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Network Spot Checking Games:
Theory and Application to Toll Enforcing in
Transportation Networks

Ralf Borndorfer, Julia Buwaya, Guillaume Sagnol, Elmar Swarat*

Zuse Institut Berlin (ZIB), Department Optimization, Berlin, GermanyJr

Abstract

We introduce the class of spot-checking games (SC games). These
games model problems where the goal is to distribute fare inspectors over
a toll network. In an SC game, the pure strategies of network users
correspond to paths in a graph, and the pure strategies of the inspectors
are subset of arcs to be controlled. Although SC games are not zero-sum,
we show that a Nash equilibrium can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is more relevant for
this problem and we give a mixed integer programming (MIP) formulation
for this problem. We show that the computation of such an equilibrium
is NP-hard. More generally, we prove that it is NP-hard to compute a
strong Stackelberg equilibrium in a polymatrix game, even if the game
is pairwise zero-sum. Then, we give some bounds on the price of spite,
which measures how the payoff of the inspector degrades when committing
to a Nash equilibrium. Finally, we report computational experiments on
instances constructed from real data, for an application to the enforcement
of a truck toll in Germany. These numerical results show the efficiency
of the proposed methods, as well as the quality of the bounds derived in
this article.

Keywords Game Theory; Stackelberg Equilibrium; Security Games; Mixed
Integer Programming; Price of Spite; Nash Equilibrium; Inspection

1 Introduction

In 2005 Germany introduced a distance-based toll for trucks weighing twelve
tonnes or more in order to fund growing investments for maintenance and ex-
tensions of motorways. The enforcement of the toll is the responsibility of the
German Federal Office for Goods Transport (BAG), which has the task to carry
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out a network-wide control. To this end, 300 vehicles make control tours on
the entire motorway network. In this paper, we present some theoretical work
obtained in the framework of our cooperation with the BAG, whose final goal
is to develop an optimization tool to schedule the control tours of the inspec-
tors. This real-world problem is subject to a variety of legal constraints, which
we handle by mixed integer programming [3]. In a follow-up work, we plan to
use randomized schedules generated by the game-theoretical approach of the
present paper as an input for the real-world problem.

In this paper, we study from a game-theoretic point of view the problem of
allocating inspectors to spatial locations of transportation networks, in order to
enforce the payment of a transit toll. In a previous version of this article which
appeared as a conference paper [1], we used a Stackelberg game to represent the
applied problem evoked above. This article deals with a class of games called
spot-checking (SC) games that generalize our former approach. SC games can
be thought as particular security games, in which the strategies of attackers
and defenders are represented by a graph structure. Security games have been
introduced by Kiekintveld et al. [10], to study problems where the goal is to
randomize different kind of inspections, in a strategic way; this includes work
on the optimal selection of checkpoints and patrol routes to protect the LA
Airport towards adversaries [13], a study of the scheduling and allocation of
air marshals to a list of flights in the U.S. [8], or the problem of optimally
scheduling fare inspection patrols in the LA Metro [18]. In a way, SC games
are to security games as routing games (in which players choose a path on a
network) are to congestion games (where players choose a subset of abstract
congestible elements); see e.g. Roughgarden and Tardos [15]. Many practical
situations can be represented by this new class of games, as will be seen in
Section 4. In particular, it is also possible to take into account the moves of
inspectors over the network over time.

Unlike standard security games, the players of a spot-checking game might
have a very large number of available strategies, arising from the multitude of
origin-destination paths in a network. For our application to toll enforcement
in a transportation network, this new model takes into account every possible
detour that fare evaders could take to avoid frequently inspected sections. In
contrast, previous approaches used the trivial topology of a single metro line [18],
or assumed that each user takes the shortest path [2]. A similar network secu-
rity game was studied in [8], but the authors used a branch-and-price approach
to deal with the exponential number of actions. We represent the mixed strate-
gies of network users by multicommodity flows, which yields a compact linear
programming formulation for the computation of a Nash equilibrium; see Sec-
tion 5.1. However, we argue that the inspector should rather commit to a
Stackelberg equilibrium, but this strategy is much harder to compute. A mixed
integer programming (MIP) formulation is given in Section 5.2.

Indeed, we show that the computation of a Stackelberg equilibrium is NP-
hard in Theorem 6.1. As a corollary, we obtain that it is NP-hard to find a
Stackelberg equilibrium in pairwise zero-sum polymatriz games. The principal
novelty of this article concerns the price of spite of SC games, and is presented



in Section 6.2. We give two bounds on this quantity —which is a measure of how
the payoff of the inspector degrades when committing to a Nash equilibrium
(rather than a Stackelberg equilibrium)- as detailed in Proposition 6.5 and
Theorem 6.7. We point out that the gap between the Stackelberg and the Nash
equilibria has already been investigated in other works: conditions under which
the gap is zero are studied in [5], and [12] bounds this gap for routing games.

Finally, we conduct numerical experiments and demonstrate the quality of
these bounds for the application to German motorways in Section 7.

2 Preliminaries and Notation

We first recall some basic notions of game theory. In a game with N players
where each player may choose a strategy p; in a set A;, and wishes to maxi-
mize her own payoff u;(p;, p—;), we say that p; is a best response to the set
p—i ={p1,.-.,Pi—1,Dit1,--., PN} of strategies of the other players if

Vp; € Ay, u; (P}, p—s) < uwi(ps, P—i).

We denote by BR;(p—;) C A; the set of best responses to p_; for Player i. In
the standard setting, the set A; is a probability simplex {p > 0: >, p; =1}. In
this article, we allow A; to be polyhedral for convenience, but one could easily
come back to the standard case by expressing p € A; as a convex combination
of the extreme points of A;.

The best responses allow us to define the Nash equilibria (NE) of the game:

(p1,.-.,pn) is a Nash equilibrium <= Vie{l,...,N}, p; € BR;(p—:)-

In this paper we also study Stackelberg equilibria, which are arguably more
adapted to the present class of spot-checking games because of the asymmetry
between controllers and network users, and have already been used in similar
applications [8, 13, 18]. In a Stackelberg game, it is assumed that a player is
the leader (in our case, the inspector), who plays first, and the other players
(called followers) react with a best response. Assume now that there are N + 1
players labelled from 0 to N, and that Player 0 is the leader; a strong Stack-
elberg equilibrium (SSE) is defined as a profile of strategies p = (po,...,PN)
that maximizes the leader’s payoff, among the set of all profiles such that the
followers’ strategies p_g are in best response relationship to each other’s action:

Deq is a strong Stackelberg equilibrium <= peq € argmax  ug(po,P—o).
PE{Dox X An: Vi, pi€BRi(p—i)}

In fact, in the class of spot-checking games that we define hereafter,
BR;(p—;) depends only on the leader’s strategy po for every follower (i # 0)
because we neglect congestion effects; see Proposition 3.1. We can hence denote
by BR(po) := BR1(po) X -+ X BRy(po) the set of best response profiles for the



followers to a leader’s action pg, and the problem of finding an equilibrium
reduces to the following optimization problem:

max max U ,P—o0)- 1

pnax o max o(Po. P—o0) (1)

Note that the definition implies that when a follower has several best re-
sponse actions available, he will select one that favors the leader most.

We will also evoke polymatrix games in this article. A game is a polymatrix
game if every payoff function can be written as

pu sz zgpj (2)

J#i

for some matrices A;;. A polymatrix game is called pairwise zero-sum if A;; =
fA}; for all ¢ # 7. We refer the reader to [4] for more background on this topic.

Notation We next introduce the notation used in this article. ~When
a directed graph G = (V,E) and a list of weighted commodities C :=
{(sk,di,xr), k € K} are given, Fy denotes the set of (si,d)—flows of unit

value: for all f € RLEM f € Fy if and only if

S -3 fe—{ LRI 3)

th
€5 (v) eco—(v) otherwise,

for all vertices v € V, where §*(v) and §~(v) respectively denote the set of
outgoing and incoming arcs at v. We also denote by F(C) the set of multi-
commodity flows satisfying a demand xj for commodity k, that is, F(C) =
{D ke efr + Vk, fr € Fx}. Let z. represent the weight of an arc e € E.
We denote by SPr(z) the set of all (sg,dy)—shortest paths. Their length is
denoted by sply(z) = >, 2e (the expression does not depend on the choice
of R € SPi(2)).

The elementwise (Hadamard) product of two vectors w and v is u o v, so
that (wow); = wv;.

3 Spot-Checking Games

In this section we define the class of spot-checking games studied in this
article. They generalize our approach [1, 2], and describe the interaction between
the users of a toll network and an inspector (or Player 0), who represents all
fare inspectors of the transportation network.

A spot-checking game (SC game) G = (G,C, W, Q, «) is formally defined by
the following elements:

e A directed graph G = (V, E);



e A set of weighted commodities C := {(sg,di,xr), k € K}, representing
origin-destination pairs (si,dy) € V2 with x; > 0 users;

o A set of arc weights W := {(we, B¢, 0c), e € E}, representing:

— the total cost w, > 0 for a user taking arc e;

— a reward (. (resp. a penalty if 8. < 0) for the inspector for each user
using arc e; this 8. typically corresponds to a fare for taking arc e;

— The expected amount o, > 0 of penalty for a user controlled on e.
This can be interpreted as the amount of a fine, multiplied by the
probability to be controlled on e (conditionally to the presence of an
inspector on e);

e A set Q C [0,1]I! described by linear inequalities, representing possible
distributions of the inspectors over the arcs of the graph. The quantity g,
corresponds to the probability that some inspector is present on arc e;

e A fraction a € [0, 1] of penalties to be considered in the inspector’s payoff.

At first sight, it may seem odd that every controlled user gets fined. The
reason behind is that the strategy of any user is completely represented by his
path in G. In fact, the graph G is obtained after a pre-processing of the true
transportation network Gp, so that the path chosen by a given user indicates
whether he is paying or evading the fare; see Section 4.

Typically, every arc of the network is either a pay-arc, where o, = 0 and
the reward 5, > 0 corresponds to a toll fare, which is included in the user costs
(we > Be). Or the arc is an evasion arc, where the reward is 8. < 0 and the
expected fine is g, > 0. In other words, paying a fare and getting fined exclude
each other. We refer the reader to Section 4 for more details and examples on
how to model practical situations using SC games.

Inspector’s strategy In the simplest variant of the problem, there are
teams of controllers over the network, who can each control an arc e € E. The
set S of pure strategies for the inspector hence corresponds to the subsets S of
FE of cardinality v. The inspectors commit to a mixed strategy g, i.e. for all
S € S, §s indicates the probability of allocating one team of inspectors on each
of the v arcs e € S. In practice, we will see that our model only depends on
the marginals g. = Y (SES:83¢} Gs, which represent the probability that a team
of inspectors is present on arc e. It is easy to see that the marginal strategy g

satisfies
> =1, (4)
eck

Yeec E, 0<q. < 1. (5)

Conversely, if we are given a vector g satisfying Relations (4) and (5), we can
find a mixed strategy ¢ whose marginal equals q. To see this, one can notice
that the set of extreme points of the polyhedron QO defined by Relations (4)



and (5) coincides with the set of pure strategies S. More evolved strategy sets
Q for the inspector, taking into account the moves of controllers over time, will
be discussed in Section 4.3; see also Remark 4.2 for a discussion on the use of
Markov patrolling policies [9].

User flows and payoffs For a given inspection strategy q € Q, the loss of
every user who selects a path R over the graph G is ) ., we + 0cqe, Where
the first term accounts for travel and toll costs, while the second term is the
expected fine. Note that with this formula, we assume that evaders can be fined
several times; in practice, this is only a simplifying assumption, since in most
toll networks fare evaders can be fined only once (fine receipts count as a valid
proof of payment). For a reasonable number of controllers, our results show
that the probability of being controlled more than once is very small, though.
A similar approximation has been used in [2, 18].

We associate the users of commodity k& with a single player (called
Player k). Her mixed strategy represents the distribution of k—users over the
(sk,dy)—paths, and forms a flow p* € Fy. In the terminology of routing games,
this is a model of atomic splittable traffic (each player controls a non-vanishing
fraction of the flow, which may be split among multiple links [14]); however,
since we neglect congestion effects, see Remark 3.2, our model is essentially
equivalent to non-atomic traffic. We denote by p =", rp® € F(C) the mul-
ticommodity flow of all network users. The payoff of Player k is

PayOHk(pa q) = Zp’; (we + Ue‘]e) . (6)
eckE
The total payoff of the inspector is obtained by summing the collected rewards
and penalties, and depend on the parameters o and 8 of the game G:

PayOﬁO(pv q) = Z T Z p]:(ﬂe + age‘]e)
k

ecl

= Z De (/86 + aUeQe) . (7)
eckE

The extreme values of a correspond to two important situations. If a = 1,
the payoff defined in (7) corresponds to the total revenues from rewards and
penalties, a setting which we denote by MAXPROFIT. If o = 0, the inspector’s
payoff comes from the fares only (assuming that the reward f, is a fare for
arc e). This setting, which we call MAXTOLL, might be well suited if the
goal is solely to enforce the payment of a fare. In contrast, with MAXPROFIT
it might be advantageous to have a bit of evasion on certain commodities, in
order to earn money from fines. The parameter « may be seen as a parameter
weighting the objectives of MAXTOLL and MAXPROFIT, for the scalarization

of a bi-objective problem.

Users’ best responses Observe that the payoff of any user does not depend
on the strategy of other users (because we ignore congestion effects). An impor-
tant consequence of Equation (6) is a characterization of the best responses of



Player k to the inspector’s strategy g, in terms of particular shortest paths in
G. We denote by BR(q) C F(C) the set of users’ best response multicommodity
flows obtained thereby.

Proposition 3.1. Let g € Q be a strategy of the inspector. A strategy p* for
Player k is a best response to q if and only if —Payoff . (p,q) = spl,(w + o 0 q).
In other words, best responses for Player k are flows supported by SPy(w+0o0q).

Proof. If p* is a flow of unit value through commodity k, then —Payoff, (p, q) =
ZeeEp’g(u)e + ge.0e) corresponds to the expected length for Player k from sy to
dj, in the weighted graph with weights w, + 0.q.. This expression is minimized
if and only if the flow p¥* uses only shortest paths. O

Remark 3.2. We plan to investigate an extension of SC games with congestion
in a follow-up work. Note that the number of agents using arc e can have an
influence on both the travel time (and hence the costs w.) and the probability
to be controlled (and hence the expected penalties o.). However, we think
that in most transportation networks, it is a reasonable assumption that a large
fraction of honnest users is always fare-compliant, regardless of the inspection
rate. Thus, we expect the congestion to be caused mostly by users that do not
even take part in the spot-checking game, and hence we expect the distribution
of controls over the network to have a limited impact on the congestion only.
This justifies the uncongested approach of the present article, which should
rather be seen as a case of constant congestion.

4 Handling Practical Situations with SC Games

The general model introduced in the previous section can be used to model
a variety of practical situations. We next review important examples inspired
from real-world applications.

4.1 A transit network model

We start by showing that the model used in the conference paper [1] at the
origin of this article can be cast as a SC game. Here, the network users are
assumed to travel over a network Gy = (Vp, Ep) with arc costs w,. and expected
penalties o, (conditionally to the presence of a controller on arc e). For a given
commodity (sg,dg,zr) € Co C Vo x Vo xR, (k € K), Player k can either decide
to pay a fare 7 (and in this case she will take the shortest path from sy to dg),
or she can evade the fare and choose an arbitrary path from s to di in Gj.

To represent the strategies corresponding to paying the fare, we cre-
ate a set of additional vertices V, containing a vertex 5 for every source
s €8 = {s;: k €K} and a vertex d for every destinationd € D = {d, : k € K}.

We then connect these new vertices by creating a set of dummy arcs E, that
contains
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Figure 1: Original transit network Go (above), and extended structure G of the
SC game (below). The arcs of G are labelled with triples (we,oe,8e). The list of
commodities is Co = {(a, d, Tat), (¢, €, Zce)}, which becomes C = {(a, d, Tad), (¢, &, Tee)}
in the extended graph.

e an arc § — s for all s € .5, which corresponds to the action of evading the
fare, with all weights equal to zero: wigs = Bss) = 0[s5] = 0;

e anarcd—dforall de D, with all weights equal to zero as well;

e an arc é; = (8g, d:k) for all k € KC, which corresponds to the action of paying
the fare. The user cost for taking this arc is defined by we, = spl;,(w) + 7%,
the inspector’s reward is 3z, = 7%, and users cannot be fined on this arc

(Uék = 0)

By construction, the dummy toll arc é, = (Si,d;) can only be used by
Player k. The original arcs e € Ej are taken by users evading the fare, so that
the inspector’s reward . can be set to 0 on these arcs; alternatively, 5. can
be set to a negative value to penalize fare evasion in the inspector’s payoff. (It
is also possible to penalize evasion on a per-user basis, by setting a negative
reward on the dummy evasion arcs s — §.)

The SC game is obtained by considering the extended graph G = (V, E),
where V =V, UV and E = FEyU E, as well as the set of extended commodities
C = {(8x,dy, 1) : k € K}. An example graph Gy is represented together with
its extension G and the associated arc weights in Figure 1.

4.2 Transportation networks with a distance-based toll

With the previous model, it is not possible to consider network users who pay
the fare on a portion of their trip only. This is of particular relevance for the



application mentioned in the introduction of this article. Indeed on the German
motorways the transit fee is proportional to the distance. So crafty drivers
might take the chance to pay the toll on a short portion of their trip only, where
they know that the frequency of controls is high.

To represent users’ strategies in this situation, we shall now introduce a two-
layer graph structure. Let Gy = (Vo, Ep) represent the physical transportation
network, and Cqy := {(sg,dk,zr) : k € K} be a list of weighted commodities.
For all k € K, s; and dj represent the origin and the destination of k. We
denote by [, the length of arc e € FEy and by f (resp. b) the toll rate (resp. the
average basic costs such as fuel consumption) per kilometer. In addition, we
assume that the expected penalty to pay on arc e € Ey is 0. (conditionally to
the presence of a team of inspectors on e).

We create a set V7, containing a vertex v’ for every v € Vj, as well as a
set V of artificial start and destination vertices, containing a vertex 5 for every
s €8 ={s,: ke Kk} and a vertex d for every d € D = {d}, : k € K}. To
connect these new vertices, we create the following sets of arcs:

o By ={(u,v): VY(u,v) € Ep};

(
o £, ={(5,5),(5,¢): Vse S}
(

The arcs of level Fy represent portions of a trip where the toll fee has been
paid, while the matching arcs in Ej correspond to fare evasion. Transition arcs
e € E, allow the users to switch between these two layers, at a cost 6 that should
be set to represent the reluctance of users to change strategy during a trip.
Artificial arcs of Ey and E4 ensure the connectivity of the new commodities
C := {(Sr,dx,71) : k € K} with both layers. To sum up, the different arc
weights are defined by

B:{fle if e € Ey;
€ 0  otherwise,
bl if e € Ey;
w. — (b+f>le if@EEl;
e 0 if e € Ey;
0 otherwise,

and o, = 0 for all e ¢ Ey. A simple example of a two-layer graph is depicted in
Figure 2.

Remark 4.1. The transit model of Section 4.1 can basically be seen as the limit
of the present two-layer model when the transition cost 6 goes to oo, so no
player has an incentive to switch between paying and evading in the middle of
her trip.



FARE COMPLIANCE LAYER
TRANSITION EDGES

TOLL EVASION LAYER

Figure 2: Example of a two-layer graph with a single commodity K = {(a, e, zqe)}.
The highlighted path indicates a user paying the fare on a — ¢, and evading the toll
onc—d—e.

4.3 Spatio-temporal aspects

The models presented so far do not take time into account. This is an important
challenge, since the inspectors must move along arcs of the networks and their
duties must not exceed a certain length. In consequence, the set Q defined by
Relations (4) and (5) might not be well suited to represent all possible marginal
strategies of the inspector.

The authors of [18] have proposed to represent the duties of metro ticket
inspectors by flows in an appropriate graph. Their approach provides exact
schedules for each inspector. More precisely, a strategy consists of a sequence
of trains that the inspector must control at a given time. However, this very
fine model might not be very robust to any kind of delays or incidents that
can occur in the inspection process, so that the inspectors might not be able to
follow the prescribed schedule. To cope with this problem, planners of the BAG
(the authority in charge of fare inspections on the German motorways) allocate
the inspectors to a set of predefined control areas, which they must patrol during
a given time interval [3]. The graph structure which we next present combines
ideas of [3] and [18].

We consider a time discretization 7 = {0,...,T — 1} of the period of in-
terest, typically one day, and we make the simplifying assumption that every
network user starts and ends his trip within the same time window ¢t € 7. We
denote by Go = (Ey, Vp) the graph representing the static problem (obtained e.g.
by using the construction of § 4.1 or § 4.2), and we make a time-expanded graph
G = (V, E) which contains T parallel copies of Go: V =VyxT and E = EgxT.
A commodity k in G corresponds to a pair of vertices (s, dy) € V2, such that
sk = (u,t) and dj, = (v,t) for a pair of vertices (u,v) € V and a time window
teT.

A control area S € S consists of a subset of arcs S C Ey (control areas might
overlap). We create a graph C' = (S, A) which connects nearby control areas,
i.e. (S;,S;) € A whenever it is possible for a team of inspectors to control S; at
time ¢t and S; at t+1. Again, we create a time-expanded version D = (Sx T, A)

10
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s
AFTERNOON e @

Figure 3: Example for a graph C connecting the control areas (lower right corner)
and its associated cyclic duty graph D (main drawing), for a time discretization of one
day with 7" = 6 time windows. The highlighted path represents the duty of a team
controlling S; during the morning, S5 at noon and S3 during the afternoon.

of C', which we call the cyclic duty graph, as follows:
A :{((5, £),(S,t+1mod T)) : VS e s}

U {((s, £),(8",t+1mod T) : ¥(S,8") € A)}.

We have depicted in Figure 3 a simple example for a graph C' and the
corresponding cyclic duty graph D. The inspectors’ duties can be represented
by paths in D. In practice, duties have a prescribed length, for example 8
hours, which corresponds to paths of a certain length L in D. With a simple
construction, it is possible to create a modified duty graph D with start and
end depot vertices ds and d;, that enjoys the property that every (ds, d;)—path
corresponds to a path of length L in D. Hence the mixed strategy of a single
inspector can be represented by a (ds, d;)—flow of value one in D. We refer the
reader to [18] for details about this construction.

Now, we assume that there are vy teams of inspectors, as in the paragraph
preceding Equation (4). The inspector’s strategy can hence be represented by
a (ds, d;)—flow § of value v in D = (V, A):

~ 0 if v=ds;
Yv eV, do’ — q, = _ it v =dy; 8
Z a Z fa { OAV i)tht:rwis:a. ( )
a’'€6T(v) a€d™ (v)
The vertex set of D is

V=8xTx{l,...,L}U{ds,d:},

11



and similar to [18] it can be seen that the expected number of inspectors in the
control area S € S at time ¢t is

L
d(st) = Z Z Ja- (9)

=1 a€6—(S,t,0)

As a simple approximation we can assume that the inspectors are spread uni-
formly on all the arcs of a control area, so that an inspector on the control area
S is present on arc e € S with probability

le
Rel§ = <
€| Ze/es le”

where [, denotes the length of arc e. It follows that the expected number of
inspectors on e € Ej at time ¢ is

Z Ke|S 4(S,t)-

{S€S: S2¢}

If this quantity is smaller than one, it can be interpreted as the marginal proba-
bility q(cs) to find an inspector team on the arc (e,t) € E of the time-expanded
graph G. To summarize, the set of marginal strategies Q of the inspector can
be defined by:

Q= {q e (Ry)P: 3G e (R st

(1) g satisfies the flow conservation (8);

L
(“) V(e, t) S Ea d(e,t) S Z Rels Z Z da%

{SeS: Soe} =1 acs—(S,t,0)

(iii) V(e,t) € B, qrey < 1}.

To conclude this section, we briefly mention some simple extensions that can
be incorporated into this model (by adapting the graph G or D in an intuitive
fashion):

e Several side constraints can be added in the above definition of Q. For
example, the proportion of duties starting at night can be bounded from
above, or we can bound from below the inspection frequency of some
control areas to ensure a network-wide control.

e If all controllers do not start from the same location in the network, it is
possible to consider several start and end depot vertices in the duty graph
D.

e The possibility for a user to advance or postpone her departure (in order
to travel at a time with fewer controls) could be represented by adding
arcs in G that link the different time copies of Gg, with a cost ¢ for the
delay.

12



Remark 4.2. A more advanced possibility would be to use a set Q of Markov
patrolling policies, as proposed e.g. in [9, 17]. The idea is to represent the
location of inspectors (in space and time) as states of a Markov Decision Process
(MDP). In particular, it is possible to add special states in the MDP to represent
the fact that inspectors can be delayed, with a fixed rate of unexpected events.
This allows one to use a very fine time discretization. Then, feasible controls
q € Q correspond to transition probabilities in the MDP, and can be represented
by flows in a transition graph.

We shall now return to the general model of SC games introduced in Sec-
tion 3, and we study the problem of computing some equilibria for a generic

game G = (G,C,W, Q, a).

5 Computation of Equilibria

The notion of equilibrium is essential in game theory. Depending on the abil-
ity of the players to observe the others’ actions, committing to a Nash or a
Stackelberg equilibrium may be better suited [11]. However, there is a natural
interpretation for the Stackelberg strategies of the inspector: the Stackelberg
game model assumes that every user of the network plays with a best response to
the inspector’s strategy q. In particular, a Stackelberg strategy for MAXTOLL
(o = 0) maximizes the (weighted) number of users who have an incentive to
pay the fares (with weights corresponding to the fares). In fact, one can expect
that many users are always honest and pay the network fares independently of
the frequency of inspections. To some extent, the Stackelberg equilibrium can
hence be considered as an approach to maximize the inspector’s payoff in the
worst case. This is not truly the worst-case situation, since network users could
take only toll-free sections (in the case of a transit system for example, users
could decide to walk), thus depriving the inspector from all sources of profit.
However, there is no reason to assume that network users want to minimize the
inspector’s payoff, and the Stackelberg approach guards ourselves from crafty
behaviours.

Remark 5.1. The optimization problems studied in this section solely focus
on the computation of an optimal control strategy g € Q. Of course, other
parameters of the problems could be used as decision variables, too, without
making the problem substantially harder. For example, it seems natural to
optimize the quantity of resources 7 used for the controlling task, cf. Eq. (4).
This can be done by adding a cost term —c7y in the objective functions. Similarly,
it is also possible to optimize the toll fares, and we could imagine a suitable
criterion to select the value of the penalty. However, these variables are usually
not under the control of the same decision-maker. In the case of the application
to German motorways, the decision of a toll fare per kilometer is highly political,
and our partner does not wish to optimize the number of fare inspectors 7y to
hire.
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5.1 Nash equilibria

We next show that the SC game G can be transformed into a zero-sum game
that has the same Nash equilibria.

Proposition 5.2. Let G = (G,C,{w, 3,0}, Q,a) be a SC game. If a > 0, then
G has the same set of NE as the zero-sum game G' = (G,C,{w,w,o},Q,1),
where the inspector’s rewards B. have been replaced by the arc costs w. and
a=1. Ifa=0, (p,q) is a NE for all g € Q and p € BR(q).

Proof. We start with the case « > 0. First note that G’ is zero-sum indeed:

Payoft{ (p,q) + Y _ xPayoftf (p,q) =0.
ke

The NE are entirely defined by the set of best responses of every player. We
are going to see that these sets coincide for G and G’, from which the conclusion
follows. The payoff of Player k is the same in both games, so BR(q) is the
same in G and G’. Now, the set of best responses for the inspector in G is

BR (p) = argmax > pe(aoeq. + ).
eckl

For a fixed p, let us add ) ., pe(awe — Bc) in the function to maximize. This
term does not depend on g and so it does not change the set of maximizers:

BRS (p) = argmax a3 pe(oeq. +we) = BRS (p).
eelE

Finally, the case a = 0 is trivial, because Payoffg (p, q) does not depend on q.
O

It is well known that a Nash equilibrium of 2-player zero-sum games can
be computed by linear programming. In our case, the game G’ has more than
two players, but its special structure could allow us to formulate the game as
a pairwise zero-sum polymatrix game [2], a class of games for which a Nash
equilibrium can also be computed by linear programming [4]. However, the LP
that we would obtain would have a constraint for each pure strategy of the
network users, a number which might be exponentially large. To cope with this
problem, we shall next exploit the flow representation of the users’ strategies
and the shortest path characterization of best responses. This yields a compact
LP for the computation of a NE of G.

By Proposition 3.1 we know that the loss of Player k at a NE (p,q) is
spl,(w + o o q). The computation of a NE of G’ (and hence of G) thus reduces
to the computation of a strategy g € Q maximizing ), @) sply(w + o 0 q), a
weighted sum of shortest path lengths. This can be done by linear programming,
by introducing some vertex potentials g2 for every source vertex s € S := {sy, :
k € K} and for all v € V:
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max Z xkyzz (10a)

Y kex

s. t. Yo — Yo < We + 0ege, Vs €S, Ve= (u,v) € Ej (10b)
ys =0, Vs € S; (10c)
qeQ. (10d)

The constraints (10b)-(10c) are from the classical linear programming for-
mulation of the single-source shortest path problem, and bound the potential y
from above by the shortest path length from s to v in the graph G = (V, E, ¢(q)).
The objective function (10a) hence asks for the maximization of the weighted
sum of shortest paths >, xxAr(q) over the set of feasible inspector’s strate-
gies (10d).

We point out that the optimal dual variables of constraint (10b) for a given
s € S define a single-source multi-sink flow on the subset of commodities
Ks:={k € K: sy = s} originating in s. This flow can be decomposed as a sum
of (s, dy)—flows, which yields the corresponding Nash equilibrium strategy p*
for every Player k.

Observe that in accordance with Proposition 5.2, the LP (10) for the com-
putation of a Nash equilibrium does not depend on the parameters o and 3.
The concept of a Stackelberg equilibrium looks much more suitable for our ap-
plication, but as we shall see, the computation of such an equilibrium is also
much harder.

5.2 Stackelberg equilibria

Using ideas similar to [13], a mixed integer program (MIP) can be formulated
for the computation of a Stackelberg equilibrium (p, q). We reduce drastically
the number of required variables, by using a single-source multi-sink flow

ps _ Z T pk

{k:sp=s}

for each s € S, instead of using a flow p* for every commodity. With the
use of big-M constraints, we ensure that this flow uses only arcs belonging to
SPi(w 4 o o q). By Proposition 3.1, p® hence corresponds to best-response
strategies to g for the players whose commodity source is s.
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max Z axkyj’; + Z Z 05 (Be — awe) (11a)

Q.Y 1.P

ke sESecE
s. t.
0 < we + oeqe — (Yp — ¥a) < Me(1 — p),
Vs € S, Ve = (u,v) EE; (11b)
ys =0, Vs € S; (11¢c)
q€eQ, (11d)

zp if s =v;
Zps/ _ Zps _ kEXICz
e e if (s,v) € Ks;

e'esT(v)  e€s™ (v) _$65,v) otherwise,
Vs e S, Yv eV, (11e)
0<pi< M3us, Vs € S, Ve e E; (11f)
pe €40,13}, V(s,e) € S x E. (11g)

As in Problem (10), constraints (11b)-(11c) bound y3* from above by the
shortest path length for commodity k£ in the graph with weights w + o o g,
and constraint (11d) forces g to be a feasible strategy for the inspector. We
introduce a binary variable p? which can take the value 1 only if arc e belongs
to a shortest path tree rooted at s (second inequality in (11b)). Indeed, the
first inequality in (11b) is saturated when the difference of potential (y5 — v?)
between the extreme points of an arc e = (u, v) equals the weight w, + o.g. of
e, which indicates that there is a shortest path originating at s that uses e.

Equation (11e) forces p® to be a single-source multi-sink flow rooted at s,
whose demand on the commodity k € Ky :={k € K : s, = s} corresponds to
the number of users zj. Constraint (11f) ensures that the flow p® only uses
arcs from SPy(w + o o q). Now, p® can be decomposed as > ; i x,p®, where
pF € Fy is a flow through commodity k of value one. By construction, p* is a
flow of minimal cost spl,(w+ 0o 0q) =Y, PF(we + geoe), and it follows that
pF is a best response to g; see Proposition 3.1.

Finally, the objective function (11a) reduces to the inspector’s payoff (7)
when replacing yz’; and p? by their values as a function of p*:

S any + 30 3 4B, - awe)

kex seES eckE
k
= E ATk E pe(we +qe0'6)+
kex eckE

DN wpe(Be — awe)

seSecE keK,

= Z Tk Zp?(ocqeae + Be).

ke eckE
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5.3 Stackelberg formulation for MAXTOLL in the transit
network model

In this section, we show that the Stackelberg MIP (11) can be simplified for the
case of the transit network model introduced in §4.1 with « = 0 (MAXTOLL).
In this situation indeed, the inspector’s payoff can be expressed as >, 7/,

where iy, is a binary variable indicating whether Player k£ has an incentive to
pay the toll. So the flows of network users p® are not involved anymore:

max Z TpTr Mk (12a)

a.y,p frmt
s. t.

Yo — Yy < We + 0ege, Vs €S, Ve=(u,v) € E; (12b)

ys =0, Vs € S; (12¢)

we, =y < Mi(1— py), Vk € K; (12d)
k

i € {0,1}, Vk € K; (12e)

qe Q. (12f)

The binary indicator variable pj, can take the value 1 if and only if the inequality
corresponding to &, = (si,dy) in (12b) is saturated, i.e. when the single arc
($k, (fk) forms a shortest path for commodity %, which means that Player k has
an incentive to pay the toll.

6 The Price of Spite of SC games

We have seen in the last section that computing a NE is easy (and can be done by
LP), while the computation of a SSE is harder and requires integer variables. In
this section, we will first show that the computation of a Stackelberg equilibrium
is NP-hard indeed, which justifies the mixed integer programming approach of
§ 5.2. Then, we will see that under some additional assumptions —that are
typically satisfied for the model structures presented in Section 4— the optimal
Stackelberg payoff of the inspector can be reasonably well approximated by
committing to a Nash strategy. Because the Nash strategy consists in allocating
the controls in the most harmful way for the network users, we will introduce
the concept of “price of spite” (PoS) for an SC game, which can be seen as the
price of anarchy of the game when the performance of a solution is measured
by the inspector’s payoff in the Stackelberg model.

6.1 Computing a Stackelberg strategy is NP-hard

As evoked earlier, an SC game can be reformulated as a polymatrix game, see (2)
and Section 2.3 in [2], in which the inspector simultaneously plays against all
network users, but there is no interaction between users. Such games are called
“Bayesian games” by some authors, because they are equivalent to the following
situation: the inspector plays against the users of an unknown commodity, which
is chosen to be (s, d,) with probability proportional to . It has been shown by
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Conitzer and Sandholm [5] that computing a Stackelberg strategy of the leader
in a Bayesian game is NP-hard, thanks to a reduction from SET-COVER.

However, SC games do not entail the whole generality of Bayesian games.
In particular, the case « = 1 (MAXPROFIT) appears to be an easier problem,
because the sub-game played between the inspector and Player k has a particular
zero-sum plus costs structure (the zero-sum part corresponds to the rewards and
penalties paid to the inspector, and the cost part accounts for the difference
> ecr(we — Be) charged to Player k& when she chooses the route R). Hence, the
MAXPROFIT game can be reformulated as a pairwise zero-sum polymatrix
game, with a dummy player who has a single strategy, consisting in receiving
the aforementioned cost part. It is known that pairwise zero-sum polymatrix
games are polynomially solvable, i.e., a Nash equilibrium can be computed in
polynomial time [4]. As a byproduct of the next theorem, we obtain that the
computation of a Stackelberg strategy of the leader is NP-hard in a polymatrix
game, even when the game is pairwise zero-sum. This could not have been
deduced from any result in [5]. Our proof is based on a reduction from the 0/1
KNAPSACK problem and is given in Appendix A.

Theorem 6.1 (Computing a Stackelberg strategy is NP-hard). Given an SC
game G = (G,C, W, Q, ), it is NP-hard to compute a Stackelberg strategy of the
inspector, even when o = 1, Player k has only two routes from sy to dy, and
Q={qe lel © Y ecp Qe = 1} is the standard probability simplex over the set
of arcs E.

Corollary 6.2. Consider a pairwise zero-sum polymatriz game G, in which
one of the players is seen as the leader. It is NP-hard to compute a Stackelberg
equilibrium of G.

Proof. Consider an arbitrary SC game G as in Theorem 6.1 (o = 1, two routes
per commodity, Q is the unit simplex). Since o = 1, the game has a zero-
sum plus costs structure, and so G can be represented as a pairwise zero-sum
polymatrix game. Moreover, the restrictions on Q and the number of routes per
commodity ensure that the reduction from G to a polymatrix game in normal
form is polynomial. O

Remark 6.3. The reduction from KNAPSACK suggests that computing a SSE
in a pairwise zero-sum polymatrix game is maybe not so hard. Indeed, it is well
known that there is a fully polynomial-time approximation scheme (FPTAS)
for KNAPSACK, which relies on dynamic programming. This leaves open the
question of the approximability of MAXPROFIT in polynomial time. We want
to investigate this issue in future work.

6.2 The price of spite

In game theory, the concept of Price of Anarchy (PoA) has been introduced
to measure the loss of efficiency of a system when its agents adopt a selfish
behavior, and has been popularized by the pioneering work of Roughgarden
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and Tardos on congestion games [15]. The price of spite that we will next
define has a similar vein, albeit a different meaning. Indeed, in SC games the
Nash equilibrium should not be interpreted as the natural outcome of a game
played by selfish players. We have argued that the inspector should commit to a
Stackelberg strategy, but a Nash strategy could still be seen as a heuristic choice
for the inspector: maximizing the total loss of his adversaries is much easier than
maximizing his own payoff. The price of spite is thus a measure of how the payoff
of the inspector degrades when choosing this most harmful strategy. Perhaps a
better name for this concept would have been price of non-commitment. Indeed,
the inspector does not really aim to spite when committing to a NE. Instead,
the Nash model makes sense when the inspector cannot credibly commit to a
strategy before the network users take their decisions, and hence he must play
a best response.

Definition 6.4. Consider an SC game G = (G,C, W, Q, ). We measure the
efficiency of an inspector strategy q € Q by the inspector’s payoff in the Stack-
elberg model (i.e., network users select a best response route that favors the
inspector most):

H = e ele ). 1
(q) pé%%’fq)e;;p (a0eqe + Be) (13)

The next proposition gives an upper bound which is very useful to measure
the quality of a Nash strategy g*. We will need some additional notation.
Given a strategy p € F(C) of the network users, we define the metric d(p) =
Y eci Pe(@we — fBc). This corresponds to the total latency experienced by all
network users when the time to travel on arc e is aw, — .. We also define dyin
to be the smallest possible value of d(p), that is,

dmin == min Zpe(awe - ﬁe) = Zxk Splk(aw - /6)
k

F(C
PEF( )eeE

Note that (cw. — B.) is nonnegative if « = 1, because w, > B.. However this
quantity could be negative if a is small. But we can still define dy,;, > —o0 if G
has no cycle of negative weight (for the weights aw, — ). In particular, this
happens in the transit model presented in Section 4.1, because the only arcs
with a negative weight are the special toll-arcs (s, dy) and they do not belong
to any cycle.

We denote the inspector’s payoff by I(p,q), so that H(q) =
maxpepr(q) 1 (P, q). For short, we say that a strategy p € BR(q) satisfying
H(q) = I(p,q) is a tie-breaking best response to q. We denote the total loss of
all network users by A(p, q) := > c g Pe(0cqe + we). A simple calculation shows
that the following relation holds for all strategy profiles (p,q) € F(C) x Q:

I(p,q) = aA(p,q) — d(p). (14)

Proposition 6.5. Let G = (G,C, W, Q,«) be a SC game such that G has no
negative weight cycle (with respect to the weights aw — 3). Let (p*,q*) be a
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NE of G and let p be a tie-breaking best response to q*. Then, for all g € Q we
have

Proof. Let p be a tie-breaking best response to g, so we have H(q) = I(p,q)
and H(q*) = I(p,q*). By definition of the NE, it holds that A(p*,q*) >
A(p, q), because p € BR(q). Moreover, we have A(p*, q*) = A(p, g*) because
Pp € BR(g*). We now apply the relation (14) two times:

H(q) = I(p.q) = aA(p,q) — d(p)
< alA(p,q") — d(p)
=I1(p,q") +d(p) — d(p)
< H(q*) +d(p) — dmin,

where the last inequality follows from d(p) > dpin. O

In words, this proposition bounds the loss of efficiency of the Nash strat-
egy q* by the detour done by the tie-breaking best response flow p (for the
metric d). Given the strategy g*, we point out that dyi, and d(p) correspond
respectively to shortest path lengths (for the metric d()) in the whole graph and
in the directed acyclic subgraphs SPy(w + o o ¢*). In real-world applications,
this bound turns out to be excellent for & = 1 (MAXPROFIT); cf. Section 7.

In the remainder of this section, we assume that the rewards (. are nonneg-
ative. This ensures that the payoff of the inspector is always nonnegative, and
justifies the following definition:

Definition 6.6 (price of spite). Define by N C Q the set of Nash equilibrium
strategies of the inspector. The price of spite is defined as the worst possible
ratio between a Stackelberg and a Nash strategy:

Without further assumptions on the model however, there is no hope to
obtain an upper bound for the price of spite of a SC game G. Indeed, a reviewer
has suggested an example with the following properties: the efficiency of the
Nash strategy is H(g*) = 0, while the Stackelberg strategy has efficiency H(q) =
1. This example is sketched in Appendix B. A bound can be obtained though,
under a set of additional assumptions. We next consider a set of hypotheses
that are satisfied by the distance-based toll in Germany. In Remark 6.8, we
will also give a similar result for the model of public transportation network
presented in Section 4.1.

We assume that every arc e € F has a length [, > 0; in addition, there are
some constants b > 0 (basic costs per km) and f > 0 (fare per km) such that
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(A1) There exists a partition of the arc set E = Ep U Eg U Ep (pay, evasion,
and dummy arcs) such that

we:(b+f)l€7 ﬁ(i:fle, 0520 lfeEEp
we > bl, Be=0, 0.>0 ifeecEg
we > 0, Be=0.=1.=0 ifee Ep

(A2) The shortest (sy,dr)—path R for commodity & has length £}, := " _p le,

and there exists an (sk,dy)—path R’;ay that uses only arcs of type Ep

and Ep (i.e., no evasion arc) where the total user costs are ) . pr  we =
pay

(b + f)fk

(A3) There exists a uniform control strategy qV € Q such that ¢ = 0 for all
toll-free arcs e € Ep U Ep, and ¢V is proportional to o !l. on the evasion
arcs, that is, Ju > 0: Ve € Ep, ¢¢ = u(lr—z

Note that the quantity u from Assumption (A3) may be interpreted as the
average penalty per evaded kilometer. For example, consider the simple control
set where the pure strategies of the inspectors are all subsets of F of cardinal-
ity v; see (4)-(5). It is easy to verify that « must be equal to

v

—1,
ZeEEE Oe l@

so that Assumption (A3) is satisfied whenever yo_ 'l < 37 . o'l for all
e€ Fg.

u(y) = (15)

Theorem 6.7. Consider an SC game G satisfying assumptions (A1)-(A3).
Then,

PoS < max (17 i)
ou

Proof. Recall that spl,(I) = ¢;. We denote by £ the minimal distance covered
by all network users: £ := 3, . xxl. We first claim that the efficiency of any
feasible strategy q € Q is bounded by H(q) < f£. Otherwise, let p € BR(q) be
such that I(p,q) > f£. This implies the existence of a commodity & for which
ZeeEp’g(aUeqe + Be) > fli. Denote by ¢; the average length covered by flow
pk: 0 = ZeeE plgle > {y. Observe that bl < w, — . for all e € E (this follows
from (A1)). Thus, the total loss of Player k is

> pE(oeqe +we) > Y pE(oeqe + Be) + b > fli + bl
ecE ecE

But then, this contradicts p € BR(q), because the flow placing all the weight
on the (s, dy)—path RE, of Assumption (A2) yields a loss (f + b)y.
Then, let (p*, q*) be a NE of G, and observe that H(q*) > I(p*, g*). Since

q* € BR(p*), A(p*,q*) = maxqeg ) cp Pi(0cqe+w,), and Equation (14) gives

I(p*, q*) = Igleaé( ZPZ(aUeQe + ﬁe)'
ecE
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Therefore,

I(p*,q*) > min max Q0eqe +
(P*.q )—per) max EGZEpe( eQe + Be)

= max min Qaoeqe + ,
qeQ peF(C) eezEpe( ede Be)

where the last equality follows e.g. from Sion’s minimax theorem. Now, for the
homogeneous control strategy qU from Assumption (A3), we obtain

I *7 * > i @l6+ Glﬁ
(p q)_pgg?c)<aUZp FY b )

ecERp ecEp
> min(f, au)L.

We finally obtain the desired inequality, by combining the inequalities
H(g*) > min(f, au)£ and H(q) < f£ for an arbitrary q € Q:

Ma) o —ma (1L,

O

Remark 6.8. We can also adapt the proof of Theorem 6.7 to work in the frame-
work of the transit network model of Section 4.1. Here, we need to assume
e > 0 (Ve € Epy) and the existence of a homogeneous control ¢ = uo_ 1.
(Ve € Ey). By using a similar reasoning, we can prove that

>k ThTh

PoS < .
o= >k T min(7, auly)

Remark 6.9. The key point in the previous proof is that the graph G contains
no arc such that 8, = o, = 0 (except possibly on dummy arcs that have a length
le = 0). Such arcs typically correspond to shortcut (or detour) arcs that avoid
the paying network, and can yield an arbitrarily large PoS; see Appendix B.
However, we show in Section 7.4 that the presence of shortcuts only has a limited
impact on the PoS for the German truck toll scenario.

7 Numerical Results

We have solved the models presented in this paper for several instances. On
the one hand, random instances were generated to demonstrate the scalability
of our model; cf. Section 7.1. On the other hand, we have used real data
from the German motorways network, and we shall analyze our results for both
static instances (Section 7.2-7.3) and instances where the time is taken into
account (Section 7.4). In particular, we will investigate the quality of the bounds
derived in Section 6.2 for the price of spite.
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Instance Size Efficiency of Lower bound Computation time (s) and Gap (%)
Nash vs. Stackelberg | Nash eff. for a =1
Vol |Eo| |C| a=1 a=0 cf. Prop 6.5 Nash a=1 Gap a=0 Gap
10 32 27 100.00% 88.24% 100.00% 0.001 0.01 0.00% 0.03 0.00%
15 73 65 99.74% 86.33% 99.65% 0.006 0.49 0.01% 0.18 0.01%
20 70 131 99.79% 69.90% 99.19% 0.012 0.80 0.01% 18.58 0.01%
25 199 194 98.47% 87.83% 98.27% 0.082 6.25 0.01% 18.11 0.01%
30 342 283 99.42% 94.70% 99.41% 0.336 7.34 0.01% 10.92 0.01%
35 431 382 99.43% 93.13% 99.29% 0.250 39.15 0.01% 45.16 0.01%
40 526 462 99.74% 95.24% 99.60% 0.274 54.08 0.01% 51.24 0.01%
45 543 623 99.53% 95.23% 99.23% 0.341 3216.10 0.01% 546.31 0.01%
50 440 783 98.54% 84.71% 97.64% 2.154 3600.00 0.74% 3600.00 6.41%
55 1261 962 100.00% 100.00% 100.00% 5.404 80.49 0.00% 50.78 0.00%
60 896 1123 99.32% 94.70% 99.09% 8.316 3600.00 0.20% | 3600.00 0.33%
65 757 1346 98.82% 91.81% 97.96% 6.116 3600.00 0.84% | 3600.00 5.39%
70 948 1510 99.14% 92.86% 98.77% 5.402 3600.00 0.31% | 3600.00 3.37%
75 1157 1705 99.33% 95.73% 99.09% 18.115 3600.00 0.21% | 3600.00 0.44%
100 2018 3099 99.92% 98.94% 99.87% 60.670 3600.00 0.06% | 3600.00 0.41%
125 3037 4820 99.99% 100.00% 99.64% 268.145 | 3600.00 0.36% | 3600.00 2.36%
150 2660 7017 | 100.00% 100.00% 98.63% 481.834 | 3600.00 1.39% | 3600.00 9.62%

Table 1: Computational results for randomly generated instances. The columns
of this table are explained in Section 7.1.

Mobile controllers drive on the network and are able to control every truck
they overtake. Hence, the expected penalty to pay on a section where an in-
spector is driving can be approximated by ( ;’—; — 1)P, where P is the amount
of a fine, and v; and vr represent the average speeds of the inspectors and the
truck drivers, respectively. In all our experiments, we have set o, = 60€ on
every evasion arc (the penalty is P = 400€ and controllers drive 15% faster
than truck drivers). The basic costs (e.g. fuel and driver’s salary) were set to
b = 0.5€/km, and the toll fares are f = 0.17€/km.

All our instances were solved with CPLEX [6], on a PC with 8 cores at 3.2
GHz.

7.1 Randomly generated instances

We have generated instances of the SC games as follows. The graph Gg =
(Vo, Ep) contains n vertices and for every ordered pair of vertices we generate
a directed arc with a probability chosen between 0.1 and 0.4, depending on the
instance. Then, the graph G of the SC game is created according to the transit
model described in Section 4.1. A traffic volume zj, is randomly generated for
each of the n(n — 1) origin-destination pairs of the network, with a log-normal
distribution. To construct the set of commodities C, we sort the z; and keep
only the top commodities, so that 80% of the total traffic is considered in the
instance. Finally, we considered the strategy set Q defined by Relations (4)—(5),
with v chosen such that the ratio ﬁ = 2; see (15).

The results are displayed in Table 1. Each row shows the size of the con-
sidered instance (number of vertices n = |Vp|, number of arcs |Ey| and number

of commodities |C|; the efficiency 1}{{(((;;)) of the Nash strategy q*, compared to

the best known strategy g for the MAXPROFIT problem (o = 1) and for
the MAXTOLL problem (o = 0); the bound on the efficiency (for @ = 1)
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of the Nash strategy calculated with the result of Proposition 6.5, that is,
off > @)

= H(q")+d(P)—dmin
played: each instance was solved with CPLEX, with a time limit of one hour.
The computing time of the Nash LP (10), the Stackelberg MIP (11) and the
MAXTOLL MIP (12) are displayed in each row, as well as the optimality gap
reached within the allocated time for these two MIPs.

The instances with 3600s of CPU time are those that stopped because the
time limit had been reached; in almost all cases, we see that CPLEX returned
a solution guaranteed to be within 1% of the optimum for MAXPROFIT, and
within 5% for MAXTOLL. Note also that the bound of Proposition 6.5 is often
very tight. This bound guarantees e.g. that the efficiency of the NE is at least
99.41% for the instance where |Vy| = 30, and indeed its efficiency compared to
the SSE is 99.42%.

For several instances, the efficiency of the Nash equilibrium equals that of the
best known solution for MAXPROFIT or MAXTOLL. In these cases, it means
that the MIP solver was not able to improve on the Nash equilibrium, which was
used to make a warm start. We think that simple greedy or exchange heuristics
could help to quickly identify a better solution (in particular for MAXTOLL),
and consequently reduce the computing time required to close the optimality

gap.

Besides, some information on the computation is dis-

7.2 Static case, transit network model

We next present results for two instances taken from the application to the
German motorways, in the static case (i.e., time is not taken into account),
with the simple transit network model of Section 4.1. The results presented
below rely on the set of strategies Q described in (4)-(5), where a set of ~
inspectors can be arbitrarily distributed over the arcs of the network.

In the upper part of Figure 4(a), a Nash equilibrium strategy q* of the
inspector on the whole German network is represented. Here it was assumed
that v = 50 controllers are simultaneously present on the network, which has
319 vertices, 2948 arcs and 5013 commodities. The dotted arcs on the figure
represent toll-free shortcuts, where the cost per kilometer is twice as high as on
the the motorway network (w. = 2bl.), but no control can occur (c.=0).

For « = 1 (MAXPROFIT), the bound H(q) < H(q*) + d(p) — dmin of
Proposition 6.5 guarantees that the payoff from this Nash strategy is at least
99.3% of the optimal Stackelberg payoff. To compute this bound, note that we
must first compute a Nash strategy q* and its tie-breaking best response p. In
contrast, the bound of Theorem 6.7 depends only on the per kilometer fares f
and the uniform penalty rate u. For the values f and u of this instance, the
upper bound on the price of spite is % = 1.44.

Further tests on a smaller network representing the region of Berlin-
Brandenburg (45 vertices, 130 arcs, 596 commodities) confirm that the Nash
equilibrium strategy might be a good trade-off between the computation time
and the efficiency of the controls. This network is represented in the lower part
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Figure 4: (a): Graphs of the two instances discussed in Section 7.2, with shades
showing a near-optimal strategy for MAXPROFIT and v = 50 on the network of
Germany (above) and an optimal Stackelberg strategy for MAXTOLL and v = 3 for
Berlin-Brandenburg (below). (b)-(e): Experimental results for the region of Berlin-
Brandenburg.

of Figure 4(a), with shades showing a Stackelberg strategy for MAXTOLL and
v = 3. Figures 4(b)-4(d) compare four strategies as a function of the num-
ber of controllers «: the strategies MAXPROFIT and MAXTOLL, the Nash
equilibrium strategy computed by LP (10), and a strategy in which control in-
tensities are proportional to traffic volumes on each arc of the physical network
Gy (of course, no inspector is allocated to the dummy toll arcs where o, = 0).
Figure 4(b) shows the profit collected when committing to one of these strate-
gies (in the Stackelberg model, i.e. drivers select a best response which favors
the inspector most). We see in Figure 4(c) that the Nash strategy is always
near-optimal in terms of profit. However, we point out that the MAXTOLL
strategy outperforms the others in terms of toll enforcement (Figure 4(d)), at
the price of a small loss in total profit (7% for v = 2 and 2% for v = 4). In
another experiment, we have set v = 3 and we have varied the parameter «,
which joins MAXPROFIT (a = 1) to MAXTOLL (o = 0). Figure 4(e) shows
that for « = 0.75, one can find a solution with almost the same profit as in
MAXPROFIT, but with a higher fraction coming from the toll, and hence less
evasion.
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Figure 5: Inspector’s Stackelberg strategy (left) and driver flows (right) for the MAX-
PROFIT problem with v = 6. In the lower 3D-figure, the width of the arcs is pro-
portional to the number of network users in the two-layer graph. The lower level
represents fare evasion, the upper level represents fare compliance, and darker arcs
correspond to toll-free sections and transitions between the two levels.

7.3 Static case, two-layer network model

We shall now present some results for an instance constructed with the two-layer
network model of Section 4.2. The graph of this instance represents the federal
state of Rhineland-Palatinate; the graph G has 37 vertices, 142 arcs and 323
commodities, which yields 148 vertices and 506 arcs in the two-layer graph G.

The Stackelberg strategy of the inspector for MAXPROFIT and v = 6 is
indicated in Figure 5, as well as the flows of network users in the two-layer graph.
In the northern part of the graph, the arcs of the toll evasion level are much
wider than the corresponding arcs in the fare compliance level, which indicates
that many users have no incentive to pay the toll here.

The evolution of the inspector’s payoff with v is plotted in Figure 6, for the
Stackelberg, Nash, and proportional strategies (as a percentage of the maximum,
i.e. the profit reached with the Stackelberg strategy). Here again, the Nash
strategy is optimal in most cases (except for v = 10 where it captures 98.7%
of the optimum). Curiously, the inspector’s payoff sinks between v = 7 and
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Figure 6: Evolution of the total profit and number of kilometers driven on the al-
ternative toll-free trunk roads with v, for the Rhineland-Palatinate instance in the
MAXPROFIT setting.

Figure 7: Graph C joining the control areas for the Saxony-Anhalt instance (left);
Nash strategies of the inspector during four time windows, computed for v = 20
inspector teams (right). Shades indicate inspection frequencies.

v = 8 with the proportional strategy. This is explained by the lower graph of
Figure 6: when v = 8, this strategy assigns too high a control frequency on
certain arcs, which creates a situation where many drivers have an incentive to
take a toll-free trunk road, thus depriving the inspector of the incomes from
both fares and fines on this arc.

7.4 Examples with time dynamics

We have considered several real-world instances corresponding to several con-
trol regions of Germany, for the model with cyclic duty graphs presented in
Section 4.3. For example, the network corresponding to the control region lo-
cated around the federal state of Saxony-Anhalt is depicted in Figure 7. The
upper part of the figure shows the graph C' = (S, A) connecting 17 sub-control
areas, with vertices whose location coincide with the barycenter of each control
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Instance shortcuts Vo]  |Eo| V| |E| IC] eff (%) % CPU (s)
Saxony Anhalt no 30 60 903 2453 1190 99.85 1.94 2.32
Saxony Anhalt yes 30 106 903 3005 1190 99.85 - 10.97
Lower Saxony no 38 78 1263 3759 2016  100.00 1.41 6.48
Lower Saxony yes 38 108 1263 4119 2016 99.91 - 15.76
Berlin-Brandenburg no 62 128 1992 7769 4985 99.96 2.06 20.17
Berlin-Brandenburg yes 62 328 1992 10169 4985 99.29 - 254.11
Northern Bavaria no 56 116 1458 4073 1895 100.00 2.17 9.09
Northern Bavaria yes 56 240 1458 5561 1895 99.85 - 78.80
Southern Bavaria no 65 130 1985 6582 3817 98.63 3.05 20.21
Southern Bavaria yes 56 304 1985 8670 3817 96.05 - 248.40
Schleswig-Holstein no 46 92 1371 3543 1620 100.00 2.10 6.91
Schleswig-Holstein yes 46 384 1371 7047 1620 95.34 - 13.22

Table 2: Bounds on the price of spite, for several real-world instances.

area S € §. We have used a time discretization of two hours, so that an in-
spector’s duty time of 8 hours corresponds to a length L = 4 in the cyclic duty
graph D. The lower part of Figure 7 shows the intensity of the controls in the
Nash strategy, during four different time windows.

Table 2 summarizes the results for several control regions of Germany, for
the MAXPROFIT problem (o = 1). For each instance, the table gives the
size of both the graph Gy = (Vp, Ep) of the physical network, and its time-
expanded version G = (V| E) that was constructed along the lines of Section 4.

In addition, the table shows the ratio eff = W‘(’;;_m

below the efficiency of the Nash strategy g* (Proposition 6.5); the bound 5 on
the PoS (Theorem 6.7); and the CPU time to solve the LP (10) with CPLEX.

To evaluate the impact of shortcut arcs that allow the user to avoid the
paying network (Remark 6.9) we have considered two variants of each instance.
An instance without shortcuts, where we consider only the arcs of the motorway
network (solid arcs in Figure 8), and an instance with shortcuts (dashed arcs).
Since we have no data on secondary, toll-free trunk roads in Germany, shortcuts
were generated according to the following procedure. An arc with weights o, =
Be = 0, we = 2bd,, ,, is added between between the vertices u and v whenever the
distance d,, , between u and v is below a threshold, and the strategy consisting
in taking only the arc e = (u,v) is not dominated by the pay-strategy from u
to v on the motorway network: 2bd,, , < (b+ f)spl,_,, ().

Table 2 shows that the bound on the quality of ¢* degrades a bit when
shortcut arcs are added, but for the considered instances we always have a
guarantee that H(q*) is at least 95% of the optimum. The upper bound on
the PoS (f/u = toll rate per km/uniform penalty per km) is given only for the
instances with no shortcut, so that Theorem 6.7 applies.

which bounds from
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Figure 8: Motorway network (solid) and generated shortcut arcs (dashed), for
the regions of southern Bavaria (left) and Schleswig-Holstein (right).

8 Conclusion and Perspectives

We have introduced the class of spot-checking games, which are particular se-
curity games played on a graph. These games can be used to represent many
situations in which controls must be distributed over a network. We have pro-
posed an LP / MIP based approach to compute Nash and Stackelberg equilibria
of this game. Users’ strategies are represented by multicommodity flows, which
makes it possible to compute a Nash equilibrium of the game very efficiently.
The computation of a Stackelberg equilibrium is NP-hard, which justifies our
MIP approach. We have introduced the price of spite of spot-checking games,
which measures how the payoff of the inspector degrades when committing to
a Nash strategy, rather than to a Stackelberg strategy. Two bounds are given:
the first one analyzes the quality of a Nash strategy q* in terms of detours of
the tie-breaking best response multicommodity flow p. The second bound is for
a distance-based toll network, and depends only on the ratio between the toll
fares per kilometer and the average penalty per evaded kilometer (if the fare
inspectors are uniformly spread over the network). Finally, we have reported
computational experiments that show the efficiency of our approach.

For future work, we would like to extend our model, in order to take into
account congestion effects. More precisely, we want to investigate the situation
where the weight w, of an arc and the expected penalty o, are functions of the
number of agents taking this arc.

Another research direction suggested by this article is the investigation of
polytime approximation algorithms for the computation of a Stackelberg equi-
librium in a spot-checking game. We think that a FPTAS might exist for the
case where a = 1, and more generally for all pairwise zero-sum polymatrix
games. We also want to investigate heuristics and approximation algorithms for
MAXTOLL (« = 0).

Finally, we would also like to investigate the tightness of the bound of The-
orem 6.7.
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A NP-hardness of SC games

In this section we prove that it is NP-hard to compute a Stackelberg strategy
of a SC game, even when o = 1 (Theorem 6.1). We recall that such a strategy
is a maximizer of H(q) over Q; see (13).

Our proof is based on a reduction from the binary knapsack problem, which
is well known to be NP-complete [7]:

(0/1 Knapsack)  Given are a finite set of objects Y, a weight w(a) € N, a
utility u(a) € N for each a € T, and positive integers W (knapsack capacity)
and U (desired utility). Is there a subset Y' of T such that

Z w(a) <Wandz )y >U?

aceY’ aceY’

Proof of Theorem 6.1. Given an instance £ of the 0/1 knapsack problem, we
construct an SC game G in which a = 1, there are exactly two possible routes
for each commodity k& € I, and such that G has the following property: there
exists an inspector’s strategy q that yields a payoff H(q) > U if and only if &
is a yes-instance (where H(q) has been defined in (13)).

Our instance is constructed as follows. For each object a € T there is a com-
modity (8q,dq), with two arcs @ and @ joining s, to dy: G = ( {S4,ds : @ € T},
{d,a : a € T}). The arcs G and a are respectively pay- and evasion-arcs, with
weights

Ba =ula), o05=0, wsz=ula)
1 w(a)
= wg = u(a) T

Note that we can assume without loss of generality that w(a) < W for each
object a, so that wz > 0. There is a single user on each commodity (z, = 1),
a = 1, and the set of all inspector’s strategies is the standard probability simplex
over the evasion arcs Q@ ={g>0: > v qs =1}

Given an inspector’s strategy q € Q, it is easy to compute the inspector’s

payoff H(q); see Equation (13). Indeed, for a commodity a € T two cases can
w( )

appear. Either ¢z < , and in this case the only best response is to take the

evasion path. Or gz > ﬂ and paying the toll is a best response. When there

W
is a tie (¢; = wé;) ), the user of commodity a chooses the strategy that favours
the inspector most; that is, he will pay the toll because o5q; = “’(”) < 1 < ufa).
Hence,
H(q) = Z 0aqa + Z Ba
w(a) w(a)
a:qa< aqa>
1 (16)
= 5 qa + Z ).
a:qa <% e




Figure 9: An SC game with a single commodity. Edges are labelled with weight
triples (we, oc, Be).

We first assume that K is a yes-instance. Then, let Y’ be a knapsack of
value > U. We define a control strategy by setting gz > “’é‘f) for all a € Y/,
and gz = 0 for all @ ¢ Y’ (this is possible because ) .y w(a) < W). Then,
Equation (16) gives H(q) > > v u(a) > U.

Conversely, let g be such that H(q) > U. Define Y :={a €Y :qs > “"E‘f)}.

Equation (16) gives H(q) = % Dagr da + Dger u(a) < 34+ > ser u(a). This
implies that the integer >, . u(a) is larger than U — 3, and thus it is larger
than or equal to U. This proves that K is a yes instance.

Finally, the reduction from K to G is clearly polynomial. Hence, finding a
Stackelberg strategy of the inspector in a SC game is NP-hard, even when o = 1

and each user has only two routes. O

B An instance with unbounded price of spite

Consider the SC game depicted in Figure 9. There is a single commodity C =
{(s,t,1)}. There are two teams of controllers, who can defend any subset of two
arcs. The mixed strategy of the inspector is thus @ ={0 < g <1: > q. =2}.
Edge weights are labelled as triples (we, 0e, 8e). The wide solid arcs represent
pay-arcs (w. > B > 0,0 = 0), the thin solid arcs represent fare evasion (f. =
0,0, > 0), and the dashed arc is a detour path from s to ¢ that avoids the
paying network (8. = o, = 0).

The strategy consisting in taking the long evasion path with weights (5,1, 0)
is clearly dominated and will never been used by the network user. Therefore,
there is a NE in which the inspector does not control this arc. A Nash strategy
for the inspector is thus to defend the evasion arcs s — u and u — t at 100%
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each, so that the user’s best response is to take the free road from s to ¢ (the
dashed arc with weights (3,0,0)), giving no revenue to the inspector.

But the inspector has a better strategy. If he defends the evasion arc s — u
and the long evasion arc s — ¢ at 100% each, the network user has two possible
best responses: the path s — u — ¢ (paying the toll on s — u and evading
the toll on w — t), and the free road from s — ¢, each having a cost of 3 with
respect to the weights w + o o g. The tie-breaking best response is the former
path, which yields a revenue of 1 to the inspector (independently of the value
of « € [0, 1] because the revenue comes from the toll between s and ¢, not from
penalties). This shows that this instance has an infinite PoS.
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