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Abstract

We present the problem of planning mobile tours of inspectors on
German motorways to enforce the payment of the toll for heavy good
trucks. This is a special type of vehicle routing problem with the ob-
jective to conduct as good inspections as possible on the complete net-
work. In addition, we developed a personalized crew rostering model,
to schedule the crews of the tours. The planning of daily tours and the
rostering are combined in a novel integrated approach and formulated
as a complex and large scale Integer Program. The main focus of this
paper extends our previous publications on how different requirements
for the rostering can be modeled in detail. The second focus is on a bi-
criterion analysis of the planning problem to find the balance between
the control quality and the roster acceptance. Finally, computational
results on real-world instances show the practicability of our method
and how different input parameters influence the problem complexity.

1 Introduction

Crew Scheduling and Crew Rostering are very important planning problems
arising in several industries and applications. In this paper we will combine it
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with a Vehicle Routing Problem (VRP), which is one of the most important
and basic planning problems in Combinatorial Optimization and Operations
Research, see Toth and Vigo (2002) for an overview.

The background of the studied problem is that the increase of individual
traffic requires from public authorities to spend much investments on exten-
sions or on maintenance of the road network. Therefore in many countries
tolls were introduced, especially on motorways, to finance the growing in-
vestments. We focus here on the case of Germany where a distance-based
toll on motorways and on some federal roads was introduced in 2005. All
trucks with more than 12 tonnes vehicle weight have to pay a toll depending
on their route distance and their emission class.

The enforcement of the toll is the responsibility of the German Federal
Office for Goods Transport (BAG). It is both done by 300 stationary control
gantries and by tours of about 300 mobile control teams on the complete
motorway network. The teams, also called control groups, consist mostly of
two inspectors, but in some cases of only one. Each team can only control toll
roads in its associated control area or region, close to their depot. Germany
is subdivided into 21 of those control areas.

Our challenge is to compute an optimal toll enforcement which aims at
controlling as much as possible trucks with the available personnel. This
optimization problem is called Toll Enforcement Problem (TEP) and it was
first introduced in Borndoérfer et al (2012¢). The TEP is a combination of
Tour Planning and Duty Rostering. We will explain later in more detail why
both problems must be integrated in this setting. In Borndérfer et al (2012b)
a case study of the TEP is presented, that shows the benefit of using the TEP
for the planning of toll enforcement. Since then the TEP gained acceptance
in practice. Hence, it is worth to give a more detailed presentation of this
approach, especially with regard to the modeling aspects, that also includes
the enhancements to handle bounds on night and weekend-duties.

In this paper we extend the work of Borndérfer et al (2012b) into several
directions. Section 2 presents a comprehensive discussion that situate the
TEP in the wide research fields on Vehicle Routing Problems and Crew
Rostering. Then, Section 3 recalls the planning problem in general with a
short description of an Integer Programming (IP) formulation for the tour
planning and a graph model for the rostering of the crews. In contrast
to Borndorfer et al (2012¢,b), where the rostering model was rudimentary
introduced due to space limitations, we provide in Section 4 an in-depth
analysis of how real-world requirements can be modeled. This is the main



focus of this paper.

Next, in Section 5 our integrated approach is motivated by demonstrat-
ing the limits of a sequential approach. Moreover, Section 6 discusses the
bi-criterion nature of the integrated model in more detail by utilizing the clas-
sical concept of Pareto-optimality. This is to analyse the relation between
control quality and roster acceptance. While in Borndérfer et al (2012b)
it was mainly stated that our approach helps to compute more employee-
friendly plans, we provide in Section 7 an extensive computational study on
different model parameters for real-world instances given from the produc-
tive operation at BAG. This demonstrates the tractability and applicability
of the mathematical solution approach. Section 8 concludes and indicates
further directions for future research.

2 Problem classification

To express it in simple words the TEP solves the following problem: On each
day of the planning horizon we route control groups through the network to
control trucks but with a very detailed view on the availability of crews that
requires a detailed construction of a duty roster. Hence, we start with a
comparison of our model to classical VRPs and to those with profits. Like in
many other VRPs there is a limitation on the length of a tour, here according
to daily working time limitations. Similar to the classical constraint that each
customer must be served, there are constraints that each network part must
be covered by a control from time to time. As in VRPs with Time Window
the temporal aspect of the inspector routing is also very relevant since the
amount of traffic changes a lot on different days and times of day.

A slight difference to many VRP models is that our routing graph is
not complete since deadhead trips, i.e., driving on non-toll roads, are not
permitted. But the main difference is the following: Most of VRP solutions
consist of a set of tours, but availability of drivers is ignored. Hence, the
feasibility of crew assignments is not part of the classical algorithms. But, in
our application there are a lot of rostering rules to cope with to determine
the set of available inspectors on each day. This detailed view on the crew
availability leads to a relevant problem extension in comparison to classical
VRPs.

We have chosen as our main objective that controls should be planned
in order to maximize the number of controlled vehicles. Therefore a maxi-



mization problem with limited resources has to be solved. Since we assign
a profit value to each motorway section to control, our problem relates to
a Team Orienteering Problem (TOP) or a Selective Vehicle Routing Prob-
lem, see Boussier et al (2007); Archetti et al (2013b). In the case of only
one vehicle this is known as the Orienteering Problem, a variant of the TSP
with profits. For a recent publication on the Orienteering Problem we refer
the reader to Vansteenwegen et al (2011) and for the more general case of
the TSP with profit see Feillet et al (2005) for a literature survey. Archetti
et al (2013a) studied another variant of a TSP with profits in case of several
vehicles, namely the Capacitated Team Orienteering Problem and the Capac-
itated Profitable Tour Problem. There are two main differences to Team Ori-
enteering problems, studied in general. First, our restriction of the available
personnel can not simply be expressed by (travel) cost constraints. Second,
the publications on TOPs ignore the fact that the problem has to be solved
on each day over several weeks with the same crews.

Our rostering model is very similar to the approach of Cappanera and
Gallo (2004). We also use a 0 — 1-multi-commodity flow model where each
employee complies with a commodity. Equally, the rosters correspond to
paths in a suitable planning graph with a layer for each day of the planning
horizon. Our main difference and extension to this approach is that our ob-
jective is not to maximize the number of covered activities or duties. There
are no uncovered activities in the TEP since the tours are chosen simultane-
ously to the assignment of inspectors to those tours. Therefore, each node
in the rostering graph of the TEP corresponds to potential duties and not to
fixed duties. This increases on the one hand the number of activities but on
the other hand it eliminates some symmetry in the rostering problem.

Another related publication to our rostering approach is a paper by Kohl
and Karisch (2004), also dealing with airline crew rostering. They provide
an extensive description on different requirements for the crew rostering and
how they are modeled. As a solution approach first rosters were generated
and then an optimal subset of them is chosen in the master problem. This
is different to our model where a flow based formulation in a roster graph
is used. Furthermore, the TEP adopts some modeling techniques that are
both used by Cappanera and Gallo and by Kohl and Karisch. Section 4 will
present this in more detail.

Another application for rostering is nurse scheduling, see Burke et al
(2004) for an overview on solution methods. There they present some ap-
proaches to mathematical programming not far from our method, but the
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main difference to our problem is that in a hospital a certain staff coverage
is mandatory on each day and time of day. An overview on general rostering
applications and methods can be found in Ernst et al (2004). They provide
a classification of solution methods where our attempt relates to the area of
mathematical programming and in particular to network approaches. The
authors claim that by using network approaches good quality solutions for
difficult real-world applications are still not easy to compute. Therefore, our
paper delivers a valuable impact in the field of rostering, since it presents a
successful use of mathematical programming to a real-world rostering prob-
lem.

As an alternative approach, in a companion work we have proposed a
game theoretic approach that takes into account the behaviour of drivers and
fare evaders to distribute the controls in a more strategical way, see Borndorfer
et al (2012a) and Borndorfer et al (2013). The output there is not a roster
or a tour plan but a probability distribution of the inspectors force over
all arcs of the network. We plan to integrate this planning strategy in our
optimization model in a follow-up work.

To the best knowledge of the authors there is no optimization approach to
inspection scheduling that includes rostering in the literature yet. There are
recent approaches on optimizing the schedule of Federal Air Marshals Tsai
et al (2009), on randomized patrol planning for the LA airport police Pita
et al (2008) and on scheduling randomized patrols for fare inspection at
LA Metro Yin et al (2012). All of them apply game theoretic methods.
Other related publications deal with scheduling of highway patrols Jiann-
Sheng and Tze-Chiang (2010), or with the scheduling of security teams in
mass transit railway networks Lau and Gunawan (2012). The application
of Lau and Gunawan is not far from our approach, but they restrict their
model to a one-day planning horizon. For a single day a detailed schedule is
determined, but the sequence of several duties of the same patrol team over
several days is not taken into account. There is no crew rostering in their
model. Another similar approach Thorlacius and Clausen (2010) is about
the scheduling of ticket inspectors in local trains in Copenhagen, Denmark.
There they optimize a temporal scheduling model of the inspectors but in
contrast to our approach neither an exact route determination nor a crew
rostering is considered.

The following Section 3 gives a partly informal description of the TEP and
afterwards in Section 4 a more in-depth analysis of legal and organisational
requirements for the rostering part of the TEP is presented.



3 The Toll Enforcement problem

In the TEP, the challenge is to integrate and to optimize the vehicle rout-
ing and the personalized crew rostering. Therefore, we developed a novel
integrated approach that solves both subproblems. In this report, mainly
a separate view on the constraints of each (sub-)problem is used, but we
will examine the bi-criterion character of the objective function later in more
detail. The coupling constraints, connecting both problems in the final IP
formulation, will be presented at the end of this section. A typical problem
instance is to produce a monthly schedule for one control area with given
personal data and resources, e.g., inspectors with working time accounts,
feasible routes, vacations, and so on.

We point out, that in the toll control setting it is not possible to ignore
the availability of crews. Each control tour can only be conducted by a
few amount of inspectors. Namely, the sections of the tour can only be
controlled by a group that has its home depot not too far away, since each
tour must start and end at the home depot of its associated group. Therefore,
a sequential planning strategy (compute control tours first and then crew
rosters) will tend to fail. We will discuss this in more detail in Section 5.

The assignment of a crew to a tour on a certain day must fit within a
feasible crew roster, which defines the duties for several weeks and respects
several restrictions regarding the sequence of duties. Minimum rest times,
daily working times, vacations or maximal amounts of consecutive working
days are examples of important requirements for the planning of rosters.
Hence, we use a personalized crew- or duty roster planning in our model.

We see our approach as an integrated model, since it simultaneously solves
tasks that are usually separated and solved sequentially. Traditionally, in
railway Ernst et al (2001) or airline Cappanera and Gallo (2004) crew ros-
tering problems, a timetable or flight plan is generated first. In a second
step the rolling stock or the aircrafts and thereafter duties or pairings are
scheduled. In the toll enforcement case these two scheduling problems are
neglected since a vehicle is permanently assigned to an inspector team and
all duties are uniform according to their duration, to their length and to the
numbers of breaks. In a third step for (individual) crew members rosters
over several weeks are generated that must cover all pairings or duties. In
those models duties or pairings (or in case of integrated duty scheduling and
rostering tasks) are an input of the model. But in the TEP tasks and duties
are generated at the same time when the personalized roster is generated.



The coupling constraints guarantee that crew members are only assigned to
tours carried out in their local area.

The following subsections discuss first the Tour Planning and second the
Crew Rostering problem each providing an IP formulation for the correspond-
ing subproblems. Finally, the coupling constraints that lead to an integrated
formulation are presented.

3.1 The Tour Planning Problem

In the TEP, the daily tours should guarantee a network-wide control that
takes given spatial and time dependent traffic distributions into account. To
say it in one sentence: We model the subproblem of finding daily control tours
by using a space-time network and formulate a corresponding optimization
problem as an Integer Program (IP). Feasible tours correspond to paths in
the network. We call this subproblem the Tour Planning Problem (TPP). In
the following we will describe some aspects that extend our brief explanations
in previous publications but the model remains the same.

We divide the network into sections. A section is a subpart of the network
with length of approx. 50-70 kilometers, where a team can be assigned to for
a control during a certain time interval, e.g., four hours. The (overlapping)
partition of the network into sections is mandatory for planning tours that
map requirements from real-world. Namely, the exact course of a control can
not be anticipated since catching an evader leads to initiating an administra-
tive offense procedure. The duration of this procedure varies greatly. After
that or even after a short control on a parking area it might be essential to
change the direction on the motorway. Therefore, the inspectors need some
degrees of freedom in space and time.

The problem to solve is to determine a sequence of sections and a time
frame, when the tour takes place. This clearly is a problem separated from
rostering since the route planning itself only considers the time horizon of
one day. During a tour sections can follow in a sequence if they have at
least one motorway junction in common. This guarantees that there are
no deadhead trips between parts of the control tour. The time frame of a
tour is important, since the profit values assigned to sections vary during
different points of time. For example, it might be useful to control some
sections in the morning and others in the evening or even later. Therefore,
in our setting profit values are guided by the historic number of trucks that
pass through a section during some time interval, called A. This rewards a
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control of highly utilized sections more than of sections with low traffic. The
background graphic in Figure 1 gives an example for such an estimation of
the number of trucks on a section during hourly time intervals.

Each duty, and respectively each tour, has a duration of eight hours, plus
setup and post-processing times, and a break in the middle. According to
the practical requirements discussed at the beginning of this subsection, only
values of two or four hours are appropriate for A, and respective for the
duration of a section control. For example in daily operation A = 4h is used.
This corresponds to the control of one section, a break, and a second control
section.

Since the set of admissible sections is different among the control groups, a
single commodity flow model does not suffice to solve the problem. Therefore,
the TPP correlates to a Multi-Commodity Flow Problem. Let P be the set
of all paths, that represent feasible control tours and Pj; C P the set of all
paths that are feasible for group f € F' and start at day j € J. In addition
for a section s € S, the set of all paths p € P that visit section s is denoted
by P,. Let further T be the set of all time intervals with length A during
a day. Then P;,; corresponds to all paths controlling s at day j during
interval t € T. By ks the minimum control quota, i.e., the minimum number
of control visits (with duration A) on section s during the planning horizon,
is indicated. Then let ws;, € R be the profit of controlling s during time
interval t; € T. The profit of a tour is defined as the sum of all its section
controls w, = ZSi ¢, Ws; t;-  We Introduce binary variables z,, p € P, to
decide that a tour is chosen or not. Then the following IP solves the TPP:

max Z Wy2p (1)

peP

d 5 <, V(f,j)eFxJ (2)

pEP; ;
Z Zp > Ks, Vs e S (3)
pEPs

Y om<i V(s,j,t) € Sx JxT (4)
peps,j,t
z, € {0,1}, VpeP. (5)

In the objective function (1) the profit of the selected tours is maximized.
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Constraints (2) guarantee that each group performs at most one tour per
day. Constraints (3) require that at least x, paths, that traverse section s,
are chosen in a feasible solution. The single control constraints (4) make
sure that different groups do not control a section at the same time. Finally
constraints (5) demand the path variables being binary.

The local control restriction also explains why it is still possible to gen-
erate all paths by a simple enumeration. Furthermore, if A = 4, the number
of tour variables (which is normally between 15000 und 250000) is less than
the number of roster sequence variables, which will be presented in the next
section. We prefer the path based formulation since it allows to define the
profit of a control tour independently of A and the length of the tour does
not have to be modeled via constraints. Both would be the case if we use a
formulation based on arcs variables.

3.2 Duty Roster Planning for Inspectors

The second task in the TEP is the planning of the rosters, called the Inspec-
tor Rostering Problem (IRP). There, the objective is to penalize unsuitable
sequences of duties. We will discuss later what this means exactly. We
formulate the IRP again as a Multi-Commodity flow problem in a directed
graph D = (V = (V U {s,t}), A) with two artificial start and end nodes s, t.
The nodes © € V represent duties as a pair of day and time period. The
arcs (u,0) € A C V x V model a feasible sequence of two duties according
to legal rules. Hence, we call the arcs in the model Duty Sequence Arcs. By
A,, we name all arcs representing duty arcs of inspector m € M. We call
the graph D Inspector Roster Graph. Therefore for each inspector its roster
corresponds to exactly one s-t path in f), called roster path.

Figure 1 shows the roster graph of an inspector for one week. Three
different time periods (E[arly], D[ay] and L[ate]) for the duties can be chosen
and the other nodes indicate days-off or holidays. The solid thick path,
starting from s to Monday 12am, then to Tuesday 8am, traversing to the
same start times during the next days until Friday and finally two days-off at
the weekend, exemplary shows a potential roster path for this inspector. The
traffic distribution chart in the background indicates that in the integrated
formulation all duties correspond to tours on sections that were planned
according to the traffic distribution, as explained in the previous Section 3.1.

This problem is modeled by an IP, but based on arc variables. For an
arc (u,?) € A define the costs cy,5 of using this arc in a roster. The costs
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Figure 1: Excerpt of an Inspector Roster Graph of one inspector during one
week. The solid thick path gives an exemplary roster. Three time periods
for duties are allowed. In the background the traffic volume of one section
during a week is shown. The traffic intensity is indicated by the numbers on
the right y-axis.

represent penalties on the duty sequence arcs. Let further R be a matrix
where each entry r; ; indicates the consumption of a resource ¢ by arc j. A
vector of upper bounds on resource consumption is given by r. The resource
constraints used will be described in detail in Section 4.1. Then a variable
;" is introduced for each arc (u,v) € A and inspector m. This leads to the
following IP formulation:

min Z Z CupTyyy, (6)

meM (yv)cA
> al =1, Vm € M, (7)
doam =Y ar, =0, Yo e V,me M, (8)
k u
Rx <, 9)
T, €10,1}, V(u,v) € A,me M. (10)
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The objective function (6) minimizes the costs of the rosters. The next
constraints (7) and (8) represent the flow value and the flow conservation for
the inspectors. Constraints (9) represent resource consumption of duties or
sequence arcs, that can not be modeled locally in the graph. And last but
not least the integrality constraints for the flow variables (10) are given.

Finally, the coupling constraints are presented. To this purpose, we de-
note by Py, the set of all paths feasible for group f and duty u € V. The
parameter ny gives the number of inspectors in group f and by m € f it is
meant, that the inspector m belongs to group f (which is a fixed assignment).
This leads to the following constraint.

Z nfzp—ZZfov:0Vf€F,u€f/

PEP; mef v

In the next Section 4 we will describe how some exemplary chosen require-
ments on crew rostering for toll inspectors can be modeled. Local modeling
in the graph is one key issue of our approach, since it helps to reduce the
number of (resource) constraints in the IP. In case where a local modeling is
not possible we will describe the corresponding resource constraints.

4 How to model duty sequencing rules

First, we consider requirements that can locally be modeled in the roster
graph. Our first requirement to discuss is that duties must not start at
arbitrary points of time during the day. Therefore, we define a Duty Type by
its start and end time and only duties corresponding to one of the pre-defined
duty types may be scheduled. We remind the reader from Section 3.1 that
all control duties are uniform according to their length and therefore one can
classify them according to their start (and end) time. Duty types can easily
be modeled since each potential duty corresponds to a node in the roster
graph. We explained above that a node is defined by a specific day and a
time period. Hence, only nodes whose time period corresponds to a feasible
duty type are generated.

In classical planning approaches, like in public transport Weider (2007),
duty types are part of duty scheduling. There duties can be generated in-
dependently for each duty type in the pricing step. Then only tasks that
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are usable by the current duty type are present in the pricing network. Af-
terwards, in duty rostering the beginning and end of a duty is not changed
anymore.

The second issue is how to take annual leave days or weeks into account.
Suppose an inspector m has a leave day on a certain day, e.g., on a Wednes-
day. At this day inspector m must not be assigned to a duty. To this purpose
for the respective day a “holiday”-node is generated. All arcs of flm, which
start or end at a node belonging to this Wednesday, are incident to this node.
Hence, it is not possible to define a path in D with any other than the holiday
node on this Wednesday. Further in a preprocessing step holiday nodes can
be contracted to better model the sequence between the last duty before the
holiday and the following duty after the holiday. Pre-assigned duties, e.g.,
staff meetings, can be modeled analogously.

A very important requirement for a duty roster is to respect minimum
rest times between two subsequent duties. The German Working Hours Act
(Arbeitszeitgesetz) lays down 11 hours as minimum rest times. This is a
local decision in our model since there is a conflict between two duties if
the precedent duty ends less than 11 hours earlier than the seconds starts.
A graph based approach, as it is used here, is very suitable to resolve this
conflict. It can simply be modeled there by only setting arcs between two
duty nodes, if the head node duty starts at the earliest 11 hours after the tail
node duty has ended. See for example the early duty on Tuesday 4am-12am
in Figure 1. There is an arc from the early duty on Monday to this duty
since the rest time equals 16 hours. But there is no arc between the late duty
on Monday 12am-20pm and the early duty on Tuesday, since the rest time
is only eight hours. According to this modeling of rest times it is a simple
observation that D is acyclic and almost no arcs exist between duty nodes
belonging to the same day.

This modeling has the advantage that we do not need any rest time con-
straints in our model. It is the main algorithmic aspect and contribution
in this paper that we try to model as many constraints as possible as local
decisions in our graph model. This is a key issue to reduce the high com-
plexity of the integrated problem to get a final optimization problem to solve
that is as small as possible. On the one hand this modeling technique is
commonly used in network flow approaches. But our goal is not to introduce
this technique itself. On the contrary, we want to show that it supports a
strong graph formulation, reducing the IP complexity. It leads to a compact
integrated formulation for a large-scale optimization problem that combines
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two different planning steps.

A similar regulation is valid for the rest time when there are days off in
between. In case of a time-off there should be at least two days off to ensure a
sufficient rest time for the inspectors. This is also modeled by duty sequence
arcs. Therefore, a one-day-duty-off would be represented by sequence arcs
between nodes on day j and nodes on day j + 2. Then a two-days-off is
accordingly modeled by arcs between nodes of day j and day j + 3. To
prevent “short weekends”, i.e., only one day-off, no arcs between days j and
j + 2 are generated. As a consequence if an inspector has a duty on day j,
then his next duty cannot be on day j + 2.

Next, we show how to model (employee) preferences that do not corre-
spond to statutory rules but should be considered by the model as best as
possible. These rules are motivated by the human biorhythms and play a
crucial rule in rostering due to the monthly time horizon. In particular in
planning of safety relevant tasks, e.g., in the airline and railway industry,
the fatigue levels depending on the human biorhythms of the personnel must
be incorporated. A common approach is to handle this by the objective
function.

In our application, the preference criterion relates to the sequence of du-
ties, namely to changes of the duty starting time on two subsequent days.
This is called a rotation. If a duty on Thursday starts later than on Wednes-
day (the day before), this is an example of a forward rotation. According to
this definition the case that a duty on a subsequent day starts earlier than
on the day before is called backward rotation. Backward rotations can only
occur, if they do not violate the minimum rest time between the correspond-
ing duties. The solid thick path in Figure 1 contains a backward rotation,
since after the Monday 12am duty the following duty on Tuesday yet starts
at 8am. Even though rotations are legally feasible, they should be avoided.
It is particularly known for backward rotations that they alter the human
biorhythms and affect the sleep Knauth and Hornberger (2003). Hence, we
are able to tackle rotation costs directly by definition of the arcs.

4.1 Resource constraints

In the following, two important types of resource constraints, used in our
model, are presented. First, the observance of working hours of the inspec-
tors is discussed. It is very important that their average working time is
approximately kept. At the beginning of the planning horizon the current
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account value a,, of each inspector m € M is given. At the end of the plan-
ning horizon a feasible interval for the working time account is given with
bounds ¢,, and o,,. Each duty u on the roster path of m consumes some
working time w, and therefore the constraints bound the length of the roster
paths. This leads to the following constraints of the resource “working time”.

Z Wulyy + am < 0, Ym € M, (11)
(u,0)EAp,

Z Wulyy + Am > Ly, Ym0 € M. (12)
(u,0)EAp,

Kohl and Karisch (2004) call this kind of rule a horizontal rule according to
the fact, that in many rotas the roster of an inspector is displayed in a single
row and only one roster is involved by this rule. The working time-limits
¢ and o are not the same for all inspectors since part-time workers, regular
employees and officials have different daily working times.

Second, we describe a new type of resource constraints in our model. We
will also analyse the effect of these constraints in the computational results
presented afterwards. It is about unsocial working hours. This term is hard
to define, but in this paper we use the following definition: A duty consumes
resources of unsocial working hours, if it includes times in the late evening,
during the night, at the weekend or at bank holidays. For health reasons and
to ensure the reconciliation of work and family life, the number of unsocial
hours to work is restricted. For inspector m let ~,, be the maximum number
of unsocial working hours in the current planning horizon. Each duty u has a
unsocial work part p, with 0 < p, < w,. This leads to the following resource
constraint for unsocial working hours.

Z PuTyy < Ym,Vm € M. (13)

(uw)EA,

We indicate that those constraints do also involve only one roster and there-
fore correspond to a horizontal rule.

In contrast to horizontal rules Kohl and Karisch name constraints as ver-
tical rules if they affect several rosters. An example for a vertical rule, that
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could be used in the TEP, are so-called Duty Miz-Constraints. They guar-
antee a pre-defined mix of the duty types providing lower and upper bounds
on how many of all duties may belong to the current type. An important
purpose of them is to give upper bounds on certain duty types, e.g., overnight
duties. But since resource constraints were used to bound unsocial working
hours, duty mix constraints became obsolete in our model. Therefore, they
are not used in our computations presented later in this report. Another
work rule used in the TEP is that inspectors must have at maximum six
working days in a row. This is simply modeled by constraints prohibiting
sequences of duties on more than six days without a duty-off (or vacations)
in between. They could be seen as rolling resource constraints since they
involve only a subset of a roster, i.e., for each set of seven consecutive days
one constraint is used. Thus, in case of n days, n — 6 additional resource
constraints are defined involving days j until j + 6 for j € {1,2,...,n — 6}
with n > 6. Requirements representing other modeling techniques than the
presented ones are currently not used in the TEP.

Before we want to look in more detail at the two different objective func-
tions, the size of the roster graph is shortly discussed. The number of nodes
depends on the length of the planning horizon and on the number of duty
types. The number of arcs then clearly depends on the number of nodes,
since the graph is connected and also on the number of inspectors. Espe-
cially in case of increasing duty types there is a significant increase in the
number of arcs. Furthermore it decreases if there are a lot of fixed duties or
holidays during the planning horizon. In Section 7 some numerical examples
will be presented.

5 A sequential solving approach

In this Section problems are discussed that arise when a straight-forward
sequential solving approach for the TEP is used. This will prove the benefit
and need of using an integrated model. In a sequential approach we first
solve a tour planning problem independently of the crew assignment and the
rosters are computed in a subsequent step.

To that end, in a first step the tour planning problem (1)-(5) is solved
for each day of the planning horizon. We assume that tours can be arbitrary
distributed along the sections of the network, since a tour is not assigned
anymore to a certain crew that may only conduct controls on parts of the
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Duty Type Sections Group Tours

06:00 8-8 1 none (vacation)
06:00 9-7 2 14,33.214-2,221331,2-2
06:00 1-4 3 none (vacation)
06:00 3-3 4 3-3,1-3,3-1
06:00 21 5 1-4,3-3,2-1,4-2,2-2,1-3,3-1,2-2
06:00 4-2 6
08:00 16-9 7 none (vacation)
09:00 9-4 8 8-8,9-7,3-3,16-9,9-4,8-8
13:00 8-8 9 none (vacation)
13:00 2-2 10 9-7,16-9
13:00 1-3 11
13:00 3-1 12 1-4,3-3,2-1,4-2,2-2,1-3,3-1,2-2
20:00 2-2 13 8-8,8-8
Table 1: Tour suggestions for Table 2: List of feasible tours
the first day of the planning for each control group on the
period, a Wednesday first day, a Wednesday

current control area. Therefore, constraints (2) are replaced as follows. Let
P; be the set of paths starting on day j € J and v the number of control
groups in the current control area. The following constraints are part of the
pure tour planning model:

Y 5 < Vield

pEPj

Since each group executes at most one tour per day 7 is a reasonable upper
bound on the number of tours during a day. To test the sequential approach
we used an exemplary instance from a control area, called ry, with discretiza-
tion A = 4h. There are 24 sections (numbered from 1 to 24) to control, 13
groups and 7 duty types. The pure tour planning approach could be solved
within seconds and next some results are discussed in detail.

Table 1 lists the tours suggested for the first day, a Wednesday. Before the
rosters are generated the tours must be assigned to control groups. Table 2
shows for each group the set of feasible tours on this day. It is obvious that
no tour can be performed by groups 6 and 11. Then, one can either give a
day-off to those groups or go back to the tour planning part and compute
the best profit tours for groups 6 and 11. There only tours feasible for one of
both groups are considered. Assigning a day-off is inappropriate since either
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a single day-off is not desired or in case of several days where this group can
not be allocated the working time consumption is too low. But an individual
tour generation for a single team is in fact a kind of integration of tour
planning and rostering or a tour planning approach where crew availability
is a very important issue.

Next, a subset of the tours is distributed to the groups depending on crew
feasibility and profit. But this team assignment can not be done indepen-
dently for each day to prevent infeasible rosters. Assume for example group
8 is assigned on Wednesday to tour 8-8 starting at 1pm, but on Thursday
to tour 9-7 starting at 6am. This is infeasible since the minimum rest time
equals only eight hours. Hence, the final decision on the tours must be taken
in the rostering optimization. But the resulting model is then quite close to
our integrated model described in Section 3. We summarise that a sequential
approach would either lead to a lot of re-computation steps of several tours to
prevent infeasible duty rosters and would lose sight of the optimization goal.
The alternative would be to use a model with a lot of integration aspects
similar to the TEP.

6 Analysing the objective function

It is obvious that the TEP has two objectives: on the one hand the rewards
of the sections to control and on the other hand the costs for the rotations. In
our last publication Borndérfer et al (2012b) the focus was on the influence
of rotation penalties on the number of rotations in an optimal solution. It
was a very limited view on the problem since we only looked at two different
not exactly specified levels of the rotation penalties and concluded that an
increasing rotation factor leads to solutions with less rotations.

Therefore, we like to have a more sufficient and detailed look on the two
different objectives. With two objectives, the TEP relates to a bi-criteria
optimization problem, a problem in the important field of Multi-criteria Op-
timization, see Ehrgott (2005) for an overview. We analyse the interplay of
the objectives with the well-known concept of Pareto optimality Ralphs et al
(2006). First, we shortly recall the definition. Let max,cx (fi(z), f2(x)) be a
bi-objective problem. A feasible solution z is called Pareto optimal, if there is
no other solution z such that f;(x) > fi(2) for i = 1,2 and fi(x) > fi(2) for
at least one i € {1,2}. A feasible solution 7 is called weakly Pareto optimal,
if either f1(2) > fi(x) or fo(&) > fa(x) holds for all other solutions x € X.
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In this section, our main contribution is the analysis of parts of the Pareto
frontier of one exemplary chosen problem instance to get an indicator for the
Pareto frontier of TEP instances. To this purpose the bi-objective problem
is transformed into a single objective optimization problem by the standard
weighted sum approach Ralphs et al (2006). Therefore, we introduce a pa-
rameter « € [0, 1] and combine the objectives (1) and (6) to:

max (1 — «) Z WpZp — Z Z C o) () (14)

peEP meM (uw)eg

The theoretical benefit of using the weighted-sum approach is well-knownRalphs
et al (2006). But for the sake of completeness we repeat in a proposition a
short proof of this result applied to the TEP.

Proposition 1 (Weak Pareto-optimal solutions). We are given a TEP in-
stance in the integrated IP formulation, but with the weighted objective (14)
depending on the parameter a. We call this problem TEP(a). Then Ya €
[0,1] an optimal solution (z*,z*) of the TEP(a) is weak Pareto-optimal.

Proof. Let (z*, 2*) be an optimal solution of the TEP(«). Assume this solu-
tion is not weak Pareto-optimal. Hence, there exists another solution (Z, 2)
with both ) w,Z, > _ wyz; and

peP peEP
DD CanTln > D D (@)
meM (u,v)eA mEM (yuv)eA

There, we replaced the subtraction in the objective by a sum by setting
Cuw) < 0, V(u,v) € A. Then it follows that

(1—a) Z wyz, + a Z Z Clun) (T )y <

peP meM (uﬂ,)eg
(1—a) Z wpZp + Z Z Cluo)Z () -
peP meM (u,v)eA

But this is a contradiction to the condition that (z*, 2*) is an optimal solution
of the TEP(«) O O
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Figure 2: Subset of the Pareto frontier of instance ri-test, on the x-axis
weight factors o and on the y-axis the control profit on the left and the
number of rotations on the right in reverse direction

Using the same reasonning, it is easy to show that every solution of
TEP(a) is strongly Pareto-optimal Vo € (0, 1).

For the test we choose an instance ri-test (corresponding to a German
control area called r1). This instance involves 21 inspectors, 17 control sec-
tions and 6 duty types. The resulting MIP (before presolve) has then 7738
constraints, 96526 variables and 1233369 non-zeros. We varied the weight
parameter a for several values including the extremal ones. The tests were
done on a Dell Power Edge M620 computer with an 8-core Intel Xeon CPU
of 2,70 GHz using Cplex 12.5 with 8 threads and default parameter settings.
Since this instance was quite easy, each run with a different value of a was
solved to optimality within two hours.

In Figure 2 one can see the results of our computations. The x-axis
corresponds to different values of a, while on the left y-axis the control profit
and on the right axis the number of rotations in reverse direction is shown.
In the case of no rotation penalties, i.e., a = 0, there are quite a lot rotations
(48). But even for a very small value of «, e.g., 0.02, the number of rotations is
rapidly reduced to a total number of 12, while the profit value remains almost
the same. An explanation for this observation is that there is symmetry in
the problem which allows for changes of duties without losing control quality.
Since each section can be controlled by more than one team, in some cases a
simple permutation of the tours of two teams can resolve a rotation without
changing the profit value. As an example, consider two groups t; and t,

19



that both can control on sections s; and s,. We are given a plan with two
rotations, for t; on Monday at 7am on section s; and on Tuesday at 10am
again s;. For t5 on Monday at 10am and on Tuesday at 7am on s, on both
days. The schedule on Tuesday is now changed as follows: group t; controls
from 7Tam sy and group ¢, from 10am s;. Then the profit remains the same,
but two rotations are resolved.

A value a > 0.1 again reduces the number of rotations until o = 0.5,
where the number of rotations equals zero. Indeed the profit value is de-
creasing when the weight factor for the rotation penalties increases but the
loss is very small. It is approximately as high as the profit of a tour on
low-traffic sections. Another interesting case is a = 1, where no profit value
is considered for the toll enforcement. The resulting profit value in the so-
lution, i.e., the value that is assigned to nodes on solution paths in the tour
planning network, can be arbitrary bad, since there is no incentive for the
model to control sections with high traffic more than those with low traffic.
In this case it was only 238963.

The restriction on the weak Pareto-optimality property can also be ob-
served with our example. Namely, in the case of & = 0 we discussed that a
simple permutation of duties between two teams can reduce the number of
rotations without changing the control profit. If we denote our optimal so-
lution again by x* and the permuted by 7, it holds that fi(z*) = > w,z,; =

peEP

> wpi, = f1(Z) but fo(z*) < f2(Z). The same holds for the case of @ = 1 by
peEP
exchanging f; and f5 in the equations of the previous sentence. This violates

the condition of (strong) Pareto-optimality.

The results of the test indicate our assumption in the previous publi-
cations that a rotation free plan can be achieved without a big loss of the
profit. Hence, finally we tried to verify that this result was not an exceptional
case. For this purpose, four other real world instances from control area ry
were tested with regard to the influence of rotation penalties on the control
reward. The control profit value of two parameter settings was compared.
First, a setting without rotation penalties was used, i.e., &« = 0. In this set-
ting any number of rotations can be part of the solution. The only focus lies
on the control rewards. Second, we used a setting where the penalties lead
to an optimal solution without any rotations, e.g., & = 0.6 in our previous
example. The solutions in the second setting with no rotations never had a
loss of more than 0.8% of the control profit achieved by the first setting.
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We conclude this section with a short comment on the strength of a
mathematical optimization approach in case of more than one objective. A
bi-criterion objective function allows to use different parameter settings and
focuses on objectives to execute several optimization runs for a planning
scenario. Then the planner can compare the different solutions and choose
one as the best. In manual planning a comparison of alternatives is not
possible since it takes a long time to generate even one plan.

7 Results from production operation in Ger-
many

We implemented our model and algorithm in a computer program, called
TC-OPT, which has an interface to the commercial planning suite IVU.plan
since release 11.2 from the IVU Traffic Technologies AG. In the following we
will analyse the performance of TC-OPT with respect to various aspects
on instances from different control areas. In all tests, scenarios from the test
environment of BAG or from real-world productive operations are used.

The computational results are divided into three parts, each of them with
a different scope. The first two parts are parameter tests. In the first one the
computational complexity of the basic model depending on different input
sizes is shown. The second one compares varying settings of the new feature
regarding bounds on unsocial working hours. The third one includes more
regions and more duty types than the tests published so far, demonstrating
that the TEP and our solution approach is able to handle these extensions.

First, we give some basic settings we used for all our computations. As an
IP solver Cplex 12.6 by IBM with the default parameter setting was applied
by using up to eight threads. All computations were done on a Dell Power
Edge M620 workstation with an 8-core Intel Xeon CPU with 2,70 GHz and
Ubuntu 14.04 as operating system. The memory limit for the solution tree
was 40 GB. Furthermore, there was a time limit of 6 hours (= 21600 seconds)
for each instance. All instances are based on a time discretization of A = 4h.
All presented times will be in seconds.
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InstanceRegion Inspectors Sections Fixed Duties Duty Types Nodes Arcs

I1 9 23 24 0 7 219 452811
12 T 23 24 106 7 219 331151
13 T 23 24 299 7 219 144874
14 1 22 22 238 4 126 60581
I5 1 22 22 238 6 188 134179
16 1 22 22 238 8 250 236092
17 1 22 22 238 12 374 523286
18 1 22 22 238 16 498 923751

Table 3: Key characteristics of test data for varying duty types and fixed
duties.

7.1 Correlation between the tractability of the TEP
and the size of the roster graph

At the end of Section 4.1 we discussed the basic values that have a major
influence on the size of the roster graph. In the following we will examine
how different basic values lead to different graph sizes and if they have an
influence on the tractability of the TEP. To that end, we study two scenarios
from different control areas r; and 7s.

Table 3 includes the description of the test set where both scenarios are
tested with three or five different parameter values. First, we describe the
columns indicating the parameter setting of the instances. The first two
columns give the name of the instance and corresponding region. Instances
I1, I2 und I3 belong to the first scenario and the others to the second. The
number of inspectors is in the third column while the fourth one presents
the number of sections. The fifth column gives the number of fixed duties
according to holidays, duty-off requests or other fixed duties, e.g., to conduct
stationary controls or staff meetings. The sixth column “duty types” gives
the number of duty types allowed. The last two columns give the number of
nodes and arcs in the roster graph D.

As stated earlier, the number of arcs indeed decreases when more fixed
assignments are recorded. Obviously, the number of arcs significantly in-
creases when more duty types are considered. The number of roster arcs for
the instance with 16 duty types is more than 15 times as high as the number
of arcs of the instance with only four duty types.

In Table 4 the IP solution analysis is presented. Columns two and three
give the number of constraints and variables of the IP. The fourth one gives
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Instance Rows Columns Time (LP)  Time Gap (%) Time

1st sol (sec.)
I1 16144 606664 206.90 1000 2.02  21600.00
12 15335 469849 108.53 3600 3.82  21600.00
13 13779 249062 35.07 150 1.43  21600.00
14 8855 117917 7.96 80 - 2418.32
15 11231 220183 20.99 140 0.38 21600.00
16 13607 350764 24.17 1070 0.66 21600.00
I7 18965 695294 56.76 1550 1.57  21600.00
I8 23753 1153095 212.20 7275 2.39 21600.00

Table 4: Results of performance tests for varying duty types and fixed duties.

the solution time for the linear root relaxation and the fifth the time when
the first integer was found. The following gives the integrality gap in percent
and the last the overall solution time.

The first observation is that with our modeling techniques we are indeed
able to limit the number of constraints such that never more than 24000 are
present in the model. Furthermore, one could observe a proportional ratio
between the number of roster arcs (and therefore also between the number
of variables) and the solution time of the linear root relaxation, i.e., the time
to solve the root LP increases with a higher amount of roster arcs. In case of
the scenario with the different number of duty types this holds also for the
time of the first solution and for the final solution gap. Only one instance,
4, could be solved to optimality. But even for the huge instance with 16
duty types and almost one million roster arcs, I8, the final gap is not more
than 4%. Hence, in each case a feasible solution with a proven high quality
can be found. We can conclude that both the number of fixed assignments
and the number of duty types have a major influence of the complexity of
TEP instances.

7.2 The influence of resource constraints

In this section we study to which extent the resource constraints, that restrict
the number of unsocial working hours, influence the solution behaviour of the
TEP. Hence, we consider again a scenario from region 7, but different from
the one used in the previous section, and a second from another region rj.
For each scenario we tested three different variants of considering unsocial
working hours, called case A, B and C. Case A represents a setting where no
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Instance Region  InspectorsSections Fixed Case Duty Types Roster Arcs

Duties
19 r3 17 11 82 A 11 631626
110 r3 17 11 82 B 11 631626
111 r3 17 11 82 C 7 261956
112 1 22 22 191 A 12 657334
113 1 22 22 191 B 12 657334
114 1 22 22 191 C 8 299014

Table 5: Key characteristics of instances with constraints for different unso-
cial work hour settings.

limitations on unsocial work hours exist. Case B corresponds to the resource
constraints introduced in Section 4.1. The last case C' represents the setting
that unsocial work hours are not allowed at all. Hence, late, night or weekend
duties must not be planned. At first glance, this setting seems to be unreal,
but imagine the case that duties covering unsocial hours could be planned on
the basis of individual duty requests of the inspectors. Then they are fixed
duties and will not be changed by an algorithm.

Table 5 gives all important data concerning the test of the unsocial work-
ing hours. The columns start with the name of the instance, the region and
the number of inspectors and sections. One can observe, that in region r3 the
number of inspectors and sections is less than in region r; and ry. The fifth
column gives the number of fixed duties. Column six indicates the different
settings for the unsocial hours. The seventh column presents the number of
duty types and the last the corresponding number of roster arcs. As shown in
the previous section a higher number of duty types also leads to a quite large
number of roster arcs (> 500000 arcs). But in case C there is a huge decrease
in the number of arcs. The reason is that duty types covering unsocial work
hours can be neglected.

The performance analysis of the second test is given in Table 6. We refer
the reader to Section 7.1 for a description of the headers. Comparing cases
A and B one can see that the B instances are slightly easier to solve, since
the root lp can be solved a little faster and the final gap is smaller. An
explanation of this behaviour might be that inspectors have different upper
limits for unsocial hours in a month, depending on their unsocial work duties
done in the past. Then a few groups may have an upper bound close or equal
to zero. For those inspectors, sequence arcs connecting duty types consisting
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Instance Rows Columns Time (LP)  Time Gap (%) Time

1st sol (sec.)
19 14305 761305 193.78 9600 1.63 21600.00
110 14339 761305 153.04 5850 1.14  21600.00
I11 9471 344479 30.42 70 - 252.05
112 17258 897022 199.04 900 1.97 21600.00
113 17302 897022 137.37 6380 1.35 21600.00
114 12202 458806 37.32 200 - 355.03

Table 6: Results of performance tests of resource constraints for unsocial
work hours.

Instance Region Inspectors Sections Fixed Duties Duty Types Roster Arcs

13 ) 23 24 299 7 144874
14 1 22 22 238 4 60581
110 T3 17 11 82 11 631626
115 79 23 24 189 8 268997
116 T4 21 14 267 ) 86991
117 79 23 28 539 10 158326
113 T 22 22 191 12 657334

Table 7: Key characteristics of instances for different regions.

of many unsocial hours are easily cut off by the IP solver, similar to case C.

Omitting duties covering unsocial working hours like in case C' does not
only lead to a smaller graph size and less variables, but also makes the
instances easy to solve. For both scenarios an optimal solution can be found
within six minutes.

7.3 Results from the Roll-out in Germany

Last but not least we tested the general performance of the TEP with seven
instances from four different control areas (regions). Those instances directly
originate from pilot tests and production operation at the BAG.

Table 7 gives the input data for all instances. We refer to Section 7.2 for
a detailed description of the column names. It is apparent that the number
of sections and duty types vary a lot among different regions and scenarios.
Hence, also the number of roster arcs has a broad variation ranging from
60000 for region ry in instance 14 to more than 650000 for the same region
in 113. For three instances (110, I13, I17) resource constraints for unsocial
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Instance Rows Columns  Time Lower Bound  Time Gap Time

(LP) Gap (%) 1Istsol (%) (sec.)
13 13779 249062  35.07 7.48 150 1.43 21600.00
14 8855 117917 7.96 11.77 80 - 2418.32
110 14339 761305 153.04 2.04 5850 1.14 21600.00
115 15401 402285 77.82 9.34 500 0.63 21600.00
116 8068 101941 9.53 5.13 100 - 204.35
117 17871 352396 24.46 5.08 175 - 939.59
113 17302 897022 128.12 4.05 6200 1.36 21600.00

Table 8: Results of performance tests for different regions.

working hours were part of the model. As in Section 7.2, instances 110 and
[13 use case B and therefore the regular setting of unsocial working hours.
Furthermore, we remark that instances I3 and I4 were first introduced in
Section 7.1.

The analysis of the computational performance of the third test is shown
in Table 8. For the explanation of the column names we again refer to the
previous tables. We only mention the new entry in column five, “Lower
Bound Gap (LB)”. This corresponds to the linear root relaxation before
adding cuts, which is used as an initial lower bound, i.e., as dual bound, in
our algorithm. To define this value we introduce the optimum of the root
relaxation by “lp(opt)”and let best_int the best found integer solution.
Then we define the Lower Bound Gap by LB := %. As expected
from the different number of roster arcs (see Table 7), there is also a broad
variation in the number of variables, up to almost 900000. The solution time
of the linear relaxation in the root node (without cuts) ranges from 8 seconds
up to 3 minutes. We state that feasible solutions were found for all instances
with a final integrality gap that never exceeds 1.5%.

One reason for this encouraging result is the good quality obtained by
the initial lower bound. The optimality gap w.r.t. LB is always less than
12%. Especially the two huge instances 110 and 113 benefit from an lower
bound that is quite close to the best primal bound. A first feasible solution is
computed for almost all instances within 10 minutes, except for instances 110
and I13 that require more than one hour. Three instances could be solved to
optimality. The longest of them, 14, took around 40 minutes, while 116 was
solved optimally in less than 4 minutes. We note that the instances solved
to optimality correspond to those having less variables and hence a faster
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LP-solution time. In addition for all of those feasible solutions were found
within three minutes. We again see the influence of fixed assignments on the
computational performance since for all optimal solved instances more than
200 duties were fixed.

This paragraph discusses some additional findings of our tests and presents
some further parameter tests. As shown in Section 7.1, we were able to solve
an instance with 16 duty types with only a small integrality gap. This does
not indicate that we can solve all scenarios with 16 duty types during six
hours. In fact, using only one additional duty type for instance 110, results
in finding no solution within six hours. Another observation is that all in-
stances solved to optimality in our three different tests have less than 500000
variables. We also tried to solve two instances with a time discretization
of two hours. For instance I1 no solutions were found within six hours of
computation time but 14 could be solved to optimality within four hours.
This is in fact not relevant for the current real-world operation but could
be an issue for future research. In addition a test run covering two control
areas together was executed. There the number of inspectors was 39 and
the number of sections 31. It was also solved within six hours but with a
slightly higher gap of 7.6%. Finally, the results indicate that the number of
sections is not decisive for the computational complexity (in contrast to duty
types and fixed duties). The instance 117 has more than twice the number
of sections compared to 110, but it is much easier to solve.

In Borndorfer et al (2012b) a proof of concept with results for test com-
putations of one region was provided. After these successful pilot tests the
use of our algorithm was extended in 2013 to additional regions as part of an
extensive Roll-Out project. Since the beginning of 2014 all control areas in
Germany are planned by using mathematical optimization. Hence, we can
proudly conclude that our integer programming approach gained acceptance
in practice. This is the first time that toll enforcement tours and duties are
planned by an integrated optimization approach. Our approach supports the
planners to achieve a better quality of control plans by using state of the art
mathematical optimization techniques. This makes their daily work easier,
more transparent, more objective, and most of all more efficient.
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8 Conclusion and Future Research

In this paper we extended our previous work on the Toll Enforcement Prob-
lem (TEP), a special type of an integrated Vehicle Routing Problem, into
several directions. The TEP is used to compute optimal tours and inspector
rosters for the truck toll on German motorways. First a classification of the
TEP into the field of routing and rostering problems was presented. Then
we shortly presented an IP formulation for the tour planning and a graph
model for the rostering of the crews which provides new insight in the studied
problem. In our opinion, the models are sufficiently general to deal also with
other inspection problems, where inspection tours are conducted. The ros-
tering problem corresponds to a multi-commodity flow problem formulated
as an [P with additional resource constraints.

One main focus of this report was the description of typical requirements
and legal rules for the crew rostering. In many cases these conditions can
be satisfied according to an appropriate local modeling in the roster graph.
Therefore no constraints were needed in the IP formulation to guarantee com-
pliance of those rules. Furthermore, the limitations of a sequential approach
were presented using a small exemplary computation. Another aspect was an
extended analysis of the bi-criterion character of our problem. We analysed
a set of these solutions located on the Pareto-frontier. Most of the rotations
could be eliminated according to some symmetry in the problem structure.
Therefore even a very small penalty value leads to a significant decrease of
rotations. We were able to provide solutions without rotation costs at the
expense of a hardly smaller control quality.

Finally computational results from real world instances were presented.
We showed in detail the influence of different input data, like fixed duties,
duty types or bounds on unsocial work hours, on the problem complexity
and the solution behaviour. Instances from several control areas representing
different problem sizes were analysed. The results indicate that our graph-
theoretic model and algorithmic approach is indeed able to solve the instances
quite fast and achieves a very good solution quality. Practical instances can
still be solved by modern state-of-the-art solvers. Therefore, we can conclude
that with our model and in particular with the approach of omitting infeasible
duty sequences during the construction of the roster graph it is possible to
tackle this challenging real-world problem.

An outline for future research could be three main aspects: An important
issue is to increase the simultaneous number of duty types used during one
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computation. A second research direction is to further decrease the problem
complexity, e.g., by a dynamic generation of control tours or duty rosters. In
addition, advanced problem specific algorithmic approaches like heuristics,
multi-level algorithms or branch and price should be developed. The third
aspect is the generation of rosters based on a probability distribution of
inspectors, which is the output of the game-theoretic approach Borndorfer
et al (2013) on toll enforcement. Other research goals are the transfer of
our model to other inspection applications and incorporation of additional
features and requirements in the TEP.
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