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Metric Inequalities for Routings on
Direct Connections∗

Ralf Borndörfer∗∗ Marika Karbstein∗∗

February 18, 2014

Abstract

We consider multi-commodity flow problems in which capacities are installed
on paths. In this setting, it is often important to distinguish between flows on
direct connection routes, using single paths, and flows that include path switch-
ing. We show that the concept of metric inequalities to characterize capacities
that support a multi-commodity flow can be generalized to deal with direct con-
nections.

1 Introduction

Network design problems deal with installing capacities on arcs to support a multi-
commodity flow routing of a given demand. A key component of such models are the
metric inequalities by Iri [3] and Kakusho & Onaga [5] that characterize the feasible
edge capacities, see [6, 1] for surveys. We consider a generalization in which capacities
are installed on paths. This has applications, e.g., in public transport, where the paths
correspond to lines [2, 4]. It is then important whether a commodity is routed on
direct connections on single paths or whether one has to switch paths, in which case
a switching penalty arises. Because of these penalties, direct connection routes are
preferred, unless routes with path-switching are forced by a lack of capacity. The task
is to design a system of paths with associated capacities such that a weighted sum of
path and routing costs, including switching penalties, is minimized. This paper presents
a tractable model to handle such problems. It is based on a novel concept of generalized
metric inequalities for direct connections.

We use the following notation. Let G = (V,E) be an undirected graph, P a set of
explicitly given elementary paths in G, and d ∈ QV×V

≥0 a demand for each pair of origin-
destination nodes (OD-nodes) s, t ∈ V . We denote by D = {(s, t) ∈ V × V : dst > 0}

∗Supported by the DFG Research Center Matheon “Mathematics for key technologies”.
∗∗Zuse-Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany, Email {borndoerfer, karb-

stein}@zib.de

1



the set of all OD-pairs with positive demand. On each path p ∈ P we can install a
capacity k ∈ K out of a finite set K ⊆ N at a cost cp,k.

The demand is routed along a directed routing graph (V,A) that arises from the
graph G = (V,E) by replacing each edge e ∈ E by two antiparallel arcs a(e) and
ā(e); let conversely e(a) be the undirected edge corresponding to such an arc a ∈ A.
We also denote the routing graph by G. Each arc in the routing graph is associated
with a cost τa. We say that a path p ∈ P that covers an edge e in the undirected
graph covers the two antiparallel arcs a(e) and ā(e) in the directed routing graph. Let
P(a) = {p ∈ P : e(a) ∈ p} be the set of all paths that covers arc a. We denote by
Rst the set of all elementary directed st-routes (i. e., paths) from s to t in G and by
R =

⋃
(s,t)∈D Rst the set of all routes ; they will be generated.

A direct connection st-route (st-dcroute) is an st-route r = (s, a0, v1, . . . , vr, aj, t),
where e(ai) ∈ p, i = 0, . . . , j, for one p ∈ P, i.e., the demand can be routed along
one path from origin s directly to destination t without path-switching. Let R0

st be
the set of all st-dcroutes, R0

st(a) = {r ∈ R0
st : a ∈ r} the set of st-dcroutes that pass

over arc a, and R0 =
⋃

(s,t)∈D R0
st, R

0(a) =
⋃

(s,t)∈D R0
st(a) their unions. We denote by

Pr = {p ∈ P : r ⊂ p} the set of all paths that support the dcroute r. We set the
cost of a dcroute r ∈ R0 to the sum of the arc costs τr,0 =

∑
a∈r τa. For all routes

r ∈ R that involve a switching between paths we add a switching penalty and arrive
at a cost of τr,1 = σ +

∑
a∈r τa. The direct connection network design problem that we

consider is to find a set of paths and associated capacities that (i) supports a routing
of the demand and (ii) minimizes a weighted sum of path plus routing costs, including
switching penalties.

The paper discusses a family of network design models that integrate direct connec-
tion routings. It is structured as follows. In section 2, we start with an (explicit) direct
path connection model, that associates direct connection routes with the corresponding
paths. Section 3 derives the metric inequalities for a direct connection routing, that
characterize the feasible path capacities. In section 4, we use these constraints to con-
struct an efficiently solvable complete direct connection model. Finally, we present an
approximative basic direct connection model of polynomial size in section 5 that involves
a combinatorial subset of the metric inequalities for direct connection routings.

2 Direct Path Connection Model

We will first introduce a model that accounts for the demand on direct connections
in an explicit way. To this purpose, we introduce flow variables zpr,0 and yr,1 for the
demand routed on dcroute r on path p and on route r with at least one path-switch,
respectively. Introducing further variables xp,k ∈ {0, 1} for installing capacity k on path
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p, we can state a direct path connection model as follows:

(DPC) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
(∑
r∈R0

∑
p∈Pr

τr,0 z
p
r,0 +

∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

∑
p∈Pr

zpr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (1)

∑
r∈R0(a)

∑
p∈Pr

zpr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

k xp,k ∀ a ∈ A (2)

∑
r∈R0(a):p∈Pr

zpr,0 ≤
∑
k∈K

k xp,k ∀ a ∈ A, ∀ p ∈ P(a) (3)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (4)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (5)

zpr,0 ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr (6)

yr,1 ≥ 0 ∀ r ∈ R. (7)

Model (DPC) minimizes a weighted sum of path and routing costs; the weighing pa-
rameter is λ ∈ [0, 1]. Equations (1) enforce the demand flow. Inequalities (2) guarantee
sufficient total path capacity on each arc. Constraints (3), the direct path connection
constraints, ensure sufficient capacity for direct connection routes on each arc of each
path. Inequalities (4) ensure that at most one capacity is installed on each path.

Model (DPC) includes a variable zpr,0 for the assignment of each direct connection
route r to a direct connection path p. This makes the model fairly large. Indeed, a
path of length l is usually a direct connection path for O(l2) OD-pairs, such that the
number of variables is much larger than the number of paths. Moreover, choices between
several possible direct connection paths for every dcroute produce lots of degeneracy.
We will show next how to overcome these problems and reduce the number of variables
by relaxing the explicit assignment of dcroutes to direct connection paths. We will end
up with a direct connection route variable yr,0 for each route r ∈ R0.

3 A Generalization of Metric Inequalities

We eliminate the assignment of direct routes to particular paths in model (DPC) by
aggregating the dcroute variables as

yr,0 =
∑
p∈Pr

zpr,0, (8)

i. e., we introduce path-independent dcroute variables yr,0 for the demand routed directly
on r. Such a substitution can be easily done in the objective of model (DPC) and in
the constraints (1) and (2). Skipping the direct path connection constraints (3) for the
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moment, we arrive at what we will call a “skeleton” direct connection model

(DC-skeleton) min λ
∑
p∈P

∑
k∈K

cp,k xp,k+(1− λ)
(∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (9)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

k xp,k ∀ a ∈ A (10)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (11)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (12)

yr,0 ≥ 0 ∀ r ∈ R0 (13)

yr,1 ≥ 0 ∀ r ∈ R. (14)

To replace the direct path connection constraints (3) in a way that is compatible with
the aggregated dcroute variables, assume we are given a solution (x∗, y∗) of model (DC-
skeleton). Such a direct connection routing is possible if and only if the following set of
inequalities (C) is satisfied

(C)
∑

r∈R0(a):p∈Pr

zpr,0 ≤ cp(:=
∑
k∈K

k x∗p,k) ∀ a ∈ A,∀p ∈ P (a ∈ p) (µpa)∑
p∈Pr

zpr,0 = y∗r,0 ∀ r ∈ R0 (ωr)

zpr,0 ≥ 0 ∀r ∈ R0, ∀p ∈ Pr.

Using the Farkas Lemma either inequality set (C) has a solution or inequality set (C)

(C)
∑
p∈P

cp
∑
a∈p

µpa +
∑
r∈R0

ωry
∗
r,0 < 0∑

a∈r

µpa + ωr ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀p ∈ P, ∀a ∈ A.

Note that we can restrict µpa ≤ 1 for all p ∈ P, a ∈ A. Consider some ωr with r ∈ R0.
Then

− ωr ≤
∑
a∈r

µpa ∀p ∈ Pr

⇔− ωr = min
p∈Pr

{
∑
a∈r

µpa} (=: distPµ(r)).
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We then get that (C) has a solution if and only if there exists µ ∈ [0, 1]P×A with∑
p∈P

cp
∑
a∈A

µpa < −
∑
r∈R0

ωr y
∗
r,0 =

∑
r∈R0

distPµ(r) y∗r,0.

This gives a necessary and sufficient feasibility condition for aggregated multi-commodity
direct connection flows:
Theorem 3.1. A capacity vector c ∈ RP

+ supports a direct connection routing y∗r,0 if
and only if∑

p∈P

cp
∑
a∈A

µpa ≥
∑
r∈R0

distPµ(r) y∗r,0 ∀µ ∈ [0, 1]P×A. (15)

This result generalizes the one of Iri [3], Kakusho and Onaga [5] for the feasibility of
edge capacities to support a multi-commodity flow for a given demand to path capacities
and direct connection routings. Hence, the inequalities (15) can be interpreted as metric
inequalities for a direct connection routing.

4 Complete Direct Connection Model

Inserting the metric inequalities for a direct connection routing into model (DC-skeleton)
produces the following complete direct connection model

(DC-complete) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
(∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (16)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

k xp,k ∀ a ∈ A (17)

∑
p∈P

∑
a∈A

µpa
∑
k∈K

k xp,k ≥
∑

(s,t)∈D

∑
r∈R0

st

distPµ(r) yr,0 ∀µ ∈ [0, 1]P×A (18)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (19)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (20)

yr,0 ≥ 0 ∀ r ∈ R0 (21)

yr,1 ≥ 0 ∀ r ∈ R. (22)

Proposition 4.1. Models (DPC) and (DC-complete) are equivalent. More precisely,
each solution of model (DPC) can be transformed into a solution of model (DC-complete)
and vice versa.
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We argue now that model (DC-complete) is algorithmically tractable, even though
it contains a large number of metric inequalities.

Consider the skeleton model (DC-skeleton) plus a (possibly empty) polynomially
sized subset of the metric inequalities for a direct connection routing (18). We denote
this starting model by (DC-complete?). Let (x∗, y∗) be an (optimal) LP solution for
(DC-complete?). If the objective value of the linear program (S)

(S) min
∑
p∈P

∑
a∈p

µpa
∑
k∈K

k x∗p,k −
∑
r∈R0

ωry
∗
r,0

s.t.
∑
a∈r

µpa − ωr ≥ 0 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀p ∈ P, ∀a ∈ A
1 ≥ ωr ≥ 0 ∀r ∈ R0.

is negative, then the objective function of (S) gives rise to a violated metric inequality
for a direct connection routing.

The feasible region of the separation program is a cone that does not depend on
the current solution (x∗, y∗) of (DC-complete?). It therefore suffices to consider a finite
number of metric inequalities that correspond to the extremal rays of the feasible region.
These arguments prove:
Proposition 4.2. The metric inequalities for a direct connection routing can be sepa-
rated in polynomial time.

Proposition 4.3. The LP-relaxation of the complete direct connection model (DC-
complete) can be solved in polynomial time.

We remark that one can also compute valid primal LP and IP solutions for model
(DC-complete) from a given solution (x∗, y∗) of (DC-complete?) throughout the cutting
plane algorithm by some path-switching on connections that are currently mistaken as
being direct; this is very convenient in practice. More precisely, the linear program

(H) max
∑
r∈R0

∑
p∈Pr

zpr,0

s.t.
∑

r∈R0(a):p∈Pr

zpr,0 ≤
∑
k∈K

k x∗p,k ∀ p ∈ P, ∀a ∈ p

∑
p∈Pr

zpr,0 ≤ y∗r,0 ∀ r ∈ R0

zpr,0 ≥ 0 ∀ r ∈ R0, ∀p ∈ Pr.

gives rise to the maximal demand that can be routed directly according to the path
capacities defined by x∗ and the estimated amount of direct demand y∗r,0, r ∈ R0. In
fact, yr,0 :=

∑
p∈Pr

zpr,0,

yr,1 :=

{
y∗r,1 + (y∗r,0 −

∑
p∈Pr

zpr,0) for r ∈ R0

y∗r,1 for r /∈ R0
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and x := x∗ is a valid LP/IP solution for (DC-complete). Of course, this routing is
best possible for the capacities defined by x∗ if y∗r,0, r ∈ R0, is estimated correctly, i.e.,
the better (DC-complete?) approximates (DC-complete) the better are the associated
primal solutions.

The duality of the programs (S) and (H) can be seen as follows. We add the constant
term −

∑
r∈R0 y∗r,0 to the objective of (H) and associate dual variables µpa and νr with

the set of inequalities. The dual of (H) is then

min
∑
p∈P

∑
a∈p

∑
k∈K

µpak x
∗
p,k +

∑
r∈R0

y∗r,0(νr − 1)

s.t.
∑
a∈r

µpa + νr ≥ 1 ∀ r ∈ R0, ∀ p ∈ Pr

µpa ≥ 0 ∀ p ∈ P, ∀a ∈ p
νr ≥ 0 ∀r ∈ R0.

It is easy to see that the above linear program has always an optimal solution with
νr ∈ [0, 1], r ∈ R0. If we substitute ωr := (1− νr), we have 1 ≥ ωr ≥ 0, r ∈ R0, and get
the linear program (S).

This relation also gives an interpretation of the objective value of (S). Namely, the
optimal objective value of (S) amounts to the demand that cannot be routed directly
with the current path capacities.

5 Basic Direct Connection Model

We finally show that a combinatorially motivated compact approximation of the com-
plete direct connection model (DC-complete) provides a provable quality. More pre-
cisely, we will show that the difference between the directly routed demand estimated by
this approximation and the directly routed demand computed by model (DC-complete)
can be bounded by the maximal length of a path.

We define a polynomial subset of metric inequalities (15) as follows. For each route
r̃ ∈ R0 and each arc ã ∈ r̃ we set

µpa :=

{
1 if a = ã and p ∈ Pr

0 otherwise.

Then cp =
∑

k∈K k xp,k and inequality (15) reads∑
p∈Pr

∑
k∈K

k xp,k ≥
∑

r̃∈R0(a)
Pr̃⊆Pr

yr̃,0. (23)

Such an inequality can be defined for each combination of route r̃ ∈ R0 and arc ã ∈ r̃.
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Substituting inequalities (23) for the metric inequalities for a direct connection rout-
ing, we obtain the following basic direct connection model :

(DC-basic) min λ
∑
p∈P

∑
k∈K

cp,k xp,k + (1− λ)
(∑
r∈R0

τr,0 yr,0 +
∑
r∈R

τr,1 yr,1

)
∑
r∈R0

st

yr,0 +
∑
r∈Rst

yr,1 = dst ∀ (s, t) ∈ D (24)

∑
r∈R0(a)

yr,0 +
∑
r∈R(a)

yr,1 ≤
∑
p∈P(a)

∑
k∈K

k xp,k ∀ a ∈ A (25)

∑
r̃∈R0(a)
Pr̃⊆Pr

yr̃,0 ≤
∑
p∈Pr

∑
k∈K

k xp,k ∀ r ∈ R0, ∀ a ∈ A (26)

∑
k∈K

xp,k ≤ 1 ∀ p ∈ P (27)

xp,k ∈ {0, 1} ∀ p ∈ P, ∀ k ∈ K (28)

yr,0 ≥ 0 ∀ r ∈ R0 (29)

yr,1 ≥ 0 ∀ r ∈ R. (30)

Model (DC-basic) minimizes, as model (DPC) or (DC-complete), a weighted sum of
path and routing costs. Equations (24) enforce the demand flow. Inequalities (25)
guarantee sufficient capacity on each arc. The direct connection constraints (26) ap-
proximate the sufficiency of capacities for direct connection routes on each arc.

Let r1, r2 ∈ R0. We say that routes r1 and r2 are comparable if Pr1 ⊆ Pr2 or
Pr2 ⊆ Pr1 . A set of routes R′ ⊆ R0 is a comparable set of routes if each two elements
r1, r2 ∈ R′ are comparable.
Proposition 5.1. Model (DC-basic) overestimates the directly routable demand (with
respect to model (DC-complete)) by a factor of at most

max
p∈P

⌊
|{V ∩ p}|

2

⌋
.

Proof. Consider a solution (x∗, y∗) of model (DC-basic). For every r ∈ R0 and p ∈ Pr
define

zpr,0 := y∗r,0 ·
∑

k∈K k x
∗
p,k∑

p∈Pr

∑
k∈K k x

∗
p,k

.

Then it holds

(i)
∑
p∈Pr

zpr,0 = y∗r,0 ∀r ∈ R0

(ii)
∑

r̃∈R0(a)
Pr̃⊆Pr

∑
p∈Pr

zpr̃,0 ≤
∑
p∈Pr

∑
k∈K

k x∗p,k ∀ r ∈ R0, ∀ a ∈ A

(iii) zpr,0 ≤
∑
k∈K

kx∗p,k ∀ p ∈ Pr.
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This can be seen as follows:

(i)
∑
p∈Pr

zpr,0 =
∑
p∈Pr

y∗r,0 ·
∑

k∈K k x
∗
p,k∑

p∈Pr

∑
k∈K k x

∗
p,k

= y∗r,0 ∀r ∈ R0

(ii)
∑

r̃∈R0(a)
Pr̃⊆Pr

∑
p∈Pr

zpr̃,0
(i)
=

∑
r̃∈R0(a)
Pr̃⊆Pr

y∗r̃,0
(26)

≤
∑
p∈Pr

∑
k∈K

k x∗p,k ∀ r ∈ R0, ∀ a ∈ A

(iii) inequality (26) yields y∗r,0 ≤
∑

r̃∈R0(a)
Pr̃⊆Pr

y∗r̃,0 ≤
∑
p∈Pr

∑
k∈K

k x∗p,k ∀ p ∈ Pr

⇒ zpr,0 = y∗r,0 ·
∑

k∈K k x
∗
p,k∑

p∈Pr

∑
k∈K k x

∗
p,k

≤
∑
k∈K

kx∗p,k ∀ p ∈ Pr.

Let z̃ be defined as

z̃pr,0 := 1

b |{V ∩p}|2 cz
p
r,0.

We show that z̃ is a solution of (H). Consider a p ∈ P and a ∈ p. Let p = (v1, . . . , vm)
be the nodes the path traverse in this order and let a = (vl, vl+1), l ∈ {1, . . . ,m − 1}.
Further denote by R0(a, p) = {r ∈ R0(a) : p ∈ Pr} the set of routes that contain arc a
and that are supported by p. Define the following sets of routes

Ri =

{
{r ∈ R0(a, p) : r starts in vi} i ∈ {1, . . . , l}
{r ∈ R0(a, p) : r ends in vi} i ∈ {l + 1, . . . ,m}

Since all routes and the path p are elementary, the sets Ri, i = 1, . . .m, are comparable
sets of routes, and R1∪̇ . . . ∪̇Rl and Rl+1∪̇ . . . ∪̇Rm are partitions of the set R0(a, p),

respectively. Either l ≤
⌊
|{V ∩p}|

2

⌋
or m − l ≤

⌊
|{V ∩p}|

2

⌋
. Assume w.l.o.g. l ≤

⌊
|{V ∩p}|

2

⌋
.

We then get

∑
r∈R0(a,p)

z̃pr,0 =
l∑

i=1

∑
r∈Ri

z̃pr,0 =
l∑

i=1

∑
r∈Ri

1

b |{V ∩p}|2 cz
p
r,0

(ii),(iii)

≤
l∑

i=1

1

b |{V ∩p}|2 c
∑
k∈K

k x∗p,k ≤
∑
k∈K

k x∗p,k,

i. e., inequality∑
r∈R0(a):p∈Pr

z̃pr,0 ≤
∑
k∈K

k x∗p,k ∀ p ∈ P, ∀a ∈ p

is satisfied. The inequality∑
p∈Pr

z̃pr,0 ≤ y∗r,0 ∀ r ∈ R0

9



1 2 3 4

p1 p2

p3

p4
1 2 i i+ 1 k − 1 k

r1 r2 ri

Figure 1: Left: Worst case example for Proposition 5.1 and approximation factor 2. Right: General
worst case example for Proposition 5.1.

follows immediately with (i).
Hence,

yr,0 :=
∑
p∈Pr

z̃pr,0,

yr,1 :=

{
y∗r,1 + (y∗r,0 −

∑
p∈Pr

z̃pr,0) for r ∈ R0

y∗r,1 for r /∈ R0

x := x∗

is a solution for (DC-complete). Overall, we get∑
r∈R0

yr,0 =
∑
r∈R0

∑
p∈Pr

z̃pr,0 =
∑
r∈R0

∑
p∈Pr

1

b |{V ∩p}|2 cz
p
r,0

≥ 1

maxp∈Pb |{V ∩p}|2 c
∑
r∈R0

y∗r,0,

i. e., the number of direct travelers is overestimated by at most

max
p∈P

⌊
|{V ∩ p}|

2

⌋
.

The bound is tight for the example illustrated in the left of Figure 1. We have
four paths and two routes for two OD pairs with demand 100 each. The routes are
incomparable on arc (2, 3), i. e., operating path p1 and p4 with capacity 100, respectively,
implies a solution for the basic direct connection model (DC-basic) where all demand
can be routed directly. But in fact either the demand from 1 to 3 or the one from 2 to 4
cannot be routed directly. This example can be extended to longer paths as illustrated
in the right of Figure 1. Here, we have a (red) path with k nodes and bk

2
c routes. Each

route is covered by an individual path. Furthermore, there are paths for each edge
{j, j + 1}, j = 2, . . . , k − 2. Choosing the red path and the edge-paths with enough
capacity yields a solution for the basic direct connection model (DC-basic) where all
demand can be routed directly. But the capacity of the red path is not necessary
sufficient to yield a direct connection for more than one route.
Corollary 5.2. If each path contains at most 3 nodes then the metric inequalities for a
direct connection routing (15) are implied by inequalities (23), i. e., in this case models
(DC-basic) and (DC-complete) are equivalent.
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6 Summary

Let us denote by vR(M) the optimal objective value of relaxation R of an integer
programming model M . Considering the IP values and the LP relaxation values of all
models of this paper, we, finally, get the following picture:
Proposition 6.1.

vIP(DPC)

=

vIP(DC-complete)

}
≥ vIP(DC-basic) ≥ vIP(DC-skeleton),

vLP(DPC)

=

vLP(DC-complete)

}
≥ vLP(DC-basic) ≥ vLP(DC-skeleton).

All LPs can be solved in polynomial time.
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