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Abst rac t 

Efficient implementations of irregular problems on vector and parallel archi­
tectures generally are hard to realize. An important class of irregular prob­
lems are Gauß-Seidel iteration schemes applied to irregular data sets. The 
unstructured data dependences arising there prevent restructuring compilers 
from generating efficient code for vector or parallel machines. It is shown, 
how to structure the data dependences by decomposing the data set using 
graph coloring techniques and by specifying a particular execution order al­
ready on the algorithm level. Methods to master the irregularities originating 
from different types of tasks are proposed. An example of application is given 
and possible future developments are mentioned. 
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1 Introduction 

There is a threefold way for shifting the complexity barrier in large scale com­
puting: development of fast architectures, design of fast algorithms suited to 
various architectures, and invention of advanced languages, methods and 
tools for expressing algorithms and mapping these to machines. Because 
of physical limitations, future increases of computer power will be possible 
mainly by relying on parallel architectures. Therefore, exploitation of par­
allelism becomes the major task from the algorithmic and software point of 
view. 

Parallelism appears at three different levels: the algorithm level, the pro­
gram level and the machine level [1]. Algorithm level parallelism can be char­
acterized by the number of variables, the functional dependences between the 
variables, the complexity of basic algorithmic operations, and the precedence 
constraints on the order of operations. Program level parallelism can be char­
acterized by the control and data dependence constraints, imposed by the 
programmers choice of data structures and control structures and their se­
mantics. Machine level parallelism can be characterized by the use of the 
various machine features enabling pipelined and concurrent execution. 

The major hindrances to parallel execution are data dependences, mem­
ory access, and communication delays: an instruction cannot begin execution 
until its operands are available. This is valid for today's as well as future 
architectures. We concentrate upon data dependences. Control dependences 
also cause problems, but at least in numerical problems, to which we focus 
here, these are of secondary importance. Therefore, the main goals are the 
design of algorithms containing less, and more regular data dependences, 
the development of methods for mapping algorithms to program and ma­
chine level without introducing too many additional data dependences, and 
architectures handling data dependences efficiently. 

Common programming techniques, like reassignment of variables, intro­
duce additional data dependences. The lack or limited availability of parallel 
constructs in currently most wide-spread languages often force to serialize 
concurrent parts of algorithms. With the advent of powerful data dependence 
analysis and program restructuring techniques [2-13] and their implementa­
tion into several commercial and experimental restructuring compilers1 this 
displeasing situation is partially remedied. Modern translators analyse data 
dependences, remove some 'artificial' data dependences, and restructure the 
code, generating specific control and data structures better suited for the 
target machines. Although many features, like interprocedural dependence 
analysis, are still missing in commercial compilers and despite the use of un-

1 Examples are the VAST (Pacific Sierra Research), KAP (Kuck & Associates), PTRAN 
(IBM), PFC and PTOOL (Rice University), Parafrase and Parafrase-2 (University of 
Illinois). 
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suitable programming languages, one may hope that future compilers will 
uncover and utilize parallelism. 

Today's compilers are able to detect and exploit structured parallelism, 
represented by regular data dependence patterns, for example shift-invariant 
iteration space dependence graphs. A more difficult problem is the ex­
ploitation of unstructured parallelism with different instruction and/or data 
streams in single tasks. This kind of parallelism is very common in scien­
tific computing, like in computations on irregular or even adaptive grids, or 
in sparse matrix calculations with unpredictable fill-in. Modern algorithms, 
that adapt themselves more flexibly to the structure of the problem, lead to 
further unstructured dependences. Mostly, these cannot be inferred from the 
information available at compile-time. One approach therefore is run-time 
dependence checking (see [7, 9] and references therein). This is essentially 
the main idea behind the data flow concept [16]. For run-time dependence 
checking the compiler generates extra code to resolve dependences at run­
time that are not amenable to analysis at compile-time. This might possibly 
be supported by specialized hardware components. Up to the data flow ef­
forts such techniques are rarely employed yet. Real problems presently solved 
on concurrent processors usually are rather regular [14, 15]. Sophisticated 
adaptive algorithms are seldom employed. 

The object of this paper is to demonstrate how an important class of algo­
rithms in scientific computing—the iterative algorithms employing a Gaufi-
Seidel update scheme on irregular data structures—can be vectorized and 
parallelized. This is achieved by choosing a particular order of execution and 
thereby structuring the data dependences already on the algorithm level. A 
set of possible orders of execution is constructed by coloring the nodes of 
a given or imagined underlying graph. The set of tasks can be partitioned 
into equal-sized microtasks, that are particularly well suited for processing 
on shared memory vector or fine grained SIMD machines, or into coarser 
grains that are favorable on distributed memory machines. 

2 Preliminaries 

2.1 Graphs 

Before we start with the actual subject we establish our basic notation. 
A graph G(V, E) is a pair of a finite set V and a set E of two elementary 

subsets of V. The elements of V are called vertices and those of E edges. 
The elements of an edge e = {u, v} € E are called endpoints of e; u and v 
are called adjacent or connected. The neighborhood N(v) of a vertex v is the 
set of vertices that are adjacent to v. A directed graph is defined similar to 
a graph, except that the elements of E are now ordered pairs e = (a, b) € E, 
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a, b 6 V. These pairs are called arcs. Let X C V and let E \ X denote the 
set of all edges having both endpoints in X. Then the graph (X, E \ X) is 
called induced subgraph of G(V, E). 

The cardinality of a set M is written as \M\. The degree deg v of a vertex 
v is the cardinality of its neighborhood. We will use n = n{G) to denote the 
cardinality of V. 8{G) = min„6y deg v and A(G) = maxv6v deg v denote the 
minimal or maximal degree of all vertices. 

A subset X C V is called independent if not any two elements of X are 
adjacent. A k-coloring of a graph G is a partition of G into k independent 
subsets. G is k-colorable if a ^-coloring of G exists. The chromatic number 
x(G) of G is the minimal k for which G is Ar-colorable. 

2.2 Data Dependences 

To define data dependences in a program, we need the following terms. 
A program is a sequence oil E N statements. Sm denotes the m-th state­

ment in the program, counted in lexicographic order. If a statement Sm can 
be executed multiply, e. g., if Sm is enclosed in d nested loops, we conceive 
it as explicitely or implicitely controlled by a multi-index like (Ji, 72> • • •, h)-
We write Sm(ii, 12,-.., id) to refer to the instance of Sm during the particu­
lar iteration step2 when I\ = ii,I? = ii,..., Id = id- As program model we 
take a Fortran or C loop, denoted as a for-loop. for-loops are supposed to be 
executed sequentially. This imposes constraints on the order of memory refer­
ences. The execution order of statements is a relation < defined between pairs 
of instances. We write Sm < Sn for non-indexed statements, if Sm can be ex­
ecuted before Sn, and for indexed statements Sm(ii, • • -,id) ^ Sn(ji,.. .,jd), 
if instance Sm(ii,..., id) can be executed before instance Sn(ji,... ,jd)-

By IN(,Sm) and 0UT(5m ) we denote the set of variables that are read 
and written by the non-indexed statement Sm and by IN(5 r o ( i i , . . . , id)) and 
0\JT(Sm(ii,..., id)) the set of variable instances defined or used by the state­
ment instance 5 m ( i i , . . . , id)-

Data dependences arise if IN and OUT sets of two statement instances 
intersect. One defines [2]: 

• Sn is data flow-dependent on Sm, written SmSSn, iff there exist index 
values (ii,...,id) and (ji,-.-,jd), such that Sm(ii,---,id) < 
Sn(ji,- • - ,jd), and 0UT(5m(zi , . . . , i d)) n IN(Sn( j i , . . .,jd)) ? 0. 

• Sn is data anti-dependent on Sm, written Sm8Sn, iff there exist index 
values ( i i , . . . , id) and (ji,. •. ,jd), such that Sm(ii,.. • ,id) 5: 
Sn(ju - - - ,3d), and IN(Sm(»i, . . . , id)) n OUT(5 n ( i l 5 . . . ,jd)) ? 0. 

2This term collides with the same used in numerical mathematics. For the later we will 
introduce the notion of a sweep in section 5.1. 
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• Sn is data output-dependent on Sm, written Sm8°Sn, iff there exist 
index values (i'i,...,id) and (ji,... ,jd), such that Sm{i\, • • • ,id) < 
SnO'i, • • • Jd), and OUT(STO(i l f . . . , id)) n 0\JT(Sn(ju... ,jd)) ± 0. 

The dependences of a program P are comprised in the program data depen­
dence graph Gp(V,E); it is a directed labeled graph with the set of nodes 
V = {Si, Si,..., Si} corresponding to the statements of the program, and 
the set of labeled arcs E = {(Sm, Sn)s\Sn8Sm}, where the label 8 is one of 
the relations 8, 8 or 8°. 

Focusing on loops, it is worthwhile to display the dependences in more 
detail by looking at single instances. The iteration space of d nested loops 
is a set / C Z , containing all possible indices (ii,i2, • • • ,&<*)• Unrolling 
such a loop nest completely, i. e., transforming the loop to a set of sequen­
tial statements with each instance written out explicitely, the resulting data 
dependence graph is called iteration space dependence graph. 

The execution order and the intersection sets of two statements may de­
pend on the data values used in a particular run. On compile-time, testing for 
execution order and set intersection must be conservative, i. e., dependence 
relations have to be assumed if the opposite cannot be proven. 

It is not necessary to execute statements in the 'normal' execution order 
defined by the source program. All execution sequences not violating the 
dependences lead to the same result (up to rounding errors in floating point 
operations). The dependences only fix a partial order on the execution of 
program statements. This is widely exploited in restructuring, vectorizing, 
or parallelizing compilers [2, 3, 4, 9]. 

But this freedom is not always sufficient to utilize the inherent parallelism. 
Considering different execution orders already on the algorithm level, it is 
possible to structure the data dependences more flexibly. 

3 Iteration Schemes 

The general setting of iteration schemes is as follows. A set of variables 
(xi)i€i, I = {1 ,2 , . . . , n} is updated according to a functional rule 

X( «- Fi((xk)teKi), V* 6 / 

with operators F{ mapping variables (xk)k€Ki, Ki Q I to variables £;. The 
index sets Ki, i € I may have different cardinalities \Ki\, what constitutes 
part of the irregularity. Some index sets Ki may be empty and some operators 
Fi may be identical maps. For simplicity we restrict ourselves to cases where 
the index sets Ki and operators Fi do not vary during the whole iteration 
process. 

Starting with initial values (x°),e/, invocation of primitive tasks (Fi)i^i 
generates a set of values {x\ \ i € / , / = 1,2, . . .}. We assume that at any 
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point of time at most one task is working for an element i £ I. Therefore the 
values xlj can be labeled according to their time order. The value xli is called 
the l-th update of variable Xj. To completely define the tasks, their arguments 
must be specified. Denoting the sets K{ as {k(i, 1), k(i, 2 ) , . . . , k(i, \Ki\)}, we 
write the task for the l-th. update of 

xi ^ r*\xk(i,l) ' Xk(i,2) ' • " * ' Xk(i,\Ki\) > 

for all i € I. The terms d(l, i,k) G Z are referred to as delays. Specification of 
all delays and all conditions on the update order defines an iteration scheme. 

An iteration scheme that imposes weak or no conditions on the delays is 
asynchronous relaxation or 'chaotic relaxation' [18]. It is characterized by the 
absence of most or all synchronizations between the tasks and therefore well 
adapted to deficiences of some concurrent architectures, like unpredictable 
communication overhead. The delays, which may originate from very differ­
ent sources, like varying computing times, communication delays or memory 
access times, may be unpredictable and may take pretty large values. Since 
synchronization is a major source of performance degradation on concurrent 
architectures, it would be worthwhile to investigate the competitive power of 
asynchronous algorithms. Imposing rather weak conditions on the distribu­
tion of the delays and the update order, the correctness of such algorithms 
has been proven for important classes of problems [19, 20, 23]. 

But if the delays take too large values, the convergence rates seem to be 
questionable. The most important (partially) synchronous iteration schemes 
are: 

• The Jacobi iteration scheme, defined by d(l,i, k) = 1, V/ € N, Vi € J, 
Vifc € Ki. 

• The Gauß-Seidel iteration scheme, defined by the requirement that 
two tasks Fi and Fj may not be performed simultaneously if i (E Kj or 
j 6 Ki- The delays of a Gauß-Seidel iteration scheme are 

«'••••*)-{! v ^ W } , v ' £ J V > V ! ' e / 

where M\ = {k(i, m) € Ki \ update value i L ; > has already been com­

puted when starting the computation of a:'}. 

Although asynchronous relaxations seem to be a natural choice on some con­
current architectures, particularly for irregular problems, there are arguments 
for synchronous relaxations. Some of these are reliable convergence rates, the 
possibility to efficiently use synchronous architectures like pipelined vector 
processors, and—sometimes—lacking correctness in asychronous relaxations. 
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Implementation of a Jacobi iteration scheme on vector and parallel pro­
cessors is straightforward, since it imposes no sequential order on updates 
of the values (x'),-6/ for each /. Hence it can be carried out in parallel for 
each iteration step /. Unfortunately it is of less practical importance because 
it converges relatively slowly. Methods employing the Gauß-Seidel iteration 
scheme generally show much better convergence rates. This is due to the fact 
that Gauß-Seidel iteration schemes always use the newest available update 
values as input arguments, whereas Jacobi iterations exclusively use values 
of the previous update step. 

4 Gauß-Seidel Iterations for Regular 
Problems 

Gauß-Seidel iteration schemes are widely used. One significant Gauß-Seidel 
type method is successive over-relaxation (SOR) for solving large linear sys­
tems, that appear, for example, in finite difference methods for solving partial 
differential equations. Similar algorithms are employable on semi-rings for 
solving 'algebraic' path problems, which represent a large variety of problems 
in computer science (for a review see [17]). When simulating Markov-chains, 
the Markov property even enforces to use a Gauß-Seidel type update scheme. 

The Gauß-Seidel iteration scheme is very easily implemented as a sequen­
tial update: choosing any permutation 7T/ of the indices ( 1 , 2 , . . . , n) as update 
sequence, i. e., computing updates in the order 

•Efl-lfl)? xir\(2)i • • • i x*\(n)i ^ ^ ( l ) ) xW2(2)j • • • i ^ ^ ( n ) ? • • • ) 

use of correct input arguments is simply achieved by physically storing all 
update values of a variable at the same memory location. 

Figure 1: Functional dependences (represented by arrows) between variables 
on a square grid, defined by a five point stencil. 
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The implementation on vector and parallel processors is rendered more 
difficult by the requirement of non-adjacent concurrent updating and the 
condition to use the newest update values available. Let us illustrate this 
on a simple example: imagine the variables (x,),€/ associated with the nodes 
i £ / of a regular square grid, and the sets Ki to contain the indices of 
the nearest neighbors on the grid. Ignoring boundary effects, any variable 
functionally depends only on its four nearest neighbors (illustrated by arrows 
in Fig. 1). 

For simplicity we replace the index i €. I by two indices for x- and y-
direction, running from 1 to nx and 1 to ny. Choosing a definite update 
order by writing the sequential loops (see Fig. 2) 

f o r / = 1 , 2 , . . . 
for j = 2 to ny — 1 

for i = 2 to nx — 1 
xij = r {xi_ij,xi+1j,xij_1,xij+1) 

we get data flow-dependences between different instances of the innermost 
loop body. Part of the corresponding iteration space dependence graph is 
shown in Fig. 3. 

The data flow-dependences in the (Z-fl)-plane prohibit naive vectorization 
or parallelization of the inner loop. A way out is to choose a different update 
order. A method that respects the data dependences originating from the 
update order in the above code is the hyperplane or wave-front method [21]. 

Figure 2: A possible update order on the square lattice, defined by sequential 
loops. 
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Using this prescription, nodes lying on a 'hyperplane' (see Fig. 4) are updated 
in parallel: 

f o r / = 1,2,... 
for i = 4 to nx + ny — 2 

for j = max(2, i — nx + 1) to min(nj, — 1, i — 2) 
xi-i,i ~ F(xi-j-i,j'xi-j+i,j'xi-jJ-nxi-j,j+i) 

Figure 3: Data flow-dependences between statement instances arising from 
the functional dependences illustrated in Fig. 1 and the update order shown 
in Fig. 2. The dependences are Si-ijj+iSSijj+i , Sij-ij+iSSijj+i between 
instances of sweep / + 1 , and 5,-+I,J1J55,-1J1/+I , 5,-j+i1{55,-jI/+i between instances 
of successive sweeps. 

Figure 4: Update ordering according to the hyperplane prescription. In the 
case of a two-dimensional square lattice the hyperplanes are diagonals. 
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This transformation may be managed by a restructuring compiler using 'loop 
skewing' and 'loop interchanging' [11]. However, the resulting code exploits 
only part of the potential parallelism. This is due to the short inner loop 
at the beginning and end of the j-loop. Furthermore, a generalization to 
irregular grids seems to be rather unwieldly. 

Restructuring compilers have to respect the data dependences that arise 
from the particular order of execution defined by the source program. Hence 
they can examine only a subset of the set of all possible orders. For instance, 
the hyperplane transformation respects the data dependences displayed in 
Fig. 3 of the update order shown in Fig. 2. To leave the class of execution 
orders that can be examined by such a compiler, one has to choose a different 
update order already on the algorithm level. 

In our example a well-known update order is the so-called red-black or 
checkerboard scheme [22]. Looking at the fine-grained solution (Fig. 5), suit­
able especially for vector processing, the utilizable parallelism is obvious: 
half of the points can be updated simultaneously or computed in a vector­
ized loop. The scheme can also be employed to coarse-grain the underlying 
data domain (see Fig. 6), where all grains of the same color can be processed 
concurrently. Each grain is processed sequentially. If the processing elements 
are vector processors, the red-black decomposition can be applied recursively 
in each grain. 

Figure 5: Using the fine grained red-black scheme, data flow-dependences 
occur between consecutive sweeps only. 
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Figure 6: Decomposition by a coarse grained red-black scheme, that moves 
the data dependences on the boundaries of the colored squares to the outer 
/-loop. Coloring recursively renders execution with multiple vector processors 
possible. 

5 Gauß-Seidel Iterations for Irregular 
Problems 

5.1 General Procedure 

To generalize the red-black scheme to arbitrary graphs we look for a partition 
of the set / into disjoint subsets I\ U h U . . . U Ic = J. Due to the Gauß-
Seidel condition these sets must be independent sets. Therefore a partition 
(h,h, ...,IC) must be a c-coloring of a graph G(V, E). This graph G(V, E) 
is defined by V = / and E = {{i,j}\i € Kj or j € K{}. Since G(V,E) 
represents the functional dependences3 we call it functional graph. It also 
displays the connectivity of the underlying 'grid', 'mesh', or 'lattice', if such a 
geometrical object is used in the application. Otherwise it is to be conceived 
as an abstract object associated with the iteration problem. Notice that 
G(V, E) is not a program data dependence graph. This is not defined until 
a sequence of operations is fixed. 

The conditions for a Gauß-Seidel iteration scheme, given in Sect. 3, allow 
arbitrary update orders, up to the condition that two variables £,• and Xj 

3If there are pairs (i,j) with i G Kj but j £ Ki, a 'sharp' directed graph g(V, E) 
with E = {(i,j)\i G Kj] represents the functional dependences more precisely. For our 
purposes it is sufficient to consider G(V, E). 

10 



must not be updated concurrently if i and j are adjacent. We do not want to 
exhaust the whole set of possible update orders and specialize to synchronized 
sweeps. A sweep is an update of each variable once. Sweeps are synchronized 
if before starting computation of any update value x1?1, all values (x|),-g/ 
must have been computed. 

Suppose a partition I\ U h U . . . U Ic = I has been found, then a sweep 
can be formulated as two nested loops: 

for m = 1 to c 
forall j 6 Im 

The inner loop is free of data dependences, since the iteration space depen­
dence graph for fixed m contains no arcs between instances of the assignment 
Xj <— Fj((x)c)keKj)- Therefore this loop can be executed in arbitrary order. 
This is emphasized by the keyword forall. All data flow-dependences now 
appear between different iterations of the outer loop. 

5.2 Implementation on Vector and Concurrent 
Architectures 

On vector and SIMD architectures efficient implementation of the inner loop 

forall j e Im 

XJ «- FjdxkheKj) 

obviously requires that the functional form of Fj is identical4 for all j € Im. 
This is a strong restriction. Of course on vector architectures the functions 
Fj must be vectorizable. Assuming these conditions are fulfilled, we are 
left with the problem of varying cardinalities (|Äj|)jeJm> that require further 
control structures. For the present assume that the lower and upper bound 
(S and A) of the cardinalities of the sets K{ are known at compile-time. This 
allows to write the operators Fj explicitely for each cardinality of Kj without 
additional control structures. Then we propose two solutions to the problem 
of varying cardinalities: 

1. Introduction of Dummy Variables 

To get an equal number of operands in each task F,-, one may add 
some dummy elements xn+i,xn+2,... to the set of variables (a:;),-6jm. 
The usage of dummy elements must result in neutral operations like 
addition of zero or multiplication by one. The index sets (Ai),-€jm are 
supplemented by the indices n + l ,n + 2 , . . . , such that |Ä"fnew |̂ = 

4If there are not too many different types of tasks, each group of identical tasks can be 
treated separately with the methods described in this section. 
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maxj€/m \Ky '\ := d, for all i G 7. Then Fj has d < A operands. 
The new indices do not enter the graph G(V, E) and therefore do not 
influence its coloring. 

The advantage of this method is, that the number of colors does not 
increase. Since it may be difficult or impossible to find neutral elements, 
e. g., if Xj *— J2k£K exp(a;fe), this procedure is not generally applicable. 

2. Subdivision of 7 

Another solution is to sort the tasks according to their number // of 
operands before coloring. This means that 7 is partitioned into 7 = 
IsU Is+1 U. . .U 7A , where 7" := {i G I\ \Kt\ = //} and 8 < // < A. Now 
each subgraph corresponding to 7M is colored separately. Suppose cß 

colors are needed, implying a second partition Iß = 7^ U 1% U . . . U /£,. 
Then nested loops are invoked for each cardinality //: 

for fj, = 8 to A 
for v = 1 to & 

forall j G 7£ 
XJ <- Fj((xk)k€Kj) 

Due to the double decomposition of I into ^2ß=g cß subsets, the inner 
loop has become shorter. This may be disadvantageous for small |7|, for 
large variations in the cardinalities \Kj\, or for large cM. But in contrast 
to the use of dummy variables this method is generally applicable. 

According to our assumption that the operators Fj are written out explicitely 
for each //, the //-loop has a symbolic meaning here. There may be another 
formulation if the statement Xj <— Fj((xk)keKj) can be written as a loop 
itself: 

for K = 1 t o \Kj\ 

Xj *~ f(Xk(j,n)) 

where U^ii^O'^)} = Kj- Provided the «- and j-loop can be exchanged, 
the complete loop-nest is: 

for // = 8 to A 
for v = 1 to cß 

for K = 1 to // 
forall j G I? 

Xj <- f{Xk{j,K)) 

We have put \Kj\ = fi according to method 2. This formulation does not 
require that 8 and A are known at compile-time. 
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In all loop nests mentioned in this subsection, the statements of the in­
nermost loop can be executed in any order. Hence it is parallelizable, or 
vectorizable if the operators are representable by vector functions. Fj may 
especially be the operator "take the weighted sum over nearest neigbors", 
what makes the method usable for many problems in scientific computing. 

Up to now we have neglected the important aspect of communication 
delays on concurrent architectures. To reduce data transfers, coarse grain 
solutions are favorable. Coarse grains are comprised of several primitive 
tasks Fj. They are represented by induced subgraphs of the functional graph 
G(V,E). The communication costs are proportional to the number of edges 
that connect vertices of different subgraphs. A good decomposition strategy 
has to take into consideration the target architecture and the problem to 
be solved. The aim generally should be finding subgraphs with few edges to 
other subgraphs and with computation costs being equally distributed among 
the associated grains. Each subgraph can be considered as a vertex of a 
'coarse' graph. Two vertices of this graph are connected if the corresponding 
subgraphs are connected. For parallel processing the coarse graph has to be 
colored. Multi-vector processing is rendered possible by additionally coloring 
each subgraph. 

In contrast to the usual checkerboard decompositions, this general proce­
dure has the advantage of not imposing restrictions on the shape and topology 
of the underlying mesh and grains—if such a geometrical interpretation is as­
sociated with the application at all. Furthermore the variability of individual 
grain sizes allows flexible load balancing. 

Concerning the execution order that is chosen after coloring there remains 
a freedom, that has not been used up to now. All for-loops in Sects. 5.1 and 
5.2 must be executed sequentially, but this may happen in arbitrary order. 
Choosing a specific execution order in the Gauß-Seidel iteration scheme does 
not affect the correctness of the algorithm, but may influence the convergence 
rate. The freedom of choosing any permutation of the indices of the for-
loops therefore may be exploited to improve the convergence of the iterative 
algorithm. 

6 Graph Coloring 

We saw that structuring data dependences in Gauß-Seidel iterations is fea­
sible by graph coloring. The choice of the coloring algorithm is determined 
only by practical considerations. Among these are the performance of the 
algorithm, i. e., the ratio of the number of colors being used and x(G), and 
its efficiency, i. e., the time needed to color the graph depending on the 
complexity of the graph. A x(GO-coloring might be the optimal solution for 
the given problem. But the determination of x(G) is known to be a NP-
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complete problem for general graphs. Practically, one is interested in finding 
good approximations for x(G) m polynomial time or in figuring out special 
kinds of graphs for which x (^ ) c a n be found in polynomial time. 

At least for perfect graphs, x(G) c a n be computed in polynamial time 
[24]; but the authors of [24] appraise their algorithm as practially too slow. 
Another interesting class of graphs are planar graphs, for which x{G) 1S 

known to be 4. There are linear time 5-coloring algorithms for planar graphs 
(see references in [25]) and algorithms for 4-coloring perfect planar graphs 
that take 0(n log n) time [25]. For general graphs an algorithm with good 
performance was given in [26]. It takes 0(n3) time. The parallelization of 
coloring itself is also a subject of research [25, 27]. 

The references just mentioned present optimal solutions to the coloring 
problem, but mostly deal with special graphs. If one is interested in finding 
a practical way to overcome the problem of unstructured data dependences, 
one can try to use a simple coloring procedure, which is known as sequential 
coloring [28] and proceeds as follows: 

chose an order v\, v-i,..., vn of the vertices of G 
for i = 1 to n 

give Vi the smallest color that has not been used in 
N(vi)r\{v1,v2,...,Vi_1} 

To analyse performance and efficiency of this procedure we remark that it 
maximally uses A(G) + 1 colors. This is true because the worst case for 
giving a colour occurs when all neighbors of a vertex with maximal degree 
have already been colored with different colors. Sequential coloring takes 
0(n log n) time if one assumes that A(G) ex logn(G), what is supposed 
to be an upper bound for meshs of discretized surfaces or discretized three 
dimensional objects. 

If coloring has the status of a preprocessing step for a long production run, 
the expense of coloring is neglectible. In general, efficiency of the coloring 
program has to be judged by the gain achieved by vectorization or paral­
lelization. The demands on the performance of a coloring algorithm among 
other things depend on the specific details of the target architecture. For 
instance, on vector computers with vector registers it is favorable to achieve 
loop lengths being greater than or equal to the vector register length; short 
loops might be made longer by re-coloring. 

7 Example of Application 

The authors encountered the problem of vectorizing an irregular problem 
when investigating a model from quantum field theory by a Monte-Carlo 
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method5. The model was studied on spheres and on tori [29, 30], which have 
been discretized by Poissonian Delaunay lattices [31], called random lattices 
in physics. The irregularity of the problem is caused by the varying degrees 
of the vertices. 

Figure 7: A spherical random lattice (Poissonian Delaunay lattice) consisting 
of 1000 vertices. 

The Monte-Carlo method that has been employed generates a Markov 
chain. To satisfy the Markov condition the Gauß-Seidel iteration scheme has 
to be used. In the simulation program the operator F{ is a function / of 
the sum of the nearest neighbor variables of a:,-. According to our notation, 
the indices of the nearest neighbors are the elements of the sets K{. The 
function / involves random numbers, trigonometric, logarithmic and expo­
nential functions. Since the neighbors only enter the sum, and the sum is 
only a small part of the update prescription, dummy variables have been 
introduced—more than one, to avoid bank conflicts. The resulting dummy 
operations cause only little overhead. The loop for calculating the sum of A 
neighbor terms was automatically generated by a preprocessor. 

A coloring algorithm specific to random lattices was devised and imple­
mented. The algorithm is based on some heuristic assumptions taking into 

5Here, a random variable is given by a lattice configuration. If the memory is large 
enough to store many configurations, these could be sampled simultaneously. Hence, in 
the special case of such Monte-Carlo methods, vectorization might also be possible in the 
configuration index. 
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account that the random lattices describe surfaces. It also tries to use colors 
equally often. After the coloring process the program re-colors, such that all 
colors are approximately used the same number of times. 

The coloring program usually needs A/2 colors. Typical values for a 
lattice with about 10000 sites are 8 ~ 3 and A ~ 15. 

Without using coloring, a correct implementation of the Monte-Carlo al­
gorithm would have led to purely scalar execution. Utilizing coloring, the 
simulation program has been fully vectorized. There has been one gather 
operation per iteration. The corresponding scatter operation has been elim­
inated by relabeling the variables. 

The program has been implemented on a CRAY X-MP/24. The whole 
preprocessing including coloring took O(seconds) time, while the production 
runs took O(10 hours). The time needed for coloring could be neglected and 
the gain was the speed-up achieved by vectorization. 

8 Concluding Remarks 

The data dependences in irregular problems hinder parallel or vector execu­
tion. Irregular structures often appear in modern adaptive algorithms, e. g., 
by spatial adaption in a PDE solver that refines the grid near singularities. 
It has been argued that efficient processing of such problems can be achieved 
by finding execution orders, that imply more regular dependence structures. 
This idea has been elaborated for Gauß-Seidel iteration schemes. The general 
problem consists of two parts: 

• The class of execution orders accessible to restructuring compilers usu­
ally does not contain an order that fully exploits the parallelism. 

• Different types of tasks cause irregularities: the types of operations 
and/or numbers of operands vary among the tasks. 

Concerning the execution order it has been shown that for Gauß-Seidel itera­
tion schemes coloring the functional graph provides a decomposition into sets 
of tasks that can be executed in parallel. Two methods have been proposed to 
master on SIMD and vector machines different types of tasks. Coarse grained 
decomposition for distributed memory machines has been shortly discussed. 
A short survey of graph coloring algorithms has been given. The practical 
applicability has been illustrated by an example in which Gauß-Seidel update 
is imperative. 

The problem has been presented from the perspective of data dependences 
and execution orders. This unveils the source of difficulties when vectorizing 
and parallelizing irregular problems: structureless data dependences by unfa­
vorable execution orders. Efficient concurrent or vector execution of irregular 
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problems can be achieved by finding instruction sequences that give rise to 
more regular dependences. 

Any level above the instruction issue level potentially can contribute to a 
solution. One could imagine specialized hardware units that monitor instruc­
tion and data streams to support run-time dependence checking and opera­
tion re-ordering—without completely complying with the data flow concept. 
Since on the hardware level the possibilities of intelligent operation reorder­
ing probably are rather restricted, accompanying activities on the software 
level are necessary. These could include generation of additional code for 
steering run-time dependence checking and instruction reordering. Indepen­
dently, low level compiler optimizations and restructuring program trans­
formations are applicable to unstructured problems (for examples see [9]). 
Another possibility is to let compilers ignore constraints arising from data 
dependences, e. g., to oblige compilers by user-specified directives to ignore 
data anti-dependences in specific loops. On the algorithm level one should 
devise algorithms that do have less, or more structured dependences, as well 
as methods that find suitable operation sequences from given functional de­
pendences and constraints on the execution order. 

Some of the problems we have encountered arise from the use of pro­
gramming languages that are unsuitable for concurrent programming: they 
do not allow to specify problems without implying an execution order—at 
least partially. This unnecessarily restricts the space of search of possible 
execution sequences being accessible to compilers. It is desirable to over­
come this language barrier by using languages, that allow to formulate the 
functional dependences—without implying any execution order—and to sep­
arately specify constraints on the execution order. Additionally, powerful 
methods on the algorithm, software and machine level are required, that 
transform these representations into efficient execution sequences. 
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