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RALF BORNDÖRFER, JULIA BUWAYA,
GUILLAUME SAGNOL, ELMAR SWARAT

Network Spot Checking Games:
Theory and Application to Toll

Enforcing in Transportation Networks

ZIB-Report 14-07 (March 2014, revised May 2014)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Network Spot Checking Games:

Theory and Application to Toll Enforcing in

Transportation Networks

Ralf Borndörfer, Julia Buwaya, Guillaume Sagnol, Elmar Swarat∗

Zuse Institut Berlin (ZIB), Department Optimization, Berlin, Germany†

Abstract

We introduce the class of spot-checking games (SC games). These
games model problems where the goal is to distribute fare inspectors over
a toll network. In an SC game, the pure strategies of network users
correspond to paths in a graph, and the pure strategies of the inspectors
are subset of edges to be controlled. Although SC games are not zero-sum,
we show that a Nash equilibrium can be computed by linear programming.
The computation of a strong Stackelberg equilibrium is more relevant
for this problem, but we show that this is NP-hard. However, we give
some bounds on the price of spite, which measures how the payoff of
the inspector degrades when committing to a Nash equilibrium. Finally,
we demonstrate the quality of these bounds for a real-world application,
namely the enforcement of a truck toll on German motorways.

Keywords Game Theory; Stackelberg Equilibrium; Security Games; Mixed
Integer Programming; Price of Anarchy

1 Introduction

In 2005 Germany introduced a distance-based toll for trucks weighing twelve
tonnes or more in order to fund growing investments for maintenance and ex-
tensions of motorways. The enforcement of the toll is the responsibility of the
German Federal Office for Goods Transport (BAG), who has the task to carry
out a network-wide control. To this end, 300 vehicles make control tours on
the entire motorway network. In this paper, we present some theoretical work
obtained in the framework of our cooperation with the BAG, whose final goal
is to develop an optimization tool to schedule the control tours of the inspec-
tors. This real-world problem is subject to a variety of legal constraints, which
we handle by mixed integer programming [3]. In a follow-up work, we plan to

∗{borndoerfer,buwaya,sagnol,swarat}@zib.de
†This work was funded by the German federal office for Good Transport (BAG).
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use randomized schedules generated by the game-theoretical approach of the
present paper as an input for the real-world problem.

In this paper, we study from a game-theoretic point of view the problem of
allocating inspectors to spatial locations of a transportation network, in order
to enforce the payment of a transit toll. In a precedent version of this article
which appeared as a conference paper [1], we have used a Stackelberg game to
represent the applied problem evoked above. This article deals with a class of
games called spot-checking (SC) games that generalizes our former approach.
SC games can be thought as particular security games, in which the strategies
of attackers and defenders are represented by a graph structure. Security games
have been introduced by Kiekintveld et. al. [8], to study problems where the goal
is to randomize different kind of inspections, in a strategical way; this includes
a work on the optimal selection of checkpoints and patrol routes to protect the
LA Airport towards adversaries [10], a study of the scheduling and allocation
of air marshals to a list of flights in the US [7], or the problem of optimally
scheduling fare inspection patrols in LA Metro [12]. In a way, SC games are to
security games as routing games (in which players choose a path on a network)
are to congestion games (where players choose a subset of abstract congestible
elements), see e.g. Roughgarden and Tardos [11]. Many practical situations can
be represented by this new class of games, as will be seen in Section 4. In
particular, it is also possible to take into account the moves of inspectors over
the network over time.

Contrary to standard security games, the players of a spot-checking game
might have a very large number of available strategies, arising from the mul-
titude of origin-destination paths in a network. For our application to toll
enforcement in a transportation network, this new model takes into account
every possible detour that fare evaders could take to avoid frequently inspected
sections. In contrast, previous approaches used the trivial topology of a single
metro line [12], or assumed that each user takes the shortest path [2]. We rep-
resent the mixed strategies of network users by multicommodity flows, which
yields a compact linear programming formulation for the computation of a Nash
equilibrium, see Section 5.1. However, we argue that the inspector should rather
commit to a Stackelberg equilibrium, but this strategy is much harder to com-
pute. A mixed integer programming (MIP) formulation is given in Section 5.2.

Indeed, we show that the computation of a Stackelberg equilibrium is NP-
hard in Theorem 6.1. As a corollary, it is NP-hard to find a Stackelberg equi-
librium in pairwise zero-sum polymatrix games. The principal novelty of this
article concerns the price of spite of SC games, and is presented in Section 6.2.
We give two bounds on this quantity –which is a measure of how the payoff
of the inspector degrades when committing to a Nash equilibrium (rather than
a Stackelberg equilibrium)– cf. Proposition 6.5 and Theorem 6.6. Finally, we
demonstrate the quality of these bounds for the application to German motor-
ways in Section 7.
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2 Preliminaries and Notation

We first recall some basic notions of game theory. In a game with N players
where each player may choose a strategy pi in a set ∆i, and wishes to maximize
her own payoff ui(pi,p−i), we say that pi is a best response to the set p−i ≡
{p1, . . . ,pi−1,pi+1, . . . ,pN} of strategies of the other players if

∀p′i ∈ ∆i, ui(p
′
i,p−i) ≤ ui(pi,p−i).

We denote by BRi(p−i) ⊆ ∆i the set of best responses to p−i for Player i. In
the standard setting, the set ∆i is a probability simplex {p ≥ 0 :

∑
i pi = 1}. In

this article, we allow ∆i to be polyhedral for convenience, but one could easily
come back to the standard case by expressing p ∈ ∆i as a convex combination
of the extreme points of ∆i.

The best responses allow us to define the Nash equilibria (NE) of the game:

(p1, . . . ,pN ) is a Nash equilibrium ⇐⇒
∀i ∈ {1, . . . , N}, pi ∈ BRi(p−i).

In this paper we also study Stackelberg equilibria, which are arguably more
adapted to the present class of spot-checking games because of the asymmetry
between controllers and network users, and have already been used in similar
applications [10, 7, 12]. In a Stackelberg game, it is assumed that a player is
the leader (in our case, the inspector), who plays first, and the other players
(called followers) react with a best response. If the leader of the game is denoted
by the index 1, a strong Stackelberg equilibrium (SSE) is a profile of strategies
p ≡ (p1, . . . ,pN ) that maximizes the leader’s payoff, among the set of all profiles
such that the followers’ strategies p−1 are in best response relationship to each
other’s action:

peq is a strong Stackelberg equilibrium ⇐⇒
peq ∈ arg max u1(p1,p−1).

p∈{∆1×...∆N : ∀i 6=1, pi∈BRi(p−i)}

In fact, in the class of spot-checking games that we define hereafter, BRi(p−i)
depends only on the leader’s strategy p1 for every follower (i 6= 1), see Proposi-
tion 3.1. We can hence denote by BR(p1) := BR2(p1)×. . .×BRN (p1) the set of
best response profiles for the followers to a leader’s action p1, and the problem
of finding an equilibrium reduces to the following optimization problem:

max
p1∈∆1

max
p−1∈BR(p1)

u1(p1,p−1). (1)

Note that the definition implicitly implies that when a follower has several
best response actions available, he will select one that favors the leader most.

We will also evoke polymatrix games in this article. A game is a polymatrix
game if every payoff function can be written as

ui(pi,p−i) =
∑
j 6=i

pi
TAijpj (2)
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for some matrices Aij . A polymatrix game is called pairwise zero-sum if Aij =
−ATji for all i 6= j. We refer the reader to [4] for more background on this topic.

Notation We next introduce the notation used in this article. When a di-
rected graphG = (V,E) and a list of weighted commodities C := {(sk, dk, xk), k ∈
K} are given, Fk denotes the set of (sk, dk)−flows of unit value: for all f ∈ RE+,
f ∈ Fk if and only if∑

e′∈δ+(v)

fe′ −
∑

e∈δ−(v)

fe =

 1 if v = sk;
−1 if v = dk;
0 otherwise.

(3)

We also denote by F (C) the set of multicommodity flows satisfying a demand
xk on commodity k, that is, F (C) = {

∑
k∈K xkfk : ∀k, fk ∈ Fk}. Let ze

represent the weight of an edge e ∈ E. We denote by SPk(z) the set of all
(sk, dk)−shortest paths. Their length is denoted by splk(z) =

∑
e∈R ze (for all

R ∈ SPk(z)).
The elementwise (Hadamard) product of two vectors u and v is u ◦ v, so

that (u ◦ v)i = uivi.

3 Spot-Checking Games

In this section we define the class of spot-checking games studied in this
article. They generalize our approach of [2] and [1], and describe the interac-
tion between the users of a toll network and an inspector (or Player 0), who
represents all fare inspectors of the transportation network.

A spot checking game (SC game) G = (G, C,W,Q, α) is formally defined by
the following elements:

• A directed graph G = (V,E);

• A set of weighted commodities C := {(sk, dk, xk), k ∈ K}, representing
origin-destination pairs (sk, dk) ∈ V 2 with xk > 0 users;

• A set of edge weights W := {(we, βe, σe), e ∈ E}, representing

– the total cost we ≥ 0 for a user taking edge e;

– a reward βe (resp. a penalty if βe < 0) for the inspector for each user
using edge e; this βe typically corresponds to a fare for taking edge e;

– The expected amount σe ≥ 0 of penalty for a user controlled on e.
This can be interpreted as the amount of a fine, multiplied by the
probability to be controlled on e (conditionally to the presence of an
inspector on e);

• A set Q ⊂ [0, 1]E described by linear inequalities, representing possible
distributions of the inspectors over the edges of the graph. The quantity
qe corresponds to the probability that some inspector is present on edge e;
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• A fraction α ∈ [0, 1] of penalties to be considered in the inspector’s payoff.

At first sight, it may seem odd that every controlled user gets fined. The
reason behind is that the strategy of any user is completely represented by his
path in the network. Typically, every edge of the network is either a pay-edge,
where σe = 0 and the reward βe > 0 corresponds to a toll fare, which is included
in the user costs (we ≥ βe). Or the edge is an evasion edge, where the reward is
βe ≤ 0 and the expected fine is σe > 0. In other words, paying a fare and getting
fined exclude each other. We refer the reader to Section 4 for more details and
examples on how to model practical situations using SC games.

Inspector’s strategy In the simplest variant of the problem, there are γ
teams of controllers over the network, who can each control an edge e ∈ E. The
set S of pure strategies for the inspector hence corresponds to the subsets S of
E of cardinality γ. The inspectors commit to a mixed strategy q̃, i.e. for all
S ∈ S, q̃S indicates the probability of allocating one team of inspectors on each
of the γ edges e ∈ S. In practice, we will see that our model only depends on
the marginals qe =

∑
{S∈S:S3e} q̃S , which represent the probability that team

of inspectors is present on edge e. It is easy to see that the marginal strategy q
satisfies ∑

e∈E
qe = γ, (4)

∀e ∈ E, 0 ≤ qe ≤ 1. (5)

Conversely, if we are given a vector q satisfying Equations (4) and (5), we
can find a mixed strategy q̃ whose marginal equals q. To see this, one can notice
that the set of extreme points of the polyhedron Q defined by Equations (4)
and (5) coincide with the set of pure strategies S. More evolved strategy sets
Q for the inspector, taking into account the moves of controllers over time, will
be discussed in §4.3.

User flows and payoffs For a given inspection strategy q ∈ Q, the loss of
every user who selects a path R over the graph G is

∑
e∈R we + σeqe, where

the first term accounts for travel and toll costs, while the second term is the
expected fine. Note that we do as if evaders could be fined several times; in
practice, this is only a simplifying assumption, since in most toll networks fare
evaders can be fined only once (fine receipts count as a valid proof of payment).
For a reasonable number of controllers, our results show that the probability of
being controlled more than once is very small, though. A similar approximation
has been used in [12] and [2].

We associate the users of commodity k with a single player (called Player k).
Her mixed strategy represents the distribution of k−users over the (sk, dk)−paths,
and forms a flow pk ∈ Fk. We denote by p =

∑
k xkp

k ∈ F (C) the multicom-
modity flow of all network users. The payoff of Player k is:

Payoffk(p, q) := −
∑
e∈E

pke (we + σeqe) . (6)
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The total payoff of the inspector is obtained by summing the collected rewards
and penalties, and depend on the parameters α and β of the game G:

Payoff0(p, q) :=
∑
k

xk
∑
e∈E

pke(βe + ασeqe)

=
∑
e∈E

pe (βe + ασeqe) . (7)

The extreme values of α correspond to two important situations. If α = 1,
the payoff defined in (7) corresponds to the total revenues from rewards and
penalties, a setting which we denote by MAXPROFIT. If α = 0, the inspector’s
payoff comes from the fares only (assuming that the reward βe is a fare for
edge e). This setting, which we call MAXTOLL, might be well suited if the
goal is solely to enforce the payment of a fare. In contrast, with MAXPROFIT
it might be advantageous to have a bit of evasion on certain commodities, in
order to earn money from fines. The parameter α may be seen as a parameter
weighting the objectives of MAXTOLL and MAXPROFIT, for the scalarization
of a bi-objective problem.

Users’ best responses Observe that the payoff of any user does not depend
on the strategy of other users (because we ignore congestion effects). An im-
portant consequence of Equation (6) is a characterization of the best responses
of Player k to the inspector’s strategy q, in terms of shortest path in G. We
denote by BR(q) ⊆ F (C) the set of users’ best response muticommodity flows
obtained thereby.

Proposition 3.1. Let q ∈ Q be a strategy of the inspector. A strategy pk for
Player k is a best response to q if and only if −Payoffk(p, q) = splk(w + σ ◦ q).
In other words, best responses for Player k are flows supported by SPk(w+σ◦q).

Proof. If pk is a flow of unit value through commodity k, then −Payoffk(p, q) =∑
e∈E p

k
e(we + qeσe) corresponds to the expected length for Player k from sk to

dk in the weighted graph with weights we + σeqe. This expression is minimized
if and only if the flow pk uses only shortest paths.

Remark 3.2. We plan to investigate an extension of SC games with congestion
in a follow-up work. Note that the number of agents using edge e can have an
influence on both the travel time (and hence the costs we) and the probability
to be controlled (and hence the expected penalty σe).

4 Handling Practical Situations with SC Games

The general model introduced in the previous section can be used to model
a variety of practical situations. We next review important examples inspired
from real-world applications.
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4.1 A transit network model

We start by showing that the model used in the conference paper [1] at the origin
of this article can be cast as a SC game. Here, the network users are assumed to
travel over a networkG0 = (V0, E0) with edge costs we and expected penalties σe
(conditionnaly to the presence of a controller on edge e). For a given commodity
(sk, dk, xk) ∈ C0 ⊂ V0 × V0 × R+ (k ∈ K), Player k can either decide to pay a
fare τk (and in this case she will take the shortest path from sk to dk), or she
can evade the fare and choose an arbitrary path from sk to dk in G0.

To represent the strategies corresponding to paying the fare, we create a set
of additional vertices V̄ , containing a node s̄ for every source s ∈ S = {sk : k ∈ K}
and a node ¯̄d for every destination d ∈ D = {dk : k ∈ K}.

We then connect these new nodes by creating a set of dummy edges Ē, that
contains

• an edge s̄ → s for all s ∈ S, which corresponds to the action of evading
the fare, with all weights equal to zero: w[s̄s] = β[s̄s] = σ[s̄s] = 0;

• an edge d→ ¯̄d for all d ∈ D, with all weights equal to zero as well;

• an edge ẽk = (s̄k,
¯̄dk) for all k ∈ K, which corresponds to the action

of paying the fare. The user cost for taking this edge is defined by
wẽk = splk(w) + τk, the inspector’s reward is βẽk = τk, and users can-
not be fined on this edge (σẽk = 0).

By construction, the dummy toll edge ẽk = (s̄k,
¯̄dk) can only be used by

Player k. The original edges e ∈ E0 are taken by users evading the fare, so that
the inspector’s reward βe can be set to 0 on these edges; alternatively, βe can
be set to a negative value to penalize fare evasion in the inspector’s payoff. (It
is also possible to penalize evasion on a per-user basis, by setting a negative
reward on the dummy evasion edges s→ s̄.)

The SC game is obtained by considering the extended graph G = (V,E),
where V = V0 ∪ V̄ and E = E0 ∪ Ē, as well as the set of extended commodities
C = {(s̄k, ¯̄dk, xk) : k ∈ K}. An example graph G0 is represented together with
its extension G and the associated edge weights in Figure 1.

4.2 Transportation networks with a distance-based toll

With the previous model, it is not possible to consider network users who pay
the fare on a portion of their trip only. This is of particular relevance for the
application mentioned in the introduction of this article. Indeed on the German
motorways the transit fee is proportional to the distance. So crafty drivers
might take the chance to pay the toll on a short portion of their trip only, where
they know that the frequency of controls is high.

To represent users’ strategies in this situation, we shall now introduce a two-
layer graph structure. Let G0 = (V0, E0) represent the physical transportation
network, and C0 := {(sk, dk, xk) : k ∈ K} be a list of weighted commodities. For
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a b

c

d e

w1, σ1

w2, σ2

w3, σ3

w5, σ5

w4, σ4

a

ā

b

c c̄

d

¯̄d

e

¯̄e(w1, σ1, 0)

(w2, σ2, 0)

(w3, σ3, 0)

(w5, σ5, 0)

(w4, σ4, 0)

(0, 0, 0)

(0, 0, 0)(τad + splad(w), 0, τad)

(0, 0, 0)

(τce + splce(w), 0, τce)

(0, 0, 0)

Figure 1: Original transit network G0 (above), and extended structure G of the

SC game (below). The edges of G are labelled with triples (we, σe, βe). The list of

commodities is C0 = {(a, d, xad), (c, e, xce)}, which becomes C = {(ā, ¯̄d, xad), (c̄, ¯̄e, xce)}
in the extended graph.

all k ∈ K, sk and dk represent the origin and the destination of k. We denote
by le the length of edge e ∈ E0 and by f (resp. b) the toll rate (resp. the average
basic costs such as e.g. fuel consumption) per kilometer. In addition, we assume
that the expected penalty to pay on edge e ∈ E0 is σe (conditionally to the
presence of a team of inspectors on e).

We create a set V1, containing a vertex v′ for every v ∈ V0, as well as a
set V̄ of artificial start and destination nodes, containing a vertex s̄ for every
s ∈ S = {sk : k ∈ K} and a vertex ¯̄d for every d ∈ D = {dk : k ∈ K}. To
connect these new vertices, we create the following sets of edges:

• E1 = {(u′, v′) : ∀(u, v) ∈ E0};

• Es = {(s̄, s), (s̄, s′) : ∀s ∈ S};

• Ed = {(d, ¯̄d), (d′, ¯̄d) : ∀d ∈ D};

• Et = {(v, v′), (v′, v) : ∀v ∈ V0}.

The edges of the level E1 represent portions of a trip where the toll fee has been
paid, while the matching edges in E0 correspond to fare evasion. Transition
edges e ∈ Et allow the users to switch between these two layers, at a cost
θ that should be set to represent the reluctance of users to change strategy
during a trip. Artificial edges of Es and Ed ensure the connectivity of the new
commodities C := {(s̄k, ¯̄dk, xk) : k ∈ K} with both layers. To sum up, the
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a

c

b

d

e

ā

¯̄e

a′

c′

b′

d′

e′
Fare compliance layer

Transition edges

Toll evasion layer

Figure 2: Example of two-layer graph with a single commodity K = {(a, e, xae)}. The

path highlighted in blue indicates a user paying the fare on a → c, and evading the

toll on c→ d→ e.

different edge weights are defined by:

βe =

{
fle if e ∈ E1;
0 otherwise,

we =


ble if e ∈ E0;

(b+ f)le if e ∈ E1;
θ if e ∈ Et;
0 otherwise,

and σe = 0 for all e /∈ E0. A simple example of two-layer graph is depicted on
Figure 2.

4.3 Spatio-temporal aspects

The models presented so far do not take time into account. This is an important
challenge, since the inspectors must move along edges of the networks and their
duties must not exceed a certain length. In consequence, the set Q defined by
Equations (4) and (5) might not be well-suited to represent all possible marginal
strategies of the inspector.

The authors of [12] have proposed to represent the duties of metro ticket in-
spectors by flows in an adapted graph. Their approach provides exact schedules
for each inspector. More precisely, a strategy consists in a sequence of trains
that the inspector must control at a given time. However, this very fine model
might not be very robust to any kind of delays or incidents that can occur in
the inspection process, so that the inspectors might not be able to follow the
prescribed schedule. To cope with this problem, planners of the BAG (the au-
thority in charge of fare inspections on the German motorways, cf. Section 1)
allocate the inspectors to a set of predefined control areas, on which they must
patrol during a given time interval, see [3]. The graph structure which we next
present combines ideas of [3] and [12].

We consider a time discretization T = {0, . . . , T − 1} of the period of in-
terest, typically one day, and we make the simplifying assumption that every
network user starts and ends his trip within the same time window t ∈ T . We
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S1

S2

S3

S4

S5

S5

S3
Noon

Afternoon

Late

Night

Early morning

Morning

S1

S2

S3

S4

S5

Figure 3: Example for a graph C connecting the control areas (lower right corner)
and its associated cyclic duty graph D (main drawing), for a time discretization of one
day with T = 6 time windows. The path highlighted in red represents the duty of a
team controlling S4 during the morning, S5 at noon and S3 during the afternoon.

denote by G0 = (E0, V0) the graph representing the static problem (obtained
e.g. by using the construction of § 4.1 or § 4.2), and we make a time extended
graph G = (V,E) which contains T parallel copies of G0: V = V0 × T and
E = E0×T . A commodity k in G corresponds to a pair of nodes (sk, dk) ∈ V 2,
such that sk = (u, t) and dk = (v, t) for a pair of nodes (u, v) ∈ V 2

0 and a time
window t ∈ T .

A control area S ∈ S consists of a subset of edges S ⊂ E0 (control areas might
overlap). We create a graph C = (S, A) which connects nearby control areas,
i.e. (Si, Sj) ∈ A whenever it is possible for a team of inspectors to control Si at
time t and Sj at t+1. Again, we create a time extended version D = (S×T , Ā)
of C, which we call the cyclic duty graph, as follows:

Ā =
{(

(S, t), (S, t+ 1 mod T )
)

: ∀S ∈ S
}

⋃ {(
(S, t), (S′, t+ 1 mod T ) : ∀(S, S′) ∈ A

)}
.

We have depicted in Figure 3 a simple example for a graph C and the
corresponding cyclic duty graph D. The inspectors’ duties can be represented
by paths in D. In practice, duties have a prescribed length, for example 8
hours, which corresponds to paths of a certain length L in D. With a simple
construction, it is possible to create a modified duty graph D̃ with start and
end depot nodes ds and dt, that enjoys the property that every (ds, dt)−path
corresponds to a path of length L in D. Hence the mixed strategy of a single
inspector can be represented by a (ds, dt)−flow of value one in D̃. We refer the
reader to [12] for details about this construction.

Now, we assume that there are γ teams of inspectors, as in the paragraph
preceding Equation (4). The inspector’s strategy can hence be represented by
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a (ds, dt)−flow q̃ of value γ in D̃ = (Ṽ , Ã):

∀v ∈ Ṽ ,
∑

a′∈δ+(v)

q̃a′ −
∑

a∈δ−(v)

q̃a =

 γ if v = ds;
−γ if v = dt;
0 otherwise.

(8)

The vertex set of D̃ is

Ṽ = S × T × {1, . . . , L} ∪ {ds, dt},

and similarly as in [12] it can be seen that the expected number of inspectors
in the control area S ∈ S at time t is

q̂(S,t) =

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a. (9)

As a simple approximation we can assume that the inspectors are spread uni-
formly on all the arcs of a control area, so that the an inspector on the control
area S is present on edge e ∈ S with probability

κe|S =
le∑

e′∈S le′
,

where le denotes the length of edge e. It follows that the expected number of
inspectors on e ∈ E0 at time t is∑

{S∈S:S3e}

κe|S q̂(S,t).

If this quantity is smaller than one, it can be interpreted as the marginal proba-
bility q(e,t) to find an inspector team on the edge (e, t) ∈ E of the time extended
graph G. To summarize, the set of marginal strategies Q of the inspector can
be defined by:

Q =
{
q ∈(R+)E : ∃q̃ ∈ (R+)Ã s.t.

(i) q̃ satisfies the flow conservation (8);

(ii) ∀(e, t) ∈ E,

q(e,t) ≤
∑

{S∈S:S3e}

κe|S

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a;

(iii) ∀(e, t) ∈ E, q(e,t) ≤ 1
}
.

To conclude this section, we briefly mention some simple extensions that can
be plugged in this model (by adapting the graph G or D̃ in an intuitive fashion):

• Several side constraints can be added in the above definition of Q. For
example, the proportion of duties starting at night can be bounded from
above, or we can bound from below the inspection frequency of some
control areas to ensure a network-wide control.

11



• If all controllers do not start from the same location in the network, it is
possible to consider several start and end depot nodes in the duty graph
D̃.

• The possibility for a user to advance or postpone her departure (in order
to travel at a time with less controls) could be represented by adding edges
in G that link the different time copies of G0, with a cost ς for the delay.

We shall now return to the general model of SC games introduced in Sec-
tion 3, and we study the problem of computing some equilibria for a generic
game G = (G, C,W,Q, α).

5 Computation of Equilibria

The notion of equilibrium is essential in game theory. Depending on the abil-
ity of the players to observe the others’ actions, committing to a Nash or a
Stackelberg equilibrium may be better suited [9]. However, there is a natural
interpretation for the Stackelberg strategies of the inspector: the Stackelberg
game model assumes that every user of the network plays with a best response to
the inspector’s strategy q. In particular, a Stackelberg strategy for MAXTOLL
(α = 0) maximizes the (weighted) number of users who have an incentive to
pay the fares (with weights corresponding to the fares). In fact, one can expect
that many users are always honest and pay the network fares independently of
the frequency of inspections. To some extent, the Stackelberg equilibrium can
hence be considered as an approach to maximize the Inspector’s payoff in the
worst case. This is not truly the worst-case situation, since network users could
take only toll-free sections (in the case of a transit system for example, users
could decide to walk), thus depriving the Inspector from all sources of profit.
However, there is no reason to assume that network users want to minimize the
Inspector’s payoff, and the Stackelberg approach guards ourselves from crafty
behaviours.

5.1 Nash equilibria

We next show that the SC game G can be transformed into a zero-sum game
that has the same Nash equilibria.

Proposition 5.1. Let G = (G, C, {w,β,σ},Q, α) be a SC game. If α > 0, then
G has the same set of NE as the zero-sum game G′ = (G, C, {w,w,σ},Q, 1),
where the inspector’s rewards βe have been replaced by the edge costs we and
α = 1. If α = 0, (p, q) is a NE for all q ∈ Q and p ∈ BR(q).

Proof. We start with the case α > 0. First note that G′ is zero-sum indeed:

PayoffG
′

0 (p, q) +
∑
k∈K

xkPayoffG
′

k (p, q) = 0.

12



The NE are entirely defined by the set of best responses of every player. We
are going to see that these sets coincide for G and G′, from which the conclusion
follows. The payoff of Player k is the same in both games, so BRk(q) is the
same in G and G′. Now, the set of best responses for the inspector in G is

BRG0 (p) = arg max
q∈Q

∑
e∈E

pe(ασeqe + βe).

For a fixed p, let us add
∑
e∈E pe(αwe − βe) in the function to maximize. This

term does not depend on q and so it does not change the set of maximizers:

BRG0 (p) = arg max
q∈Q

α
∑
e∈E

pe(σeqe + we) = BRG
′

0 (p).

Finally, the case α = 0 is trivial, because PayoffG0 (p, q) does not depend on q.

It is well known that a Nash equilibrium of 2-player zero-sum games can
be computed by linear programming. In our case, the game G′ has more than
two players, but its special structure could allow us to formulate the game as a
pairwise zero-sum polymatrix game, see [2], a class of games for which a Nash
equilibrium can also be computed by linear programming, see [4]. However, the
LP that we would obtain would have a constraint for each pure strategy of the
network users, a number which might be exponentially large. To cope with this
problem, we shall next exploit the flow representation of the users’ strategies
and the shortest path characterization of best reponses. This yields a compact
LP for the computation of a NE of G.

By Proposition 3.1 we know that the loss of Player k at a NE (p, q) is
splk(w + σ ◦ q). The computation of a NE of G′ (and hence of G) thus reduces
to the computation of a strategy q ∈ Q maximizing

∑
k xk splk(w + σ ◦ q), a

weighted sum of shortest path lengths. This can be done by linear programming,
by introducing some node potentials ysv for every source node s ∈ S := {sk :
k ∈ K} and for all v ∈ V :

max
q,y

∑
k∈K

xky
sk
dk

(10a)

s. t. ysv − ysu ≤ we + σeqe, ∀s ∈ S, ∀e ≡ (u, v) ∈ E; (10b)

yss = 0, ∀s ∈ S; (10c)

q ∈ Q. (10d)

The constraints (10b)-(10c) are from the classical linear programming for-
mulation of the single-source shortest path problem, and bound the potential ysv
from above by the shortest path length from s to v in the graph G = (V,E, c(q)).
The objective function (10a) hence asks for the maximization of the weighted
sum of shortest paths

∑
k xkλk(q) over the set of feasible inspector’s strate-

gies (10d).
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We point out that the optimal dual variables of constraint (10b) for a given
s ∈ S define a single-source multi-sink flow on the subset of commodities
Ks := {k ∈ K : sk = s} originating in s. This flow can be decomposed as a sum
of (sk, dk)−flows, which yields the corresponding Nash equilibrium strategy pk

for every Player k.
Observe that in accordance with Proposition 5.1, the LP (10) for the com-

putation of a Nash equilibrium does not depend on the parameters α and β.
The concept of Stackelberg equilibrium looks much more suitable for our appli-
cation, but as we shall see, the computation of such an equilibrium is also much
harder.

5.2 Stackelberg equilibria

Using ideas similar as in [10], a mixed integer program (MIP) can be formulated
for the computation of a Stackelberg equilibrium (p, q). We reduce drastically
the number of required variables, by using a single-source multi-sink flow

ρs =
∑

{k:sk=s}

xk p
k

for each s ∈ S, instead of using a flow pk for every commodity. With the
use of big-M constraints, we ensure that this flow uses only edges belonging to
SPk(w + σ ◦ q). By Proposition 3.1, ρs hence corresponds to best-response
strategies to q for the players whose commodity source is s.

max
q,y,µ,ρ

∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe) (11a)

s. t.

0 ≤ we + σeqe − (ysv − ysu) ≤Me(1− µse),
∀s ∈ S, ∀e ≡ (u, v)∈E; (11b)

yss = 0, ∀s ∈ S; (11c)

q ∈ Q, (11d)

∑
e′∈δ+(v)

ρse′ −
∑

e∈δ−(v)

ρse =


∑
k∈Ks

xk if s = v;

−x(s,v) if (s, v) ∈ Ks;
0 otherwise,

∀s ∈ S, ∀v ∈ V ; (11e)

0 ≤ ρse ≤Msµse, ∀s ∈ S, ∀e ∈ E; (11f)

µse ∈ {0, 1}, ∀(s, e) ∈ S × E. (11g)

As in Problem (10), constraints (11b)-(11c) bound yskdk from above by the
shortest path length for commodity k in the graph with weights w + σ ◦ q,
and constraint (11d) forces q to be a feasible strategy for the inspector. We
introduce a binary variable µse which can take the value 1 only if edge e belongs
to a shortest path tree rooted in s (second inequality in (11b)). Indeed, the
first inequality in (11b) is saturated when the difference of potential (ysv − ysu)
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between the extreme points of an edge e ≡ (u, v) equals the weight we +σeqe of
e, which indicates that there is a shortest path originating in s that uses e.

Equation (11e) forces ρs to be a single-source multi-sink flow rooted in s,
whose demand on the commodity k ∈ Ks := {k ∈ K : sk = s} corresponds to
the number of users xk. Constraint (11f) ensures that the flow ρs only uses
edges from SPk(w+σ ◦q). Now, ρs can be decomposed as

∑
k∈Ks

xkp
k, where

pk ∈ Fk is a flow through commodity k of value one. By construction, pk is a
flow of minimal cost splk(w+σ ◦ q) =

∑
e∈E p

k
e(we + qeσe), and it follows that

pk is a best response to q, see Proposition 3.1.
Finally, the objective function (11a) rewrites to the inspector’s payoff (7)

when replacing yskdk and ρse by their values as a function of pke :∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe)

=
∑
k∈K

αxk
∑
e∈E

pke(we + qeσe)+∑
s∈S

∑
e∈E

∑
k∈Ks

xkp
k
e(βe − αwe)

=
∑
k∈K

xk
∑
e∈E

pke(αqeσe + βe).

We point out that the big-M constants Me and Ms can all be chosen in the
same order of magnitude as the other coefficients of the problem.

5.3 Stackelberg for MAXTOLL in the transit network
model

In this section, we show that the Stackelberg MIP (11) can be simplified for the
case of the transit network model introduced in §4.1 with α = 0 (MAXTOLL).
In this situation indeed, the inspector’s payoff can be expressed as

∑
k xkτkµk,

where µk is a binary variable indicating whether Player k has an incentive to
pay the toll. So the flows of network users ρs is not involved anymore:

max
q,y,µ

∑
k∈K

xkτkµk (12a)

s. t.
ysv − ysu ≤ we + σeqe, ∀s ∈ S, ∀e ≡ (u, v) ∈ E; (12b)

yss = 0, ∀s ∈ S; (12c)

wẽk − y
s̄k
¯̄dk
≤Mk(1− µk), ∀k ∈ K; (12d)

µk ∈ {0, 1}, ∀k ∈ K; (12e)

q ∈ Q. (12f)

The binary indicator variable µk can take the value 1 if and only if the inequality
corresponding to ẽk = (s̄k,

¯̄dk) in (12b) is saturated, i.e. when the single edge

(s̄k,
¯̄dk) forms a shortest path for commodity k, which means that Player k has

an incentive to pay the toll.
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6 The Price of Spite of SC games

We have seen in the last section that computing a NE is easy (and can be done by
LP), while the computation of a SSE is harder and requires integer variables. In
this section, we will first show that the computation of a Stackelberg equilibrium
is NP-hard indeed, which justifies the Mixed Integer Programming approach of
§ 5.2. Then, we will see that under some additional assumptions –that are
typically satisfied for the model structures presented in Section 4– the optimal
Stackelberg payoff of the inspector can be reasonnably well approximated by
committing to a Nash strategy. Because the Nash strategy consists in allocating
the controls in the most harmful way for the network users, we will introduce
the concept of “price of spite” for an SC game, which can be seen as the price
of anarchy of the game when the performance of a solution is measured by the
inspector’s payoff in the Stackelberg model.

6.1 Computing a Stackelberg strategy is NP-hard

As evoked earlier, an SC game can be reformulated as a polymatrix game, see (2)
and Section 2.3 in [2], in which the inspector simultaneously plays against all
network users, but there is no interaction between users. Such games are called
“Bayesian games” by some authors, because they are equivalent to the following
situation: the inspector plays against the users of an unknown commodity, which
is chosen to be (sk, tk) with probability proportional to xk. It has been shown
by Conitzer and Sandholm that computing a Stackelberg strategy of the leader
in a Bayesian game is NP-hard, thanks to a reduction from SET-COVER [5].

However, SC games do not entail the whole generality of Bayesian games.
In particular, the case α = 1 (MAXPROFIT) appears to be an easier problem,
because the sub-game played between the inspector and Player k has a particular
zero-sum plus costs structure (the zero-sum part corresponds to the rewards and
penalties paid to the inspector, and the cost part accounts for the difference∑
e∈R(we − βe) charged to Player k when she chooses the route R). Hence, the

MAXPROFIT game can be reformulated as a pairwise zero-sum polymatrix
game, with a dummy player who has a single strategy, consisting in receiving
the aforementioned cost part. It is known that pairwise zero-sum polymatrix
games are polynomially solvable, i.e., a Nash equilibrium can be computed in
polynomial time [4]. As a byproduct of the next theorem, we obtain that the
computation of a Stackelberg strategy of the leader is NP hard in a polymatrix
game, even when the game is pairwise zero-sum. This could not have been
deduced from any result in [5]. Our proof is based on a reduction from the 0/1
KNAPSACK problem and is given in Appendix A.

Theorem 6.1 (Computing a Stackelberg strategy is NP-hard). Given a SC
game G = (G, C,W,Q, α), it is NP-hard to compute a Stackelberg strategy of
the inspector, even when α = 1 and every user of commodity k has only two
routes to go from sk to tk.
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Corollary 6.2. Consider a pairwise zero-sum polymatrix game G, in which
one of the players is seen as the leader. It is NP-hard to compute a Stackelberg
equilibrium of G.

Remark 6.3. The reduction from KNAPSACK suggests that computing a SSE
in a pairwise zero-sum polymatrix game is maybe not so hard. Indeed, it is well
known that there is a fully polynomial-time approximation scheme (FPTAS)
for KNAPSACK, which relies on dynamic programming. This leaves open the
question of the approximability of MAXPROFIT in polynomial time. We want
to investigate this issue in future work.

6.2 The price of spite

In game theory, the concept of Price of Anarchy (PoA) has been introduced
to measure the loss of efficiency of a system when its agents adopt a selfish
behavior, and has been popularized by the pionnering work of Roughgarden
and Tardos on congestion games [11]. The Price of Spite that we will next
define has a similar vein, albeit a different meaning. Indeed, in SC games the
Nash equilibrium should not be interpreted as the natural outcome of a game
played by selfish players. We have argued that the inspector should commit to
a Stackelberg strategy, but a Nash strategy could still be seen as a heuristic
choice for the inspector: maximizing the total loss of his adversaries is much
easier than maximizing his own payoff. The price of spite is thus a measure
of how the payoff of the inspector degrades when choosing this most harmful
strategy.

Definition 6.4 (price of spite). Consider an SC game G = (G, C,W,Q, α). We
measure the efficiency of an inspector strategy q ∈ Q by the inspector’s payoff
in the Stackelberg model (i.e., network users select a best response route that
favors the inspector most):

H(q) := max
p∈BR(q)

∑
e∈E

pe(ασeqe + βe). (13)

Define by N ⊂ Q the set of Nash equilibrium strategies of the inspector. The
price of spite is then defined as the worst possible ratio between a Stackelberg
and a Nash strategy:

PoS :=
maxq∈QH(q)

minq∈N H(q)
.

The next proposition gives an upper bound which is very useful to measure
the quality of a Nash strategy q∗. We will need some additional notation.
Given a strategy p ∈ F (C) of the network users, we define the metric d(p) =∑
e∈E pe(αwe − βe). This corresponds to the total latency experienced by all

network users when the time to travel on edge e is αwe − βe. We also define
dmin to be the smallest possible value of d(p), that is,

dmin := min
p∈F (C)

∑
e∈E

pe(αwe − βe) =
∑
k

xk splk(αw − β).
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Note that (αwe − βe) could be negative if α is small. But we can still define
dmin > −∞ if G has no cycle of negative weight (for the weights αwe − βe).

We denote the inspector’s payoff by I(p, q), so that H(q) =
maxp∈BR(q) I(p, q). For short, we say that a strategy p ∈ BR(q) satisfying
H(q) = I(p, q) is a tie-breaking best response to q. We denote the total loss of
all network users by Λ(p, q) :=

∑
e∈E pe(σeqe + we). A simple calculation shows

that the following relation holds for all strategy profiles (p, q) ∈ F (C)×Q:

I(p, q) = αΛ(p, q)− d(p). (14)

Proposition 6.5. Let G = (G, C,W,Q, α) be a SC game such that G has no
negative weight cycle (with respect to the weights αw − β). Let (p∗, q∗) be a
NE of G and let p̂ be a tie-breaking best response to q∗. Then, for all q ∈ Q we
have:

H(q) ≤ H(q∗) + d(p̂)− dmin.

Proof. Let p be a tie-breaking best response to q, so we have H(q) = I(p, q)
and H(q∗) = I(p̂, q∗). By definition of the NE, it holds that Λ(p∗, q∗) ≥
Λ(p, q), because p ∈ BR(q). Moreover, we have Λ(p∗, q∗) = Λ(p̂, q∗) because
p̂ ∈ BR(q∗). We now apply the relation (14) two times:

H(q) = I(p, q) = αΛ(p, q)− d(p)

≤ αΛ(p̂, q∗)− d(p)

= I(p̂, q∗) + d(p̂)− d(p)

≤ H(q∗) + d(p̂)− dmin,

where the last inequality follows from d(p) ≥ dmin.

In words, this proposition bounds the loss of efficiency of the Nash strat-
egy q∗ by the detour done by the tie-breaking best response flow p̂ (for the
metric d). Given the strategy q∗, we point out that dmin and d(p̂) correspond
respectively to shortest path lengths (for the metric d()) in the whole graph and
in the directed acyclic subgraphs SPk(w + σ ◦ q∗). In real-world applications,
this bound turns out to be excellent for α = 1 (MAXPROFIT), cf. Section 7.

Without further assumptions on the model however, there is no hope to
obtain an upper bound for the price of spite of a SC game G. Indeed, a reviewer
has suggested an example with the following properties: the efficiency of the
Nash strategy isH(q∗) = 0, while the Stackelberg strategy has efficiencyH(q) =
1. This example is sketched in Appendix B. A bound can be obtained though,
under a set of additional assumptions. We next consider a set of hypotheses that
are satisfied by the distance-based toll in Germany. In remark 6.7, we will also
give a similar result for the model of public transportation network presented
in Section 4.1.

We assume that every edge e ∈ E has a length le ≥ 0; in addition, there are
some constants b > 0 (basic costs per km) and f > 0 (fare per km) such that:
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(A1) There exists a partition of the edge set E = EP ∪EE ∪ED (pay, evasion,
and dummy edges) such that: we = (b+ f)le, βe = fle, σe = 0 if e ∈ EP

we ≥ ble, βe = 0, σe > 0 if e ∈ EE
we ≥ 0, βe = σe = le = 0 if e ∈ ED

(A2) The shortest (sk, tk)−path R for commodity k has length `k :=
∑
e∈R le,

and there exists an (sk, tk)−path Rkpay that uses only edges of type EP
and ED (i.e., no evasion edge) where the total user costs are

∑
e∈Rk

pay
we =

(b+ f)`k.

(A3) There exists a uniform control strategy qU ∈ Q such that qUe = 0 for all
toll-free edges e ∈ EP ∪ED, and qUe is proportional to σ−1

e le on the evasion
edges, that is, ∃u > 0 : ∀e ∈ EE , qUe = u leσe

.

Note that the quantity u from Assumption (A3) may be interpreted as the
average penalty per evaded kilometer. For example, consider the simple control
set where the pure strategies of the inspectors are all subsets of E of cardinal-
ity γ, see Eq. (4)-(5). It is easy to verify that u must be equal to

u(γ) :=
γ∑

e∈EE
σ−1
e le

,

so that Assumption (A3) is satisfied whenever γσ−1
e le ≤

∑
e∈EE

σ−1
e le for all

e ∈ EE .

Theorem 6.6. Consider an SC game G satisfying assumptions (A1)-(A3).
Then, the price of spite of G is bounded from above by max

(
1, f

αu

)
.

Proof. Recall that splk(l) = `k. We denote by L the minimal distance covered
by all network users: L :=

∑
k∈K xk`k. We first claim that the efficiency of any

feasible strategy q ∈ Q is bounded by H(q) ≤ fL. Otherwise, let p ∈ BR(q) be
such that I(p, q) > fL. This implies the existence of a commodity k for which∑
e∈E p

k
e(ασeqe + βe) > f`k. Denote by `+k the average length covered by flow

pk: `+k =
∑
e∈E p

k
e le ≥ `k. Observe that ble ≤ we−βe for all e ∈ E (this follows

from (A1)). Thus, the total loss of Player k is:∑
e∈E

pke(σeqe + we) ≥
∑
e∈E

pke(σeqe + βe) + b`+k > f`k + b`k.

But then, this contradicts p ∈ BR(q), because the flow putting all the weight
on the (sk, tk)−path Rkpay of Assumption (A2) yields a loss (f + b)`k.

Then, let (p∗, q∗) be a NE of G, and observe that H(q∗) ≥ I(p∗, q∗). Since
q∗ ∈ BR(p∗), Λ(p∗, q∗) = maxq∈Q

∑
e∈E p

∗
e(σeqe + we), and Eq. (14) gives:

I(p∗, q∗) = max
q∈Q

∑
e∈E

p∗e(ασeqe + βe).
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Therefore,

I(p∗, q∗) ≥ min
p∈F (C)

max
q∈Q

∑
e∈E

pe(ασeqe + βe)

= max
q∈Q

min
p∈F (C)

∑
e∈E

pe(ασeqe + βe),

where the last equality follows e.g. from Sion’s minimax theorem. Now, for the
homogeneous control strategy qU from Assumption (A3), we obtain

I(p∗, q∗) ≥ min
p∈F (C)

(
αu

∑
e∈EE

pele + f
∑
e∈EP

pele

)
≥ min(f, αu)L.

We finally obtain the desired inequality, by combining the inequalities
H(q∗) ≥ min(f, αu)L and H(q) ≤ fL for an arbitrary q ∈ Q:

H(q)

H(q∗)
≤ f

min(f, αu)
= max

(
1,

f

αu

)
.

Remark 6.7. We can also adapt the proof of Theorem 6.6 to work in the frame-
work of the transit network model of Section 4.1. Here, we need to assume
σe > 0 (∀e ∈ E0) and the existence of a homogeneous control qUe = uσ−1

e le
(∀e ∈ E0). By using a similar reasonning, we can prove that the price of spite
is bounded from above by ∑

k xkτk∑
k xk min(τk, αu`k)

.

Remark 6.8. The key point in the previous proof is that the graph G contains
no edge such that βe = σe = 0 (except maybe on dummy edges that have a
length le = 0). Such edges typically correspond to shortcut (or detour) edges
that avoid the paying network, and can yield an arbitrarily large price of spite,
see Appendix B. However, we show in the next section that the presence of
shortcuts only has a limited impact on the price of spite for the German truck
toll.

7 Application to the truck toll in Germany

We have solved the models presented in this paper for several instances based
on real data from the German motorways network. We present here a brief
analysis of our results.

Mobile controllers drive on the network and are able to control every truck
they overtake. Hence, the expected penalty to pay on a section where an inspec-
tor is driving can be approximated by ( vIvT − 1)P , where P is the amount of a
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Figure 4: (a): Graphs of the two instances discussed in §7.1, with colors show-

ing a near-optimal strategy for MAXPROFIT and γ = 50 on the network of Ger-

many (above) and an optimal Stackelberg strategy for MAXTOLL and γ = 3 for

Berlin-Brandenburg (below). (b)-(e): Experimental results for the region of Berlin-

Brandenburg.

fine, and vI and vT represent the average speeds of the inspectors and the truck
drivers, respectively. In our experiments, we have set σe = 60AC on all evasion
edges (the penalty is P = 400AC and controllers drive 15% faster than truck
drivers). The basic costs (e.g. fuel and driver’s salary) were set to b = 0.5AC/km,
and the toll fares are f = 0.17AC/km.

7.1 Static case, transit network model

We first present results for two instances in the static case (i.e., time is not
taken into account), with the simple transit network model of § 4.1. The results
presented below rely on the set of strategies Q described in (4)–(5), where a set
of γ inspectors can be arbitrarily distributed over the edges of the network.

In upper part of Figure 4(a), a Nash equilibrium strategy q∗ of the inspector
on the whole German network is represented. Here it was assumed that γ = 50
controllers are simultaneously present on the network, which has 319 nodes,
2948 edges and 5013 commodities. The dotted edges on the figure represent
toll-free shortcuts, where the costs per kilometer is twice higher as on the the
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motorway network (we = 2ble), but no control can occur (σe=0).
For α = 1 (MAXPROFIT), the bound H(q∗) ≥ H(q) + d(p̂) − dmin of

Proposition 6.5 guarantees that the payoff from this Nash strategy is at least
99.3% of the optimal Stackelberg payoff. To compute this bound, note that we
must first compute a Nash strategy q∗ and its tie breaking best-response p̂. In
contrast, the bound of Theorem 6.6 depends only on the per kilometer fares f
and the uniform penalty rate u. For the values f and u of this instance, the
upper bound on the price of spite is f

u = 1.44.
Further tests on a smaller network representing the region of Berlin-

Brandenburg (45 nodes, 130 edges, 596 commodities) confirm that the Nash
equilibrium strategy might be a good trade-off between the computation time
and the efficiency of the controls. This network is represented in the lower part
of Figure 4(b), with colors showing a Stackelberg strategy for MAXTOLL and
γ = 3. Figures 4(b)-4(d) compare 4 strategies in function of the number of
controllers γ: the strategies MAXPROFIT and MAXTOLL, the Nash equilib-
rium strategy computed by LP (10), and a strategy in which control intensities
are proportional to traffic volumes on each edge of the physical network G0 (of
course, no inspector is allocated to the dummy toll edges where σe = 0). Plot (b)
shows the profit collected when committing to one of these strategies (in the
Stackelberg model, i.e. drivers select a best response which favors the inspector
most). We see on Plot (c) that the Nash strategy is always near-optimal in terms
of profit. However, we point out that the MAXTOLL strategy outperforms the
others in terms of toll enforcement (Plot (d)), at the price of a small loss in
total profit (7% for γ = 2 and 2% for γ = 4). In another experiment, we have
set γ = 3 and we have played with the parameter α, which joins MAXPROFIT
(α = 1) to MAXTOLL (α = 0). Plot (e) shows that for α = 0.75, one can find
a solution with almost the same profit as in MAXPROFIT, but with a higher
fraction coming from the toll, and hence less evasion.

7.2 Static case, two-layer network model

We shall now present some results for an instance constructed with the two-
layer network model of §4.2. The graph of this instance represents the federal
state of Rhineland-Palatinate; the graph G0 has 37 nodes, 142 edges and 323
commodities, which yields 148 nodes and 506 edges in the two-layer graph G.

The Stackelberg strategy of the inspector for MAXPROFIT and γ = 6 is
indicated in Figure 5, as well as the flows of network users in the two-layer
graph. In the northern part of the graph, the red edges in the toll evasion level
are much wider than the corresponding green edges in the fare compliance level,
which indicates that many users have no incentive to pay the toll here.

The evolution of the inspector’s payoff with γ is plotted in Figure 6, for the
Stackelberg, Nash, and proportional strategies (as a percentage of the maximum,
i.e. the profit reached with the Stackelberg strategy). Here again, the Nash
strategy is optimal in most cases (except for γ = 10 where it captures 98.7%
of the optimum). Curiously, the inspector’s payoff sinks between γ = 7 and
γ = 8 with the proportional strategy. This is explained by the lower graph of
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Figure 5: Inspector’s Stackelberg strategy (above) and Driver flows (below) for the

MAXPROFIT problem with γ = 6. In the lower 3D-figure, the width of the edges is

proportional to the number of network users in the two-layer graph. The red edges

represent fare evasion, the green edges fare compliance, and the yellow ones correspond

to toll-free sections.

Figure 6: when γ = 8, this strategy assigns a too high control frequency on
certain edges, which creates a situation where many drivers have an incentive
to take a toll-free trunk road, thus depriving the inspector of the incomes from
both fares and fines on this edge.

7.3 Examples with time dynamics

We have considered several real-world instances corresponding to several control
regions of Germany, for the model with cyclic duty graphs presented in §4.3.
For example, the network corresponding to the control region located around
the federal state of Saxony-Anhalt is depicted in Figure 7. The upper part of
the figure shows the graph C = (S, A) connecting 17 sub-control areas, with
nodes whose location coincide with the barycenter of each control area S ∈ S.
We have used a time discretization of two hours, so that an inspector’s duty of
8 hours has length L = 4 in the cyclic duty graph D. The lower part of Figure 7
shows the intensity of the controls in the Nash strategy, during 4 different time
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Figure 6: Evolution of the total profit and number of kilometers driven on the al-

ternative toll-free trunk roads with γ, for the Rhineland-Palatinate instance in the

MAXPROFIT setting.

windows.
Table 1 summarizes the results for several control regions of Germany, for

the MAXPROFIT problem (α = 1). For each instance, the table gives the
size of both the graph G0 = (V0, E0) of the physical network, and its time-
extended version G = (V,E) that was constructed along the lines of Section 4.

In addition, the table shows the ratio eff = H(q∗)
H(q∗)+d(p̂)−dmin

which bounds from

below the efficiency of the Nash strategy q∗, cf. Proposition 6.5; the bound f
u

on the price of spite, cf. Theorem 6.6; and the CPU time to solve the LP (10)
on a PC with 8 cores at 3.2 GHz.

To evaluate the impact of shortcut edges that allow the user to avoid the
paying network (cf. Remark 6.8 in the last section) we have considered 2 variants
of each instance. An instance without shortcut, where we consider only the
edges of the motorway network (black edges on Figure 8), and an instance
with shortcuts (red edges). Since we have no data on trunk roads in Germany,
shortcuts were generated according to the following procedure: An edge with
weights σe = βe = 0, we = 2bdu,v is added between between the nodes u and
v whenever the distance du,v between u and v is below a threshold, and the
strategy consisting in taking only the edge e = (u, v) is not dominated by the
pay-strategy from u to v on the motorway network: 2bdu,v < (b+ f) splu→v(l).

The table shows that the bound on the quality of q∗ degrades a bit when
shortcut edges are added, but for the considered instances we always have a
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Figure 7: Graph C joining the control areas for the Saxony-Anhalt instance (above);

Nash strategies of the inspector during four time windows, computed for γ = 20

inspector teams (below). Red/blue indicates higher/lower inspection frequencies.

guarantee that H(q∗) is at least 95% of the optimum. The upper bound on the
price of spite (f/u = toll rate per km/uniform penalty per km) is given only for
the instances with no shortcut, so that Theorem 6.6 applies.

8 Conclusion and Perspectives

We have introduced the class of spot-checking games, which are particular se-
curity games played on a graph. These games can be used to represent many
situations in which controls must be distributed over a network. We have pro-
posed a LP / MIP based approach to compute Nash and Stackelberg equilibria
of this game. Users’ strategies are represented by muliticommodity flows, which
makes it possible to compute a Nash equilibrium of the game very efficiently.
The computation of a Stackelberg equilibrium is NP hard, which justifies our
MIP approach. We have introduced the price of spite of spot checking games,
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Instance shortcuts |V0| |E0| |V | |E| |C| eff (%) f
u

CPU (s)

Saxony Anhalt no 30 60 903 2453 1190 99.85 1.94 2.32
Saxony Anhalt yes 30 106 903 3005 1190 99.85 – 10.97
Lower Saxony no 38 78 1263 3759 2016 100.00 1.41 6.48
Lower Saxony yes 38 108 1263 4119 2016 99.91 – 15.76
Berlin-Brandenburg no 62 128 1992 7769 4985 99.96 2.06 20.17
Berlin-Brandenburg yes 62 328 1992 10169 4985 99.29 – 254.11
Northern Bavaria no 56 116 1458 4073 1895 100.00 2.17 9.09
Northern Bavaria yes 56 240 1458 5561 1895 99.85 – 78.80
Southern Bavaria no 65 130 1985 6582 3817 98.63 3.05 20.21
Southern Bavaria yes 56 304 1985 8670 3817 96.05 – 248.40
Schleswig-Holstein no 46 92 1371 3543 1620 100.00 2.10 6.91
Schleswig-Holstein yes 46 384 1371 7047 1620 95.34 – 13.22

Table 1: Bounds on the price of spite, for several real-world instances.

Figure 8: Motorway network (black) and generated shortcut edges (red), for the
regions of southern Bavaria (above) and Schleswig-Holstein (below).

which measures how the payoff of the inspector degrades when commiting to a
Nash strategy, rather than to a Stackelberg strategy. Two bounds are given:
the first one analyzes the quality of a Nash strategy q∗ in terms of detours of
the tie-breaking best response multicommodity flow p̂. The second bound is for
a distance-based toll network, and depends only on the ratio between the toll
fares per kilometer and the average penalty per evaded kilometer (if the fare in-
spectors are uniformly spread over the network). Finally, we have demonstrated
the quality of these bounds for a real-world application.

For future work, we would like to extend our model, in order to take into
account congestion effects. More precisely, we want to investigate the situation
where the weight we of an edge and the expected penalty σe are functions of
the number of agents taking this edge.

Another research direction suggested by this article is the investigation of
polytime approximation algorithms for the computation of a Stackelberg equi-
librium in a spot-checking game. We think that a FPTAS might exist for the
case where α = 1, and more generally for all pairwise zero-sum polymatrix
games.
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A NP hardness of SC games

In this section we prove that it is NP hard to compute a Stackelberg strategy
of a SC game, even when α = 1 (Theorem 6.1). We recall that such a strategy
is a maximizer of H(q) over Q, see (13).

Our proof is based on a reduction from the binary knapsack problem, which
is well known to be NP-complete [6]:

(0/1 Knapsack) Given are a finite set of objects Υ, a weight ω(a) ∈ N, a
utility u(a) ∈ N for each a ∈ Υ, and positive integers W (knapsack capacity)
and U (desired utility). Is there a subset Υ′ of Υ such that∑

a∈Υ′

ω(a) ≤W and
∑
a∈Υ′

u(a) ≥ U?

Proof of Theorem 6.1. Given an instance K of the 0/1 Knapsack problem, we
construct an SC game G in which α = 1, there are exactly two possible routes
for each commodity k ∈ K, and such that G has the following property: there
exists an inspector’s strategy q that yields a payoff H(q) ≥ U if and only if K
is a yes-instance (where H(q) has been defined in (13)).

Our instance is constructed as follows: for each object a ∈ Υ there is a
commodity (sa, ta), with two arcs â and ǎ joining sa to ta: G = ( {sa, ta : a ∈ Υ},
{â, ǎ : a ∈ Υ}). The arcs â and ǎ are respectively pay- and evasion-edges, with
weights

βâ = u(a), σâ = 0, wâ = u(a)

βǎ = 0, σǎ =
1

2
, wǎ = u(a)− ω(a)

2W
.

Note that we can assume without loss of generality that ω(a) ≤ W for each
object a, so that wǎ ≥ 0. There is a single user on each commodity (xa = 1),
α = 1, and the set of all inspector’s strategies is the standard probability simplex
over the evasion edges Q = {q ≥ 0 :

∑
a∈Υ qǎ = 1}.

Given an inspector’s strategy q ∈ Q, it is easy to compute the inspector’s
payoff H(q), see Eq. (13). Indeed, for a commodity a ∈ Υ two cases can appear:

either qǎ <
ω(a)
W , and in this case the only best response is to take the evasion

path. Or qǎ ≥ ω(a)
W and paying the toll is a best response. When there is a

tie (qǎ = ω(a)
W ), the user of commodity a chooses the strategy that favours the

inspector most; that is, he will pay the toll because σǎqǎ = ω(a)
2W ≤ 1

2 ≤ u(a).
Hence,

H(q) =
∑

a:qǎ<
ω(a)
W

σǎqǎ +
∑

a:qǎ≥ω(a)
W

βâ

=
1

2

∑
a:qǎ<

ω(a)
W

qǎ +
∑

a:qǎ≥ω(a)
W

u(a).
(15)
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Figure 9: An SC game with a single commodity. Edges are labelled with weight
triples (we, σe, βe).

We first assume that K is a yes-instance. Then, let Υ′ be a knapsack of

value ≥ U . We define a control strategy by setting qǎ ≥ ω(a)
W for all a ∈ Υ′,

and qǎ = 0 for all a /∈ Υ′ (this is possible because
∑
a∈Υ′ ω(a) ≤ W ). Then,

Eq. (15) gives H(q) ≥
∑
a∈Υ′ u(a) ≥ U .

Conversely, let q be such that H(q) ≥ U . Define Υ′ := {a ∈ Υ : qǎ ≥ ω(a)
W }.

Eq. (15) gives H(q) = 1
2

∑
a/∈Υ′ qǎ+

∑
a∈Υ′ u(a) ≤ 1

2 +
∑
a∈Υ′ u(a). This implies

that the integer
∑
a∈Υ′ u(a) is larger than U − 1

2 , and thus it is larger than or
equal to U . This proves that K is a yes instance.

Finally, the reduction from K to G is clearly polynomial. Hence, finding a
Stackelberg strategy of the inspector in a SC game is NP-hard, even when α = 1
and each user has only two routes.

B An instance with unbounded Price of Spite

Consider the SC game depicted in Figure 9. There is a single commod-
ity C = {(s, t, 1)}. There are two teams of controllers, who can defend
any subset of 2 edges. The mixed strategy of the inspector is thus Q =
{0 ≤ q ≤ 1 :

∑
e qe = 2}. Edge weights are labelled as triples (we, σe, βe). The

wide solid edges represent pay-edges (we ≥ βe ≥ 0, σ = 0), the thin solid edges
represend fare evasion (βe = 0, σe > 0), and the dashed edge is a detour path
from s to t that avoids the paying network (βe = σe = 0).

It is not hard to see that the strategy profile where the network user takes the
free road from s to t (the dashed edge with weights (3, 0, 0)), and the inspector
defends s→ u and u→ t at 100% each is a (pure) Nash equilibrium. Moreover
the dashed path taken by the user is a tie-breaking best response (because there
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is no other (s,t) path of length 3 with respect to the weights w + σ ◦ q), and
this profile gives no revenue to the inspector.

But the inspector has a better strategy. If he defends the evasion edge
s → u and the long evasion edge s → t at 100% each, the network user has
three possible best responses: the path s → u → t (paying the toll on s → u
and evading the toll on u → t), the path s → u → t (evading the toll on both
s → u and u → t) and the free road from s → t, each having a cost of 3 with
respect to the weights w + σ ◦ q. The tie-breaking best response is the first
path, which yields a revenue of 1 to the inspector (independently of the value
of α ∈ [0, 1] because the revenue comes from the toll between s and t, not from
penalties). This shows that this instance has an infinite price of spite.
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