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Multiband Robust Optimization and its
Adoption in Harvest Scheduling

Fabio D’Andreagiovanni and Annie Raymond

Abstract A central assumption in classical optimization is that all the input data of a
problem are exact. However, in many real-world problems, the input data are subject
to uncertainty. In such situations, neglecting uncertainty may lead to nominally op-
timal solutions that are actually suboptimal or even infeasible. Robust optimization
offers a remedy for optimization under uncertainty by considering only the subset of
solutions protected against the data deviations. In this paper, we provide an overview
of the main theoretical results of multiband robustness, a new robust optimization
model that extends and refines the classical theory introduced by Bertsimas and Sim.
After introducing some new results for the special case of pure binary programs, we
focus on the harvest scheduling problem and show how multiband robustness can
be adopted to tackle the uncertainty affecting the volume of produced timber and
grant a reduction in the price of robustness.

1 Introduction

Tackling uncertain data in optimization problems has attracted academic attention
since the seminal study by Dantzig [13] and, over the years, many models and ap-
proaches such as stochastic programming [20] and robust optimization [3] have been
proposed. In recent years, practitioners have shown particular interest in robust op-
timization, especially because of its computational tractability and the possibility of
having a strong control over the characterization of the uncertainty. Many collab-
orations between practitioners and academic as well as research institutions were
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formed to adapt robust optimization to real-world optimization problems (see e.g.,
[7]).

In this work, we provide an overview of the main theoretical results of multiband
robustness ( [8, 9]), a model recently proposed by Büsing and D’Andreagiovanni to
overcome some limitations of the classical Bertsimas-Sim model, while maintaining
its accessibility and simplicity of use. The idea at the basis of the new model is to
partition the single deviation band that characterizes the Bertsimas-Sim model into
multiple bands to allow a better representation of arbitrary-shaped uncertainty dis-
tributions. After outlining the main features and results of the Bertsimas-Sim model,
we discuss three of the main results for multiband robustness: 1) the robust coun-
terpart of a mixed-integer linear program can be formulated as a compact mixed-
integer linear program; 2) the separation of robustness cuts can be operated effi-
ciently by solving a min-cost flow problem; 3) in the case of a pure binary program,
the tractability and approximability of the original nominal problem are maintained
if a constant number of constraints are uncertain. Finally, we define a new family of
strong valid inequalities for binary programs.

After this overview, we show how multiband robustness can be applied to tackle
uncertainty in a forest management problem, namely the harvest scheduling prob-
lem. The goal of this problem is to select areas of a forest to be harvested in each
period of a finite time horizon in order to maximize revenues. Though the harvest
scheduling problem has been thoroughly studied in a deterministic fashion, limited
research focused on its uncertain counterpart (we refer the reader to the recent work
[19] for an overview of related works in forest management). We apply multiband
robustness to the cluster packing formulation with volume constraints to address
the issue of uncertain timber production volumes, and we conclude by presenting
preliminary computational results.

2 An Introduction to Robust Optimization

Consider the following generic mixed integer linear program (MILP):

Z∗ := max ∑
j∈J

c j x j (MILP)

∑
j∈J

ai j x j ≤ bi i ∈ I

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J .

A typical assumption in classical optimization is that all the data of the problem are
known exactly. However, for many problems, the value of the coefficients ai j, bi,
c j may be uncertain. For example, they might represent historical averages of what
happened in the past, but the future might not behave as the past has on average.
There might be some erroneous or unprecise measures as well as typos. Some of
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these values might also be irrational numbers that will be cut off by the computer
for numerical reasons. These are all sources of uncertainties.

These uncertainties might seem unimportant, especially if they are small. How-
ever, neglecting uncertainty can lead to disastrous consequences. Indeed, the pres-
ence of uncertainties actually corresponds to the presence of additional deviation
terms in the problem:

ZDEV := max ∑
j∈J

(c j +δ
c
j ) x j

∑
j∈J

(ai j +δ
a
i j) x j ≤ (bi +δ

b
i ) i ∈ I

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J ,

where δ c
j ,δ

a
i j,δ

b
i represent the deviation that the coefficients c j,ai j,bi respectively

experience.
The optimal solution Z∗ of the first program might be unfeasible for the second

program. If it is still feasible, it might be suboptimal under the objective function
max∑ j∈J(c j +δ c

j )x j, i.e. Z∗ < ZDEV . Losing feasibility or optimality can have very
bad effects in practice, and so different techniques have been developed to deal with
uncertainty over the years (we refer the reader to [3, 4, 20] for an introduction of
optimization under uncertainty).

From now on, we assume without loss of generality that uncertainty in MILP
only affects the coefficients ai j. Indeed, if the coefficients bi and/or c j are uncertain,
it is easy to derive an equivalent program where the uncertainty only affects the
coefficient matrix. We now illustrate the essential features of a robust optimization
approach by referring to the classical model by Bertsimas and Sim [5], undoubt-
edly the most famous and successful robust model which has been applied in many
different contexts. The Bertsimas-Sim model is based on the following assumptions:

1. for each uncertain coefficient, the decision maker identifies a nominal value āi j
(for example, this could be the expected value derived from historical data) and
the maximum deviation possible di j from the nominal value;

2. the actual value ai j of an uncertain coefficient belongs to the symmetric deviation
band [āi j−di j, āi j +di j];

3. the uncertain coefficients ai j are stochastically independent random variables de-
fined over their own deviation ranges according to an unknown symmetric distri-
bution;

4. for each constraint i ∈ I, the decision maker specifies a value 0≤ Γi ≤ |J| repre-
senting the maximum number of coefficients deviating simultaneously from their
nominal value.

The set of deviations that respect these assumptions is called the uncertainty set.
The parameter Γi controls the conservativeness of the model: increasing its value

increases also the protection against deviation, but at the same time, we incur the
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so-called price of robustness, that is, the deterioration of the optimal value caused
by the exclusion of non-robust solutions from the feasible set.
Under these assumptions, a bilevel robust counterpart of MILP can be written as
follows:

max ∑
j∈J

c j x j (NL-ROB-MILP)

∑
j∈J

āi j x j +DEV (x,Γi)≤ bi i ∈ I

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J ,

where each feasibility constraint includes the additional term DEV (x,Γi), that rep-
resents the worst deviation for constraint i allowed by the uncertainty set for a given
solution x when at most Γi coefficients deviate. Specifically, the term DEV (x,Γi)
corresponds to the optimal value of the following knapsack problem:

DEV (x,Γi) := max ∑
j∈J

di jx j yi j (1)

∑
j∈J

yi j ≤ Γi (2)

yi j ∈ {0,1} j ∈ J ,

in which the binary variable yi j is 1 if coefficient ai j deviates to its worst value,
which is its most positive feasible value since we’re maximizing (i.e., ai j = āi j +
di j) and 0 if the coefficient experiences no deviation (i.e., ai j = āi j). The objective
function (1) aims to maximize the total deviation in the constraint and the inequality
(2) imposes that at most Γi coefficients deviate from their nominal value.

By pointing out the integrality of the knapsack polyhedron and by using duality
results, Bertsimas and Sim removed the non-linearity of the previous robust coun-
terpart and reached the following nice result:

Theorem 1 (Bertsimas & Sim, 2004). The non-linear mixed-integer program (NL-
ROB-MILP) is equivalent to the following compact and linear mixed integer pro-
gram:
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max ∑
j∈J

c j x j

∑
j∈J

āi j x j +Γi wi + ∑
j∈J

zi j ≤ bi i ∈ I

wi + zi j ≥ di jx j i ∈ I, j ∈ J

wi ≥ 0 i ∈ I

zi j ≥ 0 i ∈ I, j ∈ J

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J .

Notwithstanding its elegant simplicity, which has contributed to its wide success
even beyond the mathematical programming community, the Bertsimas-Sim model
presents some limitations. In particular, the hypothesis that each coefficient is a ran-
dom variable symmetrically distributed over a symmetric range can be very limita-
tive in practice and makes robust solutions more conservative than necessary, as Sim
himself pointed out in [11]. Indeed, this model focuses on the extreme deviations of
each coefficients and completely neglects the specific behaviour of the uncertainty
within the deviation range. The drawbacks of this modeling approach are particu-
larly evident in real-world problems, where it is very common to have coefficients
whose value is asymmetrically distributed over asymmetric ranges. In order to over-
come the limitations of the Bertsimas-Sim model, several refinements have been
proposed over the years (see e.g., [3, 4, 11]). In particular, a recent model, multi-
band robustness, has tried to combine practical and theoretical considerations by
taking into account the specific needs of practitioners who were asking for a refined
representation of the uncertainty. Moreover, this new model maintains the accessi-
bility and simplicity of use of the Bertsimas-Sim model. We provide an overview of
multiband robustness and of its main theoretical results in the following section.

3 The Multiband Robustness Model

As we pointed out in the previous section, the use of a single and symmetric devia-
tion band affects negatively the conservativeness of robust solutions, as it becomes
evident when the probability of deviation changes within the range. In order to in-
crease the modeling resolution of the uncertainty, we do a very simple operation:
breaking the single deviation band into multiple narrower bands, each associated
with its own parameter Γi. An uncertainty model with these features is able to effec-
tively approximate an arbitrary-shaped uncertainty distribution, thus guaranteeing a
much higher modeling power. The multiband idea was first exploited by Bienstock
for the special case of robust portfolio optimization [6] and was then extended to
wireless network design [12]. The first general theoretical study of the multiband
model was done by Büsing and D’Andreagiovanni in 2012 (see [8], [9] and [10]).

The multiband uncertainty model assumes that:
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1. for each coefficient ai j, the decision maker knows its nominal value āi j as well
as the maximum negative and positive deviations possible dK−

i j ,dK+

i j from āi j (so

ai j ∈ [āi j +dK−
i j , āi j +dK+

i j ]);
2. the overall single deviation band [dK−

i j ,dK+
i j ] of each coefficient ai j is partitioned

into K bands, defined on the basis of K deviation values:
−∞ < dK−

i j < · · ·< d−2
i j < d−1

i j < d0
i j = 0 < d1

i j < d2
i j < · · ·< dK+

i j <+∞;
3. through these deviation values, K deviation bands are defined, namely: a set of

positive deviation bands k ∈ {1, . . . ,K+} and a set of negative deviation bands
k ∈ {K−+ 1, . . . ,−1,0}, such that a band k ∈ {K−+ 1, . . . ,K+} corresponds to
the range (dk−1

i j ,dk
i j], and band k = K− corresponds to the single value dK−

i j ;
4. for each constraint i ∈ I and each band k ∈ K, a lower bound lik and an upper

bound uik on the number of deviations that may fall in k are defined, so 0≤ lik ≤
uik ≤ n;

5. the number of coefficients that take their nominal value is not limited, i.e. ui0 = n
for all i ∈ I;

6. ∑k∈K lik ≤ n for all i ∈ I, so that there always exists a feasible realization of the
coefficient matrix.

The set of deviations satisfying these assumptions is called the multiband uncer-
tainty set.
The multiband uncertainty model (MB) thus generalizes the uncertainty definition
of the Bertsimas-Sim model: the single deviation band is partitioned into multiple
bands and each band k ∈ K is associated not only with an upper bound uik, but
also with a lower bound lik on the number of coefficients deviating in that band.
The lower bound improves the modeling power of the decision maker and, more
important, allows to take into account the presence of negative value deviations,
that are neglected by the Bertsimas-Sim; the negative deviations reduce the value of
the overall worst deviation.

As for the non-linear robust counterpart (NL-ROB-MILP) defined for the Bertsimas-
Sim model, an additional term DEV (x,MBi) is introduced in every feasibility con-
straint in the MB model, to represent the maximum total deviation that could be
incurred by constraint i under the multiband uncertainty set for a solution x.

max ∑
j∈J

c j x j

∑
j∈J

āi j x j +DEV (x,MBi)≤ bi i ∈ I

x j ≥ 0 j ∈ J

x j ∈ Z j ∈ JZ ⊆ J .

Here, the term DEV (x,MBi) is associated to the following problem:
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DEV (x,MBi) := max ∑
j∈J

∑
k∈K

dk
i jx j yk

i j (3)

lik ≤∑
j∈J

yk
i j ≤ uik k ∈ K (4)

∑
k∈K

yk
i j ≤ 1 j ∈ J (5)

yk
i j ∈ {0,1} j ∈ J .

The decision variables yk
i j determine whether or not coefficient ai j deviates into its

kth band. The objective function maximizes the total deviation incurred by con-
straint i under the multiband uncertainty set. Constraints (4) impose that the number
of coefficients that deviate in their kth band is between lki and uki, whereas (5) im-
pose that each coefficient deviates in at most one band (note that if ∑k∈K yk

i j = 0
then the coefficient is experiencing no deviation and thus is implicitly falling in
band k = 0).

Again, this is a non-linear robust counterpart, since it is a bilevel max-max prob-
lem. However, it has been proven that it can be reformulated as a compact and linear
problem. We refer the reader to [8,9] for the complete proofs of the results presented
in this section.

Theorem 2 (Büsing & D’Andreagiovanni, 2012). The robust counterpart of prob-
lem MILP under the multiband uncertainty set MB is equivalent to the following
compact and linear mixed integer program:

max ∑
j∈J

c j x j (Rob-MILP)

∑
j∈J

āi j x j− ∑
k∈K

lik vik + ∑
k∈K

uik wik + ∑
j∈J

zi j ≤ bi i ∈ I

− vik +wik + zi j ≥ dk
i j x j i ∈ I, j ∈ J,k ∈ K

vik, wik ≥ 0 i ∈ I,k ∈ K

zi j ≥ 0 i ∈ I, j ∈ J

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J .

As an alternative to solving (Rob-LP), a cutting-plane approach [18] has been
investigated. Given a solution x̄, we want to test if it is robust feasible, i.e. if
∑ j∈J āi j x̄ j +DEV (x,MBi)≤ bi for all the feasible deviations included in the multi-
band uncertainty set, and that, for all i ∈ I. In the case of the Bertsimas-Sim model,
the problem of separating a robustness cut for a given constraint is very simple and
essentially consists in sorting the deviations in increasing order and choosing the
worst Γi > 0. In the case of multiband uncertainty, this simple approach does not
guarantee the robustness of a computed solution. However, it has been proven that
the separation can be done in polynomial time by solving a min-cost flow problem
as follows.
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Theorem 3. Let x be a solution to MILP and let MB be a multiband uncertainty set.
Moreover, let (G,c)i

x be the min-cost flow instance corresponding to a solution x
and a constraint i ∈ I of MILP. The solution x is robust for constraint i with respect
to MB if and only if ā′ix− c∗i (x) ≤ bi, where c∗i (x) is the minimum cost of a flow of
the instance (G,c)i

x.

The proof is based on showing the existence of a one-to-one correspondence be-
tween the integral flows of the min-cost flow problem and the non-dominated fea-
sible solutions of the pure 0− 1 program that computes the maximum deviation
allowed by the multiband uncertainty set.

Let us now say a few more words about how to choose the band partition. Obvi-
ously, having more bands allows us to represent the uncertainty distribution more
accurately and thus reduce conservativeness. On the other hand, doing so increases
the size of the problem and thus the computing time. Given a fixed number of bands,
we would like to find the partition that yields the least conservative robust solution.
Two factors affect the conservativeness of the solution: the width of the bands, and
the size of the gap between the lower and upper bounds lki and uki for that band.
Indeed, looking at the bilevel program, it is clear that, the bigger the gap between
dk−1

i j and dk
i j, then the more conservative the solution will be since the program goes

for the worst deviation possible and picks deviation dk
i j. So the further apart dk−1

i j

and dk
i j are, the less likely it is that the actual deviation is very close to dk

i j. Thus, one
way to make solutions less conservative for a constant number of bands is to make
them all the same width.

However, by doing that, one might get big gaps between some lki’s and uki’s
since the kth band of one coefficient might contain a very different percentage of
deviations of its distribution than for another coefficient. The bigger the gap, the
more wildly the deviations can behave: more coefficients will deviate into bands
that are worse than necessary. So another idea to make the solution less conservative
for a constant number of bands is to make sure that the kth band in the multiband
setup of each coefficient contains more or less the same percentage of deviations of
its distribution, so that the gap between lki and uki is very small. However, by doing
that, we might have some very wide bands.

Depending on the problem, one of these two ideas might yield a better solution;
it might be worthwhile to try both strategies when applying multiband robustness.

Exploiting domination to simplify the robust counterpart. In [9], Büsing and
D’Andreagiovanni propose a refinement of their multiband results, based on the ex-
ploitation of domination among deviation scenarios. In particular, they define what
they call the profile (p,θ) of a multiband uncertainty set for each constraint i ∈ I as
follows:
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pi =min{k ∈ K :
k

∑
`=K−

li`+
K+

∑
`=k+1

ui` ≤ |J|},

θik =


lik k ≤ pi−1
uik k ≥ pi +1
|J|−∑k∈K\{p} θik k = pi .

Note that pi ≥ 0 since ui0 = n and ∑k∈K θik = |J|, for all i ∈ I. For each constraint
i ∈ I and deviation band k ∈ K, the profile identifies the number of coefficients θik
that must fall in the band k to maximize the deviation. Intuitively, since the aim is to
maximize the total deviation, θik is set equal to the lower bound lik for the negative
bands (a deviation occurring in them indeed reduce the total deviation), while as
many coefficients as possible are requested to fall in the most positive deviation
bands (while respecting the corresponding bounds).

Thanks to the definition of the profile concept, the term DEV (x,MBi) can be as-
sociated to the following pure binary program with a reduced number of constraints:

DEV (x,MBi) = max ∑
j∈J

∑
k∈K

dk
i jx j yk

i j

∑
j∈J

yk
i j = θik k ∈ K

∑
k∈K

yk
i j ≤ 1 j ∈ J

yk
i j ∈ {0,1} j ∈ J .

By duality, the reduced number of constraints corresponds to a reduced number of
variables in the compact robust counterpart, as follows:

max ∑
j∈J

c j x j (θ -Rob-LP)

∑
j∈J

āi j x j + ∑
k∈K

θik wik + ∑
j∈J

zi j ≤ bi i ∈ I

wik + zi j ≥ dk
i j x j i ∈ I, j ∈ J,k ∈ K

wik ≥ 0 i ∈ I,k ∈ K

zi j ≥ 0 i ∈ I, j ∈ J

x j ≥ 0 j ∈ J

x j ∈ Z+ j ∈ JZ ⊆ J .

Specializing results for pure 0− 1 linear programs. Another nice result that
Büsing and D’Andreagiovanni achieved is that if the original problem is a purely bi-
nary problem that can be solved in polynomial time, then there exists a polynomial-
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time algorithm to solve the robust counterpart if a constant number of constraints
are uncertain. See [8, 9] for more details.

In addition to these results, we investigate here a new family of valid inequalities
for DEV (x,MBi) by adopting a proof strategy similar to that of Atamtürk for the
Bertsimas-Sim model [1].

Proposition 1. Consider the multiband model for an uncertain pure 0−1-program
with only positive deviations. For any T := { j1, j2, . . . , jt} ⊆ J with 0 := dk

j0 ≤ dk
j1 ≤

. . .≤ dk
jt and for any k ∈ K and i ∈ I, the following inequality is valid for θ −Rob−

LP:
∑
jl∈T

(dk
i jl −dk

i jl−1
)x jl ≤ wik + ∑

j∈T
zi j .

Proof. Since we’re considering a single i∈ I, we drop its index in the proof to make
the notation lighter.

Let
M = max{l ∈ [0, t] : dk

jl ≤ wk}

and let dk
jM = wk− ε with ε ≥ 0. Consider the sum ∑ jl∈T (dk

jl
−dk

jl−1
)x jl .

First, note how dk
jl
− dk

jl−1
≥ 0 for all l ∈ [1, t]. Thus the sum will be maximized if

x jl = 1 for all l ∈ [1, t]. So by splitting the sum into three parts and using the fact
that dk

jM = wk− ε , we get:

∑
jl∈T

(dk
jl −dk

jl−1
)x jl

=
M

∑
l=1

(dk
jl −dk

jl−1
)x jl +(dk

jM+1
−dk

jM )x jM+1 +
t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl

≤ dk
jM +(dk

jM+1
−dk

jM )x jM+1 +
t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl

= wk− ε +(d jM+1 − (wk− ε))x jM+1 +
t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl .

Then two scenarios arise: either x jM+1 = 1 or x jM+1 = 0. In the first case, we get that
the two ε-s cancel and the previous line becomes:

wk +(d jM+1 −wk)x jM+1 +
t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl ,

with x jM+1 = 1. In the second case, the second ε disappears and, since wk− ε ≤ wk,
the previous line can be seen as being at most:

wk +(d jM+1 −wk)x jM+1 +
t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl ,
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with x jM+1 = 0. Thus, whether x jM+1 = 1 or x jM+1 = 0, we get that:

∑
jl∈T

(dk
jl −dk

jl−1
)x jl ≤ wk +(d jM+1 −wk)x jM+1 +

t

∑
l=M+2

(dk
jl −dk

jl−1
)x jl

≤ wk +(d jM+1 −wk)x jM+1 +
t

∑
l=M+2

(dk
jl −wk)x jl

= wk +
t

∑
l=M+1

(dk
jl −wk)x jl .

The second line is obtained by noticing that dk
jl−1
≥wk for M+2≤ l≤ t. Now, recall

that wk + z j ≥ dk
j x j in θ −Rob−LP. So, if x jl = 0, then z jl ≥ (dk

j −wk) ·0 = 0, and
if x jl = 1, then z jl ≥ (dk

j −wk) ·1 = dk
jl

x jl −wk. Thus, we have that

wk +
t

∑
l=M+1

(dk
jl −wk)x jl ≤ wk +

t

∑
l=M+1

z jl

≤ wk + ∑
j∈T

z j .

ut

Proposition 2. If 0= d j0 < d j1 < .. . < d jt , then the preceding inequalities are facet-
defining for DEV (x,MBi).

Proof. Once again, we drop index i to lighten the notation since it is unnecessary.
We exhibit 2|J|+ |K| affinely independent points of the polytope which are tight

with

∑
jl∈T

(dk1
jl
−dk1

jl−1
)x jl ≤ wk1 + ∑

j∈T
z j ,

thus implying that it is a facet.

x z w
( 0, 0, 0 )
( e j, D je j, 0 ) ∀ j ∈ [n]\T
( e j, (D j + ε)e j, 0 ) ∀ j ∈ [n]\T
( ∑

m
l=1 e jl , 0, dk1

jm ek1 +∑k 6=k1
Dkek ) ∀m ∈ {1, . . . , t}

( ∑
m
l=1 e jl , εe jm , (dk1

jm − ε)ek1 +∑k 6=k1
Dkek ) ∀m ∈ {1, . . . , t}

( 0, 0, ek ) ∀k 6= k1

where D j := maxk∈K dk
j , Dk := max j∈J dk

j and 0 < ε .
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Conversely, if dk1
jl
= dk1

jl−1
for some l ∈ [1, t], then the inequality defined by T is

implied by the one defined by T\{l} and z jl ≥ 0 ut

4 The Harvest Scheduling Problem

The Harvest Scheduling Problem (HSP) is a central problem in forestry manage-
ment that has received a lot of attention over the last two decades. The essential goal
of the HSP is to select the areas of a forest that will be harvested in each period of a
time horizon with the aim of maximizing a revenue function. Over the years, many
optimization models have been developed and several variants have been presented
in the literature to find schedules that take into account additional side constraints
(e.g., so-called volume constraints to provide an even flow of timber over the plan-
ning horizon). We refer the reader to [17] for a good overview on the main variants
of the HSP and related works.

One possible way to model HSP is to partition a forest into stands and plan
harvesting at the stand-level: in each period either a stand is harvested or it is not.
There is also a maximum contiguous area AM that can be harvested in a single time
period. It is assumed that the area of each stand is smaller or equal to AM . A set
of contiguous stands for which the total area is less than AM is called a feasible
cluster. Two clusters are said to be incompatible if they are adjacent or if they share
a stand. Finally, it is also assumed that the considered time horizon is shorter than
the time needed for a green-up: a stand can be harvested at most once during the
time horizon. The following input is assumed to be given:

• T the set of time periods;
• S the set of stands;
• Ω the set of feasible clusters;
• Ω(U) the set of feasible clusters containing at least one stand in U ⊆ S;
• pC t the revenue obtained from harvesting cluster C in period t;
• αC t the volume of timber obtained from harvesting cluster C in period t.

As said before, the objective is to find the harvesting schedule for T that maximizes
the total revenue. It is also required that the volume of harvested timber is more or
less constant from period to period for economical and ecological reasons. We use
the cluster packing formulation, which has been proven to be particularly effective
from a computational point of view [15]:



Multiband Robust Harvest Scheduling 13

max ∑
t∈T

∑
C∈Ω

pC txC t

∑
t∈T

∑
C∈Ω(s)

xC t ≤ 1 s ∈ S (6)

xC t + xB t ≤ 1 t ∈ T,

C,B ∈Ω : C,B incompatible (7)

∑
C∈Ω

αC t+1xC t+1 ≥ Lt ∑
C∈Ω

αC txC t t ∈ T\{|T |} (8)

∑
C∈Ω

αC t+1xC t+1 ≤Ut ∑
C∈Ω

αC txC t t ∈ T\{|T |} (9)

xC t ∈ {0,1} t ∈ T, C ∈Ω .

The binary variables xC t determine whether or not cluster C is harvested in time pe-
riod t. The objective function maximizes the total revenue granted by a harvesting
schedule. Constraints (6) impose that a stand can be harvested at most once through-
out the whole time horizon. Constraints (7) state that, given two incompatible clus-
ters, at most one can be harvested in any given time period. Indeed, if we harvest
both, either their total area is greater than the permissible area AM or it is smaller
and their union is already in the set of feasible clusters Ω . Constraints (8)-(9) ensure
that the volume of timber harvested in period t + 1 is between Lt and Ut times the
volume of timber harvested in period t, thus enforcing a somewhat constant flow of
timber volume.

4.1 Including Uncertainty in the Harvest Scheduling Problem

We now observe that certain values of the program are uncertain, namely the timber
volumes αC t . Assuming that we know a nominal value ᾱC,t and set a system of
deviations dk

C t , k ∈ K for each coefficient, we know from the previous section that
we can reformulate the uncertain model as the following multiband compact robust
counterpart:
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max ∑
t∈T

∑
C∈Ω

pC txC t

∑
t∈T

∑
C∈Ω(s)

xC t ≤ 1 s ∈ S

xC t + xB t ≤ 1 t ∈ T

C,B ∈Ω : C,B incompatible

∑
C∈Ω

ᾱC t+1xC t+1− ∑
k∈K

θ
L
tkwL

tk− ∑
C∈Ω

zL
C t+1

≥ Lt ∑
C∈Ω

ᾱC txC t + ∑
C∈Ω

zL
C t t ∈ T\{|T |}

∑
C∈Ω

ᾱC t+1xC t+1 + ∑
k∈K

θ
U
tk wU

tk + ∑
C∈Ω

zU
C t+1

≤Ut ∑
C∈Ω

ᾱC txC t − ∑
C∈Ω

zU
C t t ∈ T\{|T |}

wL
tk + zL

C t ≥ Lt dk
C txC t t ∈ T, C ∈Ω , k ∈ K

wL
tk + zL

C t+1 ≥−dk−1
C t+1xC t+1 t ∈ T\{|T |}, C ∈Ω , k ∈ K

wU
tk + zU

C t ≥−Ut dk−1
C t xC t t ∈ T, C ∈Ω , k ∈ K

wU
tk + zU

C t+1 ≥ dk
C t+1xC t+1 t ∈ T\{|T |}, C ∈Ω , k ∈ K

wU
tk,w

L
tk,z

U
C t ,z

L
C t ≥ 0 t ∈ T, C ∈Ω , k ∈ K

xC t ∈ {0,1} t ∈ T, C ∈Ω .

4.2 Preliminary Computational Results

We conducted a preliminary computational experience over a set of ten instances
derived from the data sets available on the FMOS website [14]. Our aim was to
compare the price of robustness (i.e., the decrease in the value of the objective func-
tion that we must face to guarantee protection against deviations) of the multiband
model versus the one of the Bertsimas-Sim model. To this end, we considered the
two instances “PhyllisLeeper” and “Bear Town” which both include five time peri-
ods and respectively 80 and 71 elementary forest stands. All experiments were made
on a 2.70 GHz Intel Core i7 with 8 GB. The programs were written in the C/C++
programming language and the optimization problems were solved by IBM ILOG
CPLEX 12.1 with the support of Concert Technology. All runs were made using the
default settings of Cplex with a time limit of 7200 seconds.

Concerning the volume constraints, we considered five different settings: denot-
ing by Vt the total volume of timber harvested in period t, we adopted constraints
(1− β )Vt ≤ Vt+1 ≤ (1+ β )Vt with β in {0.10,0.15,0.20,0.25,0.30}. Concerning
the nature of timber volume uncertainty, we assumed that the deviation of each vol-
ume coefficient is a random variable following a standard normal distribution and
we allowed deviations up to 15% of the nominal value. The nominal value ᾱC t of a
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volume coefficient is computed by summing up the volumes of the stands that form
it (derived from the FMOS instances). The deviation values of each coefficient are
defined considering the standard normal distribution in correspondence with integer
multiples of the standard deviation. For the experiments, we considered an increas-
ing number of bands: 3, 5, 7 (respectively covering the well-known 68-95-99.7 areas
of the standard distribution), each including the zero deviation band and an equal
number of positive and negative deviation bands. The bounds lik,uik were defined
taking into account the fraction of coefficients deviating in each band according
to the considered standard normal distribution and then decreasing/increasing and
rounding the resulting value. For a fair comparison between single and multiband
uncertainty, we set the Bertsimas-Sim parameter Γi of each constraint i equal to a
weighted summation of the profile values θik, taking into account the proportion
between the worst deviation of the considered band and the worst deviation of the
worst band.

Table 1 Comparisons between the single and the multiband price of robustness

PoR-BS (%) ∆PoR-MB (%)
ID β

K=3 K=5 K=7 K=3 K=5 K=7
PL1 0.10 13.0 23.5 24.1 7.8 9.3 8.8
PL2 0.15 9.7 21.4 22.3 9.5 12.1 7.5
PL3 0.20 8.2 15.4 18.7 11.4 11.6 9.4
PL4 0.25 13.8 24.4 27.1 7.5 7.7 8.5
PL5 0.30 7.9 18.5 20.1 12.4 13.2 9.7
BT1 0.10 6.3 14.3 15.7 6.5 6.8 9.1
BT2 0.15 7.9 18.3 23.0 9.2 9.9 9.5
BT3 0.20 8.1 17.0 18.2 11.9 12.4 12.0
BT4 0.25 11.4 18.8 20.2 7.4 9.3 9.1
BT5 0.30 10.2 27.2 27.9 8.2 8.6 7.6

The results are shown in Table 4.2. Each row reports the ID and volume con-
straint coefficient β . Furthermore, the three columns of PoR-BS report the price of
robustness in the case of the Bertsimas-Sim model, as a percentage increase with
respect to the optimal value of the nominal problem (the three columns corresponds
with the three distinct Γ -settings adopted to fairly compare with the three band set-
tings considered for the multiband model). Finally, the three columns of ∆PoR-MB
report the percentage reduction in the price of robustness that the multiband model
grants with respect to the robust optimal value of the Bertsimas-Sim model. Two
main observations can be made about the results: 1) imposing protection sensibly
decreases the value of the optimal solutions and the decrease is naturally bigger
when higher protection is demanded, as shown by columns PoR-BS; 2) the refined
representation of the uncertainty set allowed by the multiband model grants a very
remarkable reduction in the price of robustness, as shown by columns ∆PoR-MB.
This encourage further and deeper investigations about a refined definition of the
multiband uncertainty set for the HSP.
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4.3 Final remarks

We presented an overview of the main theoretical results of multiband robustness, a
model for robust optimization that Büsing and D’Andreagiovanni recently proposed
to extend and refine the classical Bertsimas-Sim model. Furthermore, we introduced
a new family of strong valid inequalities for uncertain binary programs. We showed
how these theoretical results can be used in forest management to tackle the un-
certainty affecting the volume of produced timber in a harvest scheduling problem.
Preliminary computational results highlight the improved performance of multiband
robustness in terms of price of robustness. Our current work focuses on evaluating
the computational efficiency and efficacy of the new family of valid inequalities and
developing ad-hoc algorithms for the solution of larger robust harvest scheduling
problems.
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