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Abstract

In this Master Thesis, the modelling process and the required biological background to ade-
quately describe the hormonal dynamics of the human menstrual cycle are presented. The aim
of this Master thesis project is to establish a mathematical routine that enables prediction of
potentially fertile time windows.
A system of four parameter dependent ordinary differential equations coupled with two algebraic
equations is built, accounting for the main kinetic drivers of the human menstrual cycle – basal
body temperature, estradiol, progesterone, luteinizing and follicle stimulating hormone.

The key parameters are identified using a nonlinear least squares approach to match the model to
individual data. Aiming to solve the optimality problem arising, the Newton and Gauss-Newton
method are examined and their local convergence theory is outlined. By the nature of the ap-
plication, a globalised Gauss-Newton method seems more convenient. An adaptive trust region
approach to determine the step lengths is chosen, which together with an linearly-implicit Euler
extrapolation for the given differential algebraic equation system makes parameter estimation
possible.

The simulation results are discussed particularly in view of limitations and problems arising
through the modelling approach.
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1. Introduction

A major task in mathematical medicine and systems biology consists of the study of bio-chemical
mechanisms happening in some real biological context. Aiming at building a fruitful fusion of
biology, computer science, mathematics and engineering sciences, the human female body can
tried to be assessed in the same complex way. Controlling reproduction, adjusting therapy treat-
ments to the individual patient or the adequate prediction of fertile phases are only a few of the
numerous features and possible applications of such a model.

The female menstrual cycle regulates the hormonal balance of follicular growth in the ovaries,
such that after ovulation, reproduction is enabled.
The basic dynamics happening in the framework of the human menstrual cycle involve the pitu-
itary and the ovaries. Controlled by the endocrine system, the menstrual cycle can be divided
into follicular, ovulatory and luteal phases. Equivalently, one may refer to preovulatory, ovula-
tory and postovulatory phases (Weschler (2006), p. 373). Commonly, menstrual cycles are
counted from the first day of bleeding, which will be adapted in the following.

Particularly, the dynamics during the preovulatory phase are mainly driven by rising levels of
follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both being produced by the
anterior pituitary, LH and FSH are responsible for early-stage development of the follicles in the
ovary. Competing for dominance, only one of all growing follicles will continue to mature and
later contains the egg. The maturing process of the dominant follicle increases the level of estra-
diol, the main estrogen involved in the menstrual cycle (Adlercreutz/ Lehtinen/ Kairento
(1980), p. 400).
Rising levels of estradiol concentration during the follicular phase suppress the production of LH.
Close to maturity of the follicle, the response of luteinizing hormone (LH) to estradiol (E2) re-
verses. When E2 reaches a specific threshold, namely the preovulatory E2 peak, estradiol starts
to positively stimulate LH production. By the time LH surges to its peak, the egg continues to
grow averagely for another 12−24 hours until it reaches its maximum diameter. Once the egg has
maximally matured, it is released from the ovary. Ovulation, often featured by the characteristic
Mittelschmerz (i.e. mid cycle pain) at mid cycle, happens around 36 hours after the total E2

peak and consequently around 12 − 24 hours after LH peak, following Selgrade/ Schlosser
(2000) (p. 875) and the World Health Organisation (1983).
The postovulatory or luteal phase begins with the growing of the corpus luteum, being the solid
body formed in the ovary after an egg has been released at ovulation. The corpus luteum causes
a significant rise in heat-producing steroid hormone progesterone (P4), produced in the ovaries.
Progesterone is mainly involved into the implantation processus of the released egg and sup-
port of early pregnancy, high P4 concentrations in the endocrine system result in a surge of the
woman’s basal body temperature (BBT). BBT measures the lowest body temperature attained
after rest and can keep rising until three days after ovulation (Weschler (2006), p. 361/362)
before it drops again in case of non-pregnancy.
Progesterone levels are furthermore triggered by the pituitary hormones LH and FSH after ovu-
lation, transforming the remainders of the dominant follicle into the corpus luteum. LH peak is
assumed to last for 16− 20 hours at which time progesterone starts to rise (Johansson/ Wide
(1969)). Once P4 levels are high, LH and FSH are suppressed while BBT rises with a certain
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delay compared to P4. Quickly decreasing levels of LH and FSH result in the corpus luteum’s
atrophy, which itself monotonically increases P4 concentration in the blood for a duration of
around 14 days after ovulation. While high (plasma) P4 concentration indicates the formation
of the corpus luteum, P4 concentration falls rapidly from plateau level at the onset of menstrual
bleeding (Johansson (1969)). Effectively, withdrawal of P4 triggers the beginning of the next
cycle and hence menstruation.
Though cycle length may vary significantly from woman to woman (Carter/ Blight (1981),
p. 744), Weschler (2006) notes that mostly follicular phases vary for every individual woman
while luteal phase remains consistent over all cycles (p. 47/380).

Computerised fertility monitors have become widely available over the past decades which are per
definition electronic devices enabling the woman to determine fertile and infertile periods of her
menstrual cycle. Aiming at either pregnancy achievement or avoidance, most of the electronic
devices on the market seem to work inefficient compared to standard Natural Family Plan-
ning (NFP) methods according to Freundl/ Godehardt/ Frank-Herrmann/ Koubenec/
Gnoth (2003).

The start-up company Clue, Berlin1, intends to link a fertility monitor to a smart phone through
an App which enables the woman to collect basal body temperature data and estradiol levels.
The latter should be measurable through an assay utilizing saliva, which currently Clue and the
Fraunhofer Institute for Biomedical Engineering Potsdam-Golm are developing.

The project crucial to this thesis is the development of a model implemented with an efficient
algorithm such that increases in estrogen levels, specifically estradiol, and in basal body temper-
ature can be detected and used for the prediction of potentially fertile periods.
The main idea is that in future, BBT and estradiol values will be made available through the
Clue App. Emphasis should also be put on the fact that by the possibility to store BBT and
estradiol values for numerous cycles over time on a web database, any prior information of an
individual woman could be used to individualise and hence enhance prediction of fertile periods
to support pregnancy achievement.

The final objective of this work is to propose a simplified, qualitative and adequate model for
a very complex process taking place in the female body. The temporal and endocrinological
characteristics of the human menstrual cycle are worked out in section 2. At the end of this
section, a reduced model of four differential equations coupled with two algebraic equations is
proposed.
The subsequent sections are directed by the outline about Inverse problems in Systems Biology
given by Engl/Flamm/Kügler/ Lu /Müller/ Schuster (2009) (pp. 3–12). Developing a
model by common guidelines to adequately mathematically describe a biological process mea-
sured by some experimental data (chapter 2), chapter 3 will provide the mathematical theory
applicable for parameter estimation formulated as nonlinear least squares problem. The algo-
rithmic approach to parameter identification is outlined in chapter 4, where the methods and
algorithms used for simulation are described. Subsequently, simulation results are used to eval-
uate and validate the proposed model as far as possible in section 5. A conclusion critically
reviewing the model and obtained results is given in section 6.

1Clue. Showing women when they can get pregnant, on their phone. (www.helloclue.com)
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2. A Model for the Human Menstrual Cycle

The objective of the human menstrual cycle is basically the hormonal regulation of follicular
growth and the maturation of the egg in the ovaries. Leading to ovulation around mid cycle,
reproduction is enabled. If fertilisation does not happen during the woman’s potentially fertile
period, the beginning of the new cycle is induced.

Apart from cycle length and the different phases of the menstrual cycle, the endocrinological
network and its complex dynamics need to be understood to accurately describe a woman’s cy-
cle.
The main drivers of hormonal regulation are identified as estradiol (E2), progesterone (P4),
luteinizing hormone (LH) and follicle stimulating hormone (FSH). In the models of the human
menstrual cycle presented by Reinecke/ Deuflhard (2006) and the GynCycle model from
Röblitz/ Stötzel/ Deuflhard/ Jones/ Azulay/ van der Graaf/ Martin (2013) var-
ious other relevant hormones are included. For the current application these models seem to
be either too complex or too general. The GynCycle model, consisting of 33 ODEs with 114
unknown parameters, includes the release of gonadotropin releasing hormone (GnRH). Its release
controls by size and frequency FSH and LH concentration in the blood as well as the maturation
process of the follicles. Reviewing the GynCycle model, difficulties arise when the model is to
be matched to individualised data of one woman. Intra-woman variation in cycle length and
hormone concentration levels could not be incorporated without loss a in the model’s quality.
In view of the nature of the final application and the hereby available data, the GynCycle model
has to be revised and reduced. BBT has to be included into the model, while the endocrinological
dynamics have to be reduced to their core activity.

Since individual measurements are solely assumed to be available for E2, gathered through a
saliva assay, and basal body temperature, recorded through a clinical thermometer, these data
are to be considered crucial to determine impending or passed ovulation. While the general
interaction between those hormones is outlined in chapter 1, the focus now in chapter 2 is
directed towards the key mechanisms of hormonal regulation the reduced model is expected to
describe.

2.1. Endocrinological and Temporal Dynamics

Following WHO (1980), Royston (1991) and Collins (1985), the main ovarian and pituitary
hormones of importance to determine the fertile period of the human menstrual cycle include
(plasma) luteinizing hormone, estradiol and progesterone (Royston (1991), p. 222). If we now
assume that LH and FSH are the relevant pituitary hormones, E2 and P4 are responsible for
reproductive regulations and that BBT gives feedback of happening ovulation, the main en-
docrinological dynamics happen either in the ovaries or the pituitary.
Ovarian dynamics are driven by E2 and P4, which are released from the follicles into the blood.
Experiencing a constant clearance rate, E2 is mainly secreted by the preovulatory follicle while
P4 levels rise through release of the corpus luteum after ovulation (Collins (1985)).
In the pituitary, synthesis-release relationships happen at first place (Schlosser/ Selgrade
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(2000) and Harris (2001)). Enzyme reactions can be considered as feedback effects. Distin-
guishing positive and negative feedback mechanisms, E2 promotes rapid LH synthesis. In the
same way, P4 stimulates the release of LH if E2 is in normal range, i.e. during follicular phase.
Similarly, P4 also has a positive feedback effect on the release of FSH as long as E2 is in normal
range (Selgrade/ Schlosser (2000), p. 874).
Due to the cyclic nature of hormonal regulation happening during the reproductive age of a
woman, the positive feedback effects reverse under specific circumstances. Hence, P4 inhibits
synthesis of LH during the luteal phase. In the same way, E2 has a negative feedback effect on
the release of LH and FSH if E2 concentration is beyond the normal range. Though, the response
of LH to E2 is reversed to positive feedback close to maturation of the egg.

Figure 2.1.: The figure above displays the endocrine dynamics of E2, P4, LH and FSH for a 28
day cycle. Ovulation can be assumed to happen at day 14, the luteal phase starting
then also. The important causality that should be picked up and reproduced in any
model for the human menstrual cycle is basically the location and the delay within
the components’ peaks. Height and location may vary from woman to woman but
also within cycles. Nevertheless, the basic dynamics and temporal relationships
should form the fundamental of such a model. The underlying assumptions are
stated and evidenced in the following, chapter 2.2 on p. 5 ff.

Shortly, the (scaled) temporal relationship of the endocrinological dynamics can be summarized
as follows: E2 reaches its preovulatory peak around 12 hours before the peak in LH. LH itself
surges once E2 is at its preovulatory peak. The LH peak can be considered the best indicator
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for impending ovulation (see section 2.2, p. 5), occurring around 12-24 hours prior to ovulation.
Consequently, E2 reaches the peak 24-36 hours prior to the release of the egg. Once the ovum
is released, postovulatory formation of the corpus luteum causes 16-20 hours after the peak in
LH a significant increase in P4 concentrations. Rapidly surging levels of P4 induce a 0.2− 0.5◦C
thermal shift in BBT. Usually, this thermal shift occurs around 24 hours after ovulation.
Hence, in mean, the peak in estrogen levels measured by E2 is followed by ovulation after 24-26
hours which itself is followed by the BBT rise around 24 hours later.

2.2. Definition of the Potentially Fertile Period

Predicting human ovulation and detecting potentially fertile phases of the human menstrual cycle
has been a central task within sciences after the 1980ies. Basically, the World Health Or-
ganization (1980) defines the probable fertile window of the menstrual cycle as days −3 to +2
with respect to the LH peak (day 0). The LH peak roughly occurs 24-28 hours prior to ovulation.
In the following, the kind of data collection as well as assumptions crucial to predict the time of
ovulation are tried to be clarified and justified. By the nature of the application, the model is
expected to adequately describe not only the menstrual cycle with its characteristics but specifi-
cally potentially fertile periods. In the following, the basic temporal and hormonal dynamics are
completed by a couple of assumptions that are expected to be represented in the proposed model.

First of all, a time window for the potentially fertile period of a woman’s cycle needs to be de-
fined. With estradiol, progesterone, LH and FSH being the main identified drivers for hormonal
regulation of the human menstrual cycle, let us pick upon the interaction observable. If a tool
either for managing fertile periods or for contraception embedded in a natural family planning
(NFP) environment is to be developed, the main task is to provide an early warning of ovulation.
The following assumptions are examined and supported by literature, and will guide to establish
a best possible prediction-detection strategy for the precise time of ovulation.

Common fertility computers on the market use temperature as an indicator for ovulation.

Assumption 1: BBT is not an indicator for ovulation, but rather an indicator for the beginning
of decreasing fertility.

Basically, after the rise in BBT the woman is still fertile for up to three days. Nevertheless,
BBT is considered rather an indicator to afterwards detect than to beforehand predict the time
of ovulation. Fertility is highest on the day of ovulation. Kerin (1982) states, that ”knowledge
of basal body temperature is not a prospective guide to ovulation, but once the thermal shift is
established [...], the fertile period can be considered to have passed.” (p. 27)
Clarifying the biochemical background around ovulation, Carter/ Blight (1981) describe that
preovulatory estrogen concentration in blood remains on a constantly low level while in average,
3 days prior to ovulation, a gradual rise to a peak occurs. The increase in estrogens induces a
surge of luteinizing hormone (LH) concentration to a peak which is followed by ovulation with a
12-24 hours delay. Ovulation happening, (plasma) progesterone (P4) concentration surges while
this jump induces an increase in BBT by averagely 0.2 − 0.5◦C. The statistical approach taken
by Carter/ Blight (1981) is based on the Bayesian rule which enables to detect changes from
constant mean values. Since both basal body temperature and estrogen levels undergo such
a change at some point around ovulation, this method seems applicable to detect and predict
potentially fertile periods in women. This is a sequential problem where mean levels, rate and
magnitude of changes as well as change points might vary from woman to woman (p. 744). In
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the end, an adequate idea is simply to use estradiol change point for prediction and the BBT
change point for an a posterior detection of ovulation. In case, both estrogen and BBT change
points could be detected (subject to sufficiently available pre- and post-ovulatory temperature
values), these two events ”bracket” ovulation and might be considered the mid-cycle fertile pe-
riod according to Carter/ Blight (1981) (p. 750).

Assumption 2: Estradiol can be considered the most valuable predictor of ovulation of all estro-
gens in the human.

Adlercreutz/ Lehtinen/ Kairento (1980) found estrogens, and specifically estradiol (E2)
to be a valuable predictor of ovulation. In their studies performed, cycle lengths varied between
23 and 37 days (p. 395), while for each individual, the day with the highest LH excretion was
followed by a significant increase in plasma progesterone (P4). Data analysis of estrone (E1),
estrone-3-glucuronide (E1−3G) and estradiol (E2) revealed a slightly more pronounced increase
of estradiol and also the smallest within-individual variation of mean basal values compared to
E1, E1 − 3G (p. 397).
Adlercreutz/ Lehtinen/ Kairento (1980) conclude in line with research of Baker/ Jen-
nison/ Kellie (1979) that E2 assays probably give best prediction of human ovulation by the
highest mean ratio of peak-to-baseline values such that an earlier warning can be obtained if
prediction is based on E2 values.
Using time series, a statistical approach to detect increases in urinary estrogen levels by a cum
sum procedure is presented by Blackwell/ Brown (1992). Analysing that in mean, ovulation
occurs around 24 hours after serum LH peak and ca. 36 hours after the total estrogen peak,
Brown/ Harrison/ Smith/ Burger (1981) measure a 12 hours shift between the estrogen
and the LH peak. Though ovarian activity measurable through a rise in estrogen levels, i.e.
among other E2, does not necessarily need to be the beginning of potentially fertile periods, at
the present time the first increase in urinary estrogens gives the best available hormonal indi-
cator of ”impending potential fertility” (p. 581 and World Health Organization (1983)).
Schlosser/ Selgrade (2000) archived the LH peak during the normal mid-cycle as around
12− 24 hours subsequent to the peak in E2 levels.

The core problem in using E2 as a predictor for ovulation has been the clinical availability of
the same. E2 only being measurable through plasma, research on extracting hormonal values
using saliva has been developing since the 1990ies. Recent outcomes of the Fraunhofer Institute
Potsdam-Golm now make it possible to accurately collect E2 values through saliva, which effec-
tively established Clue’s business vision. E2 plasma and saliva concentrations are assumed to be
highly correlated.
Finally, estradiol values are assumed to give the best in-time-warning for ovulation. While E2

data is assumed to be available within the Clue project, the precise time of ovulation is not iden-
tifiable neither by the peak in E2 concentration nor by the peak in BBT alone. The potentially
fertile window can hence only be considered as bracketed by those two peaks.

Assumption 3: The peak in LH concentration (in blood or urine) can be considered the best in-
direct indicator of impending ovulation.

The peak in LH is commonly considered the most reliable indicator for ovulation. Following Al-
brecht/ Fernando/ Regas/ Betz (1985), ovulation does not need to happen simultaneously
to the peak in LH, but in the majority of cycles of normally menstruating women it is assumed
to occur within at most 24 hours of the LH peak (p. 202).
Kerin (1982) states that the LH peak is the most clearly defined with a two to four fold increase
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above baseline levels, happening in a relatively short 24 hours preovulatory phase. The tem-
porary relationship can be summarised as follows: The first rise in LH concentration happens
28− 36 hours prior to ovulation. Once LH reached its peak concentration, it takes another 8-20
hours until ovulation. Royston (1991) and WHO (1980) give a more conservative estimation
concerning the relationship of LH and the time point of ovulation. Surging 24− 56 hours prior
to ovulation, they assume the LH peak to occur 8 − 40 hours before ovulation. Still, by these
authors Assumption 3 is endorsed: ”A common and convenient reference point for ovulation is
the day of peak concentration of LH in blood or urine.” (Royston (1991), p. 223)
Kerin (1982) notes furthermore that LH induces a ”marked reduction” in estrogen production
some 12 hours prior to ovulation while it induces at the same time a two to three fold increase in
progesterone production about the baseline levels. Royston (1991) adds that E2 is assumed to
peak around 24 hours prior to ovulation (p. 223) while progesterone levels start to rise around
the time of ovulation itself.

Assumption 4: If identifiable, the BBT nadir coincides with the surge in LH.

There exists evidence that the first surge in LH concentration coincides with a nadir in BBT.
Morais/ Underwood/ Easterling (1976) analysed basal body temperature and serum luteiniz-
ing hormone for 27 normal human menstrual cycles and found rising LH levels to occur on the
same day or within one day of the BBT nadir (81%). Similar results were obtained by Tem-
pleton (1982) who could show that for 39% of 51 observed cycles the preovulatory dip in BBT
coincided with the surge in LH while it preceded or followed the surge in LH by more than
24 hours of 35% and 10% of the cycles reviewed. Also Nitschke-Dabelstein/ Hackelör/
Sturm (1980) could timely match the LH peak and the BBT nadir, while the first increase in
BBT occurred the day when progesterone concentration reached 3.2ng/mL. A more conserva-
tive result was formulated by Albrecht/ Fernando/ Regas/ Betz (1985), who linked BBT
measurements to serum LH data for 18 cycles. The three days prior to LH peak BBT exhibited
lower values than the baseline before it experienced a sharp increase on the first day after LH
peak, rising for two more days (p. 203). They found the preovulatory dip in BBT rather to
coincide with rising estrogen levels than with the LH peak itself. Nonetheless, BBT values were
still at their nadir on the assumed day of LH peak (p. 203).

Assumption 5: Ovulation is followed by a rise in BBT of 0.2 − 0.5◦C with delay of at least 24
hours.

Royston (1991) identifies the rise in BBT to be linked to the surge in progesterone levels, hap-
pening itself at the time of ovulation (p. 223). It is believed that a 0.2 − 0.5◦C elevated BBT
above the preovulatory baseline is reached 24− 92 hours after ovulation (p. 223). The thermal
shift of 0.2− 0.5◦C from base level takes roughly three days, before temperature decreases again
until after the onset of menstrual bleeding.

Consequently, we need to define the fertile window of a normally menstruating woman:

Assumption 6: The potentially fertile period of the human menstrual cycle ranges from -3 to +2
days around the LH peak.

By the definition of the World Health Organization (1980) the fertile period ranges from
-3 to +2 days around the LH peak, where the dominant follicle reaches its maximum diam-
eter (Freundl/ Godehardt/ Kern/ Frank-Herrmann/ Koubenec/ Gnoth (2003)).
Collins (1989) supports these limits for the commencement of the fertile period on the ba-
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sis that over 90% of the pregnancies happen during this time window.
Deposited sperm is usually considered to survive 3-5 days (Adlercreutz/ Lehtinen/ Kairento
(1980), p. 400 and Brown/ Gronow (1985)) though the World Health Organization
(1980) calculates with a maximum of 6 days and Blackwell/ Brown (1992) even assume a
survival of 6-7 days for ”very fertile couples” (p. 561).
As Adlercreutz/ Lehtinen/ Kairento (1980) point out, any contraception methods should
predict the commencement of the fertile period at least 3 days prior to the LH peak. This would
equivalently mean that ovulation, occurring 24-28 hours after the LH peak, needs to be predicted
at least 5 days earlier – when estrogens and specifically E2 have not yet started to increase sig-
nificantly” (p. 400). Finally, they note that no practical methods predicting ovulation can ever
be 100% safe since it cannot be known ad hoc if the assessed cycles are really fertile.
Contrary to the literature referred to above, Clue precisely aims at enabling women to be in
charge of their fertility with the ultimate goal of supporting pregnancy opportunities – contra-
ception purposes might be attacked at a later stage of their initiated project.
Blackwell/ Brown (1992) recommend to use a 95% instead of a 99% confidence interval
if statistically approaching Natural Family Planning in the sense of contraception in order to
reduce the probability of false indication of a fertile day as non-fertile. In our case, rather a non-
conservative approach would be favourable that highlights the 3-4 days period around maximal
fertility, i.e. ovulation (Royston (1991), p. 203/ 237 and Blackwell/ Brown (1992), p. 560).

The core drawback of the last insight is that LH is not user-friendly measurable. Building on
the availability of BBT and E2 data, we already ascertained that E2 is a valuable predictor
for ovulation. Nonetheless, identifying solely the E2 peak might give a very short notice about
impending ovulation. Due to the steep increase in E2 concentration, the first remarkable rise in
E2 could give an earlier warning.

Assumption 7: The time span between the first increase in E2 and its peak in mean amounts to
72 hours.

While Adlercreutz/ Lehtinen/ Kairento (1980) could identify a first rise in estradiol at
day −6 and −5 relative to the peak day of LH for the majority of their subjects (p. 400),
Blackwell/ Brown (1992) find by calculation of the Trigg’s tracking signal the first rise in
E2 to statistically happen between day −6 and −4 (p. 589). Royston (1991) endorses the use
of E2 change points as indicator for the beginning fertile period, finding the E2 concentration to
first increase 2− 7 days prior to ovulation (p. 223). This range is also given by Collins (1985).
In median, Collins determines a 83 hours interval between the first rise in E2 and ovulation,
which yields an averaged time span of around 60 hours between the first rise and the peak in E2

if assuming ovulation to happen 24 hours subsequent to E2 peak (p. 285).
Consequently, for the majority of the female population the detection of the first rise in estradiol
would give a sufficiently early warning for impending ovulation, except for those, where Collins
(1985) only identified a 48 hours delay of ovulation relative to the first rise of E2. For all others,
the time point of the first identifiable surge of E2, i.e. its change point, is located around day
−3 or earlier relative to the LH peak day.
By Assumption 4, 5 and 7, the Assumption 6 can be modified towards:

Assumption 8: The potentially (most) fertile period of the human menstrual cycle starts with the
first rise in E2 concentrations and ends with the thermal shift in BBT.

Due to the availability of E2 and BBT data within the Clue project, this modification seems
reasonable to establish a fertility monitor. In the end, the idea is simply to use estradiol change-
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point for prediction and the BBT change point for an a posterior detection of ovulation. As
mentioned above, ovulation can be considered to be ”bracket” by the change points of E2 and
BBT change points referring to Carter/ Blight (1981) (p. 750).
Existence of inter-woman and inter-cycle within-woman variation definitely represents a diffi-
culty to individually and efficiently predict potentially fertile periods. Since so-called baseline
levels constitute the reference points to detect changes, Royston (1991) emphasizes the need
to calculate new, individual baselines for each menstrual cycle. The following two assumptions
regarding individual baseline levels of E2 and BBT are based on his analysis (p. 225).

Assumption 9: E2 levels are roughly stable during the first six days of a cycle.

Assumption 10: BBT is normally stable between day 3 and day 8 of the cycle, since it tends to
decline from higher levels of the previous cycle until about the third day of the new cycle.

Another critical but crucial point in prediction of ovulation is the yet unknown length of the
cycle. Throughout the following prediction process it is assumed that E2 as well as BBT val-
ues have been collected for already three to four cycles. Due to inter-cycle variations, Liu/
Gold/Lasely/ Johnson (2004) found that in most women a short cycle is followed by a longer
cycle and vice versa (p. 139). The variations are mainly given through factors affecting the
length of the follicular phase, like stress, sickness, etc. Though, it is known that the length of the
luteal phase, starting with the day of ovulation until the onset menstrual bleeding, remains fixed
with approximately 14 days for every woman in every cycle: ”Increased cycle length is associated
with delayed ovulation and increased follicular phase length, since luteal phases are self-limited
to 14 days.” (Liu/ Gold/Lasely/ Johnson (2004), p. 139)
Liu/ Gold/Lasely/ Johnson (2004) examined the effect of the length of the prior luteal phase
on subsequent cycle lengths (p. 135). While cycle length could be negatively associated with
age (> 35 years) because of shortening of the follicular phase (p. 137), greater variability in
menstrual cycle lengths between women than within women could be demonstrated (p. 137).
Patterns suggesting that short cycles are followed by longer cycles and vice versa (p. 139) gave
an intra-woman correlation for cycle length of 0.51 between any adjacent pair of observation.
Mean cycle length could be ”significantly inversely associated” with the prior luteal phase (p.
137) with a correlation of −0.18 days. Thus, one can summarize:

Assumption 11: Luteal phase length remains constant at 14 days even for inter-woman and inter-
cycle within-woman variation of the (mean) menstrual cycle length.

For absolute cycle length, it seems most reasonable to take the mean cycle length obtainable
through the arithmetic average of the three previously collected cycles. In case this first estimate
for the cycle length of the fourth cycle to be predicted is significantly higher than the minimum
cycle length recorded, one should consider to further reduce the first estimate or even take the
minimum cycle length. This approach seems very conservative, but matching historical data
with the day to day measurements of the running cycle should induce a prolongation relative
to the first estimate. Since viability of the proposed model cannot be judged ad hoc, it rather
seems adequate to extend potentially fertile periods by some days than to completely miss the
day of ovulation. Obviously, this consideration is again extremely dependent on the purpose of
the model. To maintain a more general starting point, the arithmetic average will be adapted
throughout considerations in subsection 2.4 and section 5 (p. 78 ff.).
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2.3. A Model for the Human Menstrual Cycle

The whole modelling process is based on the assumption that reactions within the human body
are driven by mass action kinetics. Dealing with a large kinetic network, under the general
principle of mass action kinetics, a system of differential equations can be set up leading to an
initial value problem. Changes over time, y’, are assumed to be dependent on some parameter
vector x ∈ Rn. Aiming at developing a suitable model

y(t, x)

the task at hand reduces to quantify the unknown parameters x ∈ Rn by comparison of model
values and measured data according to Dierkes/ Wade/ Nowak/ Röblitz (2011) (p. 5) for
a proposed model.
In the Gaussian sense, this kind of parameter estimation also sometimes referred to as inverse
problem leads to solving a nonlinear least square problem for the given initial value problem.

Former modelling of the human menstrual cycle incorporated either integro-differential or delay
equations (Reinecke/ Deuflhard (2011)), but this was not found advantageous compared
to modelling without delays. Feedback mechanisms play a major role within the modelling
of the endocrine system of women and their menstrual cycle. Application of enzyme reaction
kinetics renders modelling of positive feedback mechanisms possible through Michaelis Menten
kinetics while negative feedbacks are represented by standard inhibitory enzymes mechanics
(Segel (1975)). A common way to incorporate enzyme reaction kinetics in a model of ordinary
differential equations is to use Hill functions (see for example Murray (2007)).

Definition 2.3.1. The Hill function for stimulatory effects, i.e. positive feedback, is defined by

(2.3.1) H+(X,Y, nHill) :=

(
X
Y

)n
Hill

1 +
(
X
Y

)n
Hill

while inhibitory effects, i.e. negative feedback mechanisms, are modelled through

(2.3.2) H−(X,Y, nHill) :=
1

1 +
(
X
Y

)n
Hill

where X ∈ R+ ∪ {0} denotes the hormone concentration with the threshold value Y ∈ R+

with a positive or respectively, a negative feedback. n is the Hill coefficient and by definition of
stimulating and inhibiting effects, it holds

(2.3.3) H+(X,Y, nHill) = 1−H−(X,Y, nHill).

Antecedently, four endocrinological components were identified as key drivers of the human men-
strual cycle which are completed by basal body temperature. Disposing of E2 and BBT data, it
is straightforward to introduce a time dependency for these two components. P4 closely inter-
acting with E2, also the steroid P4 is modelled on a time continuous basis. The remaining two
components, LH and FSH, directly and indirectly control the response of E2 and its antagonist
P4. Since no individual data is collected in regard, it was decided upon modelling LH and FSH
through standard curves which still adequately reflect the possibly happening dynamics in the
woman’s body.

The human menstrual cycle happens on a regular basis from puberty until menopause, meaning
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that if pregnancy does not occur, menstrual bleeding initiates the next cycle. The gonadotropins
LH and FSH are hence represented through periodic functions. These algebraic functions com-
plete the system of differential equations to be constructed.

Denoting the constant base level of LH for the individual patient by pLH1 , the peak in LH
throughout the human menstrual cycle is reconstructed via an exponential function since LH
displays exponential growth around midcycle.

(2.3.4) LH(t) = pLH1 + pLH2 ∗ exp

(
−
(
pLH3 sin

(
πt

pcyclelength
+ pLH4

))2
)

While the prefactor pLH2 controls the height of the LH peak, the argument of the exponential
term accounts for the periodicity of the LH peak on the one hand and its shape on the other
hand. The square sinusoidal argument constitutes a periodic peak with period length pLH4 days.
The width of the LH peak is controlled by the prefactor pLH3 while pLH4 shifts the peak along
the time axis to allow the LH peak to be happening during midycle.

FSH is also secreted by the anterior pituitary. Following the lines of LH, FSH is modelled through
periodic peaks of a sinus curve as well. Contrary to LH solely exhibiting one single, steep peak
prior to ovulation, the FSH peak is less pronounced. Happening around the same time as the LH
peak, FSH concentration usually displays a wavelike development. The base level is followed by
a small increase during menstrual bleeding and early follicular phase. With ceasing menstrual
bleeding, also FSH decreases before experiencing a more pronounced peak simultaneously to the
LH peak. While LH drops to its base level, FSH declines further before reaching the base level
plateau during mid luteal phase. By its nature, the dominant FSH peak is modelled just as LH
since they happen simultaneously during the human menstrual cycle.

FSH(t) = pFSH1 + pFSH2 ∗ exp

(
−
(
pFSH3 sin

(
πt

pcyclelength
+ pFSH4

))2
)

(2.3.5)

+ pFSH5 ∗ sin

(
πt

pcyclelength
+ pFSH6

)4

In the second part of the FSH function, a fourth power of the sinus function introduces the
wavelike pattern described above. pcyclelength accounts again for the length of the cycle in days,
while the sinusoidal movement is shaped through pFSH5 in its oscillations’ width and translation
on the time axis through pFSH6 .

During luteal phase, just after ovulation, the gonadotropins LH and FSH lead to transformation
of the dominant follicle’s remainings to corpus luteum. The corpus luteum produces P4 which
induces an increase in P4 concentrations 12 − 16 hours after the LH peak. While LH and
FSH fall quickly over time by rising P4 levels, the corpus luteum atrophies. Unless the egg
is fertilised, withdrawal of progesterone happens and triggers the beginning of the next cycle.
Usually extending over 14 days, this process gives a wide peak in P4 over the base levels.
Since LH stimulates P4, P4 is represented through a double delayed reaction to the LH peak. A
transformed delay differential equation involving a delay represented by a modified Lotka-Volterra
equation was chosen. Continuous delay differential equations can be sometimes rewritten as a
system of ordinary differential equations without an explicit delay τ . Substituting the chosen
delay of the delay differential equation, partial integration gives the corresponding system of
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ordinary differential equations. This system then consists of one differential equation that models
the dynamics of the delay and one differential equation, describing the desired behaviour of P4.
The modification of a Lotka-Volterra equation seems adequate to model the delay in this system,
since over time predator prey models depicture a sinusoidal oscillation with a delay between the
prey and the predator. If LH is considered as prey with a peak before ovulation, P4 will react
with a slightly less pronounced peak at some time point later.
The delay for the peak in P4 relative to the LH peak can be obtained through

P4d′(t) = pP4
1 ∗H−(P4d(t), pP4

3 , pP4
4 ) ∗ LH(t) ∗ P4d(t)− pP4

2 ∗H+(P4d(t), pP4
5 , pP4

4 )

where the stimulating Hill function

H+(P4d(t), pP4
3 , pP4

4 ) =

(
P4d(t)

pP4
3

)pP4
4

1 +
(
P4d(t)

pP4
3

)pP4
4

stands instead of P4d(t) itself, modifying the Lotka-Volterra equation. The incorporation of
this stimulating effect could be found advantageous for the model’s purpose. In order to enable
variations within the cycle length, the inhibitory effect in the first part of the progesterone delay

H−(P4d(t), pP4
3 , pP4

4 ) =
1

1 +
(
P4d(t)

pP4
3

)pP4
4

needed to be incorporated. Hence, the delay for the progesterone profile writes

P4d′(t) = pP4
1 ∗

1

1 +
(
P4d(t)

pP4
3

)pP4
4

∗ LH(t) ∗ P4d(t)− pP4
2 ∗

(
P4d(t)

pP4
5

)pP4
4

1 +
(
P4d(t)

pP4
5

)pP4
4

.

The P4 profile can be simply obtained through

P4′(t) = pP4
6 ∗ P4d(t)− pP4

7 ∗ P4(t)

where P4d(t) is the delay of Lotka-Volterra type. Consequently, by this system of ordinary
differential equations

P4d′(t) = pP4
1 ∗

1

1 +
(
P4d(t)

pP4
3

)pP4
4

∗ LH(t) ∗ P4d(t)− pP4
2 ∗

(
P4d(t)

pP4
5

)pP4
4

1 +
(
P4d(t)

pP4
5

)pP4
4

(2.3.6)

P4′(t) = pP4
6 ∗ P4d(t)− pP4

7 ∗ P4(t)(2.3.7)

the full dynamics of P4 are taken into account.

During luteal phase, increasing levels of the warmth steroid P4 induce a thermal shift of about
0.2− 0.5◦C. Coming from the modelling of P4, a modification of a predator prey equation seems
applicable for BBT also, since there is a certain time gap between the peak in P4 and the thermal
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shift in BBT. A positive Hill function

H+((BBT (t)− 35.00), pBBT3 , pBBT4 ) =

(
(BBT (t)−35.00)

pBBT3

)pBBT4

1 +
(

(BBT (t)−35.00)
pBBT3

)pBBT4

is used to describe the BBT’s sharp rise and and slow decrease to base levels. BBT commonly
takes until the next menstrual bleeding to be back at its base level. Using this Hill function
required scaling of BBT, where a minimum BBT of 35.00◦C was assumed.

BBT ′(t) = pBBT1 ∗ P4(t) ∗ (BBT (t)− 35.00)(2.3.8)

− pBBT2 ∗ (BBT (t)− 35.00) ∗

(
(BBT (t)−35.00)

pBBT3

)pBBT4

1 +
(

(BBT (t)−35.00)
pBBT3

)pBBT4

E2 displays two peaks, the first one being really steep and pronounced, the second showing less
altitude but slower increase and decrease. P4, FSH and E2 itself stimulate E2 and E2 is inhibited
by LH.

E2′(t) = pE2
1 ∗H−(FSH(t), pE2

5 , pE2
6 )− pE2

3 ∗ E2(t) ∗H+(LH(t), pE2
7 , pE2

8 )(2.3.9)

+ pE2
2 ∗H+(E2(t), pE2

9 , pE2
10 )− pE2

4 ∗ E2(t) ∗H+(P4(t), pE2
11 , p

E2
12 ).

By this differential equation, FSH stimulates E2 until E2 reaches a certain threshold in the
middle of the base and the peak level. E2 is self-stimulating, while high levels of LH lead to
clearance of E2. Though P4 induces a withdrawal of E2 in this differential equation, this does
not affect the model in a negative way: The threshold value pE2

11 for the Hill function is very
small in comparison to the P4 level. Hence, rather a clearance rate independent from E2 and P4

than an inhibitory effect can be observed, while the Hill function prevents E2(t) to get smaller
than zero. P4d(t) can theoretically get negative, as it models the delay in P4.

Hence, by these differential equations, a system of four ordinary differential equations

E2′(t) = pE2
1 ∗H−(FSH(t), pE2

5 , pE2
6 )− pE2

3 ∗ E2(t) ∗H+(LH(t), pE2
7 , pE2

8 )

+ pE2
2 ∗H+(E2(t), pE2

9 , pE2
10 )− pE2

4 ∗ E2(t) ∗H+(P4(t), pE2
11 , p

E2
12 )

P4′(t) = pP4
6 ∗ P4d(t)− pP4

7 ∗ P4(t)

BBT ′(t) = pBBT1 ∗ P4(t) ∗ (BBT (t)− 35.00)

− pBBT2 ∗ (BBT (t)− 35.00) ∗H+((BBT (t)− 35.00), pBBT3 , pBBT4 )

P4d′(t) = pP4
1 ∗H−(P4d(t), pP4

3 , pP4
4 ) ∗ LH(t) ∗ P4d(t)− pP4

2 ∗H+(P4d(t), pP4
5 , pP4

4 )
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and two algebraic functions

LH(t) = pLH1 + pLH2 ∗ exp

(
−
(
pLH3 sin

(
πt

pcyclelength
+ pLH4

))2
)

FSH(t) = pFSH1 + pFSH2 ∗ exp

(
−
(
pFSH3 sin

(
πt

pcyclelength
+ pFSH4

))2
)

+ pFSH5 ∗ sin

(
πt

pcyclelength
+ pFSH6

)4

.

is constructed.

This model will be estimated, validated and evaluated in section 4.

2.4. Ovulation Prediction for the Individual

Now, provided that basal body temperature data is available and saliva estradiol values give
the best in-time-warning for ovulation, the model constructed previously is hoped to accurately
describe the dynamics happening during the whole menstrual cycle in human women.

The parameter identification problem to validate the proposed model is approached in section
4 and 5, after laying a theoretical background to solving inverse problems by nonlinear least
squares calculus.
Nevertheless, by the model’s application purpose there is need to define not only the potentially
fertile window (see 2.2) but also to determine an appropriate strategy to early predict ovulation.
It suggests by itself not to try a purely statistical approach to predict ovulation, but to make
use of the model’s specific properties. While Carter/ Blight (1981) stick to a Bayesian pro-
cedure and Blackwell/ Brown (1992) analyse collected time series, the idea now is to adopt
Carter/ Blight’s (1981) Ansatz to obtain an a priori estimator for ovulation through a change
point in E2 concentration which is to be completed by an a posteriori detection of the rise in
basal body temperature (BBT).
As Royston (1991) points out, ”by its nature, a peak can only be found retrospectively” (p.
227). An simple and intuitively appealing procedure is to define a peak as a value that is pro-
ceeded by increasing or just lower values and followed by a sequence of decreasing or just lower
values (Royston (1991), p. 227).

Dealing with a system of ordinary differential equations completed with two algebraic equations,
the approach to be taken aims at early identifying climbing E2 and BBT values through an
adaptive step length control of the integrator.
As it will be outlined in the two subsequent chapters, an adaptive trust region Gauss-Newton
algorithm combined with a linearly-implicit Euler extrapolation routine is applied to the pro-
posed model. Through the linearly-implicit Euler discretisation implemented in the Limex code
of Konrad-Zuse Zentrum für Informationstechnik Berlin, adaptive step size and error control
information can be extracted. Monitoring the latter can give hints on slope development and
changes in the to given E2 and BBT data fitted curves. Once the change points within measured
and collected E2 and BBT values have been identified through the steepest uphill slope (gradi-
ent) for any individual data set, the objective is to individualise the general model describing
the dynamics of the human menstrual cycle. Since not only cycle length, but also mean levels,
rate and magnitude of changes as well as change points in E2 concentrations and basal body
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temperature differ significantly from woman to woman, it would be desirable to include former
collected E2 and BBT measurements for further predictions. This would require (time) dynamic
or step by step parametrisation.

For a test data set of four cycles, the model will be tested in chapter 5. If the model gives
a satisfactory fit to the real data, the change points are tried to be identified for a standard
cycle of 28 days.. The fertile window is then defined as in Assumption 7 of section 2.2. Since
cycle lengths are known for the test data, another estimate for the time point of ovulation could
be given by subtracting the length of the luteal phase of 14 days from the total cycle length
(Assumption 11 ). A critical review of those results should be carried out in order to obtain a
first idea about the viability of the model for the purpose of ovulation prediction.
Simulation results, the parameter estimation and the model are further discussed in section 5 with
respect to the task to individually predict ovulation. Mathematical background and algorithmic
tools essential to evaluate the proposed model are presented in section 3 and 4.

15



3. Nonlinear Least Squares Problems

3.1. Motivation and Overview

One of the most common problems in computational sciences and mathematical modelling is to
fit a system of measurement points to a conjectured model containing unidentified parameters
such that a best possible match is obtained. Let us denote the data points measured for up to
d species by

(ti, zi), for ti ∈ R, zi ∈ Rd, i = 1, . . . ,M,

which are to be fitted to a d-dimensional model

y(t, x)

nonlinear with respect to the vector of parameter values

x ∈ Rn.

Note, that in real applications, one usually has to deal with overdetermined systems where
a perfect match of model and data is compromised by deficiencies of the model or in data
measurement. Since model and given data are required to agree, let us define the residuals

Fi(x) = y(ti, x)− zi

for all i = 1, . . . ,M , Fi(x) ∈ Rd and hence the residual function F : D ⊆ Rn → Rm by

F (x) = (F1(x), . . . , FM (x))T

which is element of Rm if it is defined m := Md. In the following, F is assumed to be twice
continuously differentiable or once continuously differentiable while satisfying some Lipschitz
continuity in the first derivative. Restricting to the overdetermined case, let m > n and let

D ⊆ Rn

be an open and convex subset, while F is nonlinear with respect to x ∈ D.
The parameter identification problem presented above is commonly defined as a minimisation
task in the Gaussian nonlinear least squares sense. Sufficient minimum conditions in paragraph
3.2 give that the local zeros of the residual function have to be determined. Since the standard
approach to this task is by the Newton method, the latter will be examined with respect to
local convergence behaviour and affine invariance theory (see 3.3) in the first part of the current
section (see 3.4).

Nevertheless, the Newton method seems not to be adequate for the given application as pointed
out in paragraphs 3.2 and 3.5. Under naturally arising further assumptions, the Gauss-Newton
method is derived. Local convergence features as well as affine invariance are illustrated in para-
graph 3.5.
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This chapter presents the theoretical background for the application at hand, where parame-
ter identification forms the core part. The algorithmic approach to estimate parameters by a
nonlinear least squares problem is treated in the subsequent, chapter 4.

3.2. The Nonlinear Least Squares Problem

In a logical consequence, the above motivation about finding the closest fit as possible to some
data can be considered as a special case to a general minimisation problem in respect to the sum
of the residual squares.

Definition 3.2.1. Given a function F : D ⊆ Rn → Rm nonlinear with respect to x ∈ D, we aim
at finding a minimiser x∗ ∈ D such that

(3.2.1) min
x∈D
‖F (x)‖22 = ‖F (x∗)‖22.

As often arising in natural problems, it is assumed to hold Md > m > n. So to speak, we aim
at finding a interior, local minimizer x∗ ∈ D for the overdetermined problem such that

min
x∈D
‖F (x)‖22 = ‖F (x∗)‖22.

This minimisation problem can be attacked by minimising the sum of n nonlinear equations

min
x∈D

1

2
F (x)TF (x) =

1

2

M∑
i=1

Fi(x)2.

due to the relation ‖F (x)‖22 = F (x)TF (x), while the factor 1
2 is added for algebraic convenience

when considering derivatives. Denoting the first derivative matrix of F : D ⊆ Rn → Rm by the
Jacobian matrix F ′(x) ∈ Rm,n where

F ′(x) =

(
∂

∂xj
F (x)

)
j=1,...,n

=

∇F
T
1 (x)
...

∇FTM (x)

 =


∂F1(x)
∂x1

. . . ∂F1(x)
∂xn

...
. . .

...
∂FM (x)
∂x1

. . . ∂FM (x)
∂xn


with the standard notation of the gradient,

∇Fi(x) =

(
∂

∂x1
Fi(x), . . . ,

∂

∂xn
Fi(x)

)T
,

for x ∈ Rn, Fi : D ⊆ Rn → Rd, Fi ∈ C1(D) for D ⊆ Rn open and convex. Then the first
derivative of

1

2
F (x)TF (x)
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can be obtained by column wise differentiation for Fi ∈ Rd

∂

∂xj

(
1

2
Fi(x)TFi(x)

)
=

∂

∂xj

(
1

2

d∑
k=1

F ki (x)2

)

=
1

2

d∑
k=1

∂

∂xj
F ki (x)2

=
1

2

d∑
k=1

2(F ′i (x))kjF
k
i (x)

= (F ′i (x)TFi(x))j

such that it holds

(3.2.2)

(
1

2
F (x)TF (x)

)′
=

(
∂

∂xj

(
1

2
F (x)TF (x)

))
j=1,...,n

= F ′(x)TF (x).

Component wise differentiation

(
1

2
Fi(x)TFi(x)

)′′(3.2.3)

=

(
1

2

∂2

∂xj∂xl
Fi(x)TFi(x)

)
j,l=1,...,n

=

((
∂

∂xj
F ′i (x)TFi(x)

)
l

)
j,l=1,...,n

=

(
∂

∂xj

d∑
k=1

F ki (x)
∂

∂xl
F ki (x)

)
j,l=1,...,n

=

d∑
k=1

((
∂

∂xj
F ki (x)

)
j=1,...,n

(
∂

∂xl
F ki (x)

)T
l=1,...,n

+ F ki (x)

(
∂2

∂xj∂xl
(F ki (x))

)
j,l=1,...,n

)

=

d∑
k=1

(
∂

∂xj
F ki (x)

)
j=1,...,n

(
∂

∂xl
F ki (x)

)T
l=1,...,n

+

d∑
k=1

F ki (x)

(
∂2

∂xj∂xl
(F ki (x))

)
l,j=1,...,n

yields the second derivative

(3.2.4)

(
1

2
F (x)TF (x)

)′′
= F ′(x)TF ′(x) + F ′′(x)TF (x).

Now, let us define a local minimum as in Dennis/ Schnabel (1983) (p. 81) for single variable
calculus:

Definition 3.2.2. For f : D ⊆ Rn → R we call x∗ a local minimum of f if there exists an open
and convex neighbourhood B(x∗, ρ) ⊆ Rn such that

(3.2.5) f(x∗) ≤ f(x)

18



for all x ∈ B(x∗, ρ). If B(x∗, ρ) = Rn, x∗ is called a global minimum.

Definition 3.2.3. If f ∈ C1(D) and ∇f(x∗) = 0, x∗ ∈ D is called a stationary point.

Summarising, first and second order necessary conditions are listed in the following, whose proofs
can be found in Forster (2006) and Geiger/ Kanzow (2002).

Proposition 3.2.4. First order necessary optimality condition
Let f : D ⊆ Rn → R be continuously differentiable on the open subset D ⊆ Rn. If x∗ is a local
minimum of f on D, it holds for the gradient

f ′(x∗) = 0.

Second order necessary optimality condition
If x∗ is a local minimum of the twice continuous differentiable mapping f : D ⊆ Rn → R on the
open subset D ⊆ Rn, then it holds for the Hessian

f ′′(x∗) ≤ 0.

The first order necessary optimality condition gives that every local minimum is a critical point,
specifically a stationary point.

Proposition 3.2.5. Let f : D ⊆ Rn → R be continuously differentiable. Then, if x∗ is a local
minimum, it is also a stationary point.

Proof of 3.2.5. Let us assume, the descent direction does not vanish at x∗, i.e.

−∇f(x∗) 6= 0.

Then, Taylor expansion gives for arbitrarily small ε→ 0 that

f(x∗ − ε∇f(x∗)) = f(x∗)− ε∇f(x∗)
T∇f(x∗) + o(ε2).

Hence, for sufficiently small ε > 0 it holds

f(x∗ − ε∇f(x∗)) < f(x∗)

and this contradicts with the assumption, that x∗ is a local minimum.

In order to guarantee that every stationary point is in effect a local minimum, further require-
ments concerning the Hessian need to be fulfilled. This gives the second order sufficient minimum
condition.

Proposition 3.2.6. Let f : D ⊆ Rn → R be twice continuously differentiable. x∗ is a local
minimum of f on D if

f ′(x∗) = 0 and f ′′(x∗) > 0.

Since numerical algorithms mostly aim at identification of critical points, the sufficient optimality
condition will form the fundamental for everything to follow. Known as Fermat’s Theorem
about stationary points and local extremal points, the second order sufficient minimum condition
writes in the setting of multivariable calculus (Björck (1996), p. 340) for nonlinear least squares
problems:
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Proposition 3.2.7. For any multivariable function F : D ⊆ Rn → Rn the second order sufficient
condition for x∗ ∈ D to be a local minimum is that

F ′(x∗) = 0,

and furthermore the Hessian is positive definite

zTF ′′(x∗)z > 0,

for some z ∈ Rn.

Consequently, approaching the minimisation task, we are actually looking for stationary points
of

1

2
F (x)TF (x),

i.e. the zeros of its derivative.

Then, according to Deuflhard (2006), let us define the Newton method which solves the
minimisation task by solving the gradient system of nonlinear equations

F ′(x)TF (x) = 0

through linearisation. Note that the Newton method applies as well for overdetermined systems
F : D ⊆ Rn → Rm (Ortega/ Rheinboldt (1970), p. 181 ff., Stoer/ Burlisch (2007), pp.
298-305 and pp. 315 - 321 or Dedieu/ Shub (1999)). The overdetermined theory of course
implies the case m = n. In line with Dennis/ Schnabel (1983) and Deuflhard (2006), the
Newton method and its local convergence behaviour are reviewed for F : D ⊆ Rn → Rn only.

Definition 3.2.8. For a nonlinear function F : D ⊆ Rn → Rn and the given system of nonlinear
equations

F (x) = 0

the Newton iteration is defined for k = 0, 1, . . . in its kth iteration through

F ′(xk)∆xk = −F (xk)(3.2.6)

xk+1 = xk + ∆xk(3.2.7)

for a given starting point x0 ∈ Rn and the Jacobian F ′(xk) invertible for all xk ∈ Rn.

The direct consequence of the second order sufficient minimum condition, solving the nonlinear
least squares problem

min
x∈D
‖F (x)‖22

reduces to detecting the interior local minimum x∗ ∈ D by identifying the residual function’s
Jacobian’s zeros

(3.2.8)

(
1

2
F (x)TF (x)

)′
= F ′(x)TF (x) = 0

in D ⊆ Rn open and convex.
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Obviously, the Newton approach applied to this system would write(
F ′(xk)TF (xk)

)′
∆xk = −F ′(xk)TF (xk)

xk+1 = xk + ∆xk

which equivalently is

(F ′(xk)TF ′(xk) + F ′′(xk)TF (xk))∆xk = −F ′(xk)TF (xk)

xk+1 = xk + ∆xk

using (3.2.3) for k = 0, 1, . . ..

Due to computational effort, one would like to simply omit the Hessian tensor product on the
left hand side. Though, this can only be justified, if this holds at least for the solution

F (x∗) = 0

such that the omitted term
F ′′(xk)TF (xk)

becomes zero setting xk = x∗. Second derivative information is either unavailable or just too
expensive to be approximated by finite differences following Dennis/Schnabel (1983).

Definition 3.2.9. For a solution x∗ ∈ D with D ⊆ Rn open and convex, the problem

F (x∗) = 0

is called a zero-residual problem following Dennis/ Schnabel (1983) or equivalently, introduced
by Deuflhard (2003), a compatible nonlinear least squares problem.

Now, if a problem is assumed to be compatible

F (x∗) = 0,

the term containing second order information vanishes at the solution point x∗ ∈ D, which
legitimates dropping the tensor term F ′′. The Newton iteration for this linearised substitute
problem reads then

F ′(xk)TF ′(xk)∆xk = −F ′(xk)TF (xk),

which is exactly the Gauss-Newton iteration as in Definition 3.2.10.

Alternatively, the Gauss-Newton method can be motivated by (direct) linearisation of the residual
function through application of Taylor’s series.Newton’s method for nonlinear problems seems
inadequate to solve the given minimisation task, why Deuflhard/ Hohmann(2003) (p. 99) or
Deuflhard (2006) (p. 174) propose to simply replace the nonlinear mapping by a linear one.
This can immediately be obtained through a Taylor’s expansion around some point xk

F (x∗) = F (xk) + F ′(xk)(x∗ − xk) + o(‖x∗ − xk‖2)

for x∗ → xk. The linear substitute map defines for the kth iterative as

F (x∗) := F (xk) + F ′(xk)(x∗ − xk)

21



and equivalently for two neighbour iteratives

F (xk+1) = F (xk) + F ′(xk)(xk+1 − xk).

Since a local minimum x∗ ∈ D has to be found, the second order sufficient minimum condition
implies that the system

F (xk+1)′ = 0

⇔ (F ′(xk)∆xk + F (xk))
′

= 0

has to be solved. This again requires second order derivative information, just as it is

(F ′(xk)TF ′(xk) + F ′′(xk)TF (xk))∆xk + F ′(xk)TF (xk) = 0.

The same reasoning about omitting the Hessian tensor product as above gives that under com-
patibility of the problem, the zero can be found through solving the sequences of linear systems

F ′(xk)TF ′(xk)∆xk = −F ′(xk)TF (xk)

for k = 0, 1, . . . . This is again, slightly different deduced, is the Gauss-Newton method.

By reviewing mathematical reasoning about the nonlinear least square problem, the following
algorithm to detect a solution to the minimisation task is proposed:

Definition 3.2.10. The Gauss-Newton iteration for F : D ⊆ Rn → Rm twice continuously
differentiable follows for k = 0, 1, . . .

F ′(xk)TF ′(xk)∆xk = −F ′(xk)TF (xk)(3.2.9)

xk+1 = xk + ∆xk.(3.2.10)

Note, that by determining the Newton correction ∆xk as solution to the above stated linear
system without explicit calculation of the inverse, the problem of solving a nonlinear system
is reduced to solving a sequence of linear systems. The advantage of such Newton methods for
optimisation tasks is obvious. The Hessian does not need to be formed (Boyd/ Vandenberghe
(2004), p. 496).
in Newton method’s related convergence theory either nonsingularity of the Jacobian matrix is
claimed or under the Moore Penrose definition of the generalised inverse certain rank conditions.
The local convergence theory will be reviewed in the following, while necessary assumptions will
be individually stated for any convergence result.

3.3. Affine Transformations and Invariance

Most problems arising in Biology or Health Sciences, make scaling of variables necessary. In
general, two different cases have to be distinguished: Either the residual function F is scaled
through application of a diagonal matrix

F̃ (x) := DLF (x)

or the argument vector x ∈ Rn is scaled

x = DRy.
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Applying those nonsingular diagonal scaling matrices, they are referred to as left or right scaling
(Deuflhard (2006), p. 13). Different scaling within the nonlinear least squares problem leads
to a different solution, the question to be asked then for arising problems in sciences is under
which circumstances affine transformations of the problem yield the same solutions. This leads
us naturally to the concept of affine invariance.

At a later stage in chapter 4 (p. 52 ff.), the focus on affine covariant theory is justified by right
scaling invariance of the problem under the Gauss-Newton method, while scaling invariance does
not happen for application of left scaling.

Definition 3.3.1. Let now A,B ∈ Rn,n be arbitrarily nonsingular matrices. For the given
nonlinear system

F (x) = 0

we define the affine transformation without translation component as

G(y) = AF (By) = 0

x = By.

Obviously, this is equivalent to solving the initial problem F (x) = 0 since on the one hand it
holds

F (x) = 0

⇔ AF (x) = 0

and on the other hand we have

F (x) = 0

⇔ F (By) = 0

for x = By and any nonsingular A,B ∈ Rn,n.

Annotation 3.3.2. The linear least squares problem such as it is defined

‖F (x∗)‖22 = min
x∈D
‖F (x)‖22

is not affine invariant. Since

‖F (x)‖22 =
1

2
F (x)TF (x),

its affine transformations

‖AF (By)‖22 =
1

2
(AF (By))TAF (By) =

1

2
F (By)TATAF (By)

gives back the initial problem only if A is orthogonal and non-singular and if B satisfies further
conditions.

Annotation 3.3.3. Deuflhard (2006) (pp. 14–19) distinguishes mainly four different types of
affine invariance. Affine covariance is the interesting concept throughout this work (see paragraph
3.3.3, 26 ). For the purpose of completeness, note that invariance properties under transforma-
tions of the image space by A ∈ Rn,n are summarised under the name affine covariance whereas
any transformations in the whole original space by B ∈ Rn,n are called affine contravariance.
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The other two invariance classes, affine conjugacy and affine similarity, account for either a con-
vex minimization problem or transformations taking place in the original and the image space.

3.3.1. Affine Covariance

Let A ∈ Rn,n be arbitrarily nonsingular. Approaching the problem

F (x) = 0

with F : D ⊂ Rn → Rn with the common Newton method, it is

F ′(xk)∆xk = −F (xk)

xk+1 = xk + ∆xk.

Affine covariant transformation of the nonlinear system performs

(3.3.1) G(x) := AF (x) = 0

for A ∈ Rn,n arbitrarily nonsingular. Obviously, this only affects the image space of the problem.

Solving the initial nonlinear system
F (x) = 0

is equivalent to solving the transformed system in (3.3.1).

Proposition 3.3.4. For a given starting point x0, the sequence {xk} obtained by Newton’s
method for the affine transformed nonlinear system

G(x) = 0

is independent under transformations by the matrix A ∈ Rn,n arbitrarily nonsingular.

Proof of 3.3.4. Assuming A ∈ Rn,n is invertible, the Newton iteration for the affine transformed
system

G(x) = 0

where G(x) := AF (x) is defined through

G′(xk)∆xk = −G(xk)

xk+1 = xk + ∆xk

for k = 0, 1, . . .. By use of the affine transformation’s definition, one obtains for the Newton
correction that

∆xk = (G′(xk))−1G(xk)

= (AF ′(xk))−1AF (xk)

= (F ′(xk))−1A−1AF (xk)

= (F ′(xk))−1F (xk)

is independent of A ∈ Rn,n.
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3.3.2. Affine Contravariance

As mentioned above, the property that the sequence of iteration points obtained after transfor-
mations of the definition space can be expressed as transformed iteration points of the definition
space, is called affine contravariance.

Let B ∈ Rn,n be arbitrarily nonsingular. Again, considering the problem

F (x) = 0,

affine contravariance now means exactly the iterate’s invariance to transformations in the whole
original space

G(y) = F (By) = 0

x = By.

Consequently, for the affine contravariant system, it holds

G′(y) = F ′(By)B

for the Jacobian by use of the chain rule.

Proposition 3.3.5. Newton’s method for the system F (x) = 0 remains unchanged after appli-
cation of affine contravariant transformation and performs

F ′(xk)∆xk = −F (xk)

xk+1 = xk + ∆xk

with starting guess y0 = B−1x0.

Proof of 3.3.5. Due to the equivalence

G′(yk)∆yk = −G(yk)

⇔ F ′(Byk)B∆yk = −F ′(Byk)B

⇔ B∆yk = −(F ′(Byk))−1F (Byk).

and as xk = Byk, we immediately obtain the Newton iteration

∆xk = −(F (xk))−1F (xk)

for k = 0, 1, . . . in the affine contravariant setting. Hence, any affine contravariant transformation
on the definition space leads to the same transformation of the iteration and their Newton
corrections {∆xk} as long as

y0 := B−1x0

for the starting guess.

Specifically, one can show that the Newton Method is even invariant under any general affine
transformation

G(y) = AF (By) = 0

x = By
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with A,B ∈ Rn,n arbitrarily nonsingular (Boyd/ Vandenberghe (2004), p. 476 and Deufl-
hard (2006), p. 13). This holds by the equivalence

G′(yk)∆yk = −G(yk)

⇔ (AF (Byk))′∆yk = −AF (Byk)

⇔ AF ′(Byk)B∆yk = −AF (Byk).

As then, xk = Byk, the proof proceeds

⇔ AF ′(xk)∆xk = −AF (xk)

⇔ ∆xk = −(AF ′(xk))−1(AF (xk))

⇔ ∆xk = −F ′(xk)−1A−1AF (xk)

⇔ ∆xk = −F ′(xk)−1F (xk),

while xk = Byk for k = 0, 1, . . . if the starting point is chosen according to y0 = B−1x0. Hence,
we call the problem F (x) = 0 and the Newton method affine invariant.

Annotation 3.3.6. Contrary to the Newton method, the Gauss-Newton as it is defined for some
F : D ⊆ Rn → Rm is not invariant under affine transformations in general.

Summarizing, any affine covariant convergence theorem will lead to results concerning the iter-
ates {xk} and error norms ‖xk−x∗‖2 whereas affine contravariant Newton-Mysovskikh theorems
build convergence estimates in terms of residual norms ‖F (xk)‖2. This motivates the distinction
between error-oriented and residual-based algorithms.

3.3.3. Lipschitz Continuity

Regarding the numerical application, the modelling and the prediction of human ovulation, the
further sections restrict to the concept of affine covariance and the hereby induced error-oriented
methods. Usually requiring Lipschitz continuity, it remains to show that this continuity condi-
tion is affine invariant.

Standard convergence theorems typically claim not only the function F : D ⊆ X → Y in the
overdetermined, nonlinear operator equation

F (x) = 0

to be invertible for all x ∈ X but also require boundedness within the Banach spaces X,Y .
These a priori assumptions hence also need to be satisfied within the affine covariant setting.
Referring to Deuflhard (2006) and the herein mentioned Newton-Kantrovich theorem, for the
affine transformed system,

G(x) := AF (x) = 0

the boundedness of the inverse for the starting value x0 ∈ D and all x ∈ D writes

‖G′(x)−1‖Y→X = ‖(AF ′(x))−1‖Y→X ‖G′(x0)−1‖Y→X = ‖(AF ′(x0))−1‖Y→X
≤ ‖A−1‖Y→X‖F ′(x)−1‖Y→X ≤ ‖A−1‖Y→X‖F ′(x)−1‖Y→X

≤ β(A) ≤ β0(A)
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since the inverse of the Jacobian was assumed to exist and to be bounded obeying

‖F ′(x0)−1‖Y→X ≤ β0 <∞ for x0 ∈ D respectively

‖F ′(x)−1‖Y→X ≤ β <∞ for x ∈ D

in the operator norm ‖ · ‖Y→X . Furthermore, second derivative information that needs to be
examined during convergence studies is commonly included via a Lipschitz condition like

‖F ′(y)− F ′(x)‖X→Y ≤ γ‖y − x‖X

for all x, y ∈ D. Then, affine transformation does only affect the Lipschitz constant γ > 0 in the
sense that it depends on the affine transformation matrix A ∈ Rn,n. First, it is

‖G′(y)−G′(x)‖X→Y = ‖A(F ′(y)− F ′(x))‖X→Y
≤ ‖A‖X→Y ‖F ′(y)− F ′(x))‖X→Y
≤ γ‖A‖X→Y ‖y − x‖X
:= γ(A)‖y − x‖X

for all x, y ∈ D.

Deuflhard (2006) (p. 14) merges the boundedness of the Jacobian’s inverse and the Lipschitz
continuity of the Jacobian to one requirement

‖F ′(x0)−1(F ′(y)− F ′(x))‖Y→X ≤ ω0‖y − x‖X

for x0, x, y ∈ D exploiting the Newton-Kantrovich theorem. The hereby defined Lipschitz con-
stant ω0 > 0 is affine covariant since

G′(x0)−1(G′(y)−G′(x)) = (AF ′(x0))−1(AF ′(y)−AF ′(x))

= F ′(x0)−1A−1A(F ′(y)− F ′(x))

= F ′(x0)−1(F ′(y)− F ′(x)),

where A ∈ Rn,n is nonsingular. Though, this definition of the Lipschitz constant ω0 still involves
the operator norm ‖ · ‖Y→X on the left hand side by using the Banach perturbation lemma.
Motivated by the difficulties to estimate the Lipschitz constant ω0 under the operator norm,
Deuflhard (2006) (p. 14) proposes the affine covariant Lipschitz condition

(3.3.2) ‖F ′(x)−1(F ′(y)− F ′(x))(y − x)‖X ≤ ω‖y − x‖X

that solely contains vector norms for x, y ∈ D. In the subsequent, we consider the overdeter-
mined function F : D ⊆ Rn → Rm under the l2 norm, which is the Euclidean standard norm in
this case. Most importantly, under the l2 norm it is possible to differentiate the Jacobian and
to easily perform QR decompositions, as the l2 norm is invariant under orthogonal transforma-
tions. Finally, using the Euclidean standard norm, we remain all over in the Hilbert space setting.

This Lipschitz type condition (3.3.2) allows an affine covariant convergence theory of the Newton
and later the Gauss-Newton method including the uniqueness of the solution x∗ ∈ D. Due to
the scaling necessary to be applied to the minimisation problem at hand, the subsequent will
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restrict to the concept of affine covariance for further theoretical preparation. Since furthermore
the Gauss-Newton correction remains invariant under right scaling (see chapter 4, p. 52 ff.), only
error-oriented algorithms will be considered.

3.4. Local Convergence of the Newton Method

F : D ⊆ Rn → Rn be once continuously differentiable and x0 ∈ D, D ⊆ Rn open and convex.
Recalling the Newton method at each iteration k is

F (xk)′∆xk = −F (xk)

xk+1 = xk + ∆xk

for k = 0, 1, . . . . in the Euclidean space associated with the Euclidean standard norm ‖ · ‖2, the
open neighbourhood around x ∈ D of radius ρ > 0 writes

B(x, ρ) = {y ∈ Rn : ‖y − x‖2 < ρ}

and similarly for its closure

B(x, ρ) = {y ∈ Rn : ‖y − x‖2 ≤ ρ}.

3.4.1. Classical Local Convergence Theory

Local convergence of the Newton method referring to Dennis/ Schnabel (1983) (p. 90) is
examined first.

Theorem 3.4.1. Let F : D ⊆ Rn → Rn continuously differentiable. Assuming that there exists
x∗ ∈ D and β, ρ > 0 such that B(x∗, ρ) ⊆ D,F (x∗) = 0, that F ′(x∗) exists with ‖F ′(x∗)−1‖2 ≤ β
and that ‖F ′(x)− F ′(x∗)‖2 ≤ γ‖x− x∗‖2 Lipschitz continuity holds for all x ∈ B(x∗, ρ). Then,
there exists ε > 0 such that for all x0 ∈ B(x∗, ρ) the sequence {xk} generated by the Newton
method is well defined and converges quadratically to x∗ obeying

(3.4.1) ‖xk+1 − x∗‖2 ≤ βγ‖xk − x∗‖22

for k = 0, 1, . . ..

Lemma 3.4.2. Let now F : D ⊆ Rn → Rm, m ≥ n be at least once continuously differentiable
in an open and convex set D. For any x, x+ p ∈ D

(3.4.2) F (x+ p)− F (x) =

∫ 1

0

F ′(x+ tp)p dt = p

∫ 1

0

F ′(x+ tp) dt

if we denote the Jacobian matrix at x ∈ D by F ′(x). Though an analogous mean value theo-
rem for vector valued functions like the classical mean value theorem does not exist, this can be
considered a mean value theorem for vector valued functions in the sense that the integral of the
matrix valued function is interpreted componentwise. It is widely referred to as the Lagrangian
mean value theorem.

Proof of 3.4.2. For F : D ⊆ Rn → Rm a vector valued function on D open and convex, we write
componentwise

F = (F1, . . . , FM )T
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where all Fi are vector valued of dimension d for i = 1, . . . ,m. Defining a mapping Gki : [0, 1]→ R
by

Gki (t) := F ki (x+ pt)

we obtain the vector valued function G = (G1, . . . , GM )T ∈ Rm. Then, by the fundamental
theorem of calculus, componentwise for k = 1, . . . , d one obtains

F ki (x+ p)− F ki (x) = Gki (1)−Gki (0) =

∫ 1

0

(
Gki (t)

)′
dt.

Since

F ′(x) =

(
∂

∂xj
F (x)

)
j=1,...,n

=

∇F1(x)T

...
∇FM (x)T

 =


∂F1(x)
∂x1

. . . ∂F1(x)
∂xn

...
. . .

...
∂FM (x)
∂x1

. . . ∂FM (x)
∂xn


for each component Gi columnwise differentiation gives

(Gki (t))′ = ∇F ki (x+ tp)T p =

M∑
j=1

∂

∂xj
F ki (x+ pt)pj

such that

F ki (x+ p)− F ki (x) = Gki (1)−Gki (0) =

∫ 1

0

(Gki (t))′ dt =

∫ 1

0

M∑
j=1

(
∂

∂xj
F ki (x+ pt)

)
pj dt.

The definition of the Jacobian F ′ gives the lemma assuming continuous differentiability of F :
D ⊆ Rn → Rm. The same result is obtained of course if m = n.

Proof of 3.4.1. Choose ε > 0 such that for any x ∈ B(x∗, ε) the Jacobian F ′(x) is nonsingular.
Let

(3.4.3) ε = min

{
ρ,

1

2βγ

}
.

In the subsequent, we show by induction over k that for each iteration step the convergence is
q-quadratic and that

xk+1 ∈ B(x∗, ε)

for k = 0, 1, . . . .

k = 0:
For a given start value x0, the Jacobian F ′(x0) is nonsingular since by ‖x0 − x∗‖2 ≤ ε and by
the Lipschitz continuity of the Jacobian at the solution point x∗ it is∥∥F ′(x∗)−1(F ′(x0)− F ′(x∗))

∥∥
2
≤ ‖F ′(x∗)−1‖2‖F ′(x0)− F ′(x∗)‖2
≤ βγ‖x0 − x∗‖
≤ βγε

≤ 1

2

using the consistency of the Euclidean norm and ε > 0 as in (3.4.3). It is well known that for
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the Euclidean norm, if A,B ∈ Rn,n and A is nonsingular with ‖A−1(B − A)‖2 < 1, then B is
also nonsingular and it holds

(3.4.4) ‖B−1‖2 ≤
‖A−1‖2

1− ‖A−1(B −A)‖2
.

Consequently, as it is

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖2 ≤
1

2
< 1,

and F ′(x∗) nonsingular by assumption, F ′(x0) is invertible and can be estimated likewise

‖F ′(x0)−1‖2 ≤
‖F ′(x∗)−1‖2

1− ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖2

≤ ‖F
′(x∗)

−1‖2
1− 1

2

= 2‖F ′(x∗)‖2
≤ 2β.

Therefore, the first iterative x1 is well defined and by the Newton method, one can write

x1 − x0 = x0 − F ′(x0)−1F (x0)− x∗
= x0 − x1 − F ′(x0)−1F (x0).

Provided the problem considered is compatible in the sense that F (x∗) = 0 for a solution x∗ ∈ D,
also the matrix product F (x0)−1F (x∗) = 0 and it can be proceeded

x1 − x∗ = x0 − x1 − F ′(x0)−1F (x0) + F (x0)−1F (x∗)

= x0 − x∗ − F ′(x0)−1(F (x0)− F (x∗))

= F ′(x0)−1(F (x∗)− F (x0)− F ′(x0)(x∗ − x0)).

Beyond, the Lagrange mean value theorem amounts to

F (x+ p)− F (x)− F ′(x)p =

∫ 1

0

F ′(x+ tp)p dt− F ′(x)p

=

∫ 1

0

(F ′(x+ tp)− F ′(x))p dt.

Now, bounding the integral in terms of the integrand, writing the integral as a vector Riemann
sum and application of the triangle inequality give for the l2 norm and its induced matrix norm
the estimate

‖F (x+ p)− F (x)− F ′(x)p‖2 =

∥∥∥∥∫ 1

0

(F ′(x+ tp)− F ′(x))p dt

∥∥∥∥
2

≤
∫ 1

0

‖F ′(x+ tp)− F ′(x)‖2 ‖p‖2 dt

= ‖p‖2
∫ 1

0

‖F ′(x+ tp)− F ′(x)‖2 dt
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while basically the Cauchy-Schwarz inequality is exploited. This result is given as a Lemma in
Ortega/ Rheinboldt (1970), p. 73. The Jacobian F ′ : D ⊆ Rn → Rn,n being Lipschitz
continuous, one can proceed likewise

‖F (x+ p)− F (x)− F ′(x)p‖2 ≤ ‖p‖2
∫ 1

0

‖F ′(x+ tp)− F ′(x)‖2 dt

≤ γ‖(x+ p)− x‖2‖p‖2
∫ 1

0

t2 dt

=
γ

2
‖p‖22

for the integral’s bound. Hence, precisely by application of the Lagrange mean value theorem
and using the consistency of the norm, we obtain

‖x1 − x∗‖2 = ‖F ′(x0)−1(F (x∗)− F (x0)− F ′(x0)(x∗ − x0))‖2
≤ ‖F ′(x0)−1‖2‖F (x∗)− F (x0)− F ′(x0)(x∗ − x0)‖2

≤ ‖F ′(x0)−1‖2
γ

2
‖x0 − x∗‖22

≤ 2β
γ

2
‖x0 − x∗‖22

= βγ‖x0 − x∗‖22.

Since furthermore it is

‖x0 − x∗‖2 ≤
1

2
βγ

by the Lipschitz continuity and the choice of ε > 0, we obtain that

‖x1 − x∗‖2 ≤ βγ‖x0 − x∗‖22

≤ 1

2
‖x0 − x∗‖2

in the end, such that x1 ∈ B(x∗, ε) which completes the proof for k = 0.

k → k + 1 :
Assume, that ‖xk − x∗‖2 ≤ ε holds. Then, by the Lipschitz continuity of the Jacobian at x∗ it
follows immediately that∥∥F ′(x∗)−1(F ′(xk)− F ′(x∗))

∥∥
2
≤ ‖F ′(x∗)−1‖2‖F ′(x0)− F ′(x∗)‖2
≤ βγ‖xk − x∗‖
≤ βγε.

F ′(x∗)
−1 is still nonsingular and it is

‖F ′(x∗)−1(F ′(xk)− F ′(x∗))‖2 ≤ βγε ≤
1

2
< 1

such that nonsingularity also holds true for F ′(xk). Consequently, it follows that

‖F ′(xk)−1‖2 ≤
‖F ′(xk)−1‖2

1− ‖F ′(x∗)(F ′(xk)− F ′(x∗))‖2
≤ 2β.
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xk+1 is well defined. Thus

‖xk+1 − x∗‖2 = ‖xk − F ′(xk)−1F (xk)− x∗‖2
= ‖xk − x∗ − F ′(xk)−1(F (xk) + F (x∗))‖2
= ‖F ′(xk)−1(F (x∗)− F (xk)− F ′(xk)(x∗ − xk))‖2
≤ ‖F ′(xk)−1‖2‖(F (x∗)− F (xk)− F ′(xk)(x∗ − xk))‖2
≤ βγ‖xk − x∗‖22,

which proves q-quadratic convergence for the k + 1th Newton iterate. Furthermore, for all k =
0, 1, . . . the iterates remain in the neighbourhood of the solution x∗ since

‖xk+1 − x∗‖2 ≤ βγ‖xk − x∗‖22 ≤
1

2
‖xk − x∗‖2

such that xk+1 ∈ B(x∗, ε).

Dennis/Schnabel (1983) finally remark that combining the constants β, γ > 0 to one constant

γrel = βγ

yields a Lipschitz constant γrel, measuring the relative nonlinearity of F at x∗ for all x ∈ B(x∗, ε)
by

‖F ′(x∗)−1(F (x)− F (x∗))‖2 ≤ γrel‖x− x∗‖2.

This can also be interpreted as the convergence radius of the Newton method being inversely
proportional to the relative nonlinearity of F at the solution x∗. In view of the problems’ nonlin-
earity, we want to take the step forward to the affine invariance theory of the Newton method.
Note, that by the claimed conditions and the idea followed during the proof, the local convergence
behaviour can be modified towards an affine invariant setting. As mentioned before, taking any
matrix A ∈ Rn,n arbitrarily invertible, the affine (covariant) transformation does not affect the
Newton sequence {xk}. Due to this invariance, the Newton method can be called affine invariant
under the affine transformation F → G according to Deuflhard/ Hohmann (2003) (p. 100).

Taking Dennis/ Schnabel (1983)’s theorem for the Newton method’s local convergence be-
haviour as a basis, it can be showed that the same holds true if an affine transformation is
applied.

Theorem 3.4.3. Let F : D ⊆ Rn → Rn continuously differentiable. For A ∈ Rn,n nonsingular
we define the affine transformation without translation component

G(x) := AF (x).

Then, assume there exists x∗ ∈ D and β, ρ > 0 such that B(x∗, ρ) ⊆ D,F (x∗) = 0 and F ′(x∗)
exists with ‖F ′(x∗)−1‖2 ≤ β̃, β̃ := β

‖A−1‖2 and ‖F ′(x)−F ′(x∗)‖2 ≤ γ‖x−x∗‖2 for all x ∈ B(x∗, ρ)

Lipschitz continuous.
Then, there exists ε > 0 such that for all x0 ∈ B(x∗, ρ) the sequence {xk} generated by the
Newton method

G′(xk)∆xk = −G(xk)
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is well defined, converges quadratically to x∗ obeying

(3.4.5) ‖xk+1 − x∗‖2 ≤ βγ‖xk − x∗‖22

for k = 0, 1, . . ..

Proof of 3.4.3. Following closely the proof present by Dennis/ Schnabel (1983) (p. 90/91),
we start the induction over k for k = 0, 1, . . . with the case k = 0:

First, G′(x0) is nonsingular for a given start value x0 as long as it is provided that F ′(x∗) is
arbitrarily nonsingular since by

‖x0 − x∗‖2 ≤ ε

and the Lipschitz continuity of the initial function’s Jacobian F ′(·) at the solution x∗ ∈ D, it
follows that

‖G′(x∗)−1(G′(x0)−G′(x∗))‖2 = ‖(AF ′(x∗))−1(AF ′(x0)−AF (x∗))‖2
= ‖F ′(x∗)−1A−1A(F ′(x0)− F ′(x∗))‖2
= ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖2
≤ ‖F ′(x∗)−1‖2‖F ′(x0)− F ′(x∗)‖2

≤ β

‖A−1‖2
γ‖x0 − x∗‖2

≤ βγ‖x0 − x∗‖2

≤ 1

2
.

Since for F : Rn → Rn and for its affine transformation G : Rn → Rn the image space remains
the same for any A ∈ Rn,n nonsingular and Rn is a Banach space under the l2 norm, the
operator norm is just the norm itself. Hence, the required continuity is sufficient for the further
conduction of the proof. The perturbation relation, (3.4.4), mentioned above in proof 3.4.1
for the classical convergence result by Dennis/ Schnabel (1983) gives that consequently also
G′(x0) is nonsingular.

‖G′(x0)−1‖2 ≤
‖G′(x∗)−1‖2

1− ‖G′(x∗)−1(G′(x0)−G′(x∗))‖2

≤ ‖F ′(x∗)−1A−1‖2
1− ‖F ′(x∗)−1‖2‖F ′(x0)− F ′(x∗)‖2

≤ ‖A−1‖2
‖F ′(x∗)−1‖2

1− ‖F ′(x∗)−1‖2‖F ′(x0)− F ′(x∗)‖2
≤ 2‖A−1‖2‖F ′(x∗)−1‖2.

The Jacobian F ′(x∗) is upper bounded by the constant β > 0 within the Euclidean standard
norm

‖F−1(x∗)‖2 ≤
β

‖A−1‖2
,
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such that we can proceed with the estimate

‖G′(x0)−1‖2 ≤ 2‖A−1‖2‖F ′(x∗)‖2
≤ 2‖A−1‖2‖F ′(x∗)−1‖2
≤ 2β.

x1 is well defined and

x1 − x∗ = x0 −G′(x0)−1G(x0)− x∗ = x1 − x∗ −G′(x0)−1G(x0).

Claiming the initial problem to be compatible, meaning F (x∗) = 0 for the solution x∗ ∈ D,
under the transformation of the image space by A ∈ Rn,n the equivalence

(F ′(x0))−1F (x∗) = 0

⇔ (F ′(x0))−1A−1AF (x∗) = 0

⇔ (AF ′(x0))−1AF (x∗) = 0

⇔ (G′(x0))−1G(x∗) = 0

holds. Hence,

x1 − x∗ = x1 − x∗ −G′(x0)−1G(x0)

= x1 − x∗ +G′(x0)−1(G(x∗)−G(x0))

= G′(x0)−1(G(x∗) +G(x0)−G′(x0)(x∗ − x0)).

Likewise in the classical proof presented by Dennis/ Schnabel (1983), q-quadratic convergence
can be proven. First, consistency of the norm yields

‖x1 − x∗‖2 = ‖(G′(x0))−1(G(x∗)−G(x0)−G′(x0)(x∗ − x0))‖2
≤ ‖(G′(x0))−1‖2‖G(x∗)−G(x0)−G′(x0)(x∗ − x0)‖2.

Application of the affine covariant version of the Lipschitz condition gives that

‖x1 − x∗‖2 ≤ ‖(G′(x0))−1(G(x∗)−G(x0)−G′(x0)(x∗ − x0))‖2
= ‖(F ′(x0))−1A−1A(F (x∗)− F (x0)− F ′(x0)(x∗ − x0))‖2
≤ ‖F ′(x0)−1‖2‖F (x∗)− F (x0)− F ′(x0)(x∗ − x0)‖2

≤ 2β

‖A−1‖2
γ

2
‖x0 − x∗‖22

= βγ‖x0 − x∗‖22

since naturally, 1
‖A−1‖2 > 0. Furthermore, the first iterate x1 lies within the predefined neigh-

bourhood of x∗ since by

‖x0 − x∗‖2 ≤
1

2
βγ

for the first iterate it holds

‖x1 − x∗‖2 ≤ βγ‖x0 − x∗‖2‖x0 − x∗‖2 ≤
1

2
‖x0 − x∗‖2
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such that x1 ∈ B(x∗, ε) with ε > 0 appropriately chosen. The induction step k → k+ 1 for k > 0
follows obviously the same lines, why it is omitted.

3.4.2. Affine Invariant Local Convergence Theory

The main step towards the affine invariant Newton convergence theory has been taken, but for
matters of completeness, in outlook to the convergence theory of the Gauss-Newton method and
the computations to be performed, let us state and prove quadratic convergence for the Newton
method under a more general affine invariant context as proposed in Deuflhard/ Hohmann
(2003) (p. 100/101).

Theorem 3.4.4. Let F : D ⊆ Rn → Rn continuously differentiable with invertible Jacobian
F ′(x) for all x ∈ D. For an ω > 0 we claim the following affine invariant Lipschitz condition

(3.4.6) ‖F ′(x)−1(F ′(x+ sv)− F ′(x))v‖2 ≤ sw‖v‖22

for all s ∈ [0, 1], x ∈ D and v ∈ R such that x + v ∈ D. Furthermore we assume there exists a
solution x∗ ∈ D and a start value x0 ∈ D such that

ρ := ‖x∗ − x0‖2 <
2

ω
and B(x∗, ρ) ⊆ D.

Then, the sequence {xk} defined by the Newton method stays in the open ball B(x∗, ρ) ⊆ D for
k > 0 and converges towards x∗, i.e.

‖xk − x∗‖2 < ρ for k < 0 and lim
k→∞

xk = x∗.

The speed of convergence can be estimated by

(3.4.7) ‖xk − x∗‖2 ≤
ω

2
‖xk − x∗‖22

for k = 0, 1, . . .. Furthermore, the solution x∗ ∈ D is unique in B(x∗,
ω
2 ).

Proof of 3.4.4. The Lagrangian mean value theorem for vector valued functions in Lemma 3.4.2
yields for any p ∈ [0, 1], setting x̃ := x+ p that

F (x̃)− F (x)− F ′(x)(x̃− x) = F (x+ p)− F (x)− pF ′(x)

=

∫ 1

0

(F ′(x+ tp)− F ′(x)) p dt

=

∫ 1

0

(F ′(x+ t(x̃− x))− F ′(x)) (x̃− x) dt.

Consequently, we can estimate

‖F ′(x)−1 (F ′(x̃)− F (x)− F ′(x)(x̃− x)) ‖2 =

∥∥∥∥∫ 1

0

F ′(x)−1 (F ′(x+ t(x̃− x))− F ′(x)) (x̃− x) dt

∥∥∥∥
2

≤
∫ 1

0

∥∥F ′(x)−1 (F ′(x+ t(x̃− x))− F ′(x)) (x̃− x)
∥∥
2
dt

≤
∫ 1

0

ωt‖x̃− x‖22 dt
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=
ω

2
‖x̃− x‖22

provided the Jacobian F ′(x) is nonsingular for all x ∈ D. The second inequality follows from
condition (3.4.6). Under the assumption that the problem is compatible with

F (x∗) = 0

one Newton iteration writes

xk+1 − x∗ = xk − F ′(xk)−1F (xk)− x∗
= xk − x∗ − F ′(xk)−1(F (xk)− F (x∗)

= F ′(xk)−1(F (x∗)− F (xk)− F ′(xk)(x∗ − xk)).

Making use of the above shown yields in the standard Euclidean norm that

‖xk+1 − x∗‖2 = ‖F ′(xk)−1 (F (x∗)− F (xk)− F ′(xk)(x∗ − xk)) ‖2

≤ ω

2
‖x∗ − xk‖22.

If furthermore 0 < ‖xk − x∗‖2 ≤ ρ holds true, then

‖xk+1 − x∗‖2 ≤
ω

2
‖xk − x∗‖22

≤ ωρ

2
‖xk − x∗‖2

< ‖xk − x∗‖2

since it was defined

ρ := ‖x∗ − x0‖2 <
2

ω

and such that it is for ω > 0 by assumption

ω

2
ρ <

ω

2

2

ω
= 1.

Thus, for all k = 0, 1, . . . the Newton sequence {xk} stays in the open ball around the solution
x∗ ∈ D with radius ρ < 0 in the sense that ‖xk − x∗‖2 < ρ.

The proof is completed by showing the uniqueness of the solution x∗ within the open neighbour-
hood B(x∗,

2
ω ). Considering the open ball B(x∗,

2
ω ), we assume the contrary to show contradic-

tion. Let hence x∗∗ be another solution minimising the given nonlinear least squares problem
with x∗∗ 6= x∗. Under the compatibility of the problem, F (x∗∗) = 0 and F (x∗) = 0, one obtains
the Lipschitz similar result

‖x∗∗ − x∗‖2 = ‖F ′(x∗)−1F ′(x∗)(x∗∗ − x∗)‖2
= ‖F ′(x∗)−1(F (x∗∗)︸ ︷︷ ︸

=0

−F (x∗)︸ ︷︷ ︸
=0

−F ′(x∗)(x∗∗ − x∗))‖2

= ‖F ′(x∗)−1(F (x∗∗)− F (x∗)− F ′(x∗)(x∗∗ − x∗))‖2

≤ ω

2
‖x∗∗ − x∗‖22.
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Assuming that x∗∗ ∈ B(x∗,
2
ω ), the above equivalently writes as

‖x∗∗ − x∗‖2 <
2

ω

such that finally the estimate
ω

2
‖x∗∗ − x∗‖2 < 1

holds. Consequently, it is

‖x∗∗ − x∗‖2 ≤
ω

2
‖x∗∗ − x∗‖22 < ‖x∗∗ − x∗‖2

which holds if and only if x∗∗ = x∗, which contradicts the assumption taken at the beginning of
the uniqueness proof.

Note that by the affine covariant Lipschitz condition, ω in the latest proof accounts for the
product βγ of the classical convergence proof by Dennis/ Schnabel (1983) (p. 90) in an affine
invariant setting. Dennis/ Schnabel (1983) (p. 91) propose to measure the convergence radius
of the Newton method with respect to the nonlinearity of the problem by combining

γrel := βγ

which in Deuflhard’s (2006) notation is referred to as

ω,

being the affine invariant Lipschitz quantity.

3.5. Local Convergence of Gauss-Newton Method

Getting back to the motivating part at the beginning of this chapter, solving the overdetermined
nonlinear least squares problem

min
x∈D
‖F (x)‖22

for F : D ⊆ Rn → Rm with the second order sufficient condition on x∗ to be a local minimum
solution on the open and convex set D without consideration of the boundary ∂D is precisely
(‖F (x∗)‖22)′ = 0 with zT (‖F (x∗)‖22)′′z > 0 positive definite for any z ∈ D. Taking the matrix

1

2
F (x)TF (x)

to be minimised, the problem incorporating writes then

(3.5.1)

(
1

2
F (x∗)

TF (x∗)

)′
= F ′(x∗)

TF (x∗) = 0

where F ′′(x∗) is required to be positive definite (see also Proposition 3.2.7 (p. 19)). Newton’s
method to solve the system of m nonlinear equations where F : D ⊆ Rn → Rm is twice
continuously differentiable is based on successive linearisation. When introducing the Gauss-
Newton method at an earlier stage, it was already acknowledged that application of the classical
Newton method to the nonlinear least squares problem given would require evaluation of the
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Hessian F ′′(x) in terms of iterating

(F ′(xk)TF ′(xk) + F ′′(xk)TF (xk))∆xk = −F ′(xk)TF (xk)

for k = 0, 1, . . .. Omitting the second derivative on the left hand side and the effort in compu-
tations can only be justified if treating the small or even zero residual case. Hence, this gets us
back to requiring compatibility

F (x∗) = 0

to hold for a solution x∗ ∈ D of the minimisation problem within the further. The first derivative
of the substitute (3.5.1) problem becomes at x∗ ∈ D(

F ′(x∗)
TF (x∗)

)′
= F ′(x∗)

TF ′(x∗) + F ′′(x∗)
TF (x∗) = F ′(x∗)

TF ′(x∗).

By this and the fact, that positive definiteness of the substitute problem’s first derivative(
F ′(x∗)

TF (x∗)
)′

is equivalent to claiming full rank for the Jacobian, namely rank(F ′(x∗)) = n,
the Gauss-Newton method is defined as

F ′(xk)TF ′(xk)∆xk = −F ′(xk)TF (xk)

xk+1 = xk + ∆xk

for all k = 0, 1, . . ..

Annotation 3.5.1. Application of the Gauss-Newton method, gives a linearisation of the nonlin-
ear least squares problem. The problem ad hand reduces to a sequence of linear gradient systems,
where evaluation of the Hessian tensor product is omitted by requiring compatibility.

Annotation 3.5.2. Note that the Gauss-Newton method corresponds to solving the normal equa-
tion for the linear least squares problem

(3.5.2) min
xk∈D

‖F ′(xk)∆xk + F (xk)‖2

since we know that for A ∈ Rm,n and m > n to

min ‖Ax− b‖2

the normal equation is given by
ATAx = AT b

whose solution x ∈ D is unique if rank(A) = n.

Under the assumption of compatibility, the Gauss-Newton method displays locally q-quadratic
convergence. Let us first refer to the classical result by Dennis/ Schnabel (1983) (p. 222/223):

Theorem 3.5.3. Let F : D ⊆ Rn → Rm, D again open and convex subset of Rn and 1
2F (x)TF (x)

be twice continuously differentiable. Provided that the Lipschitz condition for the Jacobian

‖F ′(y)− F ′(x)‖2 ≤ γ‖y − x‖2

holds and x, y ∈ D, β > 0
‖F ′(x)‖2 ≤ β

holds, we have to assume that there exists x∗ ∈ D solution and σ ≤ 0 constant such that

‖(F ′(x)− F ′(x∗))TF (x∗)‖2 ≤ σ‖x− x∗‖2
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within D. Finally, let λ > 0, σ ≥ 0 such that for F ′(x∗)
TF (x∗) = 0, λ is the smallest eigenvalue

of the matrix product of the Jacobian F ′(x∗)
TF ′(x∗). If 0 ≤ σ < λ, then for any constant

c ∈ (1, λσ ) there exists ρ > 0 so that the Gauss-Newton sequence {xk} is well defined and converges
towards x∗ ∈ D for all starting values x0 ∈ B(x∗, ρ) in the ρ-neighbourhood of the solution obeying

(3.5.3) ‖xk+1 − x∗‖2 ≤
cσ

λ
‖xk − x∗‖2 +

1

2

cβγ

λ
‖xk − x∗‖22

and

(3.5.4) ‖xk+1 − x∗‖2 ≤
cσ + λ

2λ
‖xk − x∗‖2 < ‖xk − x∗‖2.

Proof of 3.5.3. Assume that λ > σ ≥ 0 and let hence c ∈ (1, λσ ) be a fixed constant. The proof
is performed by induction on k = 0, 1, . . ..

k = 0:
‖ · ‖2 denoting the standard Euclidean vector or induced matrix norm, respectively, we can find
ρ̃ > 0 such that F ′(x0)TF ′(x0) is nonsingular for any starting value x0 ∈ B(x∗, ρ̃) with

‖F ′(x0)TF ′(x0)‖2 ≤
c

λ
.

Furthermore, let

ρ = min

{
ρ̃,
λ− cσ
cβγ

}
.

The Gauss-Newton iteration performs

xk+1 = xk + ∆xk

= xk − (F ′(xk)TF ′(xk))−1F ′(xk)TF (xk).

and the first iterative x1 is well defined by

x1 − x∗ = x0 − (F ′(x0)TF ′(x0))−1F ′(x0)TF (x0)− x∗
= (F ′(x0)TF ′(x0))−1

(
−F ′(x0)TF (x0)− F ′(x0)TF ′(x0)(x∗ − x0)

)
= (F ′(x0)TF ′(x0))−1

(
−F ′(x0)TF (x0)− F ′(x0)TF ′(x0)(x∗ − x0)

)
= (F ′(x0)TF ′(x0))−1

(
F ′(x0)TF (x∗)− F ′(x0)TF (x∗)− F ′(x0)TF (x0)

−F ′(x0)TF ′(x0)(x∗ − x0)
)

= (F ′(x0)TF ′(x0))−1
(
F ′(x0)TF (x∗) + F ′(x0)T (F (x∗)− F (x0)

−F ′(x0)(x∗ − x0)))

= F ′(x0)−1(F ′(x0))T )−1F ′(x0)T (F (x∗)− F (x0)− F ′(x0)(x∗ − x0))

− F ′(x0)−1(F ′(x0))T )−1F ′(x0)TF (x∗)

= F ′(x0)−1 (F (x∗)− F (x0)− F ′(x0)(x∗ − x0))− F ′(x0)−1F (x∗).
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F : D ⊆ Rn → Rm is continuously differentiable and x0 ∈ B(x∗, ρ), it is

F (x∗)− F (x0)− F ′(x0)(x∗ − x0)
x∗:=x+p

= F (x0 + p)− F (x0)− F ′(x0)P

=

∫ 1

0

F ′(x0 + tp)p dt− F ′(x0)p

=

∫ 1

0

F ′(x0 + tp)p− F ′(x0)p dt

=

∫ 1

0

(F ′(x0 + tp)− F ′(x0))p dt.

The triangle inequality for the appropriate Riemann integral yields∥∥∥∥∫ 1

0

F ′(x0 + tp)p dt

∥∥∥∥
2

≤
∫ 1

0

‖F ′(x0 + tp)p‖ dt

such that by the homogeneity of the norms

‖F (x∗)− F (x0)− F ′(x0)(x∗ − x0)‖2 =

∥∥∥∥∫ 1

0

(F ′(x0 + tp)− F ′(x0))p dt

∥∥∥∥
2

≤
∫ 1

0

‖(F ′(x0 + tp)− F ′(x0))p‖2 dt

≤
∫ 1

0

‖(F ′(x0 + tp)− F ′(x0))‖2 ‖p‖2 dt.

Claiming Lipschitz continuity of the Jacobian matrix F ′ at x∗ in the open and convex neigh-
bourhood D, yields

‖F (x∗)− F (x0)− F ′(x0)(x∗ − x0)‖2 ≤
∫ 1

0

γ‖(x0 + tp)− x0‖2‖p‖2 dt

=

∫ 1

0

γ‖t‖2‖p‖22 dt

= γ‖p‖22
∫ 1

0

‖t‖2 dt

=
γ

2
‖x∗ − x0‖2

since p := x∗ − x0. The problem is furthermore assumed to satisfy

F ′(x∗)
TF (x∗) = 0.

The second condition in Theorem 3.5.3 consequently gives

‖F ′(x0)TF (x∗)‖2 = ‖F ′(x0)TF (x∗)− F ′(x∗)TF (x∗)‖2
= ‖(F ′(x0)T − F ′(x∗)T )F (x∗)‖2
≤ σ‖x0 − x∗‖2.
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The previously shown combined with the knowledge of the Jacobian’s upper boundedness by

‖F ′(x0)‖2 ≤ β

for the initial value x0, q-quadratic local convergence is obtained by application of the triangle
inequality.

‖x1 − x∗‖2 = ‖(F ′(x0)TF ′(x0))−1
(
F ′(x0)TF (x∗) + F ′(x0)T (F (x∗)− F (x0)

− F ′(x0)(x∗ − x0))
)
‖2

≤ ‖(F ′(x0)TF ′(x0))−1‖2‖F ′(x0)TF (x∗) + F ′(x0)T
(
F (x∗)− F (x0)

− F ′(x0)(x∗ − x0)
)
‖2

≤ ‖(F ′(x0)TF ′(x0))−1‖2
(
‖F ′(x0)TF (x∗)‖2 + ‖F ′(x0)T (F (x∗)− F (x0)

−F ′(x0)(x∗ − x0))‖2)

≤ c

λ

(
σ‖x0 − x∗‖2 +

βγ

2
‖x0 − x∗‖2

)
=
cσ

λ
‖x0 − x∗‖2 +

βcγ

2λ
‖x0 − x∗‖22

Local convergence behaviour of the Gauss-Newton method is driven by a linear and a quadratic
factor. Completing the proof for the case k = 0, it remains to show that the first iterate x1
remains in the neighbourhood of the solution x∗. This can be acknowledged viewing

‖x1 − x∗‖2 ≤
(

1

2

βcγ

λ
‖x0 − x∗‖2 +

cσ

λ

)
‖x0 − x∗‖2

≤
(

1

2

λ− cσ
λ

+
cσ

λ

)
‖x0 − x∗‖2

=
1

2

cσ + λ

λ
‖x0 − x∗‖2

< ‖x0 − x∗‖2,

since on the one hand it is

‖x0 − x∗‖2 ≤
λ− cσ
cβγ

by the choice of ρ > 0 and by the choice of c ∈ (1, λc )

1

2

cσ + λ

λ
=

1

2

(cσ
λ

+ 1
)
< 1

for 0 ≤ σ < λ and x0 ∈ B(x∗, ρ) already by the induction assumption. The induction step
k → k + 1 performs analogously and will be omitted here.

Dennis/ Schnabel (1983) (p. 222) remark that the Gauss-Newton method may not locally
converge at all if the evaluation of the Hessian F ′′(x) is omitted even if one is not dealing with
a zero- or small residual problem.

Comparing the convergence statements for the Gauss-Newton method by Dennis/Schnabel
(1983) and by Deuflhard (2006), Dennis/ Schnabel do not claim explicitly compatibility

F (x∗) = 0.
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Nonetheless the condition given in Theorem 3.5.3, it was

F ′(x∗)
TF (x∗) = 0,

implicitly claims a zero residual problem as simultaneously

F ′(x∗)
TF ′(x∗)

is required to have strictly positive eigenvalues. This equivalently means that the Jacobian is
assumed to have full rank and F ′(x∗)

TF ′(x∗) should not be rank deficient. Then, of course, the
uniqueness of the solution x∗ ∈ D is guaranteed.

Obviously, one can also prove local q-quadratic convergence for a rank deficient Jacobian, whereas
the uniqueness of the solution x∗ cannot be maintained. For this reason, getting back to affine in-
variance theory, convergence of the Gauss-Newton method is examined referring to Deuflhard/
Hohmann (2003) and Deuflhard (2006) (p. 175 ff). The more general convergence statement
also applicable for rank deficient Jacobians is reviewed. In order to obtain the corresponding
convergence result as Dennis/ Schnabel (1983), Deuflhard (2006) still needs to claim full
rank of the Jacobian. This result will follow in the second part of this paragraph together with
a useful error estimate. A direct application of affine covariant transformations to the classical
statement of Dennis/ Schnabel (1983) would require further assumptions, since the Lipschitz
continuity

‖F ′(y)− F ′(x)‖ ≤ γ‖y − x‖2
and the nonlinearity measure

‖F ′(x)‖2 ≤ β

of Theorem 3.5.3 are not affine invariant. Deuflhard (2006), p. 175ff., introduces a more
general Lipschitz condition specifically designed for the affine invariant framework and some
useful tools within solving the nonlinear least square problems.

Lemma 3.5.4. The overdetermined linear least squares problem

min ‖Ax− b‖2

where A ∈ Rm,n, x ∈ Rn, b ∈ Rm and m > n has a unique solution x∗ if and only if

rank(A) = n.

In the rank deficient case, namely rank(A) = p ≤ n, the solutions form an affine subspace X∗.
If we denote by x∗ the shortest distance solution in the sense of

‖x∗‖2 ≤ ‖x‖2

for all possible solutions x ∈ X∗, the general solution can be written as

x = x∗ + z

where z ∈ N (A) the null space of A. Consequently, all solutions can be obtained by translation
of N (A) by x∗ and the shortest distance solution x∗ is precisely the unique vector orthogonal to
the null space.

Definition 3.5.5. For 0 ≤ rank(A) ≤ n the solution x∗ is unique in both the full rank and the

42



rank deficient case and is formally written as

x∗ = A+b.

A+ is called Moore Penrose pseudo inverse and is a special generalised inverse that is uniquely
defined by the following four Penrose axioms

(A+A)T = A+A

(AA+)T = AA+

A+AA+ = A+

AA+A = A.

If rank(A) = n, then the minimisation problem

min ‖Ax− b‖22

can be equivalently rewritten as the normal equation

ATAx = AT b

which is uniquely solvable with
x = A+b

for A+ = (ATA)−1AT b a since ATA is nonsingular if rank(A) = n.

Annotation 3.5.6. Note that for x ∈ D, solving

F ′(x)−1F (x) = 0

is equivalent to considering the equation

F ′(x)+F (x) = 0

as by the definition of the pseudo inverse it holds

F ′(x)+ = (F ′(x)TF ′(x))−1F ′(x)T = F ′(x)−1(F ′(x)T )−1F ′(x)T = F ′(x)−1

if rank(F ′(x)) = n.

Annotation 3.5.7. Remark, that Deuflhard (2006) (p. 176) introduces two more generalised
inverses, the outer and inner inverse which satisfy each only two of the Penrose axioms. In case
of full rank, i.e. rank(A) = n, the outer or respectively the inner inverse and the Moore Penrose
pseudo inverse are identical.
Hence, the Moore Penrose pseudo inverse is both an inner and outer inverse and has to be
considered a special case since contrary to inner and outer inverses, it is uniquely defined by the
Penrose axioms even in the rank deficient case.

Full rank problems are rather uncommon in applications. A local convergence proof in an affine
invariant setting holding true also for the rank deficient case is presented. Deuflhard (2006)
(p. 176) does herein introduce the outer inverse and herewith conducts the local convergence
proof for the Gauss-Newton method. Note that this generalised convergence result only gives an
estimate for two neighbour iterates. The result corresponding to the classical theory of Dennis/
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Schnabel (1983), considering ‖xk − x∗‖2 requires a full rank Jacobian matrix again.

Before continuing with the local Gauss-Newton convergence result in the error-oriented setting,
presented in Deuflhard (2006), note that especially in the rank deficient case, the outer inverse
is not uniquely defined. At a later stage, when a globalisation of the Gauss-Newton method is
considered, one needs a uniquely defined generalised inverse to estimate the Lipschitz constants
for the damping strategy. For this reason, the proof presented by Deuflhard (2006) (p. 194) is
restricted here in the sense that only the special case involving the Moore Penrose pseudo inverse
is considered.

Theorem 3.5.8. Let F : D ⊆ Rn → Rm, D open and convex, denote a continuously differ-
entiable mapping. The Jacobian being possibly rank deficient, let F ′(x)+ be its Moore Penrose
inverse for any x ∈ D. Assume that one can find a starting point x0 ∈ D, a mapping κ : D → R+

and constants α, ω, κ ≥ 0 such that

(i) ‖∆x0‖2 ≤ α,

(ii) ‖F ′(z)+(F ′(y)− F ′(x))(y − x)‖2 ≤ ω‖y − x‖22 Lipschitz type continuous for all x, y, z ∈ D
collinear and (y − x) ∈ R(F ′(x)+),

(iii) ‖F ′(y)− P⊥(x)F (x)‖2 ≤ κ(x)‖y − x‖2 for all x, y ∈ D, κ(x) ≤ κ < 1 for all x ∈ D and

(iv) B(xo, ρ) ⊆ D with ρ :=
α

1− κ− 1
2αω

while αω < 2(1− κ).

Then, the sequence {xk} of the Gauss-Newton iterates is well defined and remains in the closed
ball B(xo, ρ), i.e.

‖xk − x0‖2 ≤ ρ.

Furthermore, {xk} converges to some x∗ ∈ B(xo, ρ) with

F ′(x∗)
+F (x∗) = 0

and a convergence rate that can be estimated through

(3.5.5) ‖xk+1 − xk‖2 ≤
1

2
ω‖xk − xk−1‖22 + κ(xk−1)‖xk − xk−1‖2.

Proof of 3.5.8. Let xk−1, xk ∈ D for k ≥ 1. A+ denotes the Moore Penrose inverse. The following
projectors naturally emerge by its definition

P := AA+

P
⊥

:= Im − P = Im −AA+

whilst the orthogonality properties directly follow as P
2

= P and P
T

= P . In the Gauss-Newton
iteration

F ′(xk)TF ′(xk)∆xk = −F ′(xk)TF (xk)

xk+1 = xk + ∆xk

one formally needs to solve
∆xk = −F ′(xk)+F (xk).
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This immediately yields

‖xk+1 − xk‖2 = ‖xk −∆xk − xk‖2 = ‖ − F ′(xk)+F (xk)‖2
= ‖F ′(xk)+(F (xk)− F (xk−1) + F (xk−1)− F ′(xk−1)(xk − xk−1)

+ F ′(xk−1)(xk − xk−1))‖2
= ‖F ′(xk)+(F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)) + F ′(xk)+F (xk−1)

+ F ′(xk)+F ′(xk−1)(−F ′(xk−1)+F (xk−1)‖2
= ‖F ′(xk)+(F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)) + F ′(xk)+F (xk−1)

− F ′(xk)+F ′(xk−1F
′(xk−1)+F (xk−1)‖2

= ‖F ′(xk)+(F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1))

+ F ′(xk)+(I − F ′(xk−1)F ′(xk−1)+)F (xk−1)‖2
≤ ‖F ′(xk)+(F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1))‖2

+ ‖F ′(xk)+(I − F ′(xk−1)F ′(xk−1)+)F (xk−1)‖2.

The Lipschitz type condition and the defined orthogonal projectors then directly give

‖F ′(xk)+F (xk−1)− F ′(xk)+F ′(xk−1)F ′(xk−1)+F (xk−1)‖2
= ‖F ′(xk)+(I − F ′(xk−1)F ′(xk−1)+)F (xk−1)‖2
= ‖F ′(xk)+(I − P (xk−1)F (xk−1)‖2

= ‖F ′(xk)+P
⊥

(xk−1)F (xk−1)‖2
≤ κ(xk−1)‖xk − xk−1‖2

using condition (iii) from above. Claiming condition (ii) to hold, application of the Lagrangian
mean value theorem consequently yields

‖xk+1 − xk‖2 ≤ ‖F ′(xk)+(F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1))‖2
+ ‖F ′(xk)+(I − F ′(xk−1)F ′(xk−1)+)F (xk−1)‖2

≤ ω

2
‖xk − xk−1‖22 + κ(xk−1)‖xk − xk−1‖2.

This already proves the local estimate for two neighbour Gauss-Newton iterates and it remains
to show that for all iterates xk, xk−1 ∈ D, k ≥ 1 it holds true

‖xk − xk−1‖2 ≤ ρ.

Let therefore the starting point x0 ∈ D satisfy condition (i), i.e.

‖∆x0‖2 ≤ α

where B(x0, ρ) ⊆ D by condition (iv). Defining the radius ρ :=
α

1− κ− αω

2

with αω < 2(1−κ),

it is precisely
B(x0, ρ) := {x ∈ Rn : ‖x− x0‖2 ≤ ρ}.
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First, for k = 1 it is

‖x2 − x1‖2 ≤ κ(x0)‖x1 − x0‖2 +
ω

2
‖x1 − x0‖22

≤
(
κ(x0) +

αω

2

)
‖x1 − x0‖2

≤
(
κ+

αω

2

)
‖∆x0‖2.

Choosing αω < 2(1− κ), it hence holds by definition that
ωα

2
+ κ < (1− κ)− κ = 1, such that

‖x1 − x0‖2 < ‖∆x0‖2 ≤ α.

The induction step (k − 1)→ k for k ≥ 1 builds on the same arguments, i.e. for all k ≥ 1

‖xk+1 − xk‖2 ≤ κ(xk−1)‖xk − xk−1‖2 +
ω

2
‖xk − xk−1‖22

≤
(
κ(xk−1) +

αω

2

)
‖xk − xk−1‖2

≤
(
κ+

αω

2

)
‖xk − xk−1‖2.

For any l ≥ k ≥ 0, applying the Gauss-Newton iteration gives with the triangle inequality

‖xl+1 − xk‖2 = ‖xl + ∆xl − xk‖2
= ‖xl−1 + ∆xl−1 + ∆xl − xk‖2
≤ ‖∆xl‖2 + · · ·+ ‖∆xk‖2.

Since

‖xl+1 − xl‖2 ≤
(
κ+

αω

2

)
‖xl − xl−1‖22

≤
(
κ+

αω

2

)l−k
‖xk − xk−1‖

by the induction argumentation, one straightforward obtains for all l ≥ k

‖xl+1 − xk‖2 ≤ ‖xl+1 − xl‖2 + ‖xl − xl−1‖2 + · · ·+ ‖xk+1 − xk‖2

≤
∞∑
j=0

(
κ+

αω

2

)j
‖xk − xk−1‖2

=
1

1−
(
κ+ αω

2

)‖xk − xk−1‖2
=

1

1− κ− αω
2

‖xk − xk−1‖2

Consequently, for the case k = 0 this estimate gives for all l ≥ 0 that

‖xl+1 − x0‖2 ≤
1

1− κ− αω
2

‖x1 − x0‖2

≤ α

1− κ− αω
2

,
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which defines the radius of the ball B(x0, ρ) for ‖∆x0‖2 ≤ α. Summarising, all Gauss-Newton
iterates {xk} remain in the closure of the ball B(x0, ρ) around the starting value x0 ∈ D with
radius

ρ :=
α

1− κ− αω
2

> 0.

For k →∞, the distance between two neighbour iterates gets arbitrarily small such that for the
sequence of the Gauss-Newton correction it holds

∆xk = −F ′(xk)+F (xk)
k→∞−→ 0 = F ′(x∗)

+F (x∗),

resulting in
lim
k→∞

xk = x∗.

The above results apply for the full rank as well as for the rank deficient case regarding the
Jacobian. One can show that there exists a solution x∗ in terms of shortest distance. But if now
a full rank Jacobian matrix is claimed – which means sharper assumptions than in the previous
Theorem – then the solution x∗ is unique. Under this additional assumption, Deuflhard (2006),
p. 195, proves q-quadratic convergence rate for the Gauss-Newton method with respect to the
solution point x∗. This is the (directly) comparable result to the classical convergence theorem
of Dennis/ Schnabel (1983).

Theorem 3.5.9. Under the same assumptions as in Theorem 3.5.8, let the Jacobian satisfy

rank(F ′(x)) = n

for all x ∈ D. Then, the orthogonal projector defines P (x) = F ′(x)+F ′(x) = I ∈ Rn,n. Assuming
that a solution x∗ ∈ D exists with F ′(x∗)

+F (x∗) = 0, let it be

‖x0 − x∗‖2 <
2

ω
(1− κ(x∗)) := α∗.

Then, the solution x∗ ∈ D is unique in the open neighbourhood B(x∗, α∗) and the Gauss-Newton
method converges in the closure of the ball B(x∗, ‖x0 − x∗‖2) for any x0 ∈ B(x∗, α∗) with an
estimated rate of

‖xk+1 − x∗‖2 ≤
(
κ(x∗) +

ω

2
‖xk − x∗‖2

)
‖xk − x∗‖2.

Proof of 3.5.9. Previously, under the condition that ‖∆x0‖2 ≤ α it was

αω < 2(1− κ).

Assuming a full rank Jacobian, let κ(x∗) be such that on the one hand

κ(x∗) ≤ κ < 1

and on the other hand
αω < 2(1− κ) ≤ 2(1− κ(x∗)).

This simultaneously implies

α <
2

ω
(1− κ) ≤ 2

ω
(1− κ(x∗)) := α∗.
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The requirement

‖x0 − x∗‖2 <
2

ω
(1− κ(x∗)) := α∗

is sharper than the corresponding result of Theorem 3.5.8, referring to Deuflhard (2006),
p. 195, where all Gauss-Newton iterates remain in the closed neighbourhood B(x0, ρ) for ρ =

α
1−κ−αω2

since

‖x0 − x∗‖2 ≤
α

1− κ− αω
2

<
α∗

1− κ− αω
2

.

Then, the estimate for the convergence rate proceeds

‖xk+1 − x∗‖2 = ‖F ′(xk)+F (x∗)− F ′(xk)+F (x∗)− F ′(xk)+F (xk)− (x∗ − xk)‖2
= ‖F ′(xk)+(F (x∗)− F (xk)− F ′(xk)(x∗ − xk))− F ′(xk)+F (x∗)‖2
≤ ‖F ′(xk)+(F (x∗)− F (xk)− F ′(xk)(x∗ − xk))‖2 + ‖F ′(xk)+F (x∗)‖2

≤ ω

2
‖x∗ − xk‖22 + ‖F ′(xk)+(I − F ′(x∗)F ′(x∗)+)F (x∗)‖2

=
ω

2
‖x∗ − xk‖22 + ‖F ′(xk)+P

⊥
F (x∗)‖2

≤
(
κ(x∗) +

ω

2
‖xk − x∗‖2

)
‖xk − x∗‖2

which clearly incorporates a term of locally linear convergence for adequate and a term of
quadratic convergence for compatible problems. For all Gauss-Newton iterates holds true

xk+1 ∈ B(x∗, ‖x0 − x∗‖2)

for any x0 ∈ B(x∗, α∗) chosen close enough to the solution x∗ with ‖x0 − x∗‖2 < α∗, as due to
the estimated speed of convergence in the full rank case

‖xk+1 − x∗‖2 ≤
(
κ(x∗) +

ω

2
‖xk − x∗‖2

)
‖xk − x∗‖2

the multiplier becomes(
κ(x∗) +

ω

2
‖xk − x∗‖2

)
≤
(
κ(x∗) +

ω

2
‖x0 − x∗‖2

)
<
α∗ω

2
+ κ(x∗).

Consequently,

‖x0 − x∗‖ ≤
α

1− κ− αω
2

<
α∗

1− κ− αω
2

and as by
α∗ω

2
+ κ(x∗) =

(
2(1− κ(x∗))

ω

ω

2
+ κ(x∗)

)
< 1,

the multiplier satisfies

κ(x∗) +
ω

2
‖xk − x∗‖2 <

α∗ω

2
+ κ(x∗) < 1.

Inductively the proof contracts for all k ≥ 0 with

‖xk+1 − x∗‖2 < α∗ =
2

ω
(1− κ(x∗)).
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A unique solution solely exists in case the Jacobian displays full rank, which can be shown by
contradiction. Let x∗∗ 6= x∗ denote a different solution and x∗∗ ∈ B(x∗, α∗). Starting with
x0 := x∗∗, the above shown indeed implies on the one hand

‖x∗∗ − x∗‖2 < α∗

and on the other hand by application of the Lipschitz continuity and the Lagrange mean value
theorem that

‖x∗∗ − x∗‖2 ≤
(
κ(x∗) +

ω

2
‖x∗∗ − x∗‖2

)
‖x∗∗ − x∗‖2

≤
(
κ(x∗) +

α∗ω

2

)
‖x∗∗ − x∗‖2

with
κ(x∗) +

α∗ω

2
< 1.

This immediately gives the contradiction, why it must hold x∗∗ = x∗.

In the case of a full rank Jacobian, an error estimate relating the Euclidian distance between an
iterate and the solution to the one between two neighbour iterates can be obtained by a similar
deduction referring to Deuflhard (2006), p. 196.

Lemma 3.5.10. Under the assumptions of Theorem 3.5.9, the distance between the kth iterate
of the Gauss-Newton sequence and the solution x∗ ∈ D can be bounded from above by the distance
between two neighbour iterates xk, xk−1 within the Euclidean standard norm, i.e.

(3.5.6) ‖xk − x∗‖2 ≤
1

1− κ− ω

2
‖xk+1 − xk‖2

‖xk+1 − xk‖2.

Proof of 3.5.10. In the proof of Theorem 3.5.9, the convergence rate of the Gauss-Newton method
could be estimated

‖xk+1 − x∗‖2 ≤
(
κ+

ω

2
‖xk − x∗‖2

)
‖xk − x∗‖2.

Since Theorem 3.5.8 gave

‖xk+1 − xk‖2 ≤
(
κ+

ω

2
‖xk − xk−1‖2

)
‖xk − xk−1‖2.

For any l ≥ k ≥ 0 it holds true that

‖xl+1 − xk‖2 ≤ ‖xl+1 − xl‖2 + · · ·+ ‖xk+1 − xk‖2

≤
∞∑
j=0

(
κ+

ω

2
‖xk − xk−1‖2

)j
‖xk − xk−1‖2

since the induction argument gives

‖xl+1 − xl‖2 ≤
(
κ+

ω

2
‖xk − xk−1‖2

)l−k
‖xk − xk−1‖2.

For the purpose of repeated induction, transforming the estimated convergence rate of Theorem
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3.5.8 gives

‖xk+1 − xk‖2 ≤
(

κ

‖xk − xk−1‖2
+
ω

2

)
‖xk − xk−1‖22.

Abbreviating

h̃k :=

(
κ

‖xk − xk−1‖2
+
ω

2

)
‖xk − xk−1‖2,

multiplying the estimated convergence rate with

κ

‖xk − xk−1‖2
+
ω

2

reveals the relation
h̃k ≤ (hk)2.

Contraction of these {h̃k} is obtained for

h̃0 =

(
κ

‖∆x0‖2
+
ω

2

)
‖∆x0‖2 < 1.

Since the limit
lim
k→∞

h̃k = 0

exists, and
h̃k < h̃k−1 < h̃0 < 1

application of the geometric series to the induction argument, given that

κ(x∗) +
ω

2
‖xk − x∗‖2 < 1

from the proof of Theorem 3.5.9, yields

‖xl+1 − xk‖2 ≤
1

1−
(
κ+

ω

2
‖xk − xk−1‖2

)‖xk − xk−1‖2
which is

‖xl+1 − xk‖2 ≤
1

1− κ− ω

2
‖xk − xk−1‖2

‖xk − xk−1‖2.

For l→ +∞, provided that the Gauss-Newton method terminates, after finitely many steps the
solution x∗ ∈ D is reached.

‖x∗ − xk‖2 ≤
1

1− κ− ω

2
‖xk − xk−1‖2

‖xk+1 − xk‖2

Finally, before terminating this section, let us remark that Deuflhard (2006) (p. 198) intro-
duces the so named incompatibility factor measuring the compatibility of the nonlinear least
square problem. Defining

κ(x∗) := sup
x∈D

‖F ′(x)+F (x∗)‖2
‖x− x∗‖2

< 1
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motivated by the previous local convergence proofs, a compatible problem obviously satisfies

F (x∗) = 0 with κ(x∗) = 0.

A noncompatible problem, still satisfying

F (x∗) 6= 0 with κ(x∗) < 1,

is called adequate nonlinear least square problem.

While Dennis/ Schnabel (1983) (p. 220) would refer to compatible and adequate nonlinear
least square problems as zero or small residual problems, the Gauss-Newton method converges
q-quadratically for the first (since the linear term vanishes) and locally linear for the second
case (Deuflhard (2006), p. 199). Reviewing and comparing the proofs performed by Dennis/
Schnabel (1983) and Deuflhard (2006), classical convergence theory for the Newton method
could easily be transferred to an affine invariant setting. The Newton method itself is affine
invariant.
The Gauss-Newton method was deduced as a linearisation of the Newton method, where the eval-
uation of the Hessian tensor product is omitted, to adequately and efficiently solve compatible
nonlinear least squares minimisation problems. The Gauss-Newton method was demonstrated
not to be affine invariant in general. Applying affine contravariant transformations required
a different approach to examine convergence behaviour. The Gauss-Newton method is only
affine invariant with respect to so called right scaling (see chapter 4.2, 54 ff.). It converges ”lo-
cally linearly for adequate and quadratically for compatible nonlinear least squares problems”
(Deuflhard (2006), p. 199). Two corresponding convergence results, one emerging from clas-
sical theory and one from the affine contravariant setting were reviewed. In both cases, full rank
of the Jacobian is required. The advantage of the affine invariant approach turned out to be
Theorem 3.5.8, which gives a local convergence rate for rank deficient Jacobians also. Allowing
rank deficiency as well as the use of inner and outer inverses makes Deuflhard’s (2006) result
slightly more general. Inner and outer inverses were not considered here though, only the Moore
Penrose inverse as a special case.

After monitoring the convergence of the Gauss-Newton method which is to be applied to solve
the parameter identification task in terms of a nonlinear least squares problem, highly nonlinear
applications such as arising in medicine and biology require an enlarged convergence domain.
Aiming at reducing the algorithm’s dependence on starting values, an adaptive trust region ap-
proach is introduced to the Gauss-Newton method in chapter 4. This introduced step length
strategy can be considered a globalisation of the standard Gauss-Newton approach. Once de-
fined, a well performing algorithm to attack the nonlinear least squares problem is obtained.
Evaluation of the sequences of linear systems involving the Jacobian matrix of the residual func-
tion is approached with a linearly-implicit Euler extrapolation, see section 4.4. The arising linear
systems are solved via a customised QR decomposition or LU factorisation.
Summarising, the following chapter will adjust the parameter identification tools for the pro-
posed model of section 2.3 from a computational point of view. These methods are applied
to the proposed model using the Nlscon and Limex codes from Konrad-Zuse Zentrum für
Informationstechnologie Berlin to obtain the simulation results presented in chapter 5.
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4. Applied Parameter Identification

4.1. Motivation to Parameter Identification Problems

Following the idea of Gauss, parameter identification problems can be formulated as nonlinear
least squares problems. In most applications, the parameters to be identified are given differ-
ent weights to account for different magnitudes of the parameters. Hence, let us define the
overdetermined, weighted nonlinear least squares problem

(4.1.1) min
1

M

M∑
i=1

(
y(ti, x)− zi

δyi

)2

where data points zi ∈ Rd are measured for (up to) d components for ti ∈ R, i = 1, . . . ,M time
points. These pairs

(ti, zi)

are to be fitted to a model conjectured
y(t, x),

which is nonlinear with respect to the vector of parameters

x ∈ Rn.

Equivalently, the weighting can be represented by a diagonal matrix

(4.1.2) Di :=

(δzi)1 0
. . .

0 (δzi)d

 ∈ Rd,d

while the δzi denote the error tolerances. The problem then writes with the Euclidean norm

(4.1.3) min
1

M

M∑
i=1

‖D−1i (y(ti, x)− zi) ‖22

for i = 1, . . . ,M measurement points, d species, a total number of n unknown parameters and
m := Md > n. All theoretical background of chapter 3 applies also for the weighted nonlinear
least squares problem if only it is defined

(4.1.4) F (x) =

 F1(x)
...

FM (x)

 =

 D−11 (y(t1, x)− z1)
...

D−1M (y(tM , x)− zM )

 ∈ Rm

This notation yields the minimisation problem

(4.1.5) min
x∈D
‖F (x)‖2
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for F : D ⊆ Rn → Rm, D open and convex. Minimising the relative deviation between measure-
ment data and the proposed d dimensional model y(t, x), the nonlinear least squares problem
equivalently writes

min
x∈D

1

2
F (x)TF (x).

Sufficient conditions for a local minimum x∗ ∈ D are(
1

2
F (x∗)

TF (x∗)

)′
= 0 with

(
1

2
F (x∗)

TF (x∗)

)′′
positive definite. Hence, the problem can be reformulated as finding the solution to the nonlinear
system

F ′(x)TF (x) = 0.

Let us claim that the model and data fully agree at the solution

F (x∗) = 0.

The initial problem is linearised by applying the Gauss-Newton method, which leads to a sequence
of linear least squares problems for each iteration step k

min
x∈D
‖F ′(xk)∆xk + F (xk)‖22

xk+1 = xk + ∆xk,

k = 1, 2, . . . .

For computational reasons, an enlarged convergence domain is preferable for the Gauss-Newton
method. A globalisation is reviewed in paragraph 4.3, treating an adaptive trust region step
length strategy applicable for the Gauss-Newton method (Deuflhard (2006), p. 212 ff.). Basi-
cally, the damping strategy is based on a predictor corrector method testing the monotonicity of
two neighbour iterate’s descent. The gradient system arising by application of the Gauss-Newton
algorithm requires evaluation of the residual function and computation of the latter’s Jacobian
matrix. Since

Fi(xk) := D−1i (y(ti, x)− zi)

is componentwise defined for all i = 1, . . . ,M , for a fixed parameter set xk ∈ Rn, a solution to
the initial DAE model

B(y, xk)y′(t, xk) = f(y, xk)

has to be computed. In this case, an extrapolation method based on the linearly-implicit Eu-
ler discretisation seems applicable to solve the DAE system which is introduced in paragraph
4.4. An appropriate algorithmic implementation is realized in the Limex code available through
Poem software (Hairer/ Nørsett/ Wanner (1987), Ehrig/ Nowak/ Deuflhard (1996),
Deuflhard/ Hairer/ Zugck (1987), Schlegel/ Marquardt/ Ehrig/ Nowak (2002)).
Once a solution to the DAE system is obtained for the kth iteration, the initial problem has
reduced to a system of linear equations which is solved by a customised QR or LU decomposition.

In the subsequent, first a short note on incorporation of constraints during the optimisation
process is made.
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Followed by the idea and definition of the globalised Gauss-Newton method applied, an adaptive
trust region damping strategy is deduced referring to Deuflhard (2006).
Then, the mathematical background necessary to solve the DAE system for every Gauss-Newton
update is shortly reviewed. After these preparations motivated from the computational point of
view, the initial task can be approached.
The proposed model is evaluated using the tools of this chapter and parameters are identified.
A simulation and model analysis for a test data set is given in the following chapter (chapter 5,
p. 78).

4.2. Parametrisation and Constraints

Enforcing either positiveness, upper or lower boundedness of the parameters to be identified in
the model, optimisation is subject to specific constraints. Any differentiable transformation can
be applied to the parameter vector x ∈ D ⊆ Rn Following Dierkes/Wade/ Nowak/Röblitz
(2011) (p. 6), the model’s differential equation system is parametrised by a transformation

Φ : Rn → Rn

such that with x = Φ(u) and
F (x) = F (Φ(u)) =: F̃ (u)

the initial differential system writes

F (Φ(u))′ = F ′(x)Φ(u)⇔ F̃ ′(u) = F ′(x)Φ(u)

where u ∈ Rn stands for changed parametrisation. Covering the above mentioned three funda-
mental constraints to be applied, it is proposed to use a componentwise exponential transforma-
tion

xi = exp(ui)

for i = 1, . . . , n, if a global positivity constraint x > 0 is imposed. Requiring the parameters to
be bounded by a lower bound A and an upper bound B such that

A ≤ x ≤ B

Dierkes/Wade/ Nowak/Röblitz (2011) propose a sinusoidal transformation

xi = Φ(ui) = A+
B −A

2
(1 + sin(ui))

for i = 1, . . . , n. For a single bound, C, accounting either for a lower or an upper bound

x ≤ C or x ≥ C

a simple square root transformation would be eligible following componentwise

xi = Φ(ui) = C ±
(

1−
√

1 + (ui)2
)
.

Dierkes/Wade/ Nowak/Röblitz (2011) (p. 6) note that variation within parametrisation
of the system lead to changes in the sensitivities of the parameters. in order to maintain the
dynamical behaviour of the model as well as its physical meaning (e.g. positivity constraint for
population dynamics), only necessary constraints should be applied.
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The weighted nonlinear least squares problem obviously involves left scaling of the residual
function through application of a diagonal matrix . In the case of row scaling, different scaling
applied to the nonlinear least squares problem leads to different solutions, while right scaling
leaves the problem affine invariant. The Gauss-Newton method itself is only affine invariant to
parameter scaling generally defined by

x = DRx̃

provided the Jacobian matrix has full rank, since this gives for the Gauss-Newton correction of
the scaled vector x̃ ∈ Rn

∆x̃k = −H ′(D−1R xk)+H(D−1R xk) = −(F ′(xk)DR)+F (xk)

where H(x̃) = H(D−1R x) := F (x) such that H ′(x̃) = H ′(D−1R x) = F ′(x)DR. If now F ′(xk) has
full rank for each iterate xk ∈ D this gives

∆x̃k = D−1R (−F ′(xk)+F (xk)) = D−1R ∆xk,

hence right scaling invariance under the Gauss-Newton method. This affine invariance idea justi-
fies the use of affine covariant transformations and the hereby induced error oriented algorithms
for the application given. For left scaling, unfortunately, invariance does not hold true. Assuming
that left scaling is applied by

F̃i(x) := DLFi(x)

where DL = diag(δz1, . . . , δzd) might account for the error tolerance in the given data, the
problem to be solved in the affine covariant Gauss-Newton sense writes

min
x∈D
‖F̃ ′(xk)∆xk + F̃ (xk)‖22

for the kth iteration. Obviously, this is equivalently

min
x∈D
‖DL(F ′(xk)∆xk + F (xk))‖22.

This immediately gives reason to note that for different weighting respectively left scaling, a
different sequence of linear least squares problems is solved during the Gauss-Newton iterations
such that different scaling leads to different solutions. This fact is crucial to interpretation of the
solutions obtained and should be kept in mind while solving any nonlinear least squares problem.

4.3. Globalisation of the Gauss-Newton Method

The Gauss-Newton method is the standard method of choice for parameter identification prob-
lems. Dependence on the starting values and local convergence significantly diminishes its per-
formance. By the difficulty to obtain good initial values for most applications, the need for
robustness and an increased convergence radius emerges naturally. Adaptive step length strate-
gies controlling the descent have widely been used. A short review on trust region methods is
given underneath, before the damped Gauss-Newton method such as Deuflhard (2006) pro-
poses it and such as it is implemented in the Nlscon code is introduced. The corresponding
predictor corrector based damping strategy is also sketched for the purpose of understanding
and completeness.
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A common approach to increase robustness of the Gauss-Newton method was taken by Ken-
neth Levenberg and Donald Marquardt (Dennis/ Schnabel (1983) / Levenberg (1944)
/ Marquardt (1963)). Divergence eventually occurring in the Gauss-Newton framework is
handled in the Levenberg-Marquardt algorithm by first identifying a trust region and then de-
termining a step length towards the steepest descent.
Basically, the idea of the Levenberg Marquardt algorithm is that local linearisation performed
during the Gauss-Newton iterations is solely to be trusted in a small neighbourhood, i.e. the
trust region (see Björck (1996), p. 346/347) of the kth iterate xk. Hence, the nonlinear least
squares problem as deduced in (3.5.2) when introducing the Gauss-Newton method then writes

min‖F ′(xk)∆xk + F (xk)‖22
s.t. ‖∆xk‖2 ≤ δ.

The Levenberg-Marquardt step is the solution of the hereby obtained normal equation of the
kind

(4.3.1) (F ′(xk)TF ′(xk) + µIn)∆xk = −F ′(xk)TF (xk)

where δ ≥ 0 defines the radius of the trust region as an inequality constraint and µ > 0 stands for
the Lagrange multiplier. Summarising, this gives the regularised nonlinear least squares problem

(4.3.2) min ‖F ′(xk)+∆xk + F (xk)‖22 + µ‖∆xk‖22

where the increment vector ∆xk is rotated by the trust region’s radius µ ≥ 0 in the steepest
descent direction.

Obviously, for In ∈ Rn,n the identity matrix in (4.3.1), the Levenberg-Marquardt step approaches
the steepest descent direction

−F ′(xk)TF (xk)

with magnitude
‖∆xk‖2 → 0

for µ → +∞ while it is parallel to the steepest descent direction for small µ (Björck (1996),
p. 347). Note that, on the other hand, the Levenberg-Marquardt method for µ = 0 gives the
standard Gauss-Newton minimisation for the objective function. This ensures a downhill step in
each iteration for any µ > 0 sufficiently large, in the sense of

F (xk + ∆xk) < F (xk).

There exist numerous other optimisation algorithms related to or based on the Newton method.
In large residual problems for example, that are not treated in detail in this context, a Broyden-
Fletscher-Goldfarb-Shannon updating routine would be preferable according to Björck (1996)
(p. 347).
Though, let us direct the attention to small or zero residual problems. Under the assumption
of compatibility, the Levenberg-Marquardt algorithm’s robustness occasionally pays for its im-
provement by detecting merely saddle points – whose gradient are also zero but which do not
satisfy the sufficient conditions for local interior minima. This can be explained by the steepest
descent approach which may result in termination once the gradient gets small (Deuflhard
(2006), p. 119).

Summarising, there exist in general two different strategies towards globalising convergence of
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the Gauss-Newton method – either by line search or by trust region approaches. Though names
are misleading in literature, the subsequently presented methodology based on an adaptive trust
region approach will be referred to as the damped Gauss-Newton method. Dennis/ Schnabel
(1983) in contrary only call Gauss-Newton based algorithms improved by a line search routine
damped.
Damping here in this context actually accounts for an adaptive variation within the step length
to be taken during the Gauss-Newton descent.

Before continuing, it seems appropriate to emphasize that a globalisation of the Gauss-Newton
method does not mean in any way global convergent algorithm in the common way. Newton
and Newton like methods’ convergence behaviour remains locally dependent on the initial guess,
though globalised methods might deal better with bad initial guesses.
Furthermore, the damped Gauss-Newton method as presented by Deuflhard (2006) claims
to give an improvement with respect to the appropriate detection of local minima in the sense
that the algorithm would give additional information if terminating at a saddle point and would
indicate if there exist manifold minimum solutions. Especially as it is well known that standard
Newton methods terminate if they reach the nearest solution point x∗, if they come sufficiently
close to a singularity of the Jacobian or at if they come close to some point on the boundary ∂D
(Björck(1996), p. 346 and Deuflhard (2006), p. 124).

Damping the Gauss-Newton correction ∆xk by some damping factor 0 < λk ≤ 1 in every of
the k iterations can also be embedded into the affine covariant context of solving nonlinear least
squares problems which will stand in the focus of attention.
Compared to other damping strategies as the Armijo rule, Deuflhard (2006) develops a adap-
tive step length rule that carefully maintains the affine invariant framework and performs better
also under ill conditioned Jacobians (p. 121).

The drawback about the globalisation of the Gauss-Newton method even in an affine covariant
setting is that convergence can neither be guaranteed nor proved. Though, the modified Gauss-
Newton method as it will be defined in the following locally behaves like the standard Gauss-
Newton method and heuristically yields better results (Deuflhard (2006)).

Definition 4.3.1. For F : D ⊆ Rn → Rm the damped Gauss-Newton method is defined by

F ′(xk)∆xk = −F (xk)

xk+1 = xk + λk∆xk

for 0 < λk ≤ 1 and k = 0, 1, . . ..

Similar to the previous chapter, considering the nonlinear system, emerging from the initial
minimisation task,

F ′(x)+F (x) = 0

would introduce a second order derivative tensor term. As a modification of the Gauss-Newton
method by global features is to be given, the task at hand is to solve

F ′(x∗)
+F (x) = 0

for x∗ ∈ D the yet unknown solution of the minimisation problem in the nonlinear least squares
sense applied to parameter identification. According to Deuflhard (2006) (p. 206), the problem
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specification gives immediately rise to the nontrivial affine covariance class

A(x∗) := {A = BF ′(x∗)
+ : B nonsingular}

which obviously implies the equivalence

AF (x) = 0

⇔ F ′(x∗)
+F (x) = 0

for any A ∈ A(x∗). Considering test functions

T (x|A) :=
1

2
‖AF (x)‖22

for A ∈ A(x∗), a proper theory about choosing the damping factor λk within global Gauss-
Newton’s kth iteration requires that

rank(F ′(x)) = n

i.e. the Jacobian is not rank deficient for x ∈ D.

Annotation 4.3.2. Deuflhard (2006) annotates that the theoretical condition that

F ′(x∗)
+F (x)

should be nonsingular for x ∈ D and the solution x∗ ∈ D would enable global convergence state-
ments for the damped Gauss-Newton method. The necessity of this additional requirement builds
upon the fact that F ′(x∗)

∗F (x) is certainly singular if the Jacobian F ′(x) is rank deficient but
vice versa, F ′(x∗)

+F (x) does not need to be regular if the Jacobian has full rank. Summarizing,
the idea then builds up to that if the Jacobian is not rank deficient and F ′(x∗)

+F (x) is nonsin-
gular for x ∈ D, there exists a path, the so called Gauss-Newton path such that all general level
functions

T (x|A) :=
1

2
‖AF (x)‖22

decrease along this path for A ∈ A(x∗).

But the most crucial point Deuflhard (2006) makes in this context is that due to the nonavail-
ability of information about the solution x∗ ∈ D during computation, the damped Gauss-Newton
path as mentioned above can never be realised for any Newton method (p. 207).

Briefly, construction of a global Gauss-Newton method would require global information about
the Jacobian at the solution point x∗ in order to guarantee global convergence. The way out
intuitively is to insert the best possible, hence most recent local Gauss-Newton estimate xk
instead of x∗ ∈ D. This approach proposed by Deuflhard (2006) (p. 212) can be categorised
as an adaptive trust region strategy.
A local Gauss-Newton path can be obtained hereby and leads to the loss of guarantee of global
convergence. Similarly, for the local Gauss-Newton path the local natural level functions for the
nonlinear least squares problem writes

T (x|F ′(xk)+) :=
1

2
‖F ′(xk)+F (x)‖.
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Consequently by applying the Moore Penrose axioms, the damped Gauss-Newton method de-
creases in the steepest descent direction with respect to T (x|F ′(xk)+) (Deuflhard (2006), p.
212).

For the purpose of completeness, let us define the affine invariant version of residual level functions
(Deuflhard (2006), p. 114) accounting for monotonicity behaviour specifically for the Gauss-
Newton method’s descent as follows:

Definition 4.3.3. For any x ∈ D, the global level function within the affine invariant setting of
the Gauss-Newton method is defined as

(4.3.3) T (x|F ′(x∗)+) :=
1

2
‖F ′(x∗)+F (x)‖22

while its local counterpart writes

(4.3.4) T (x|F ′(xk)+) :=
1

2
‖F ′(xk)+F (x)‖22.

Annotation 4.3.4. The definition of level functions is motivated by the objective that any algo-
rithm should successively approach a solution point x∗ ∈ D. If the affine invariant natural level
functions – both local and global – are defined via

T (x|A) :=
1

2
‖AF (x)‖22

exploiting the representation

1

2
‖AF (x)‖22 =

1

2
(AF (x))TAF (x) =

1

2
F (x)TATAF (x).

The following properties are satisfied:

T (x|A) = 0⇔ x = x∗

T (x|A) > 0⇔ x 6= x∗.

The task at hand now is to identify sequences of damping factors λk such that

‖F ′(xk)+F (xk)‖22

decays monotonously along all iterates xk. This requires successive iterates xk, xk+1 of the
globalised Gauss-Newton sequence xk to satisfy

T (xk+1|A) < T (xk|A)

for any A ∈ A(x∗). This will be referred to as monotonicity criterion in terms of natural level
functions.
The damped Gauss-Newton method

xk+1 = xk + λk∆xk

= xk − λkF ′(xk)+F (xk)

for k = 0, 1, . . . requires successive recomputation of the step length 0 < λk ≤ 1 in each iteration.
Furthermore, as we have already seen before, the standard Gauss-Newton method gives the

59



minimum norm solution to the linear substitute least squares problem

min
x∈D
‖F ′(xk)∆xk + F (xk)‖2

where the Jacobian matrix can be approximated analytically, solved by its variational equality
or by finite differences during simulation. Here, the linearly-implicit Euler extrapolation routine
is used to evaluate the Jacobian system (see 4.4, p. 70).

In order to lay a theoretical fundamental, let us introduce the simplified Gauss-Newton method,
going back to an approach by Ortega/ Rheinboldt (2000).

Definition 4.3.5. The simplified Gauss-Newton method solves the minimisation problem

(4.3.5) min ‖F ′(xk)∆xk+1 + F (xk+1)‖2

and is introduced for problems with incompatibility factor κ(x) ≤ κ < 1 as it requires only
computational available information about the Jacobian at a fixed point. Then, the simplified
Gauss-Newton routine performs

F ′(xk)∆xk+1 = −F (xk+1)(4.3.6)

xk+1 = xk + ∆xk+1(4.3.7)

such that the simplified Gauss-Newton correction is determined by

(4.3.8) ∆xk+1 = −F ′(xk)+F (xk+1).

4.3.1. Natural Monotonicity and Descent Directions

The natural monotonicity test ensures throughout simulations that for any step length λk the
descent direction is followed, improving the convergence rate. During computation it is clearly
not helpful to estimate convergence with respect to the solution x∗ ∈ D which is unknown at
that time. In order to surround this obstacle and aiming at obtaining a convergence monitor
after a few first iteration steps of the method already, Deuflhard (1972) and Deuflhard/
Hohmann (2003) (p. 102) propose an affine invariant version of the standard monotonicity test.

Lemma 4.3.6. In an affine invariant setting, local monotonicity of the globalised Gauss-Newton
method can be inspected by the natural monotonicity test

(4.3.9) ‖F ′(xk)+F (xk+1)‖2 ≤ θk‖F ′(xk)+F (xk)‖2.

for some local constant θk < 1.

Note that the left hand side accounts for the simplified Gauss-Newton correction while the right
hand side is exactly the standard damped Gauss-Newton method in this case. Evaluating the
simplified Gauss-Newton method obviously does not require additional effort since at the next
iteration point xk+1 a system of equations involving the same Jacobian F ′(xk) as already com-
puted during the Gauss-Newton routine has to be solved.

First, the theoretical approach involves x∗ ∈ D which will not be known during computation.
Nonetheless, convergence of the damped Gauss-Newton approach requires that the following
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monotonicity criterion

(4.3.10) θk ≤ θ∗

in terms of a global contraction factor 0 < θ∗ < 1 holds for any iteration k and where the global
contraction factor is required to satisfy

(4.3.11) ‖F ′(x∗)+F (xk+1)‖2 ≤ θ∗‖F ′(x∗)+F (xk)‖2.

Deuflhard (2006) (p. 213) proposes to take the best estimate available for x∗, namely the latest
iterate xk instead. Using the best available local estimates, one arrives at the computational
available local contraction factor θk with

(4.3.12) [θk] :=
‖F ′(xk)+F (xk+1)‖2
‖F ′(xk)+F (xk)‖2

=
‖∆xk+1‖2
‖∆xk‖2

which satisfies
[θk] ≤ θk

and the required
[θk] ≤ θk ≤ θ∗

by definition, where 0 < θ∗ < 1 accounts for the theoretical, global contraction factor. Assuming
that D0 ⊆ D convex and x, y, xk, xk+1 ∈ D0, Deuflhard (2006) (p. 209) claims some global
continuity of the second derivatives with respect to the solution x∗in terms of the following
Lipschitz condition

(4.3.13) ‖F ′(x∗)+(F ′(y)− F ′(x))(y − x)‖2 ≤ ω∗‖y − x‖22.

Lemma 4.3.7. Under assumption (4.3.13) for the simplified Gauss-Newton direction the follow-
ing estimate holds

‖F (x∗)
+F (xk+1)‖2 = ‖F ′(x∗)+

∫ λ∗
k

s=0

(F ′(xk + s∆xk)− F ′(xk)) ∆xk ds

+ (1− λ∗k)F ′(x∗) + λ∗kF
′(x∗)

+(I − F ′(xk)F ′(xk)+)F (xk)‖2

with respect to the solution x∗ ∈ D and a globally optimal damping factor λ∗k > 0.

Proof of 4.3.7. In a first step, application of the Lagrangian mean value theorem yields under
the definition of the damped Gauss-Newton method that

F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk) = F (xk + λ∗k∆xk)− F (xk)− F ′(xk)(xk+1 − xk)

= F (xk + λ∗k∆xk)− F (xk)− F ′(xk)(xk + λ∗k∆xk − xk)

=

∫ 1

0

(F ′(xk + tλ∗k∆xk)− F ′(xk))λ∗k∆xk dt

=

∫ λ∗
k

s=0

(F ′(xk + s∆xk)− F ′(xk))∆xk ds

if s := tλ∗k. Then left multiplication with the Moore Penrose inverse of the Jacobian matrix at
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the solution point x∗ gives for F (xk)− F ′(xk)(xk+1 − xk) that

F ′(x∗)
+(F (xk)− F ′(xk)(xk+1 − xk)) = F ′(x∗)

+(F (xk)− F ′(xk)(xk + λ∗k∆xk − xk))

= F ′(x∗)
+F (xk)− F ′(x∗)+F ′(xk)λ∗k∆xk.

Since indeed, the damped Gauss-Newton correction was defined as

λ∗k∆xk = λ∗k(−F ′(xk)+F (xk))

we can proceed as follows:

F ′(x∗)
+(F (xk) + F ′(xk)(xk+1 − xk)) = F ′(x∗)

+(F (xk) + F ′(xk)(−λ∗kF ′(xk)+F (xk)))

= F ′(x∗)
+F (xk)− F ′(x∗)+F ′(xk)λ∗kF

′(xk)+F (xk)

= (1− λ∗k + λ∗k)F ′(x∗)
+F (xk)− λ∗kF ′(x∗)+F ′(xk)F ′(xk)+F (xk)

= (1− λ∗k)F ′(x∗)
+F (xk) + λ∗kF

′(x∗)
+F (xk)− λ∗kF ′(x∗)+F ′(xk)F ′(xk)+F (xk)

= (1− λ∗k)F ′(x∗)
+F (xk) + (λ∗kF

′(x∗)
+ − λ∗kF ′(x∗)+F ′(xk)F ′(xk)+)F (xk)

= (1− λ∗k)F ′(x∗)
+F (xk) + λ∗kF

′(x∗)
+(I − F ′(xk)F ′(xk)+)F (xk).

By these two representations, taking norms of the left hand side expression of the natural mono-
tonicity test with respect to the solution x∗ finally yields

‖F ′(x∗)+F (xk+1)‖2 = ‖F ′(x∗)(F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk))

+ F (x∗)
+F (xk) + F ′(x∗)F

′(xk)(xk+1 − xk)‖2
= ‖F ′(x∗)+(F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk))

+ F ′(x∗)
+(F (xk) + F ′(xk)(xk+1 − xk))‖2

= ‖F ′(x∗)+
∫ λ∗

k

s=0

(F ′(xk + s∆xk)− F ′(xk)) ∆xk ds

+ (1− λ∗k)F ′(x∗)
+F (xk) + λ∗kF

′(x∗)
+(I − F ′(xk)F ′(xk)+)F (xk)‖2.

where λ∗k accounts for the globally optimal step size with respect to the solution point.

Since the solution x∗ ∈ D is computationally not available at any stage during the performance
of the damped Gauss-Newton algorithm , using the global level function

T (x|F ′(x∗)+) :=
1

2
‖F ′(x∗)+F (x)‖22

one can obtain useful theoretical estimates if it is introduced

h∗k := ω∗‖(F ′(x∗)+F ′(xk))−1‖2‖∆xk‖2.

Lemma 4.3.8. If x∗ ∈ D denotes the solution to the nonlinear least squares problem, under the
damped Gauss-Newton method the following estimate holds true

(4.3.14) T (xk + λ∗k∆xk|F ′(x∗)+) ≤
(

1− λ∗k +
1

2
λ∗k

2h∗k

)2

T (xk|F ′(xk)+),

where h∗k := ω∗‖(F ′(x∗)+F (xk))−1‖2‖∆xk‖2.
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The proof for the above stated theorem will be omitted, as it follows just as for the case that xk
is involved as a local substitute for x∗ (see Proposition 4.3.10, p. 64).

Determination of a locally optimal damping factor 0 < λk ≤ 1 is based on the assumption, that
additionally local Lipschitz constants exist such that

(4.3.15) ‖F ′(xk)+(F ′(y)− F ′(x))(y − x)‖2 ≤ ωk‖y − x‖22, x, xk, y,∈ D0 open and convex

and for v ∈ D0 ⊆ Rn, also

(4.3.16) ‖F ′(xk)+(F ′(y)− F ′(x))v‖2 ≤ ωk‖v‖2‖y − x‖2

with ωk ≤ ωk <∞ it holds for the residual function’s first derivative.

Lemma 4.3.9. For some λk > 0, the above local Lipschitz conditions and a full rank Jacobian
matrix F ′(xk), it holds

‖F ′(xk)+F (xk+1)‖2 = ‖F ′(xk)+
∫ λk

s=0

(F ′(xk + s∆xk)− F ′(xk)) ∆xk ds+(1−λk)F ′(xk)+F (xk)‖2.

Proof of 4.3.9. Under the knowledge that

F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk) =

∫ λk

s=0

(F ′(xk + s∆xk)− F ′(xk))∆xk ds

one immediately obtains the representation

F ′(xk)+(F (xk) + F ′(xk)(xk+1 − xk)) = F ′(xk)+(F (xk) + F ′(xk)λk∆xk)

= F ′(xk)+(F (xk)− λkF ′(xk)F ′(xk)+F (xk))

= (I − λkF ′(xk)+F ′(xk))F ′(xk)+F (xk).

Provided that the Jacobian matrix at xk has maximal rank, then

F ′(xk)+F ′(xk) = I

by the definition of the Moore Penrose inverse. Combining these two results gives

F ′(xk)+(F (xk) + F ′(xk)(xk+1 − xk)) = (1− λk)F ′(xk)+F (xk)

= (1− λk)∆xk.

Taking norms, this consequently yields for the simplified Gauss-Newton correction that

‖F ′(xk)+F (xk+1)‖2
= ‖F ′(xk)+ (F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk))

+ F ′(xk)+(F (xk) + F ′(xk)(xk+1 − xk))‖2

= ‖F ′(xk)+
∫ λk

s=0

(F ′(xk + s∆xk)− F ′(xk))∆xk ds+ (1− λk)∆xk‖2.
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Similarly as for the global estimates above, it is introduced locally for any iteration k = 0, 1, . . .

hk := ωk‖(F ′(xk)+F (xk))‖2 = ωk‖∆xk‖2.

Proposition 4.3.10. Under the assumptions that (4.3.15) and (4.3.16) with ωk ≤ ωk <∞ local
Lipschitz constants hold true for x, xk, xk+1, y ∈ D0, D0 ⊆ Rn open and convex, it is claimed for
the simplified Gauss-Newton correction that

‖F ′(xk)+F (xk+1)‖2 ≤
(

1− λk +
1

2
λ2khk

)
‖F ′(xk)+F (xk)‖2.

Proof of 4.3.10. As previously shown, it is

‖F (xk)+F (xk+1)‖2 = ‖F ′(xk)+
∫ λk

s=0

(F ′(xk + s∆xk)− F ′(xk)) ∆xk ds+(1−λk)F ′(xk)+F (xk)‖2.

Hence, application of the triangle inequality yields

‖F (xk)+F (xk+1)‖2

≤ ‖F ′(xk)+
∫ λk

s=0

(F ′(xk + s∆xk)− F ′(xk)) ∆xk ds‖2 + (1− λk)‖F ′(xk)+F (xk)‖2

= ‖F ′(xk)+
∫ 1

0

(F ′(xk + tλk∆xk)− F ′(xk))λk∆xk dt‖2 + (1− λk)‖F ′(xk)+F (xk)‖2.

Under assumption of the first stated local Lipschitz continuity (4.3.16), one obtains

‖F (xk)+F (xk+1)‖2

≤
∫ 1

0

‖F ′(xk)+ (F ′(xk + tλk∆xk)− F ′(xk))λk∆xk‖2 dt+ (1− λk)‖F ′(xk)+F (xk)‖2

≤
∫ 1

0

ωk‖(xk + tλk∆xk)− xk‖2‖λk∆xk‖2 dt+ (1− λk)‖F ′(xk)+F (xk)‖2

=

∫ 1

0

ωkt‖λk∆xk‖2 dt+ (1− λk)‖F ′(xk)+F (xk)‖2

=
1

2
ωkλ

2
k‖∆xk‖22 + (1− λk)‖F ′(xk)+F (xk)‖2

=
1

2
ωkλ

2
k‖∆xk‖22 + (1− λk)‖∆xk‖2.

By the definition of the damped Gauss-Newton iteration, this immediately results in the estimate

‖F (xk)+F (xk+1)‖2 ≤
(

1− λk +
1

2
ωkλ

2
k‖F ′(xk)+F (xk)‖2

)
‖F ′(xk)+F (xk)‖2

which is equivalent to

‖F (xk)+F (xk+1)‖2 ≤
(

1− λk +
1

2
λ2khk

)
‖F ′(xk)+F (xk)‖2.

As a direct consequence of the previous Theorem 4.3.10 (p. 64), application to the local level
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function

T (x|F ′(xk)+) :=
1

2
‖F ′(xk)+F (x)‖22.

gives equivalently that

T (xk + λk + ∆xk|F ′(xk)+) ≤
(

1− λk +
1

2
λ2khk

)2

T (xk|F ′(xk)+).

since it holds

T (xk+1|F ′(xk)+) =
1

2
‖F ′(xk)+F (xk+1)‖22

⇔ T (xk + λk + ∆xk|F ′(xk)+) =
1

2
‖F ′(xk)+F (xk + λk + ∆xk)‖22

and just the same

T (xk|F ′(xk)+) =
1

2
‖F ′(xk)+F (xk)‖22.

Applying the local natural level function to the simplified Gauss-Newton correction gives under
the above shown results

T (xk+1|F ′(xk)+) =
1

2
‖F ′(xk)+F (xk+1)‖22

≤
(

1− λk +
1

2
λ2khk

)2
1

2
‖F ′(xk)+F (xk)‖22

=

(
1− λk +

1

2
λ2khk

)2

T (xk|F ′(xk)+).

Clearly, the descent measured in terms of the global natural level function is maximized, if the
expression

1− λ∗k +
1

2
(λ∗k)2h∗k

is minimized or equivalently, for the local counterpart, if

1− λk +
1

2
λ2khk

gets minimal. hk = ωk‖∆xk‖2 herein denotes the associated Kantrovich quantity (Deuflhard
(2006), p. 199).

4.3.2. Adaptive Step Length Predictor-Corrector Strategy

The adaptive trust region strategy, based on the idea of Armijo step length control, performs

basically in two steps: Assuming that an initial step length λ
(0)
0 is given, recursively for each

iteration k the adequate step size has to be identified. Then in the kth iteration, the first step

is to compute an a priori estimate for the next damping factor λ
(0)
k+1, which is called prediction

strategy. Second, for the estimated damping factor, a natural monotonicity test in terms of nat-

ural level functions is to be performed. If the proposed damping factor λ
(0)
k+1 does not satisfy this

descent condition, a correction strategy is applied. This leads to the a posteriori estimate λ
(ν)
k+1

for ν = 1, 2, . . . corrections applied.

65



For the prediction strategy, let us assume that a global Lipschitz constant

ω∗ <∞

exists for the Jacobian with

(4.3.17) ‖F ′(x∗)+(F ′(y)− F ′(x))(y − x)‖2 ≤ ω∗‖y − x‖2

the affine invariant Lipschitz condition, x, y ∈ D, D ⊆ Rn open and convex and x∗ ∈ D the yet
unknown solution of the minimisation task. Let then furthermore exist local Lipschitz constants
such that

‖F ′(xk)+(F ′(y)− F ′(x))(y − x)‖2 ≤ ωk‖y − x‖22
and for v ∈ D0 ⊆ Rn, also

‖F ′(xk)+(F ′(y)− F ′(x))v‖2 ≤ ωk‖v‖2‖y − x‖2

with ωk ≤ ωk <∞ just as defined earlier within this section hold. Introducing the quantity

(4.3.18) ∆k := −F ′(xk)+
(
F (xk) + F ′(xk−1)∆xk

)
involving the simplified Gauss-Newton correction

∆xk = −F ′(xk−1)+F (xk)

gives
∆k := −F ′(xk)+

(
F (xk)− F ′(xk−1)F ′(xk−1)+F (xk)

)
.

Then, one can estimate

‖∆xk −∆xk + ∆k‖2
= ‖ − F ′(xk−1)+F (xk) + F ′(xk)+F (xk)− F ′(xk)+(F (xk) + F ′(xk−1)(−F ′(xk−1)+F (xk)))‖2
= ‖ − F ′(xk−1)+F (xk) + F ′(xk)+F (xk)− F ′(xk)+F (xk) + F ′(xk)+F ′(xk−1)F ′(xk−1)+F (xk)‖2
= ‖ − F ′(xk−1)+F (xk) + F ′(xk)+F ′(xk−1)F ′(xk−1)+F (xk)‖2
= ‖(I − F ′(xk)+F ′(xk−1))F ′(xk−1)+F (xk)‖2
= ‖F ′(xk)+F ′(xk)(I − F ′(xk)+F ′(xk−1))F ′(xk−1)+F (xk)‖2

since under the assumption of full rank of the Jacobian F ′(x), the orthogonal projector satisfies

P⊥ = F ′(xk)+F ′(xk) = I.

This can be further evaluated

‖∆xk −∆xk + ∆k‖2 = ‖(F ′(xk)+F ′(xk)− F ′(xk)+F ′(xk)F ′(xk)+F ′(xk−1))F ′(xk−1)+F (xk)‖2

such that applying the third Moore Penrose axiom for generalised inverses, gives

F ′(xk)+F ′(xk)F ′(xk)+ = F ′(xk)+.

In the last step, the Lipschitz continuity of the objective function’s first derivative is exploited
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such that

‖∆xk −∆xk + ∆k‖2 = ‖F ′(xk)+(F ′(xk)− F ′(xk−1))F ′(xk−1)+F (xk)‖2
≤ ωk‖xk − xk−1‖2‖F ′(xk−1)+F (xk)‖2
= ωkλk−1‖∆xk−1‖2‖F ′(xk−1)+F (xk)‖2.

Reorganising yields

‖∆xk −∆xk −∆k‖2 ≤ ωkλk−1‖∆xk−1‖2‖F ′(xk−1)+F (xk)‖2

⇔ ‖∆xk −∆xk −∆k‖2
λk−1‖∆xk−1‖2‖∆xk‖2

≤ ωk.

Proposition 4.3.11. An a priori estimate [ωk] for the local Lipschitz constant ωk satisfying

‖F ′(xk)+(F ′(y)− F ′(x))v‖2 ≤ ωk‖v‖2‖y − x‖2

for x, y, v ∈ D0 ⊆ Rn, ωk ≤ ωk <∞ and D0 ⊆ D ⊆ Rn open and convex, can be obtained by

(4.3.19) [ωk] =
‖∆xk −∆xk −∆k‖2
λk−1‖∆xk−1‖2‖∆xk‖2

.

Annotation 4.3.12. Since at a later stage, a correction strategy for the damping factor λk is
introduced, the predicted step length will be called

λ
(0)
k

in the following where the upshift index accounts for ν = 0 corrections performed on the initially
predicted step length.

So far, the adaptive step length approach gave that a descent is taken in terms of the natural
level function with

T
(
xk + λ

(0)
k + ∆xk|F ′(xk)+

)
≤
(

1− λ(0)k +
1

2
(λ

(0)
k )2hk

)2

T
(
xk|F ′(xk)+

)
and with the available estimate for the Lipschitz constant

[ωk] =
‖∆xk −∆xk −∆k‖2
λ
(0)
k ‖∆xk−1‖2‖∆k‖2

satisfying
[ωk] ≤ ωk.

The descent can be maximized, if the factor

1− λ(0)k +
1

2

(
λ
(0)
k

)2
hk

is minimized. Since the first derivative with respect to the step length λ
(0)
k writes

hkλ
(0)
k − 1,
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the optimal step length is required to satisfy

(4.3.20) λ
(0)
k opt

=
1

hk
.

Combining the above results, let us propose:

Proposition 4.3.13. The optimal damping factor for the Gauss-Newton method in an affine
invariant framework under the above fixed assumptions follows the prediction strategy

λ
(0)
k = min

{
1,

1

hk

}
(4.3.21)

= min

{
1,

1

[ωk]‖∆xk‖2

}
(4.3.22)

for all k = 0, 1, . . ..

Note, by the deduced a priori estimate for the Lipschitz constant, the proposed quantity above
is readily computationally available. Though, the step length prediction strategy requires addi-
tional input, namely an initial estimate

λ
(0)
0

such that the following damping factors

λ
(0)
1 , . . . , λ

(0)
k

can be determined via the explicit iteration proposed. In case the computed step length in the
kth iteration

λ
(0)
k

does not satisfy the natural monotonicity test condition

‖∆xk+1‖2 = ‖F ′(xk)+F (xk+1)‖2 ≤ θk‖F ′(xk)+F (xk)‖2 = θk‖∆xk‖2

for θk < 1 or equivalently in terms of the local level function

‖∆xk+1‖2 = ‖ − ∇T (x|F ′(xk)+)
∣∣
x=xk+1

‖2 < ‖ − ∇T (x|F ′(xk)+)
∣∣
x=xk

‖2 = ‖∆xk‖2

this is indeed an indicator that the step length as it has been predicted would not ensure a
downhill descent. Hence, the need for a correction strategy emerges in the adaptive trust region
approach to globalize the convergence behaviour of the Gauss-Newton methods in order to make
sure a descent is taken in every iteration. The idea then is simply to incorporate an a posteriori
estimate for the Lipschitz constant

[ωk].

Proposition 4.3.14. The νth corrected step length

λ
(ν)
k

for ν = 1, 2, . . . and an a posteriori estimate for the Lipschitz constant [ωk] are given by

(4.3.23) λ
(ν)
k = min

{
1,

1

2
λ
(ν−1)
k , µ

(ν−1)
k

}
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where it is defined

(4.3.24) µ
(ν−1)
k :=

1

2
(λ

(ν−1)
k )2

‖∆xk‖2∥∥∥∆x
(ν−1)
k − (1− λ(ν−1)k )∆xk

∥∥∥
2

.

Note that the simplified Gauss-Newton correction with respect to the previous step length is
denoted by

∆x
(ν−1)
k = −F ′(xk)+F (xk + λ

(ν−1)
k F ′(xk)+F (xk)) = −F ′(xk)+F (xk + λ

(ν−1)
k ∆xk).

If using previous definitions, dependent on the previous step length λ
(0)
k let us define the estimate

[hk(λ
(ν−1)
k )] :=

2

(λ
(ν−1)
k )2

∥∥∥∆x
(ν−1)
k − (1− λ(ν−1)k )∆xk

∥∥∥
2

‖∆xk‖2

Then, it is

[hk(λ
(ν−1)
k )] =

2

(λ
(ν−1)
k )2

∥∥∥∆x
(ν−1)
k − (1− λ(ν−1)k )∆xk

∥∥∥
2

‖∆xk‖2

=
2

(λ
(ν−1)
k )2

∥∥∥F ′(xk)+F (xk + λ
(ν−1)
k F ′(xk)+F (xk))− (1− λ(ν−1)k )F ′(xk)+F (xk)

∥∥∥
2

‖F ′(xk)+F (xk)‖2

=
2

(λ
(ν−1)
k )2

∥∥∥F ′(xk)+F (xk+1)− (1− λ(ν−1)k )F ′(xk)+F (xk)
∥∥∥
2

‖F ′(xk)+F (xk)‖2
.

Using the estimate

‖F ′(xk)+F (xk+1)‖2 ≤
(

1− λ(ν−1)k +
1

2
(λ

(ν−1)
k )2h

(ν−1)
k

)
‖F ′(xk)+F (xk)‖2

elimination of the local estimate h
(v−1)
k for all k = 0, 1, . . . yields

1

2
(λ

(ν−1)
k )2h

(ν−1)
k ≥

‖F ′(xk)+F (xk+1)‖2 − (1− λ(ν−1)k )‖F ′(xk)+F (xk)‖2
‖F ′(xk)+F (xk)‖2

≥
‖F ′(xk)+F (xk+1)− (1− λ(ν−1)k )F ′(xk)+F (xk)‖2

‖F ′(xk)+F (xk)‖2
.

Hence,

[hk(λ
(ν−1)
k )] =

2(
λ
(ν−1)
k

)2 ‖F ′(xk)+F (xk+1)− (1− λ(ν−1)k )F ′(xk)+F (xk)‖2
‖F ′(xk)+F (xk)‖2

≤ hk.
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In the direct consequence, this gives

1

h
(ν−1)
k

≥ 1

[hk(λ
(ν−1)
k )]

.

Choosing the damping factor

λ
(ν)
k = min

{
1,

1

2
λ
(ν−1)
k , µ

(ν−1)
k

}
is a combination of a regulatory constraint that the damping factor is bounded from above by 1,
and an optimal choice between the previous step length taken and the corrected optimal damping
factor. Deuflhard (2006) remarks, that depending on the nature of the problem, the correction
strategy is mostly not of highest importance to choosing the optimal damping factors (p. 214),
while the prediction strategy is crucial to precisely determine λk. Note that the estimate

[hk(λ
(ν−1)
k )]

will also be an estimate for the global

[h∗k(λ
(ν−1)
k )]

since hk ≤ h∗k respectively hk(λ
(ν−1)
k ) ≤ h∗k(λ

(ν−1)
k ) is guaranteed.

4.4. Linearly-Implicit Euler Extrapolation for Differential
Algebraic Equations

By application of the error-oriented damped Gauss-Newton method, the parameter identification
task formulated as a nonlinear least squares problem for parameter identification for the given
model reduces to a sequence of linear least squares problems

min
x∈D
‖F ′(xk)∆xk + F (xk)‖22

xk+1 = xk + ∆xk

for k = 0, 1, 2, . . .. The definition of the residual function F : D ⊆ Rn → Rm, implies that
the solution to the model has to be computed for a fixed set of parameters xk ∈ Rn for every
iteration k. Introduced as a system of ordinary differential equations coupled with two algebraic
equations, the model is basically a system of differential algebraic equations.
The solution to this DAE system can be obtained via an one step extrapolation based on linearly-
implicit Euler discretisation. Once happened, the residual function can be evaluated and the
Jacobian matrix, being the residual function differentiated with respect to the parameter set
xk ∈ Rn, can be determined. This gives a linear gradient system for the initial minimisation
task that can be solved by a customized LU factorization performing forward and backward
substitution.

Objecting at briefly summarizing the mathematical background of the linearly-implicit Euler
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extrapolation algorithm applied, let us consider a system of differential algebraic equations

B(t, y)y′ = f(t, y)(4.4.1)

y(t0) = y0

where B ∈ Rd,d may be singular, y ∈ Rd and y0 ∈ Rd a (consistent) initial condition. Possibly,
one can add an explicit parameter dependence into the notation for the right hand side, which
is omitted for the ease of reading. Any system of ordinary differential equations

y′ = f(t, y)

y(t0) = y0

can be formally transformed to a system of DAEs by taking B = I. Due to this, the linearly-
implicit Euler extrapolation will be introduced for DAE systems only. In our specific case, the
model writes

(4.4.2)


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




y′1(t)
y′2(t)
y′3(t)
y′4(t)
y′5(t)
y′6(t)

 =


f1(t, y)
f2(t, y)
f3(t, y)
f4(t, y)

f5(t, y)− y5(t)
f6(t, y)− y6(t).


The detailed information about the model and the right hand side are given in paragraph 2.3

(p. 10 ff.). Considering the general DAE system (4.4.1), a state discretisation is performed
first. Though the stiffness concept is defined only for ordinary systems of differential equa-
tions, any equation may be called stiff in case application of implicit methods yield significantly
better results than application of explicit methods (Curtis/ Hirschfelder (1952)). An im-
plicit integration method seems adequate for the given nonlinear system of differential equations.

The above stated DAE system (4.4) has a differential index of exactly one, since by differenti-
ation, a pure ODE model is recovered. Justifiable by the DAE system’s index of one and the
algorithmic robustness of the linearly-implicit Euler extrapolation regarding a possible stiffness of
the model equations, Limex was considered an appropriate solver to compute a solution, Limex
additionally providing an adaptive step size as well as a local error control. These properties will
turn out to be very helpful with regard to predicting potentially fertile windows of a woman’s
menstrual cycle in chapter 5.3.
Limex is basically a one step extrapolation method based on the linearly-implicit Euler dis-
cretisation for the integration of the combined state and sensitivity system. First, only state
integration will be considered which is extended to a routine that simultaneously solves the state
and sensitivity system following Schlegel/ Marquardt/ Ehrig/ Nowak (2002).
Considering pure state integration, the linearly-implicit Euler discretisation with an initial step
size of H gives

(4.4.3) (B(t, yk)−HA) (yk+1 − yk) = Hf(tk, yk)

which writes

(4.4.4) yk+1 = yk + (I −HA)−1Hf(yk)
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for k = 1, 2, . . . and

A =
∂

∂y
(f(y)−By′)

the Jacobian of the DAE system’s residual.
Note that the iteration (4.4.4) corresponds basically to one Newton iteration for the nonlinear
system arising through discretisation in the frame of the linearly-implicit Euler extrapolation
(Schlegel/ Marquardt/ Ehrig/ Nowak (2002), p. 4 and Deuflhard/ Hairer/ Zugck
(1987)).
The extrapolation process starts with the first integration step of length H of a considered
integration interval

[tl, tl+1].

The solution gives the approximation
T1,1

for y(tl + h). Provided an asymptotic H-expansion can be found for one step’s global discreti-
sation error, higher order approximations can be obtained through polynomial extrapolation
(Deuflhard (1983), p. 400 ff.). Sequential interval diminishment by

(4.4.5) Hj =
H

nj

yields approximations
Tj,1.

Following Deuflhard (1983), the harmonic sequence

{nj} = {1, 2, 3, . . . , jmax}

proved to be a trustworthy choice.

Recursive extrapolation following the scheme

(4.4.6) Tj,k = Tj,k−1 +
Tj,k−1 − Tj−1,k−1

nj
nj−k+1−1

defines higher order approximations Tj,k for k = 1, . . . , j.
Taking the subdiagonal differences

(4.4.7) εj = ‖Tj,j − Tj,j−1‖2

as error estimates (Deuflhard (1987), p. 403 and Schlegel/ Marquardt/ Ehrig/ Nowak
(2002), p. 4), any approximation

Tj,j

is accepted as an approximation for
y(tl +H)

if for a predefined error tolerance it holds

(4.4.8) εj < TOL.

When terminating, a discrete approximation to the DAE system’s solution is obtained.
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4.5. Simultaneous State and Sensitivity Analysis

Sensitivity analysis is the study about the influence of changes in the parameter vector on the
system or its solution. Sensitivity denotes the extend to which changes in the set of parameters
lead to variation in the solution. The absolute sensitivity of the ith solution with respect to the
jth parameter is defined as the partial differential quotient

si,j :=
∂yi
∂xj

(t)

for y ∈ Rd, x ∈ Rn and hence i = 1, . . . , d, j = 1, . . . , n. Writing sj = (s1,j , . . . , sd,j)
T , this gives

the sensitivity vector for the jth parameter. For n parameters, the sensitivity matrix is defined
as

S =
(
s1 . . . sn

)
=

s1,1 . . . s1,n
...

...
sd,1 . . . sd,n.


Sensitivities only hold in a vicinity of the state determined by y ∈ Rd and x ∈ Rn. The sensitivity
analysis of a parameter is therefore local. Sensitivities describe the system around a given set
of values for the regarded parameter. Aiming at finding the state’s first derivative with respect
to a set of parameters, sensitivity analysis and state integration can be performed simultaneously.

For a total number of n parameters, total differentiation of the DAE system with respect to each
parameter

∂

∂x
[B(t, y(t, x))y′(t, x) = f(t, y(t, x), x)]

gives by chain rule and interchanging the order of differentiation the right hand side gives

∂

∂xj
f(t, y(t, x), x) =

∂f(t, y(t, x), x)

∂xj
+
∂f(t, y(t, x), x)

∂y(t, x)

∂y(t, x)

∂xj

=
∂f(t, y(t, x), x)

∂xj
+
∂f(t, y(t, x), x)

∂y(t, x)
sj .

The slightly more complicated total differentiation of the left hand side

∂

∂xj
(B(t, y(t, x))y′(t, x)) = Γ

∂y(t, x)

∂xj
+B(t, y(x))

∂y′(x)

∂xj

= Γsj +B(t, y(x))(sj)
′

where Schlegel/ Marquardt/ Ehrig/ Nowak (2002), p. 3, define the matrix

Γ :=


∑d
k=1

∂(B(t, y))1,k
∂y1

y′k . . .
∑d
k=1

∂(B(t, y))1,k
∂yd

y′k

...
...∑d

k=1

∂(B(t, y))d,k
∂y1

y′k . . .
∑d
k=1

∂(B(t, y))d,k
∂yd

y′k.


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This gives in the end n sensitivity equation systems of the form

(4.5.1) B(t, y)s′j =
∂f(t, y)

∂xj
+

(
∂f(t, y)

∂y
− Γ

)
sj

for j = 1, . . . , n, being DAE systems themselves are obtained, depending on the solution of the
state system

B(t, y)y′ = f(t, y).

Schlegel/ Marquardt/ Ehrig/ Nowak (2002) underline that the Jacobian matrix of those
sensitivity systems is the same as for the state system (p.3). Extending the state DAE system
for simultaneous sensitivity analysis, a combined system is set up


B(t, y)

B(t, y)
. . .

B(t, y)



y′

s′1
...
s′n

 =



f(t, y)
∂f(t, y)

∂x1
+

(
∂f(t, y)

∂y
− Γ

)
s1

...
∂f(t, y)

∂xn
+

(
∂f(t, y)

∂y
− Γ

)
sn


.

Provided consistent initial conditions for this coupled DAE system of dimension (d + nd) are
given, it can be solved using a linearly-implicit Euler extrapolation. From the algorithmic point
of view, transformation of the extended DAE system to a block-diagonal system facilitating any
LU factorization that needs to be performed seem favourable, for details the reader may consult
Schlegel/ Marquardt/ Ehrig/ Nowak (2002).

Once the sensitivity matrix is computed for a specific state of the DAE system, important in-
formation about the eligibility of certain parameters to parameter estimation can be extracted.
Analysis of the sensitivity matrix specifically pays attention to individual sensitivities and pos-
sible linear dependences among the parameters to be estimated.
The sensitivity matrix S gets singular or numerically singular if it is linearly column dependent.
This occurs if parameters exhibit linear dependence, meaning that these parameters affect the
solution of the model in a similar way such that the columns of the sensitivity matrix are identical
or nearly identical. Linear dependence among parameters makes it impossible to estimate the
concerned parameters simultaneously and a more detailed approach must be performed.
In case parameters are not identifiable, the sensitivity is very small or zero, trivially leading to
singularity of S also. The corresponding column of the sensitivity matrix gets zero or near to
zero.
In anyway, for unidentifiable or linear dependent parameters the sensitivity matrix becomes (nu-
merically) singular.

Using the Euclidean matrix norm

‖A‖2 = max
‖x̃‖2=1

‖Ax̃‖2
‖x̃‖2

appropriate mathematical tools such as the condition number, measuring the stability of the
sensitivity matrix,

(4.5.2) κ(S) :=
max‖x̃‖2=1 ‖Sx̃‖2
min‖x̃‖2=1 ‖Sx̃‖2

∈ [0,∞]
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for S ∈ Rd,n the sensitivity matrix, the subcondition number and the weighted Euclidean column
norm

(4.5.3) ‖sj‖ =

√√√√1

d

d∑
i=1

(sij)2,

the latter giving information about singularities.

First information about the sensitivity matrix S can be obtained through calculating the column
norms. Through the column norm

‖sj‖ =

√√√√1

d

d∑
i=1

(sij)2,

only singularities or nearly singularities of the sensitivity matrix can be identified with column
norms near to zero. If

‖sj‖ = 0,

all si,j = 0 for i = 1, . . . , d and if
‖sj‖ 6= 0,

then the parameter xj is in principle estimable. Though, S might get singular also by linear
dependences among the parameter set. In order to obtain more detailed information about possi-
ble linear dependences and sensitivities, a SVD decomposition to estimate the condition number
or a QR decomposition to estimate the subcondition number need to be performed. Rank defi-
ciencies of S can be assessed through this analysis also. While estimating error propagation in
the system through the condition number requires a SVD decomposition of S, the subcondition
number solely requires computation of a less costly QR factorization.

The condition number is well defined for non invertible matrices as well as for invertible matrices.
In case S ∈ Rd,n is non-singular and square (d = n), another and slightly less general definition
writes

κ(S) = ‖S‖2‖S−1‖2
while κ(S) := ∞ for any S singular. Measuring the stability or sensitivity of the linear system
the sensitivity matrix represents, it holds

κ(S) ≥ 1.

A system whose condition numbers near one is assumed to be well conditioned, while any con-
dition number much greater than 1 indicates an ill-conditioned matrix. Though, there exists no
general threshold

κmax,

κ(S) is not allowed to surmount. With respect to the purpose of the parameter identification
problem and the herein performed sensitivity analysis, this threshold can be determined. Widely
applied in engineering and biological sciences has been

κmax ≈ 104.
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Under the condition that S ∈ Rd,n is real, there exists a singular value decomposition

S = UΣV T

with U ∈ Rd,d, V ∈ Rn,n orthogonal and Σ ∈ Rd,n rectangular diagonal matrix. The columns of
U and V are called left and right singular vectors, since

Σ =


σ1

σ2
. . .

σmin{d,n}


contains the singular values as entries on the diagonal. As a common convention, the singular
values are listed in descending order

σ1 ≥ σ2 ≥ . . . ≥ σmin{d,n} ≥ 0.

Then, Σ is uniquely defined by S ∈ Rd,n while the rotation matrices U ∈ Rd,d, V ∈ Rn,n are not.
In case S is square, say S ∈ Rd,d also Σ = diag(σ1, . . . , σd) and U, V are square of dimension
d. The singular value decomposition and the orthogonality of U, V give then with the second
definition of the condition number that

κ(S) = ‖UΣV T ‖2‖(UΣV T )−1‖2 =
σ1
σd

since ‖U‖2 = 1, ‖V ‖2 = 1 and ‖Σ‖2 = max‖x̃‖2=1
‖Σx̃‖2
‖x̃‖2

= σ1. Though the condition number

gives important information about the estimability of the parameter vector x ∈ Rn and the
sensitivity of the system to perturbations in x ∈ Rn , singular value decomposition is computa-
tionally expensive. A less theoretically satisfactory way to extract such information is through
the subcondition number (Deuflhard/ Hohmann (2003)).

Performing a QR decomposition for the rectangular sensitivity matrix S ∈ Rd,n, assuming d ≥ n
gives

S = QR = Q

(
R1

0

)
= (Q1 Q2)

(
R1

0

)
= Q1R1

where Q1 ∈ Rd,n, Q2 ∈ Rd,(d−n) have orthogonal columns, R1 ∈ Rn,n upper triangular matrix.
For simplicity, instead of the more general notation Q1, R1, let us set Q := Q1, R := R1. In case
the system is underdetermined, i.e. d < n, the QR decomposition is identically performed on
the transpose

ST = QR.

Rearranging the diagonal elements of the upper triangular

SΠ = QR
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through application of a suitable permutation matrix Π gives

R =


|r11| ∗

|r22|
. . .

0 |rnn|


with |r11| ≥ . . . ≥ |rnn|. Having identified the smallest and largest entries of the upper triangular
of the previously performed QR decomposition, assuming rank(R)= n, the subcondition number
is defined by the ratio

(4.5.4) sc(S) :=
|r11|
|rdd|

.

By its properties sc(S) ≥ 1, sc(S) = ∞ if and only if S 6= 0 is singular. By the above stated
relation sc(S) ≤ κ(S), the subcondition is a computationally cost effective way to assess the
parameters’ estimability and potential singularity of the sensitivity matrix.

In the subsequent chapter, the model is analysed. Parameters are estimated through the Nlscon,
implemented in the Poem package using the damped Gauss-Newton method. Sensitivity analysis
is performed after Nlscon converged to obtain information about the identifiability and sen-
sitivities of certain parameters with the add-on Matlab software package Poem. The column
norms are calculated in the first step of the following sensitivity analysis, in order to identify
columns with solely zero entries. Knowledge about estimability can be extended through the
second step of the sensitivity analysis. Poem performs a QR decomposition, such that more
detailed information about the sensitivities, possible linear dependences and the parameter set
itself can be extracted.
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5. Simulation Results and Evaluation

5.1. Model Analysis and Simulation Results

The proposed model of section 2.3 reads

E2′(t) = pE2
1 ∗H−(FSH(t), pE2

5 , pE2
6 )− pE2

3 ∗ E2(t) ∗H+(LH(t), pE2
7 , pE2

8 )

+ pE2
2 ∗H+(E2(t), pE2

9 , pE2
10 )− pE2

4 ∗ E2(t) ∗H+(P4(t), pE2
11 , p

E2
12 )

P4′(t) = pP4
6 ∗ P4d(t)− pP4

7 ∗ P4(t)

BBT ′(t) = pBBT1 ∗ P4(t) ∗ (BBT (t)− 35.00)

− pBBT2 ∗ (BBT (t)− 35.00) ∗H+((BBT (t)− 35.00), pBBT3 , pBBT4 )

P4d′(t) = pP4
1 ∗H−(y4(t), pP4

3 , pP4
4 ) ∗ LH(t) ∗ P4d(t)− pP4

2 ∗H+(P4d(t), pP4
5 , pP4

4 )

with two algebraic functions

LH(t) = pLH1 + pLH2 ∗ exp

(
−
(
pLH3 sin

(
πt

pcyclelength
+ pLH4

))2
)

FSH(t) = pFSH1 + pFSH2 ∗ exp

(
−
(
pFSH3 sin

(
πt

pcyclelength
+ pFSH4

))2
)

+ pFSH5 ∗ sin

(
πt

pcyclelength
+ pFSH6

)4

.

If it is defined

y(t) = (E2(t), P4(t), BBT (t), P4d(t), LH(t), FSH(t))T ∈ R6

the model can be written in the form

B(t, y)y′(t) = f(t, y)

where B(t, y) ∈ R6,6 is non singular. Specifically, the model gives
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




y′1(t)
y′2(t)
y′3(t)
y′4(t)
y′5(t)
y′6(t)

 =


f1(t, y)
f2(t, y)
f3(t, y)
f4(t, y)

f5(t, y)− y5(t)
f6(t, y)− y6(t)


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where the right hand side is just

f1(t, y) = pE2
1 ∗H−(y6(t), pE2

5 , pE2
6 )− pE2

3 ∗ y1(t) ∗H+(y5(t), pE2
7 , pE2

8 )

+ pE2
2 ∗H+(y1(t), pE2

9 , pE2
10 )− pE2

4 ∗ y1(t) ∗H+(y2(t), pE2
11 , p

E2
12 )

f2(t, y) = pP4
6 ∗ y4(t)− pP4

7 ∗ y2(t)

f3(t, y) = pBBT1 ∗ y2(t) ∗ (y3(t)− 35.00)− pBBT2 ∗ (y3(t)− 35.00)

∗H+((y3(t)− 35.00), pBBT3 , pBBT4 )

f4(t, y) = pP4
1 ∗H−(y4(t), pP4

3 , pP4
4 ) ∗ LH(t) ∗ y4(t)− pP4

2 ∗H+(y4(t), pP4
5 , pP4

4 )

f5(t, y)− y5(t) = pLH1 + pLH2 ∗ exp

(
−
(
pLH3 sin

(
πt

pcyclelength
+ pLH4

))2
)
− y5(t)

f6(t, y)− y6(t) = pFSH1 + pFSH2 ∗ exp

(
−
(
pFSH3 sin

(
πt

pcyclelength
+ pFSH4

))2
)

+ pFSH5 ∗ sin

(
πt

pcyclelength
+ pFSH6

)4

− y6(t)

This six dimensional DAE system involves 33 parameters and an a priori unknown cycle length
pcyclelength, denoting the length of the current cycle. In a later stage, parameter identification,
meaning the fit of the model to any individually available data, concerns only 16 parameters
and the cycle length of the running cycle. Of all 33 parameters, the Hill exponents of the 7 Hill
functions in the model can be excluded from further parameter estimation. The Hill exponents
were adjusted beforehand. Any re-estimation did not yield significant differences, why their esti-
mation seems over all not advantageous. Furthermore, y5 and y6 accounting for LH and FSH are
modelled via standard curves since no individual measurements are collected here. Due to this
fact, all parameters for LH and FSH, 10 in the end, are adjusted beforehand and fixed. Though
also P4 data is not assumed to be accessible in further applications, the concerned parameters
should probably not be fixed beforehand in order to enable an adequate solution of the nonlinear
least squares problem, especially as E2 and P4 closely interact.

The 33 model parameters were estimated simultaneously using the damped Gauss-Newton method
implemented in the Nlscon code. All codes perform on Matlab, Matlab 2012b was used in
this work. The final parameter set estimated for the test data set is shown in table 5.1, which has
been obtained after successive re-estimation through Nlscon until it converged. This parameter
set is then used to solve the nonlinear least squares problem with the given test data and remains
fixed in the following evaluation and sensitivity analysis.

If applying a different data set, as above deduced, the parameter estimation problem reduces
from 33 to 16 free parameters – those belonging to E2, P4, the P4 delay and BBT exclusively
the involved Hill exponents (even though, they could also be re included). The cycle lengths for
the simulation were known from the data and fixed on 29, 26, 28 and 27 days.
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E2 P4 LH and FSH BBT

pE2
1 186.391675192199 pP4

1 0.071476221309 pLH
1 1.332372919499 pBBT

1 0.004924843360

pE2
2 202.263939088376 pP4

2 0.979526047078 pLH
2 110.315843426303 pBBT

2 96.954898958163

pE2
3 4.483306488346 pP4

3 3.844781287017 pLH
3 7.166470180530 pBBT

3 6.942691358857

pE2
4 1.030340524237 pP4

4 4.000000000000 pLH
4 14.104745386110 pBBT

4 6.000000000000

pE2
5 3.415391066868 pP4

5 0.089664953197 pFSH
1 2.980731109637

pE2
6 4.000000000000 pP4

6 0.884758168213 pFSH
2 6.204468385651

pE2
7 115.028227706639 pP4

7 0.258961557765 pFSH
3 9.205554706609

pE2
8 4.000000000000 pFSH

4 67.547726260961

pE2
9 200.584174200939 pFSH

5 3.103474628950

pE2
10 4.000000000000 pFSH

6 4.267119161284

pE2
11 0.326482174623

pE2
12 4.000000000000

Table 5.1.: Parameter set applied to fit the model to the given data, consisting of four cycles of
different length.

The test data used includes measurements for E2 (pmol/L), P4 (ng/mL), LH (UI/L), FSH (UI/L)
and BBT (◦C) for four cycles of length 29, 26, 28 and 27 days. Measurements for all compo-
nents except for BBT were available twice a day. The hormonal components E2, P4, LH and
FSH data were taken from among others recorded Pfizer experiments, available at Konrad-Zuse
Zentrum für Informationstechnik Berlin. Most of these data have been previously plugged into
the GynCycle model. Since no simultaneous measurements for E2 and BBT concentrations was
acquired, standard BBT curves were taken.
The BBT values displayed a frequency of one measurement per day, such that in order to properly
use this data, the BBT measurements were interpolated. The interpolated value between two
real BBT measurements is taken as the second BBT value per day and matched best possible to
the other components. Due to this, the test data set has to be considered partly artificial even
though it seems to properly reproduce the dynamics of an idealized human menstrual cycle. Of
course, for final evaluation and assessment of the proposed model, more specific and irregular
data is of need.

The complete data set used in this chapter can be found in the appendix (see p. XIII ff.). Using
the test data set, the computed solution to the nonlinear least squares model (approximately)
represents the key hormonal dynamics of the human menstrual cycle.
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Figure 5.1.: The computed solution of the model to the given test data using the parameter set
estimated beforehand gives the above fit to the measurements. Measurement points
are plotted as points, the curves are corresponding fits for E2, P4, LH and FSH from
top to bottom.



As figure 5.1 (p. 82) depictures, the model with the applied parameter set fits quite well the avail-
able test data. It obviously takes one to two cycles, before the model can accurately reproduce
the change points and the peaks in the different hormone concentrations, which is only due to
the chosen initial conditions. Adjustment of these initial conditions leads to a more appropriate
representation of the first one to two cycles.
For example, the E2 fit displays a higher peak than the data in the first cycle as well as a slightly
delayed second peak. The height of the peak is not crucial to the final purpose of ovulation pre-
diction though, since absolute values can not be considered anyway. This is because of the fact,
that each woman is assumed to have different base and peak levels. P4 seems to be adequately
represented through its model equation. The curves for LH and FSH should not vary over time,
as they are modelled as fixed standard curves. The other components should solely represent
the best possible fit to the data used over time. Though the corresponding measurements were
included in the test data, in future no LH and FSH data will enter the model. Obviously, the
sinusoidal exponential functions can give a satisfactory result.

Figure 5.2.: This (scaled) plot was taken as a reference for the endocrinological dynamics of the
human menstrual cycle (see also p. 4). It was aimed at reproducing similar dynamics
through the proposed model.
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Figure 5.3.: The third cycle of the data set, of length 28 days, was used to reconstruct the
endocrinological dynamics in a scaled setting. The dimensionless plots (see figure
2.1, p. 4) are used, and the components scaled with E2, 25 · P4, 3·LH and 10· FSH,
since this scaling was applied to the reference figure 5.1 (p. 82). This plot hence
gives the scaled endocrinological dynamics displayed by the proposed model for a 28
days test cycle.

A dimensionless comparison of the four endocrinological components is given in figure 5.1 (p.
83). The model’s solution for 4 cycles was scaled and only the days 54 − 82 considered in the
further (standard cycle of length 28 days). Figure 5.1 (p. 82), that was already given in section
2.1, was taken as reference to how the model’s endocrinological dynamics should look like. For
both plots, a the curves were plotted with the scaling E2, 25 · P4, 3·LH and 10· FSH. For both
plots, a cycle of 28 days was chosen such that ovulation can be assumed to happen at day 14.
In the model though, the LH peak is slightly delayed compared to the reference plot. LH peak
happens around day 14.5, such that ovulation cannot assumed to be happening before day 15.
This inaccuracy needs to be mitigated by further model refinements. But still, ovulation his event
happens shortly after the peak in LH (blue line) which is in line with theory and the reference
plot. E2 rises previous to the peak in LH. The second peak in E2 is a bit less pronounced and a
little wider in the model. Also, both the peaks in E2 and LH are less steep in the model, which
might lead to a loss in accuracy when detecting the corresponding slope’s change points later,
in chapter 5.3. FSH seems to be too pronounced in its second peak compared to the reference
plot, and less pronounced in its first peak. Though, FSH was fit to the test data and might still
be represented correctly. P4 reacting slower in its dynamics by the model as it is assumed to be,
its peak being smoother and wider.
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Summarising, the basic hormonal regulation happening during the human menstrual cycle is well
represented. The viability of the model’s differential equations can unfortunately not be judged
finally at this stage, since real data for several individual women might reveal yet unknown
inaccuracies. The above comparison is only covering the simulations for the partly artificial
data set that was available. Hence, also this comparison might not be representative for more
general data. A more detailed evaluation is of need here. For the test data set though, the six
dimensional DAE systems appears to provide a suitable approximation. Considerable differences
of the model are mostly shown concerning the steepness of the hormonal dynamics as well as
their absolute and relative peak heights. The latter is considered less crucial to the modelling
process though, as in the end rather the change points than any absolute hormonal levels are
crucial to predict ovulation and potentially fertile periods.
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5.2. A Sensitivity Analysis for the Model

The study about sensitivities is the analysis of the model’s stability and the model response to
changes in the parameter set. The six dimensional model contains a total number of 33 parame-
ters. 7 of those are exponents of the occurring Hill functions. The exponents of the Hill functions
are fixed beforehand, the Hill functions have the Hill exponents pE2

6 , pE2
8 , pE2

10 and pP4
3 of 4, while

only the Hill function in the BBT differential equation has a different exponent of pBBT4 = 6.

Based on the purpose of the model, the parameters were split up into three sets for the sensitivity
analysis, that is performed on the solution obtained with the stated parameter values of table
5.1 and the test data set comprising the data for four menstrual cycles. The first parameter set
only accounts for the parameters of the LH and FSH functions, consisting of a total number of
10 parameters. Knowledge of those parameters’ sensitivities is helpful for further improvements
of the LH and FSH curves, but not crucial to the model. These parameters are not re-estimated
for new data sets, since the data sets are not assumed to include LH and FSH measurements.

Parameter Parameter Value Column Norms

pLH
1 1.332372919499 8.845 · 102

pLH
2 110.315843426303 1.357 · 104

pLH
3 7.166470180530 4.566 · 103

pLH
4 14.104745386110 1.875 · 105

pFSH
1 2.980731109637 1.107 · 104

pFSH
2 6.204468385651 2.849 · 102

pFSH
3 9.205554706609 9.577 · 102

pFSH
4 67.547726260961 3.518 · 105

pFSH
5 3.103474628950 1.941 · 103

pFSH
6 4.267119161284 2.400 · 104

Table 5.2.: Listing of parameters included in parameter set 1, their values estimated through the
Gauss-Newton method in Nlscon and the computed column norms.

The column norms ‖sj‖ of the sensitivity matrix are a valuable indicator for the comparability
of the relative sensitivities. In principle, if for any parameter j it holds

‖sj‖ 6= 0,

the corresponding parameter is estimable at the considered time and state of the model. Trivially,
the column entries of sj are not all zero and hence S is not singular for this reason. Singularity
of S might still occur by possible linear dependences among the considered parameters of set 1.
Singularity of S then is only assessable through a more detailed analysis.
If ‖sj‖ is large, xj is a sensitive parameter which means that small perturbations in the param-
eter lead to large variation in the system or its solution. For nonsensitive parameters, ‖sj‖ is
small such that small variations in xj only have a small effect on the system. Reviewing the
obtained column norms (table 5.2, p. 85), gives that the translation of the sinus argument in
the exponential function for FSH on the time axis, pFSH4 , is the most sensitive parameter. The
least sensitive parameter is pFSH2 , defining the width of the sinus argument’s peak.

To obtain more detailed information on the sensitivity matrix, a QR decomposition is performed
in Poem. Poem decomposes S in Q orthogonal and R upper triangular. S is simultaneously
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permuted such that

R =

|r11| ∗

|r22|
. . .

0 |rnn|


with |r11| ≥ . . . ≥ |rnn| ≥ 0. R is also used to determine the rank of S, i.e. S is rank deficient if
at least the last diagonal entry |rnn| = 0.

The decomposition reveals that S1 for parameter set 1 is rank deficient with rank(S1) = 9 < 10,
where 10 is the number of parameters included in this consideration and sensitivity analysis.
Obviously, S1 is by this singular while all its column norms

‖s1j‖ 6= 0.

Consequently, linear dependence have to be assumed among the parameters. If S1 is singular, of
course, the obtained subcondition number is

sc(S1) =∞.

Generally speaking, the subcondition number is defined as

sc(S) =
|r11|
|rnn|

only if S has full rank. Otherwise, rnn = 0. Since the subcondition number gives an estimate for
the error propagation in the system, a subcondition number of

sc(S) =∞

is definitely not satisfying since no other information than the singularity of S can be extracted.

The notional concept implemented in Poem is based on the reasoning, that successively reducing
the set of parameters, being considered in the sensitivity analysis, for the system might yield
valuable information. Starting the reduction of the parameter set from bottom to top with those
parameters assigned to the last diagonal entries of R, at some stage a non singular system will be
recovered provided that not all of the treated parameters are linearly dependent on each other
and that all ‖sj‖ 6= 0. For the user’s ease, Poem outputs an ordering of the parameters, where the
last parameter displayed is one of possibly more than one parameters causing the singularity of S.

For LH and FSH, the order ending with the critical parameter of this sensitivity analysis (since
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rank(S) is 9 of 10) provided by Poem writes

pFSH4

pLH4

pFSH6

pFSH1

pLH2

pLH3

pFSH5

pFSH3

pLH1

pFSH2 .

Following this ordering, the system’s parameter set is reduced step by step by one parameter,
starting with the lowest listed. Subcondition numbers are computed for all of the hereby obtained
parameter subsets, containing all, all but the last, all except for the two last, etc. parameters
referring to the Poem ordering. These subcondition numbers for different systems are illustrated
in the Subcondition plot of e.g. figure 5.2 (p. 91).
From left to right, the subcondition numbers are plotted for the system with respect only to
the first, to the first two, to the first three, etc. parameters of the ordering. These visualised
subcondition numbers estimate how strong errors are propagated in the system and its solution.
Note, that the subcondition numbers are plotted relative to the prescribed subcondition number
threshold, i.e. in % of 104 or with respect to the largest subcondition number computed, if this
subcondition number does not surmount the tolerance of 104.

Besides the Poem ordering giving crucial information about the entries of R and hereby in-
formation about which parameter make the system over the top sensitive to changes in the
parameter’s values, the notional concept can also reveal linear dependences in the set’s param-
eters. By successive reduction of the parameters considered together in the sensitivity analysis,
sharp decreases in the subcondition numbers visualised in the subcondition plot (from left to
right) – be it decrease in absolute values, in % of 104 or in % of the largest absolute subcondition
number computed – indicate among which of the parameters left out of the consideration (the
elimination process still following the Poem ordering) and the subset of remaining parameters
dependences occur. Though, it cannot be determined how individual parameters are related or
correlated. A more detailed analysis would be required for this purpose.
For LH and FSH, since the upper triangular R is ordered by absolute value, one can say that the
solution of the model is obviously most dependent on the parameters pFSH4 , pLH4 which locate the
LH and FSH peaks on the time axis. If these peaks are wrongly located over time, the solution
will differ significantly. Small variations in pFSH4 and pLH4 lead to large variation in the system.
Furthermore, the solution seems to depend more on the FSH base level constituted by pFSH1

than on the corresponding LH base level pLH1 . For the prefactor of the exponential growth term
it is the other way around, meaning that the prefactor for LH, pLH2 , seem to be of higher impact
to the model’s solution that its FSH analogous pFSH2 .
Large variation in the magnitude of the sensitivities, hence the column norms, can be appraised
only by performing the more detailed analysis involving the QR decomposition of the sensitivity
matrix S1. For the parameter set 1 assigned to LH and FSH, the QR decomposition gave rank
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9 of a potential rank of 10. As mentioned above, the subcondition of the sensitivity matrix S1

was estimated via Poem as
sc(S1) =∞

due to the occurring singularity of S1 if considering all 10 parameters simultaneously in the
sensitivity analysis. The condition number was not computed for the obtained sensitivity matrix
since the SVD decomposition requires a significantly higher computational effort than the QR
decomposition necessary to determine the subcondition number. Though, for the system and the
full parameter set 1, it would also be

κ(S1) =∞.

In general, large values for κ(S) indicate an ill-conditioned problem. There is no globally pre-
scribed threshold for the condition number, but in engineering and biological sciences, usually

κmax ≈ 104

is applied. Though it holds
sc(S) < κ(S),

both numbers tend to have a comparable size by experience. Hence, also for the subcondition
number, a maximum of

scmax(S) ≈ 104

is widely taken as reference. Of course, the smaller the condition and subcondition number, the
better.

Reducing the set of considered parameters by the last ordered one, meaning that

pFSH2

is excluded for further considerations in the sensitivity analysis of parameter set 1, Poem com-
putes the corresponding subcondition number as

sc(S̃1) = 4737.6612 < 104

the subcondition number still is not in the range of the maximum subcondition number. Not
surmounting the prescribed threshold, one can assume the problem not to be ill-conditioned for
parameters set 1 exclusively pFSH2 . Further examination of the subcondition plot in the lower
plot of figure 5.2 (p. 91) indicates, that at least this parameter pFSH2 has to be left when
simultaneously estimate the parameters. From right to left, a nearly exponential decay of the
displayed subcondition numbers in % of 104 can be evidenced. The error propagation hence
significantly diminishes from right to left, when first reducing the parameter set 1 by pFSH2 and
then also pLH1 . Effectively, the problem to estimate the 9 parameters

{pLH1 , pLH2 , pLH3 , pLH4 , pFSH1 , pFSH3 , pFSH4 , pFSH5 , pFSH6 }

is not ill-conditioned, but even higher stability of the system with respect to error propagation
is obtained if only the 8 parameters

{pLH2 , pLH3 , pLH4 , pFSH1 , pFSH3 , pFSH4 , pFSH5 , pFSH6 }

are considered, analysed or estimated through Nlscon simultaneously. Though, further experi-
ments it would be necessary to assess this last relation and the occurring dependences.
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Summarising, for set 1 the system is ill-conditioned. Reducing the parameter set by pFSH2 gives a
significantly more stable system to perturbations in the parameter vector. All column norms and
the subcondition numbers for the full and successively reduced sets of parameters are graphically
summarised in figure 5.2 (p. 91). Hence, if re-estimating the parameters associated with LH and
FSH, pFSH2 should be estimated individually or at least not simultaneously with

{pLH1 , pLH2 , pLH3 , pLH4 , pFSH1 , pFSH3 , pFSH4 , pFSH5 , pFSH6 }.

89



Figure 5.4.: Sensitivity outputs for parameter set 1, i.e. the parameters pLHi and pFSHj for
i = 1, . . . , 4, j = 1, . . . , 6. The upper plot gives the relative size of each column
norm with respect to the largest column norm in %, the absolute value computed
of the column norms being showed next to the corresponding bars. The lower plot
gives bars for each subset of considered parameters and the associated subcondition
number as % of 10000, while the initial parameter set 1 is reduced following the Poem
ordering from right to left. The lastly eliminated parameter is written underneath the
bar. The absolute associated subcondition number to the system for the particular
reduced parameter set considered is written next to the bar. All of the following
plots are generated using Poem and edited in Matlab 2012b with respect to the
purpose of this sensitivity analysis.



The second parameter set deals solely with the parameters assigned to the E2 algebraic differ-
ential equation. The second set has been chosen just like this due to the fact, that E2 data is
always assumed to be available and weaknesses concerning the modelling of E2 are of significant
importance for further improvements. The exponents of the Hill functions were left out of the
consideration.

Parameter Parameter Value Column Norms

pE2
1 186.391675192199 6.879 · 103

pE2
2 202.263939088376 4.153 · 103

pE2
3 4.483306488346 1.387 · 103

pE2
4 1.030340524237 9.289 · 103

pE2
5 3.415391066868 1.276 · 104

pE2
7 115.028227706639 9.279 · 103

pE2
9 200.584174200939 9.040 · 103

pE2
11 0.326482174623 3.134 · 103

Table 5.3.: Listing of parameter values and the computed column norms for parameter set 2. The
relative size of each column norm with respect to the largest column norm in % is
given in the upper plot of figure 5.2 (p. 94), the absolute column norms being showed
next to the corresponding bars. The subcondition number as % of 104 following the
Poem ordering are summarised in the lower plot for each parameter. Absolute as-
sociated subcondition numbers for the system with respect each successively reduced
parameter set (from right to left) are written next to the bars.

For E2, all parameters included in the sensitivity analysis have a column norm not equal zero.
Hence, in principle, all parameters are estimable. The most sensitive parameter in the system
is pE2

5 , while the column norm plot (see figure 5.2, p. 94) shows that pE2
1 , pE2

4 , pE2
7 and pE2

9 also
have absolute column norms of at least 50% of pE2

5 . The column norms show variations within a
range of 1387 to 12786. pE2

4 accounts for the prefactor of the Hill function H+(P4(t), pE2
11 , p

E2
12 )

describing the strength or speed of the hormonal interaction between E2 and its antagonist P4,
pE2
5 accounts for the threshold in the Hill function, modelling the inhibitory effect of E2 to FSH

and parameter pE2
7 accounts for the threshold in the positive feedback function involving LH.

Least sensitivities could be found to be the prefactors pE2
1 and pE2

3 as well as for the threshold
pE2
9 of the Hill function describing the stimulatory effect of E2 to itself. Nevertheless, the plot

illustrates that the column norms in % of the largest column norm ‖s5‖ do not deceed the 10 %
and all E2 related parameters included in this analysis can be considered more ore less equally
sensitive with individual differences.
Since the QR decomposition gave a rank of 8 out of 8 parameters considered, all parameters are
estimable and enter to a certain amount the solution of the system. The QR decomposition in
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Poem gave the parameter ordering

pE2
5

pE2
7

pE2
4

pE2
11

pE2
2

pE2
9

pE2
1

pE2
3 .

The computed subcondition number amounts to

sc(S2) = 280.1 ∗ 102

Hence, the problem can be judged not to be ill-conditioned referring to the subcondition numbers
and the applied threshold of scmax ≈ 104. The subcondition plot shows all subcondition numbers
computed during the sensitivity analysis for the system with respect to the successively extended
parameter sets from left to right. Starting with the first parameter of the poem ordering, i.e.
pE2
5 , and then successively including following the order

pE2
7 , pE2

4 , pE2
11 , p

E2
2 , pE2

9 , pE2
1 , pE2

3 ,

gives a sharp increase in the subcondition number (in % of the largest subcondition number)
in the last step, where pE2

3 is added to the other parameters. Since the problem to estimate
the complete parameter set 2 is well-conditioned, the subsystem’s subcondition numbers were
plotted in % with respect to the largest subcondition number (obtained if the full parameter set
2 is considered in the sensitivity analysis). No parameter has to be left out in the estimation
process, though some kind of correlation between pE2

3 and the remaining parameters

pE2
5 , pE2

7 , pE2
4 , pE2

11 , p
E2
2 , pE2

9 , pE2
1

has to be assumed since leaving the same out of the analysis, an even less sensitive system can
be obtained, where small variation in the parameter set’s individual values will only lead to
negligible changes in the solution.
The parameters assigned to the E2 antagonist P4 were not analysed in detail. Since P4 measure-
ments are not to be taken in future and P4 was mainly included as a time dependent component
in the model due to the fact that it closely interacts with E2, the latter being crucial to ovula-
tion prediction, and BBT responds to high P4 levels by a thermal rise. To a greater degree, the
question how sensitive the parameters assigned to BBT are seems interesting.
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Figure 5.5.: Sensitivity outputs for parameter Set 2, i.e. the parameters pE2
i for i = 1, . . . , 5

and pE2
5 , pE2

7 , pE2
9 , p11E2 . The upper plot gives the relative size of each column norm

with respect to the largest column norm in %, the absolute value computed of the
column norms being showed next to the corresponding bars. The subcondition plot
gives bars for each subset of considered parameters and the associated subcondition
number as % of 104, while the initial parameter set 2 is reduced following the Poem
ordering from right to left. The lastly eliminated parameter is written underneath the
bar. The absolute associated subcondition number to the system for each particular
reduced parameter set considered is written next to the bar.
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The third set of parameters is constituted by three parameters since the Hill exponent (pBBT4 = 6)
of the positive feedback function of BBT to itself was excluded again. In the following tabular
(table 5.2, p. 94), the analysed parameters are listed with their values and the corresponding
column norms.

Parameter Parameter Value Column Norms

pBBT
1 0.004924843360 3.694 · 100

pBBT
2 96.954898958163 3.986 · 100

pBBT
3 6.942691358857 2.392 · 101

Table 5.4.: Listing of parameter values and the computed column norms for parameter set 3.

Since none of the computed column norms equals zero, singularity of the sensitivity matrix for
parameter set3, S3, can be ruled out in the first step. Any other possible singularity, resulting
from linear dependences among the considered parameters, has to be identified by performing a
more detailed approach in the second step. Computing the QR decomposition of S3 in Poem
gives rank 2 of a potential rank 3. Assuming that at least one of the regarded parameters is
linearly dependent on one or some of the other parameters, the Poem ordering making use of
the permuted diagonal entries of the upper triangular R writes

pBBT3

pBBT1

pBBT2 .

Obviously, pBBT2 is making the whole system very sensitive to variations within the parameter
vector such that

sc(S3) =∞.

Carefully reviewing the subcondition plot (see figure 5.2, p. 96), reducing the considered param-
eter set 3 by pBBT2 gave full rank for the corresponding sensitivity matrix S̃3. Solely regarding
the parameter set consisting of

{pBBT1 , pBBT3 }

gives a sensitivity matrix S̃3 with a subcondition number of

sc(S̃3) = 1.426 ∗ 101

which is clearly below the prescribed threshold scmax ≈ 104. By the column norms, both param-
eters were estimable while pBBT1 turned out to lead to higher sensitivity in the system. Though
the subcondition number indicates a pretty stable system when only the parameters pBBT1 , pBBT3

are varied, changes in pBBT1 would lead to larger changes in the well-conditioned problem’s so-
lution than pBBT3 . This can also be confirmed through the plot of the percental subconditions,
see figure 5.2 (p. 96). Summarising, estimating all parameters assigned to BBT simultaneously
seems not to be a promising approach, due to detected linear dependences. Considering and
estimating only pBBT1 and pBBT3 simultaneously, variations in pBBT1 and pBBT3 seem to only
slightly affect the solution of the model.
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Figure 5.6.: Sensitivity outputs for parameter set 3, i.e. the parameters pBBT1 , pBBT2 and pBBT3 .
The relative size of each column norm with respect to the largest column norm in
% and the subcondition numbers as % of 104 for each parameter in increasing order
are summarised in the above plots. The subcondition plot gives bars for each subset
of considered parameters and the associated subcondition number as % of 104, while
the initial parameter set 3 is reduced following the Poem ordering from right to left.
The lastly eliminated parameter is written underneath the bar. The absolute column
norms and subcondition numbers computed for each parameter are written next to
the corresponding bars.



5.3. Outlook on the Prediction of Potentially Fertile Periods

Following the complex of assumptions and the derived definition of potentially fertile periods of
chapter 2, let us now approach the question on how to improve ovulation prediction. Due to
the nonavailability of real, simultaneously collected E2 and BBT measurements, the proposed
model could only be validated with a partly artificial test data set. This chapter basically aims
at giving an outlook, how ovulation prediction could in future be improved by making use of E2

data. E2 measurements will be soon user friendly available through a newly developed saliva
utilising tool by Clue and Fraunhofer Institut Potsdam-Golm.

The proposed model can obviously give an adequate fit to the test data set and the herein shown
hormonal dynamics. Using the simulation results obtained for the four cycle long test data of
chapter 5.1 and 5.2, the strategy defined in chapter 2.4 is reviewed.
Adopting Carter/ Blight’s (1981) Ansatz to obtain an a priori estimator for ovulation
through a change point in E2 concentration which is to be completed by an a posteriori de-
tection of the rise in basal body temperature (BBT), the step length strategy of the integrator,
in this case the linearly-implicit Euler extrapolation, is monitored. The endocrine dynamics of
the human menstrual cycle imply, that whatever may disturb this hormonal regulation, in any
case E2 is surging the first of all considered hormonal components of the proposed model pro-
vided ovulation happens. The speed, the temporal delays, the base as well as the peak levels
might (largely) vary from woman to woman though.
Nevertheless, Adlercreutz/ Lehtinen/ Kairento (1980) conclude in line with research of
Baker/ Jennison/ Kellie (1979) that E2 assays probably give best prediction of human
ovulation by the highest mean ratio of peak-to-baseline values such that an earlier hint can be
obtained if prediction is based on E2 values. This implies together with the definition of the
potentially fertile period, that the first significant surge in E2 has to be detected. The potentially
fertile period is considered to end with or soon after the thermal shift in BBT.

Let us first restrict to the change point detection for E2. Out of the simulation results visualised
in figure 5.1 (p. 82), again the third cycle was taken as reference cycle. Originally ranging from
day 54 to 82, this cycle has a standard length of 28 days. For exactly this time interval, the
adaptive step sizes of the linearly-implicit Euler discretisation are monitored. The prescribed
accuracy in Limex was set to 10−10. The step lengths performed vary from nearly zero up to
more than 1.20. All step length performed in this interval were plotted against time in days. In
order to assess if the proposed strategy for E2 change point detection works out, the simulation
of the hormonal components is compared to the step sizes taken during the same cycle. In
order to have a more general comparison, the four hormones included in the model are all shown
dimensionless in one plot. BBT was excluded from this graphic. The dimensionless plot of
the model’s endocrine dynamics in a 28 days long cycle was considered advantageous, since not
absolute peak heights are of interest but the change points in the hormone concentration.
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Figure 5.7.: Change point detection for E2 for a 28 day cycle by monitoring the Limex adaptive
step sizes with a prescribed accuracy of 10−10 and the endocrine dynamics happening
during the menstrual cycle as they are displayed by the proposed model.

Obviously, the adaptive step sizes of the integrator first significantly and rapidly decreases around
the time, when E2 is near to rise. The first local minimum is reached shortly after day 11, rather
on day 12. The boundaries are left out in the current consideration, since the adaptive step
length strategy displays a first sharp decrease from the initial step length guess until it stabilises
around day 1. On day 12, E2 surges. The step lengths oscillate until day 14 is reached. At
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this time, E2 concentration is at its peak, while FSH and LH are near to their peak. Any time,
sharp increases or decreases in at least one of the hormonal components can be evidenced, the
adaptive step length strategy leads to a reduction in the step size taken in order to adequately
perform the integration without surmounting the prescribed accuracy of 10−10. Thus, a global
minimum in the step sizes is reached at day 15, when the peak E2 occurred at day 14.5 and right
now, FSH and LH reached their peak levels. For this cycle, ovulation probably occurred at day
15 itself, since the luteal phase in general lasts for 14 days and ovulation is assumed to occur
shortly after the peak in LH.
The Limex step sizes finally increase when LH and FSH are back to base level, and E2 is only
displaying slow dynamical behaviour and P4 has passed its change point at day 18. Increasing
P4 levels induce the thermal shift with a certain temporal delay, but most probably the thermal
rise in BBT happens also before or around day 19 for the human menstrual cycle.

The adaptive step sizes might decrease again, when E2 experienced its second, less pronounced
peak and BBT as well as P4 develop back to base level. Due to this, it only seems reasonable
to detect the change point in E2 with the step size monitor provided in the implementation
Limex of the linearly-implicit Euler extrapolation method for differential algebraic equations.
The thermal rise in BBT should probably be monitored with a combined measurement aware,
statistical approach. Contrary to the hormonal dynamics, the absolute levels of BBT are crucial
to determine the thermal shift. Compromised by stress, sickness, etc. the thermal rise may take
up to three days. This rather slow development if the cycle length is of only 28 days might not
significantly affect the adaptive linearly-implicit Euler discretisation. Detecting the P4 change
point would be an alternative way to capture the end of the potentially fertile period, but P4

measurements are not assumed to be available. Hence, the increase in the Limex step sizes
around day 19 has to be considered with attention.

Parameter Value (model Fit) Value (Prediction)

pE2
1 186.391675192199 116.675

pE2
2 202.263939088376 224.730

pE2
3 4.483306488346 4.80258

pE2
4 1.030340524237 0.643251

pE2
5 3.415391066868 1.67453

pE2
7 115.028227706639 120.137

pE2
9 200.584174200939 211.813

pE2
11 0.326482174623 0.944160

pBBT
1 0.004924843360 0.00490064

pBBT
3 6.942691358857 6.91679

Table 5.5.: Listing of the adjusted parameters after estimation through the Nlscon for the re-
duced test data set of 3 cycles in order to give a best possible rudimentary estimation
for the fourth cycle.

Summarising, monitoring the adaptive step sizes of the model’s differential algebraic equation
system’ integrator seem a promising and encouraging way to appropriately detect the surge in
E2. For BBT, rather a combined method to detect the thermal shift seems adequate. The re-
view and monitoring of the Limex step sizes has not been automated or implemented in a code,
since for any further applications, the Limex would rather not be the method of choice. For
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the purpose of constructing a computational time and cost efficient algorithm for a smart phone
App, the proposed model defined as a DAE system would rather be transformed into a system
of ODEs. Thus, the model should be only treated as a first suggestion. Model refinements and
improvements, once real data are available, have to be expected.

Independent from the methodology and the implementation to detect the E2 change points and
the shift in BBT, at any time of a current cycle a fertility or contraception monitor is required
to give a best possible estimate about the time of ovulation. For this reason and in order to
give an outlook for the prediction the potentially fertile periods of the human menstrual cycle,
simulations are run for a reduced test data set. The initial measurements were shortened, only
the first three cycles of length 29, 26 and 28 days are included. In line with the perspective,
that only E2 and BBT measurements are on-hand, the nonlinear least squares problem has been
solved for the reduced test data set.

99



Figure 5.8.: The computed solution of the model to the reduced test data using the parameter
set estimated beforehand gives the above fit to the measurements. Measurements
end after the third cycle collected. Measurement points are plotted as points, the
curve is corresponding fit for E2, P4, LH and FSH from top to bottom.



The parameters assigned to E2 and BBT were re-estimated with the damped Gauss-Newton
method in Nlscon. The adjusted parameters are listed in table 5.3 (p. 98). Since the cycle
length was known for the three collected cycles, the initial guess for the fourth cycle length

pcyclelength4 :=

∑3
i=1 p

cyclelength
i

3

was chosen as the arithmetic mean of all previous, completed cycle lengths as starting value.
This gave an initial guess of pcyclelength4 ≈ 27.67.
Only considering the rudimentary prediction for the fourth cycle by the obtained solution to
the nonlinear least squares problem, E2 and BBT data are compared. Defining the potentially
fertile period by the first rise in E2 and the thermal shift in BBT, the plot gives reason to
the assumption that ovulation happens around day 15. The first significant rise in E2 by the
eye would be located around day 10 or 11, the thermal shift around day 19. This would give a
predicted total potentially fertile period of 9 days. Of course, this is a very conservative approach
but the probability that the effective fertile period is covered through this time interval is quite
high.
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Figure 5.9.: The rudimentary prediction for the dynamics of E2 and BBT for the fourth cycle
are plotted against the day numbering of the fourth cycle. Only the time axis is
labeled, since not absolute values are of interest here, but rather the change points
and surges in E2 and BBT the reader can observe. This plot is not meant to
give precise information but a first impression on how more progressive ovulation
prediction could be gained.
The LH peak an ovulation can be assumed for day 15. The detection of the first
rise in E2 with the eye and the step size approach of figure 5.3 (p. 97) would give a
first estimate for the potentially fertile time window (light red) from day 11, the first
significant rise in E2, to day 19, the third day of BBT’s thermal rise. The strategy
defined in chapter 5.3 in contrary would range from day 12 to 17, i.e. from day −3
to +2 around the LH peak.

Summarising, two valuable but not final tools to predict potentially fertile periods have been
introduced in this outlook. Inserting day by day new measurements, after some days of the new
cycle probably way more precise estimations for the day of ovulation and the fertile window
could be obtained. Exactly at this point, further experiments and validation of the model with
real data are of huge importance. The detection of change points in E2 through the steepest
descent, monitored through a sharp decrease in an adaptive step size strategy, looks promising.
The limitations of the proposed model, where refinements and improvements have to be worked
out, are given in the following.

102



5.4. Limitations of the Model

Not solely intra-woman and intra-cycle within-woman variations clearly limit the viability of
predictions concerning either the potentially fertile period of the menstrual cycle or the precise
time of ovulation.

Concerning the model, LH and FSH are incorporated in the model only through algebraic input
functions. Though these functions are constructed referring to the hormonal dynamics displayed
by the complex model describing the human menstrual of Röblitz/ Stötzel/ Deuflhard/
Jones/ Azulay/ van der Graaf/ Martin (2011), ameliorated predictions can probably only
be obtained if data could be made available for all key hormonal drivers of the menstrual cycle.
Due to the business idea of Clue, aiming at launching a Smart phone App to support women in
their fertility management, model reduction seemed appropriate. In the same line, requiring a
woman to collect more than two different kind of data would probably compromise the attrac-
tiveness of such a fertility monitor. The proposed model and the ovulation prediction strategy
applied in the outlook in chapter 5.3 try to best possible detect fertile windows under the re-
striction of limited available data and a limited model complexity.

Identifying the potentially fertile period through the steepest descent, assessed through changes
in the adaptive step length strategy of the applied integrator showed to be encouraging. Accu-
racy could not be judged by the absence of appropriate data, where on the one hand E2 and BBT
measurements and on the other hand the medical confirmation of ovulation are linked. Also the
proposed model could only be appraised through a partly artificial test data set. Improvements
and refinement concerning the equations as well as the parameter sets should be approached first.
Subsequently, the sketched strategy to ovulation prediction and determination of potentially fer-
tile periods should be worked out. Though, the algorithms applied to solve the arising nonlinear
least squares problem Nlscon and Limex might not be the first choice to be implemented in
the final App from the computational point of view. Transformation of the given DAE system
to a ODE system should be considered as well as application of time and cost efficient solvers.

In natural family planning, secondary signs are recorded throughout the menstrual cycle. Espe-
cially components like cervical mucus and other body signs can give an aware woman important
information about the current state of her cycle. In the final model to be used in such an App,
incorporation of such secondary sign option should be seriously considered.
Getting back once more to the proposed prediction strategy of potentially fertile periods, accord-
ing to Royston (1991), it seems appropriate to indicate problematics and show which errors
may arise. If the worst case is regarded to apply for the case that no changes in mean analyte
levels of E2 or BBT can be observed throughout the cycle (p. 229), we define:

A type I error occurs if the prediction method wrongly indicated that the woman is fertile.

A type II error occurs if the fertile phase is not detected at all or if the prediction method gives
the signal of impending ovulation not early enough.

Contrary to Royston (1991)’s evaluation, the aspiration to support women in getting pregnant
makes both error types become less serious as it would be in the context of contraception. Type
II error might result in a missed pregnancy opportunity which appears to be more serious than
a type I error, excluding wrongly arising personal hopes. Nevertheless, type I error should be
tried to minimize as well exactly to prevent a couple from unjustifiable hopes.
As justified subsequent to Assumption 6, a predicting a short fertile phase seems adequate.
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Though one would normally expect to have low probability of conception at the the limits of the
defined fertility interval, by Royston (1991) (p. 237) it can be argued that even two days after
the rise in BBT, the conception probability is generally estimated of 0.005. Since the rise in BBT
defines the endpoint of our fertility window, one would experience a Pearl index of 6.0 assuming
100 woman years with on average 12 menstrual cycles per year. Royston (1991)’s study reveals
conception probability to be negligible 4 days after the first rise in BBT, i.e. around 4 days after
ovulation.
Concluding, the potentially fertile period of the menstrual cycle as proposed in Assumption 6
and 8 is rather of pessimistic than optimistic nature; within this timely span, generally a prob-
ability of conception of at least 0.05 (i.e. Pearl Index of 60) can be assumed (Royston (1991),
figure 5, p. 237).

In the end, the proposed model is a first attempt to model a very complex regulation of the
human body. The non-complexity of the proposed model has to pay for accuracy in the system’s
dynamics. Nevertheless, the model performs astonishing well for the partly artificial test data
set. Its performance for real, highly variational and irregular data could not be evaluated at this
stage. Only then, a final conclusion can be drawn.
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6. Conclusion

The proposed six dimensional model of chapter 2 includes the four hormonal components E2, P4,
LH and FSH combined with the primary fertility sign BBT. Modelled through four differential
equations for E2, P4, a delay of P4 and BBT, coupled with two algebraic input curves account-
ing for LH and FSH, a total number of 33 parameters is involved. A priori unknown, these
parameters have been identified through the solution of a nonlinear least squares problem. In
the nonlinear least squares problem, the model and partly artificial test data are matched. The
given minimization task is solved with a globalisation of the Gauss-Newton method in an affine
invariant setting, introduced as the damped Gauss-Newton method in chapter 4. Implemented in
the Nlscon code, the gradient system arising through application of the Gauss-Newton method
to the minimisation task is evaluated with a linearly-implicit Euler extrapolation (Limex).

The test data comprises four cycles with cycle lengths of 29, 26, 28 and 27 days. Parameters were
identified with Nlscon, until it converged. The fits obtained are presented as the simulation
results in chapter 5.1. A dimensionless comparison of the fit obtained for a 28 days cycle of
the test data with a reference plot displaying the key endocrine dynamics gave that the model
represents well the temporal relationships as well as the hormonal interaction between E2, P4,
LH and FSH. Inaccuracies could be found concerning the location of the LH peak and the hereby
induced ovulation. Ovulation is assumed to happen around 24 hours after the peak in LH. Thus,
luteal phase is at least one day too short in the model and the test data, which contradicts
modelling Assumption 11 of chapter 2.2. Assumption 4, that the nadir in BBT coincides with
the peak in LH can be represented by the model satisfactorily. In the same way, the data and
the model display a thermal shift of 0.2 − 0.5◦ C around 24 hours after the assumed ovulation
(Assumption 5 ), as can be evidenced in figure 6. Just as in Assumption 7, the first significant rise
in E2 happens around 72 hours prior to the corresponding peak, which itself is located around
day 14.

Summarising, the model adequately describes the basic hormonal regulation of the human men-
strual cycle. The outlook to ovulation prediction gave in chapter 5.3 together with the definition
of potentially fertile period in Assumption 6 and 8, that a potentially fertile window is in general
determinable. Though, the first time span between the first rise in E2 and the thermal shift in
BBT comprises 9 days for the 28 days cycle of the test data considered. Due to data and model
inaccuracies, this potentially fertile window represents a significantly more conservative estimate
than initially intended when defining the days −3 to +2 around the LH peak as potentially fertile.

Through the model and the solution of the underlying DAE system with a linearly-implicit Eu-
ler extrapolation (Limex), the first significant rise in E2 concentration was detectable with the
changes in the performed (adaptive) step sizes of the integrator. Using the proposed tools, based
on the steepest increase of the E2 fit, or a simplification of the latter would make improvements
concerning ovulation prediction and the hereby constituted fertile period of the human menstrual
cycle in future possible.

It remains to state, that by its simplicity, the model cannot be expected to describe the complex
hormonal regulation of the human cycle with high accuracy. Due to the absence of real data, a
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Figure 6.1.: The computed solution of the model to the given test data for a 28 days cycle using
the parameter set estimated beforehand gives the above fit to the measurements.
The curves are the corresponding fits for E2, P4, LH and FSH shown in the upper
dimensionless plot, BBT is shown below.

partly artificial test data set has been used throughout the simulations. Results appeared to be
satisfactory so far, though no final conclusion towards the general viability of the model can be
drawn at this point. Simultaneous acquisition of E2 and BBT measurements are required for any
further evaluation and especially validation of the model. For a smart phone App, the proposed
model seems to serve the purpose. The change point detection strategy for ovulation prediction
as well as the correction strategy, i.e. detection of the rise in BBT, have to be further extended
and specified for this purpose. All in all, the business idea of Clue as well as the model itself
are encouraging to provide women with a reliable, natural family planning fertility monitor or
contraception tool in the near future.
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Appendix

A. Test Data Set

Cycle Time E2 (pmol/L) P4 (ng/mL) LH (UI/L) FSH (UI/L) BBT (◦ C)

1 0 35.4756 1.5793 2.6670 4.7659 37.0000
1 0.5000 33.2107 1.3152 2.8425 5.0167 36.9600
1 1.0000 31.5885 1.0973 3.1250 5.2893 36.9200
1 1.5000 30.5750 0.9187 3.5338 5.5667 36.8875
1 2.0000 30.1436 0.7729 4.0583 5.8210 36.8550
1 2.5000 30.2757 0.6545 4.6510 6.0222 36.7925
1 3.0000 30.9705 0.5587 5.2360 6.1464 36.7300
1 3.5000 32.2443 0.4815 5.7313 6.1816 36.7000
1 4.0000 34.0900 0.4196 6.0742 6.1282 36.6700
1 4.5000 36.4195 0.3701 6.2421 5.9992 36.6350
1 5.0000 39.0576 0.3306 6.2561 5.8157 36.6000
1 5.5000 41.8152 0.2993 6.1644 5.6011 36.5950
1 6.0000 44.5657 0.2745 6.0180 5.3753 36.5900
1 6.5000 47.2655 0.2549 5.8559 5.1519 36.5825
1 7.0000 49.9306 0.2394 5.7021 4.9385 36.5750
1 7.5000 52.6051 0.2272 5.5694 4.7391 36.5775
1 8.0000 55.3435 0.2177 5.4638 4.5548 36.5800
1 8.5000 58.2045 0.2102 5.3880 4.3860 36.5900
1 9.0000 61.2531 0.2043 5.3435 4.2323 36.6000
1 9.5000 64.5679 0.1998 5.3327 4.0935 36.5900
1 10.0000 68.2536 0.1962 5.3595 3.9694 36.5750
1 10.5000 72.4642 0.1934 5.4315 3.8607 36.5600
1 11.0000 77.4465 0.1912 5.5630 3.7690 36.5500
1 11.5000 83.6356 0.1895 5.7818 3.6980 36.5375
1 12.0000 91.8946 0.1882 6.1463 3.6556 36.5250
1 12.5000 104.2360 0.1872 6.8006 3.6607 36.5325
1 13.0000 126.6985 0.1864 8.2035 3.7666 36.5400
1 13.5000 189.2778 0.1858 13.1632 4.2332 36.5325
1 14.0000 370.3604 0.1853 88.7983 7.9800 36.5250
1 14.5000 116.9874 0.2015 105.8801 8.0652 36.5100
1 15.0000 55.6992 0.4136 77.7492 6.2867 36.4950
1 15.5000 62.2729 1.0616 50.4817 4.8747 36.4875
1 16.0000 77.8897 2.2480 28.7872 3.8743 36.4800
1 16.5000 94.4197 3.9416 14.2187 3.3512 36.4850
1 17.0000 111.0974 6.0041 6.7295 3.1428 36.4900
1 17.5000 129.3475 8.2310 3.7454 2.9842 36.5425
1 18.0000 147.7467 10.3972 2.7024 2.8550 36.5950
1 18.5000 164.1352 12.2999 2.3468 2.7757 36.6100
1 19.0000 176.8646 13.7906 2.2194 2.7359 36.6250
1 19.5000 184.9784 14.7885 2.1701 2.7174 36.6800

IX



Cycle Time E2 (pmol/L) P4 (ng/mL) LH (UI/L) FSH (UI/L) BBT (◦ C)

1 20.0000 188.1797 15.2765 2.1519 2.7076 36.7350
1 20.5000 186.7094 15.2884 2.1494 2.7010 36.7525
1 21.0000 181.1835 14.8912 2.1568 2.6963 36.7700
1 21.5000 172.4285 14.1696 2.1711 2.6946 36.7875
1 22.0000 161.3407 13.2129 2.1903 2.6979 36.8050
1 22.5000 148.7831 12.1053 2.2129 2.7092 36.8075
1 23.0000 135.5196 10.9206 2.2377 2.7321 36.8100
1 23.5000 122.1803 9.7191 2.2638 2.7710 36.8475
1 24.0000 109.2521 8.5472 2.2903 2.8310 36.8850
1 24.5000 97.0848 7.4380 2.3168 2.9182 36.8975
1 25.0000 85.9080 6.4133 2.3428 3.0386 36.9100
1 25.5000 75.8512 5.4854 2.3681 3.1967 36.8950
1 26.0000 66.9655 4.6591 2.3928 3.3927 36.8800
1 26.5000 59.2435 3.9338 2.4172 3.6186 36.9025
1 27.0000 52.6363 3.3051 2.4421 3.8580 36.9250
1 27.5000 47.0671 2.7658 2.4700 4.0926 36.9275
1 28.0000 42.4443 2.3078 2.5064 4.3145 36.9300
1 28.5000 38.6730 1.9221 2.5627 4.5307 36.9650
2 29.0000 50.0540 2.7596 2.7754 5.0397 37.0000
2 29.5000 45.5934 2.3019 2.8190 5.2633 36.9600
2 30.0000 41.9887 1.9167 2.8830 5.4714 36.9200
2 30.5000 39.1565 1.5949 2.9865 5.6808 36.8875
2 31.0000 37.0326 1.3279 3.1547 5.9037 36.8550
2 31.5000 35.5731 1.1077 3.4117 6.1379 36.7925
2 32.0000 34.7490 0.9271 3.7684 6.3669 36.7300
2 32.5000 34.5389 0.7797 4.2105 6.5653 36.7000
2 33.0000 34.9282 0.6600 4.6972 6.7076 36.6700
2 33.5000 35.9144 0.5631 5.1704 6.7756 36.6350
2 34.0000 37.5040 0.4851 5.5724 6.7625 36.6000
2 34.5000 39.6845 0.4225 5.8641 6.6728 36.5950
2 35.0000 42.3927 0.3725 6.0348 6.5204 36.5825
2 35.5000 45.5180 0.3326 6.1020 6.3250 36.5750
2 36.0000 48.9471 0.3009 6.0991 6.1065 36.5800
2 36.5000 52.6131 0.2758 6.0620 5.8819 36.5900
2 37.0000 56.5172 0.2559 6.0209 5.6632 36.6000
2 37.5000 60.7286 0.2402 5.9986 5.4586 36.5750
2 38.0000 65.3852 0.2279 6.0137 5.2733 36.5500
2 38.5000 70.7169 0.2182 6.0853 5.1115 36.5250
2 39.0000 77.1167 0.2106 6.2410 4.9787 36.5400
2 39.5000 85.3330 0.2046 6.5328 4.8839 36.5325
2 40.0000 97.0383 0.2000 7.0817 4.8476 36.5250
2 40.5000 116.9948 0.1964 8.2516 4.9252 36.5100
2 41.0000 166.2063 0.1935 11.8483 5.3423 36.4950
2 41.5000 440.0284 0.1913 79.1097 9.8253 36.4875
2 42.0000 192.8976 0.1975 135.1576 11.9789 36.4800
2 42.5000 68.0872 0.4010 109.4129 9.5799 36.4850
2 43.0000 64.2980 1.0843 76.5847 7.3975 36.4900
2 43.5000 80.1519 2.2968 45.8371 5.7747 36.5425
2 44.0000 98.2409 3.9813 22.7590 4.8424 36.5950
2 44.5000 114.5520 6.0143 10.1449 4.4017 36.6100

X



Cycle Time E2 (pmol/L) P4 (ng/mL) LH (UI/L) FSH (UI/L) BBT (◦ C)

2 45.0000 131.7198 8.2183 5.0297 4.0685 36.6250
2 45.5000 149.7023 10.3868 3.2662 3.8001 36.6800
2 46.0000 166.2268 12.3219 2.6847 3.6298 36.7350
2 46.5000 179.4384 13.8695 2.4871 3.5390 36.7525
2 47.0000 188.2268 14.9379 2.4155 3.4935 36.7700
2 47.5000 192.1663 15.4989 2.3899 3.4686 36.7875
2 48.0000 191.3949 15.5767 2.3855 3.4524 36.8050
2 48.5000 186.4577 15.2324 2.3934 3.4406 36.8075
2 49.0000 178.1421 14.5476 2.4096 3.4330 36.8100
2 49.5000 167.3334 13.6110 2.4317 3.4316 36.8475
2 50.0000 154.9039 12.5082 2.4579 3.4396 36.8850
2 50.5000 141.6394 11.3153 2.4867 3.4613 36.8975
2 51.0000 128.1987 10.0955 2.5171 3.5015 36.9100
2 51.5000 115.0981 8.8980 2.5484 3.5663 36.8950
2 52.0000 102.7155 7.7588 2.5798 3.6626 36.8800
2 52.5000 91.3042 6.7018 2.6109 3.7971 36.9025
2 53.0000 81.0130 5.7410 2.6415 3.9747 36.9250
2 53.5000 71.9073 4.8827 2.6715 4.1953 36.9275
2 54.0000 63.9896 4.1272 2.7014 4.4491 36.9300
2 54.5000 57.2163 3.4706 2.7318 4.7154 36.9650
3 55.0000 42.9858 2.2208 2.7233 4.9335 37.0000
3 55.5000 39.4870 1.8506 2.7893 5.1404 36.9600
3 56.0000 36.7310 1.5413 2.9014 5.3569 36.9200
3 56.5000 34.6572 1.2846 3.0888 5.5930 36.8875
3 57.0000 33.2238 1.0728 3.3787 5.8441 36.8550
3 57.5000 32.4025 0.8990 3.7821 6.0909 36.7925
3 58.0000 32.1731 0.7572 4.2807 6.3054 36.7300
3 58.5000 32.5254 0.6420 4.8242 6.4603 36.7000
3 59.0000 33.4665 0.5488 5.3427 6.5359 36.6700
3 59.5000 35.0110 0.4737 5.7671 6.5247 36.6350
3 60.0000 37.1386 0.4135 6.0517 6.4314 36.6000
3 60.5000 39.7511 0.3653 6.1875 6.2717 36.5950
3 61.0000 42.6877 0.3269 6.2000 6.0671 36.5900
3 61.5000 45.7931 0.2964 6.1325 5.8396 36.5825
3 62.0000 48.9751 0.2722 6.0273 5.6066 36.5750
3 62.5000 52.2152 0.2531 5.9161 5.3798 36.5775
3 63.0000 55.5495 0.2381 5.8195 5.1660 36.5800
3 63.5000 59.0488 0.2262 5.7498 4.9687 36.5900
3 64.0000 62.8113 0.2169 5.7154 4.7897 36.6000
3 64.5000 66.9708 0.2096 5.7242 4.6301 36.5750
3 65.0000 71.7229 0.2038 5.7873 4.4911 36.5500
3 65.5000 77.3841 0.1994 5.9238 4.3755 36.5375
3 66.0000 84.5300 0.1959 6.1711 4.2890 36.5250
3 66.5000 94.3675 0.1932 6.6136 4.2441 36.5325
3 67.0000 109.9871 0.1910 7.4798 4.2734 36.5400
3 67.5000 142.3631 0.1894 9.6456 4.4836 36.5325
3 68.0000 300.1625 0.1881 29.3071 6.1916 36.5250
3 68.5000 277.1566 0.1877 120.3877 10.3378 36.5100
3 69.0000 79.9234 0.2614 106.4692 8.7843 36.4950
3 69.5000 58.2605 0.6797 75.7662 6.7896 36.4875

XI



Cycle Time E2 (pmol/L) P4 (ng/mL) LH (UI/L) FSH (UI/L) BBT (◦ C)

3 70.0000 70.5988 1.6087 47.3119 5.2644 36.4800
3 70.5000 87.7347 3.0647 25.2057 4.2576 36.4850
3 71.0000 104.2821 4.9579 11.7204 3.7798 36.4900
3 71.5000 121.3135 7.1206 5.6323 3.5062 36.5425
3 72.0000 139.6417 9.3416 3.4036 3.2817 36.5950
3 72.5000 157.2535 11.4059 2.6514 3.1266 36.6100
3 73.0000 172.1054 13.1347 2.3953 3.0395 36.6250
3 73.5000 182.8267 14.4093 2.3020 2.9955 36.6800
3 74.0000 188.7496 15.1779 2.2664 2.9725 36.7350
3 74.5000 189.8220 15.4469 2.2554 2.9580 36.7525
3 75.0000 186.4620 15.2659 2.2579 2.9472 36.7700
3 75.5000 179.3906 14.7112 2.2694 2.9395 36.7875
3 76.0000 169.4766 13.8705 2.2872 2.9360 36.8050
3 76.5000 157.6109 12.8318 2.3094 2.9393 36.8075
3 77.0000 144.6198 11.6753 2.3346 2.9528 36.8100
3 77.5000 131.2130 10.4694 2.3616 2.9804 36.8475
3 78.0000 117.9602 9.2684 2.3897 3.0270 36.8850
3 78.5000 105.2892 8.1131 2.4179 3.0985 36.8975
3 79.0000 93.4970 7.0316 2.4459 3.2012 36.9100
3 79.5000 82.7684 6.0414 2.4733 3.3407 36.8950
3 80.0000 73.1973 5.1514 2.5000 3.5200 36.8800
3 80.5000 64.8078 4.3638 2.5262 3.7355 36.9025
3 81.0000 57.5723 3.6763 2.5523 3.9741 36.9250
3 81.5000 51.4279 3.0831 2.5798 4.2159 36.9275
3 82.0000 46.2892 2.5765 2.6120 4.4445 36.9300
3 82.5000 42.0613 2.1477 2.6565 4.6582 36.9650
4 83.0000 46.2274 2.4878 2.7196 4.7169 37.0000
4 83.5000 42.2013 2.0727 2.7702 4.9302 36.9600
4 84.0000 38.9806 1.7248 2.8516 5.1410 36.9200
4 84.5000 36.4904 1.4354 2.9886 5.3643 36.8875
4 85.0000 34.6763 1.1962 3.2100 5.6049 36.8550
4 85.5000 33.5020 0.9995 3.5372 5.8525 36.7925
4 86.0000 32.9418 0.8387 3.9702 6.0846 36.7300
4 86.5000 32.9762 0.7078 4.4781 6.2736 36.7000
4 87.0000 33.5970 0.6017 5.0033 6.3960 36.6700
4 87.5000 34.8106 0.5162 5.4774 6.4378 36.6350
4 88.0000 36.6189 0.4474 5.8427 6.3970 36.6000
4 88.5000 38.9760 0.3923 6.0697 6.2830 36.5950
4 89.0000 41.7663 0.3484 6.1639 6.1134 36.5900
4 89.5000 44.8400 0.3134 6.1574 5.9092 36.5825
4 90.0000 48.0759 0.2856 6.0915 5.6899 36.5750
4 90.5000 51.4194 0.2637 6.0030 5.4699 36.5775
4 91.0000 54.8813 0.2464 5.9181 5.2587 36.5900
4 91.5000 58.5218 0.2327 5.8543 5.0617 36.6000
4 92.0000 62.4394 0.2220 5.8235 4.8821 36.5750
4 92.5000 66.7767 0.2136 5.8363 4.7217 36.5500
4 93.0000 71.7477 0.2070 5.9060 4.5826 36.5375
4 93.5000 77.7047 0.2018 6.0547 4.4683 36.5325
4 94.0000 85.3014 0.1978 6.3262 4.3856 36.5400
4 94.5000 95.9497 0.1946 6.8209 4.3498 36.5325

XII



Cycle Time E2 (pmol/L) P4 (ng/mL) LH (UI/L) FSH (UI/L) BBT (◦ C)

4 95.0000 113.4443 0.1922 7.8243 4.4014 36.5250
4 95.5000 152.5575 0.1903 10.5563 4.6856 36.5100
4 96.0000 384.9935 0.1888 49.9023 7.5362 36.4950
4 96.5000 227.2459 0.1901 127.2673 10.7100 36.4875
4 97.0000 71.0548 0.3107 105.4590 8.7290 36.4800
4 97.5000 60.2580 0.8331 73.9419 6.7446 36.4850
4 98.0000 74.2086 1.8790 45.1442 5.2522 36.4900
4 98.5000 91.6249 3.4340 23.2932 4.3346 36.5425
4 99.0000 108.0133 5.3904 10.6514 3.9305 36.5950
4 99.5000 125.1649 7.5721 5.2293 3.6696 36.6100
4 100.0000 143.3744 9.7676 3.2978 3.4499 36.6250
4 100.5000 160.4836 11.7688 2.6513 3.3031 36.6800
4 101.0000 174.5492 13.4084 2.4304 3.2237 36.7350
4 101.5000 184.3343 14.5815 2.3496 3.1849 36.7525
4 102.0000 189.2958 15.2481 2.3193 3.1651 36.7700
4 102.5000 189.4800 15.4238 2.3115 3.1529 36.7875
4 103.0000 185.3710 15.1644 2.3165 3.1442 36.8050
4 103.5000 177.7243 14.5488 2.3301 3.1388 36.8075
4 104.0000 167.4167 13.6650 2.3497 3.1384 36.8100
4 104.5000 155.3285 12.5999 2.3735 3.1461 36.8475
4 105.0000 142.2639 11.4313 2.4001 3.1654 36.8850
4 105.5000 128.9048 10.2247 2.4285 3.2010 36.8975
4 106.0000 115.7924 9.0317 2.4578 3.2583 36.9100
4 106.5000 103.3275 7.8906 2.4872 3.3437 36.8950
4 107.0000 91.7840 6.8271 2.5164 3.4638 36.8800
4 107.5000 81.3277 5.8570 2.5450 3.6240 36.9025
4 108.0000 72.0378 4.9878 2.5729 3.8256 36.9250
4 108.5000 63.9271 4.2207 2.6005 4.0621 36.9275
4 109.0000 56.9603 3.5525 2.6283 4.3166 36.9300
4 109.5000 51.0687 2.9772 2.6582 4.5670 36.9650

Fig. 6.2.: Test data set applied to estimate parameters in the least squares sense. The test
data set consists of four cycles of different length, namely 29, 26, 28 and 27 days.
Measurements are available twice per day, since the hormonal components E2, P4,
LH and FSH data was taken from Pfizer data available at Konrad-Zuse Zentrum für
Informationstechnik Berlin that has been previously plugged into the Gyn Cycle
model. Since no simultaneous assessment of E2 and BBT concentrations was accessible,
standard BBT curves were taken and matched best possible to the other components.
Note, that by this approach, the test data set has to be considered purely artificial why
it is not considered apropos to evaluate the model. As far as possible the dynamics
and characteristics of the proposed model have been analysed, but real data would be
necessary to finally appraise the quality of the model. Clue released a beta version
of their App in early 2013 on www.helloclue.com, tracking volunatry user’s menstrual
cycle. Once the E2 saliva device is released, real data for model evaluation will be
available.
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