(s)
dcp5000-r001 FailLin 9 9 249 32 281 247
dcp5000-r004 ok 17 18 1316 314 1630 1213
dcp5000-r040 ok 12 13 1509 667 2176 1567
dcp5000-r400 ok 12 13 3276 1491 4767 3330

Table 3.12 dcp5000 with GBIT1 (kmax = 9)

Obviously, the case ρ = 4 is just the limiting case for convergence of the
inexact scheme. The iterative behavior for the standard case (ρ = 4, kmax=9)
is illustrated in Figures B.3 – B.6. Figure B.1 and Figure B.2 show contour
plots for the associated numerical solution. The contour levels plotted are

ω = −4,−2,−1,−0.5, 0, 1.0, 2, 4, 6, 10 and
ψ = −0.01,−0.002,−0.001,−0.0002, 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 .

In order to solve the examples dcp1000, dcp2000 and dcp5000 with the com-
bination GIANT+GMRES, a safety factor of ρ = 400 is necessary. The
results for the KMAX-sequence 5,10,15,20,25 are summerized in Table 3.13.
For ρ = 4 only the cases dcp1000-10 and dcp2000-25 converge. For ρ = 40
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there is only one successful run: dcp2000-20. All other runs (for ρ = 4,
ρ = 40) show a failure of GMRES indicated by a value 2 of the error flag
IERR, which means that GMRES fails to reduce any more the residual.

example status #J #F #it-ord #it-sim #it-lin CPU(s)

dcp1000-5 ok 10 11 1508 1788 3296 1846
dcp1000-10 ok 10 11 1446 1527 2973 1819
dcp1000-15 ok 10 11 1299 1261 2560 1716
dcp1000-20 ok 10 11 1126 1002 2128 1551
dcp1000-25 ok 10 11 936 856 1792 1413

dcp2000-5 ok 12 13 1239 1245 2484 1425
dcp2000-10 ok 12 13 1054 1052 2106 1324
dcp2000-15 ok 12 13 991 938 1929 1320
dcp2000-20 ok 12 13 928 993 1921 1418
dcp2000-25 ok 12 13 939 852 1791 1420

dcp5000-5 ok 15 16 1685 747 2432 1419
dcp5000-10 ok 15 16 1150 669 1819 1175
dcp5000-15 ok 16 18 1346 1152 2498 1714
dcp5000-20 ok 15 17 997 745 1742 1304
dcp5000-25 ok 15 16 1057 3502 4559 3540

Table 3.13 dcp1000, 2000, 5000 with GMRES (ρ = 400)

Analyzing the numbers of Table 3.13, the tendency of GMRES that an in-
crease of kmax pays off, shows up only for dcp1000. Already for dcp2000
there is a slight disturbance and for dcp5000 the performance is even more
irregular as for GBIT1. Although a direct comparison of the results from
GIANT+GBIT1 and GIANT+GMRES is quite dubious, the choice GBIT1
(ρ = 4) is obviously the most efficient one. The safe variant with GBIT1
(ρ = 40) is still competitive to the GMRES (ρ = 400) version of GIANT
and, furthermore, shows a distinct increase of robustness. A comparison to
the results presented in [1] is certainly even more dubious. But, since in [1]
a quite different globalization technique for the Newton method is realized,
a look to the results of NKSOL (Nonlinear Krylov SOLver for nonlinear sys-
tems of equations) is nevertheless interesting. The scheme with the dogleg
globalization strategy and GMRES as linear solver requires for the solution
of dcp5000: 88 Newton iterations, 1460 function evaluations, 1315 linear
system solutions, 0 Jacobian evaluations (matrix free scheme). But, note
that there is a lot of differences, e.g. different boundary conditions, different
discrete problem formulations, different Jacobian generation and different
preconditioning.
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3.2.4 Performance analysis

Recall that the affine invariant damping strategy of GIANT requires at least
one additional linear system solution per Newton step — compared to the
undamped method (or to a ”cheap” heuristic damping strategy). Hence, one
may analyze the results of the numerical experiments in more detail in order
to quantify this additional amount of work. Comparing the number of linear
iterations for the computation of the ordinary corrections (#it-lin-ord) with
that one needed for the simplified corrections (#it-lin-sim) one can see that
the ratio

ros := #it-lin-ord/#it-lin-sim (3.2.1)

is within 2 — 6 for most of the experiments. A quite typical value turns
out to be 3. This means that only 25% of the total amount of work for
linear algebra computations is spent for the damping strategy. Furthermore,
due to the special adaptation within GIANT, the inexact simplified Newton
correction sk is used as initial guess for the linear iteration towards the next
ordinary Newton correction sk. Thus, dropping the computation of sk would
increase the costs for the (iterative) computation of sk.

The ratio ros strongly depends on two things. First, the required tolerance
RTOL for the solution x∗ of the nonlinear problem enters as, for the last
Newton iterations towards x∗, the required accuracy εreqk for the ordinary
Newton corrections computations gets smaller and smaller — whereas εreqk+1

(for simplified Newton corrections) not. Second, the nonlinearity of the prob-
lems plays an important role. For highly nonlinear problems, where λk < 1
is really required to ensure the convergence of GIANT, for the Newton steps
with λk < 1 the required accuracies εreqk and εreqk+1 may be equal — but of
comparatively moderate size (c.f. Figures 3.3, 3.4, B.6).

Just to have some numbers one may compare the standard runs of GIANT
(+GBIT1, ρ = 4) for the basic testset (c.f. Table 3.2) with runs where
the required tolerance RTOL is reduced from 10−5 to 10−8. There is no
change for example sst1 as the standard run is already accurate enough. The
most significant change occurs for dcp1000 (coarse grid). Only one additional
Newton iteration is required. But the total number of linear iterations is more
than doubled. The additional ordinary Newton correction computation costs
652 linear iterations, while the additional simplified correction costs just 19
iterations. These numbers must be compared to the costs for the 10 previous
iterations (#it-lin-ord=376, #it-lin-sim=144). The ratio ros changes from
ros = 2.6 (RTOL=10−5) to ros = 6.3.

In order to illustrate the general advantage of the accuracy matching strat-
egy, one may compare the standard runs of GIANT with an experiment
where εreqk = εreqk+1 = RTOL = 10−5 is prescribed. Despite of the fact, that
the examples of the basic testset are comparatively small, the number of lin-
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ear iterations is already increased by factors between 2.2 (for the ”simple”
example atp1) and 10.6 (for the ”challenging” example dcp1000).

In terms of CPU time, the efficiency of GIANT is mainly determined by
the user given problem routines FCN, JAC and the routines for the linear
system solution ITSOL, PRECON, MULJAC. The GIANT algorithm just
tries to find the solution of the nonlinear within as few steps as possible, at
which, the required accuracy for the linear system solution is as loose as pos-
sible. This is the reason for the absence of CPU times from most of the above
tables. Nevertheless, a short look to the CPU time distribution may be inter-
esting. Table 3.14 presents this distribution for some selected test examples
and for a sequential (SUN-SPARC1) and a vector (CRAY X-MP) machine.
The different capability of vectorization for the different parts of the codes

example GIANT J F GBIT1 PRECON MULJAC
percentages for SUN-SPARC1

atp1 5.9 23.5 12.6 31.0 15.0 12.0
sst2 4.0 23.7 2.7 27.6 22.3 19.7

dcp1000 (312) 1.6 10.9 1.1 34.4 27.8 24.2
dcp5000 (632) 0.8 6.5 0.6 39.9 27.9 24.3

percentages for CRAY X-MP
atp1 0.5 34.6 8.8 2.0 36.0 18.1
sst2 0.2 38.3 1.0 1.3 37.2 22.0

dcp1000 (312) 0.1 19.9 0.6 1.9 46.7 30.8
dcp5000 (632) 0.1 12.3 0.3 1.9 51.5 33.9

Table 3.14 percentage CPU of total CPU for special parts

is nicely reflected. Only GIANT and GBIT1 vectorize quite good, whereas
for MULJAC and FCN the innermost loops are too short and in regard of
PRECON and JAC the vectorization may even increase the average CPU
time per call. Observe that the CPU time summarized within J includes the
setup of the preconditioner, i.e. the incomplete LU factorization. Further-
more, note that the implementation of FCN and JAC is extremely inefficient,
as these routines are designed to evaluate discretized PDE-problems on gen-
eral rectangular grids. In a similar way, the SLAP routines PRECON and
MULJAC suffer from their generality. So, in order to combine advantages of
GIANT with an efficient (fast) solution of a specific problem class, a special
adaptation of all user routines, not only to the problem class but also to the
target machine, is strongly recommended.

The final experiment reported in this paper deals with the use of GIANT
/ GBIT1 as a so called matrix-free method. The way how to realize such
a technique, as well as the additional problems coming from the additional
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approximation error due to (2.3.1), have been discussed in Section 2.3. The
possible advantages and disadvantages (CPU time, storage) of such a tech-
nique will again strongly depend on the implementation of the routines FCN,
JAC, PRECON, MULJAC (see above) and, furthermore, on the chance of
finding a ”Jacobian-free”, but good, preconditioner. Therefore, the follow-
ing experiment concentrates on checking the performance of GIANT+GBIT1
having introduced this new type of inexactness.

First, for the simple example atp1 and for four variants of the more critical
example sst2 (262,512-grid, ρ = 4, 40) a straightforward implementation of
the matrix free trick (2.3.1) is used to replace the usual MULJAC routine.
This means, the perturbation parameter σ of (2.3.1) is just set to a fixed,
absolute value. Note that the perturbed vector is x + σv, and σv can’t
be directly interpreted as a relative perturbation of x. This is an essential
difference to the standard case of numerical differentiation, where the j-th
column of the Jacobian is explicitly generated, e.g. by

Jj :=
F (x+ εxj)− F (x)

εxj
xj := j-th component of x

ε := (relative) perturbation parameter

( ≈ √
epmach · safety factor.)

This usual choice of ε reflects the fact, that too small values for ε would
increase the approximation error due to cancellation of leading digits, whereas
too large values for ε would increase the discretization error.

In order to balance the magnitude of x and x+σv in a similar way, one may
use a simple adaptive strategy. For each evaluation of (2.3.1) the parameter
σadapt is chosen in such a way, that

σadapt‖v‖ = ε‖x‖
ε := (relative) perturbation parameter

(ε ≈ √
epmach · safety factor.)

holds. The results of the experiments with σfixed = 10−1, 10−3, 10−5 and
σadapt (for ε = 10−3, 10−5, 10−7) are summarized in Tables 3.15 and 3.16. For
all runs block diagonal preconditioning is used.

In both tables, the changes in relation to the associated standard run are
given. Again, the performance of the Newton iteration is measured by count-
ing the number of function evaluations (#F), while the total number of linear
iterations (#it-lin) is used in order to check the performance of GBIT1. Obvi-
ously, the linear iteration is affected more distinct than the nonlinear Newton
iteration — especially, regarding the fact, that all fail runs are due to the fail-
ure of GBIT1. All these failures occur for the ”last” ordinary Newton correc-
tion computation near the solution x∗, i.e. with the most stringent accuracy
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example direct σfixed σadapted/ε
10−5 10−3 10−1 10−7 10−5 10−3

atp1 5 0 0 +1 0 0 0
sst-26-4 23 fail 0 0 0 0 0
sst-51-4 23 0 0 +11 0 0 +5
sst-26-40 23 fail fail -1 fail 0 0
sst-51-40 23 fail 0 0 0 0 +1

Table 3.15 changes of #F for varying σfixed, σadapted

example direct σfixed σadapted/ε
10−5 10−3 10−1 10−7 10−5 10−3

atp1 99 -13 -2 +54 +2 +2 +4
sst-26-4 262 fail +212 -6 +10 +6 +3
sst-51-4 326 -45 +129 +416 +58 -21 +23
sst-26-40 327 fail fail -70 fail -1 +10
sst-51-40 542 fail -3 +10 -128 -36 -58

Table 3.16 changes of #it-lin for varying σfixed, σadapted

requirement prescribed so far. As the approximation error for the matrix-
vector product is now in the order of the required accuracy, and furthermore,
varies from iteration to iteration, the convergence criterion of GBIT1 is never
activated. Hence, the linear iteration stops after having reached the internal
itmax restriction. A comparison of the results σfixed versus σadapted clearly
shows, that for the variation of σadapted the performance changes are more
uniform and less significant. Moreover, the range of non-critical values is
larger. Finally, one may compare the average costs (CPU time) for the usual
MULJAC routine in contrast to the matrix free realization. For atp1 there
is a drastic increase by a factor of 15, as the evaluation of FCN is compara-
tively expensive, while for the sst examples this factor is about 3. One may
consider carefully this loss in CPU time with the gain of reducing the storage
requirements by approximately 25%. But, recall that these factors depend
on the selected examples, the used preconditioner and the implementation of
the associated routines.
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�� Conclusion

A new software package for the numerical solution of very large systems
of highly nonlinear equations has been presented. Based on the strategy
proposed in [4], the new code GIANT realizes a very efficient telescoping of a
globally convergent Newton iteration (outer iteration) with iterative methods
for the linear system solution (inner iteration). Two of these methods have
been applied for the numerical testing of GIANT — the widely used code
GMRES and the rather new method GBIT [5]. In comparison to GMRES,
the new code GBIT1 shows a quite good performance. This is certainly a
result of the fact, that the underlying minimization principle of GBIT1 fits
nicely into the theoretical frame of GIANT.

The numerical experiments with GIANT are very encouraging. Obtained on
a set of rather diverse test problems, they clearly show, that the advantages
of the underlying global exact Newton techniques carry over to the inexact
case. Furthermore, the additional costs for the affine invariant globalization
strategy are comparatively small. The modular design of the package allows
an easy adaptation and modification, or even optimization, of the method.
This can be done by selecting special numerical options as well as by replacing
the standard routines for the iterative linear solution, preconditioning and
matrix-vector multiplication.

Concerning the Newton iteration, GIANT shows a high degree of robustness
and efficiency — as long as the required accuracy for the linear system solu-
tion is really achieved. Thus, the overall robustness and efficiency of GIANT
mainly depend on the quality of the iterative linear solver. The convergence
domain and the convergence speed of these methods can be improved dras-
tically by using a good preconditioning technique. But a reasonable error
estimator (for the solution) is still rarely available. In order to overcome this
difficulty, one may try to develop special stopping criteria within GIANT.
This, and other possible improvements of GIANT, will be part of future work.
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Figure A.1 GIANT: Program structure overview
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GIANT

�MONEND

� MONSRT
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(function)
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Figure A.2 GIANT with Good Broyden: Program structure (subroutines)
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routine purpose
Interface to the calling program

GIANT Generalized Inexact Affineinvariant Newton Techniques - User in-
terface and workspace distribution subroutine

NJPCHK Checks, if input parameters and options have reasonable values

Internal subroutines, realizing the algorithm (I)
NJINT Main core subroutine of GIANT - realizing the inexact Newton

scheme
NJITS1 Computation of the inexact ordinary Newton correction including

the a priori and the a posteriori iteration
NJSCAL Calculates the scaling vector for the inexact Newton iteration
NJITSL The internal interface subroutine to the iterative linear solvers

Iterative linear solver GBIT1 (Good Broyden)
GBIT1I The internal core subroutine of the the algorithm GBIT1
ITZMID Computation of the ”mean error” estimation for GBIT1
SPRODI Evaluation of the scalar product used in GBIT1

Output subroutines

NJPRV1 Does print monitor output
NJPRV2 Does print monitor output (another format, different data as in

NJPRV1)
NJSOUT Output of the sequence of Newton iterates (or the solution only)
NJGOUT Special output of miscellaneous monitor data. Used to generate

various diagrams
Time monitor

MONON Starts a specific time measurement part
MONOFF Stops a specific time measurement part
MONINI Initialization call of the time monitor package
MONDEF Configuration of the time monitor - definition of one specific mea-

surement part
MONSRT Start of time monitor measurements
MONEND Finishes time monitor measurements and prints table of time

statistics
Machine dependent subroutines

D1MACH Returns machine dependent double precision constants
SECOND Returns a time stamp measured in seconds - used for the time

monitor

Routines to be supplied by the user of GIANT
FCN The nonlinear problem function
JAC The Jacobian associated to the nonlinear problem function
MULJAC Must evaluate the product Jacobian times vector
PRECON Must perform the preconditioning
ITSOL The interface subroutine to a user supplied alternative linear

solver
NXPLOT Optional output of the Newton iterates, e.g. in form of graphics.

Table A.1 purpose of GIANT subroutines
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PRECON � SLPRE2

� DSLUI2
(SLAP)

� DSLI2
(SLAP)

� DSDI
(SLAP)

� DSBDIC � DGESL
(LINPACK)

MULJAC � DSMV
(SLAP)

JAC

� SLPREI � SLPRE1

� DSILUS
(SLAP)

� DS2LT
(SLAP)

� DSDS
(SLAP)

� DSBDSC � DGEFA
(LINPACK)

� DS2Y
(SLAP)

� QS2I1D

(SLAP)
�

�

�

�

�

XERROR
(SLAP)

(calls other
error

routines)
� I1MACH

� JAC1
(User)

�

FCN � FCN1
(User)

Figure A.3 SLAPInt-package: Program structure (subroutines)
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routine purpose
SLAPInt

FCN Problem function interface subroutine to the GIANT/Good Broy-
den package.

JAC Jacobian interface subroutine to the GIANT/Good Broyden
package.

SLPREI Workspace splitting subroutine for preconditioner setup routines.
SLPRE1 Preconditioner setup selection subroutine.
MULJAC ”Matrix times vector” interface subroutine to the GIANT/Good

Broyden package.
PRECON Preconditioner interface subroutine to the GIANT/Good Broyden

package. Does the setup of the references to the user workspace
for the selected preconditioner.

SLPRE2 Preconditioner selection subroutine.
Preconditioners and their setup routines

DSDS SLAP — Diagonal scaling preconditioner setup routine. Needs
the input matrix to be given in SLAP column format.

DSDI SLAP — Diagonal scaling preconditioner
DS2LT SLAP — Lower triangle preconditioner setup routine. Needs the

input matrix to be given in SLAP column format.
DSLI2 SLAP — Lower triangle preconditioner
DSILUS SLAP — Incomplete LU (ILU) decomposition preconditioner

setup routine. Needs the input matrix to be given in SLAP col-
umn format.

DSLUI2 SLAP — Back-substitution for incomplete LU preconditioning
DSBDSC Block diagonal scaling preconditioner setup routine
DSBDIC Block diagonal scaling preconditioner

Further routines from the SLAP package

DSMV SLAP — Does the matrix times vector multiplication for a matrix
supplied in SLAP column format.

DS2Y SLAP — Converts SLAP matrix Triad format to column format.
QS2I1D SLAP — Sort subroutine
XERROR SLAP — Error Handling Package Top Level Subroutine
XERRWV SLAP — Internal error handling subroutine, calls further error

handling subroutines not extra listed in this Table: J4SAVE,
XERABT, XERCTL, XERPRT, XERSAV, XGETUA

Other public domain subroutines
DGEFA LINPACK — LU -decomposition of a matrix stored in full mode.
DGESL LINPACK — Forward -backward substitution using a LU-

decomposition generated by DGEFA.
I1MACH Machine dependent integer constants

Routines to be supplied by the user

FCN1 User problem function subroutine
JAC1 Jacobian subroutine

Table A.2 purpose of EASYPACK subroutines

73



DGMRES

� DPIGMR

� DNRM2
(BLAS)

� DSCAL
(BLAS)

� DCOPY
(BLAS)

� MSOLVE
(User)

� MATVEC
(User)

� ISDGMR

� DRLCAL

� DHELS

� DHEQR

� DORTH

�

�

�

�

�

�

� DXLCAL

� DSCAL
(BLAS)

� DCOPY
(BLAS)

� DAXPY
(BLAS)

� DNRM2
(BLAS)

� �

Figure A.4 GMRES: Program structure (subroutines)
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routine purpose

DGMRES Preconditioned GMRES iterative sparse Ax=b solver. This rou-
tine uses the generalized minimum residual (GMRES) method
with preconditioning to solve non-symmetric linear systems of the
form: A*x = b.

DHELS Solves the least squares problem: min < b − A ∗ x, b − A ∗ x >
using the factors computed by DHEQR. This routine is extraced
from the LINPACK routine SGESL with changes due to the fact
that A is an upper Hessenberg matrix.

DHEQR This routine performs a QR decomposition of an upper Hessenberg
matrix A using Givens rotations. There are two options available:
1) Performing a fresh decomposition 2) updating the QR factors
by adding a row and a column to the matrix A.

DORTH This routine orthogonalizes the vector VNEW against the previ-
ous KMP vectors in the V array. It uses a modified gram-schmidt
orthogonalization procedure with conditional reorthogonalization.

DPIGMR This routine solves the linear system A * Z = R0 using a
scaled preconditioned version of the generalized minimumresidual
method. An initial guess of Z = 0 is assumed.

DRLCAL This routine calculates the scaled residual RL from the V(I)’s.
DXLCAL This routine computes the solution XL, the current DGMRES it-

erate, given the V(I)’s and the QR factorization of the Hessenberg
matrix HES. This routine is only called when ITOL=11.

ISDGMR Generalized MinimumResidual Stop Test. This routine calculates
the stop test for the Generalized Minimum RESidual (GMRES)
iteration scheme. It returns a nonzero if the error estimate (the
type of which is determined by ITOL) is less than the user speci-
fied tolerence TOL.

DCOPY BLAS — Copy a double precision array (vector) of length N.
DNRM2 BLAS — Euclidean norm of the vector v of length N.
DAXPY BLAS — Compute the linear combination of vectors v,w

scalar*v+w and store result to w.
DSCAL BLAS — compute the vector scalar*v and store result to v.

Table A.3 purpose of DGMRES subroutines
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B� GIANT performance for dcp����

Figure B.1 dcp5000: vorticity ω

Figure B.2 dcp5000: stream function ψ
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Figure B.3 dcp5000 (ρ = 4): level functions ‖Δxk‖, ‖Δxk+1‖

Figure B.4 dcp5000 (ρ = 4): damping factors λk
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Figure B.5 dcp5000 (ρ = 4): number of linear iterations

Figure B.6 dcp5000 (ρ = 4): required accuracy ε
req
k
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Figure B.7 dcp5000 (ρ = 40): level functions ‖Δxk‖, ‖Δxk+1‖

Figure B.8 dcp5000 (ρ = 40): damping factors λk
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Figure B.9 dcp5000 (ρ = 40): number of linear iterations

Figure B.10 dcp5000 (ρ = 40): required accuracy ε
req
k
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