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Abstract We introduce a generalized operator for arbitrary stochastic pro-
cesses by using a pre-kernel, which is a generalization of the Markov kernel. For
deterministic processes, such an operator is already known as the Frobenius-
Perron operator, which is defined for a large class of measures. For Markov
processes, there exists transfer operators being only well defined for stationary
measures in L2. Our novel generalized transfer operator is well defined for ar-
bitrary stochastic processes, in particular also for deterministic ones. We can
show that this operator is acting on L1. For stationary measures, this operator
is also an endomorphism of L2 and, therefore, allows for a mathematical analysis
in Hilbert spaces.
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1 Introduction

In the last decades, operators which propagate probability densities of a dynam-
ical system have been extensively studied [6, 13, 9]. In particular the transfer
operator for deterministic systems, also called the Perron Forbenius operator,
has been analyzed [11, 8, 7, 9]. For an exhaustive overview of transfer operators
and stochastic aspects we refer to [1]. Inspired by the work of Dellnitz and Junge
in [10] where the Perron-Frobenius operator for small random perturbations was
analyzed with the aim to gain a numerical approximation of complicated dy-
namical behavior, Schütte considered a transfer operator for applications in the
simulation of bio molecules [16]. More precisely, he introduced a transfer op-
erator in a weighted L2 space which projects the dynamics of the phase space
onto the conformational state space. This operator can be interpreted as a mo-
mentum weighted Perron-Frobenius operator on the state space. A Galerkin
discretization of this projection combined with the weighting allows for describ-
ing the dynamics of a bio molecule in terms of transition probabilities between
subsets of the state space. Since then, much progress has been done. In the
dissertation of Huisinga [14], the spectrum of a general class of Markov transfer
operators was analyzed, and in the dissertation of Sarich [15], the projection of
Markov transfer operators onto committor functions was investigated. In the
habilitation thesis of Weber [17], a class of transfer operators that derives from
averaging a Markov kernel was analyzed.

In this article, we construct a generalized transfer operator that propagates
probability densities of a dynamical system. For this, we need some prepara-
tions. Firstly, we have to define in which sense we can get hold of a dynamical
system. Secondly, we need to define in which space this transfer operator should
act, and if it is well defined. Finally, we need to show that it has the property
of propagating the according probability densities.

Operator Process Kernel Ch.-Kolmog.

Frobenius [1] deterministic Dirac delta in a discrete

sense

Markov [5, 14] stochastic Markov yes

Schütte [16] special projection pre-kernel no

of a deterministic

system

Dellnitz [10] deterministic system pre-kernel no

with stochastic

perturbation

Weber [17] special projection pre-kernel not in general
of a Markov process

Table 1: Table of different operators mentioned in literature that can be seen as
a special case of the general operator defined in this article. The bold printed
entries represent the special qualifications of the given operator compared to
the general case.
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1.1 The essence of a dynamical system

In the following, let (E,ΣE , µ) define a σ-finite measure space on some set E,
i.e. there is a sequence (Ai)i∈N, Ai ∈ ΣE , satisfying

E =
⋃

i∈N

Ai and µ(Ai) < ∞ for all i ∈ N,

and let us denote the corresponding Lebesgue space1 by L1(E,ΣE , µ). Here, we
define the Lebesgue spaces for K ∈ {R,C} and 1 ≤ p < ∞ by

Lp(E,ΣE , µ) := {f : E → K | f is measurable, ||f ||p < ∞}/N,

||f ||p :=

∫

E

|f(x)|pµ(dx),

L∞(E,ΣE , µ) := {f : E → K | f is measurable, ||f ||∞ < ∞}/N,

||f ||∞ := inf
A∈ΣE ,µ(A)=0

sup
x∈E\A

|f(x)|,

where N is given by

N = {f : E → K | ∃A ∈ ΣE with µ(A) = 0 and f |Ω\A = 0}.

In the following - if possible - we neglect E and ΣE and write only Lp(µ).

Deterministic System

A deterministic system is given by a map S : E → E. The system moves
any point x ∈ E to S(x). The operator that propagates the corresponding
probability densities is known as the Frobenius-Perron Operator T [1]. Let
now S be a µ-non singular map, i.e. for all A ∈ ΣE with µ(A) = 0 it follows
µ(S−1(A)) = 0 where S−1(A) := {x ∈ E | S(x) ∈ A}, then the Frobenius-
Perron Operator is acting on functions f ∈ L1(E,ΣE , µ), and is uniquely given
by

∫

A

T f(x)µ(dx) =

∫

S−1(A)

f(x)µ(dx) (1)

for all A ∈ ΣE . To see this, consider some random variable X on E which gives
rise to a probability density f on E through

P(X ∈ A) =

∫

A

f(x)µ(dx),

for any A ∈ ΣE . We want T to propagate the probability density according to
S, i.e.

P(S(X) ∈ A) =

∫

A

T f(x)µ(dx),

for any A ∈ ΣE , but we also have that

P(S(X) ∈ A) = P(X ∈ S−1(A)) =

∫

S−1(A)

f(x)µ(dx)

which gives rise to (1). The Frobenius-Perron operator T by (1) is well-defined,
continuous and unique [1]. Later on, we show that T derives as a special case
from our here introduced transfer operator.

1See section 2.2.
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Markov chain

Consider a time-homogeneous Markov chain (Xk)k∈N on a finite set E = {1, . . . , n},
i.e.

P(Xk+1 = ik+1 | Xk = ik, . . . , X0 = i0) = P(Xk+1 = ik+1 | Xk = ik)

for all il ∈ E, l = 1, . . . , k, k ∈ N. For a given transition matrix P , i.e.

Pij = P(X1 = j | X0 = i), i, j ∈ {1, ...., n}

we can say that the according Markov chain (Xk)k∈N with starting density
f ∈ Rn, i.e. f(i) = P(X0 = i) for i = 1, . . . , n, evolve as

P(Xk = i) = (fTP k)(i).

Therefore, the propagation of probability densities of a Markov chain is deter-
mined by the transition matrix P and a start density f .

Markov process

Let (Ω,Σ,P) be a probability space and A ⊂ Σ a σ-algebra. A function φ : Ω →
R is called conditional expectation of a P-integrable function Y : Ω → R under
condition A, if

(i) φ is A-measurable,

(ii) and for all A ∈ A it holds

∫

A

Y (x)P(dx) =

∫

A

φ(x)P(dx).

One can show that φ is almost surely unique, and we denote it in the following
by E[Y | A]. For a stochastic process (Xt)t≥0, we denote with

Ft = σ(X−1
s | s ≤ t)

the standard filtration. A stochastic process (Xt)t≥0, Xt : Ω → R
n is called a

Markov process if we have for any Borel-set A ∈ B(Rn):

E[1Xs∈A | Ft] = E[1Xs∈A | σ(Xt)]

for all s ≤ t. For the context of a Markov process on a infinite state space E, the
transition matrix as given by a Markov chain becomes replaced by a transition
function p : [0,∞) × E × ΣE → R, where for some x ∈ E, A ∈ ΣE the term
p(t, x, A) can be seen as the probability to move from state x to some state of
A after time t ≥ 0. A transition function is called Markov kernel if it meets:

1. A 7→ p(t, x, A) is a probability measure on ΣE for all t ≥ 0, x ∈ E,

2. x 7→ p(t, x, A) is measurable on E for all A ∈ ΣE and t ≥ 0,

3. p(0, x, A) =

{
1 if x ∈ A,

0 else,
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4. p(t+ s, x,A) =
∫
E
p(s, y, A) p(t, x, dy) for all x ∈ E, A ∈ ΣE and t, s ≥ 0.

It can be shown that a Markov process Xt in E of p exists, i.e.

E[1Xt+s∈A | F ] = p(s,Xt, A), (2)

for all s, t ≥ 0, A ∈ ΣE . In particular, all finite dimensional densities are
uniquely determined by p (see [12] chapter 4.1 Markov processes and transition
functions, Theorem 1.1). It can also be shown that for any Markov process
Xt, there exists a unique Markov kernel that meets (2). Therefore, the Markov
kernel can be seen as a characterization of Markov processes. It has been sug-
gested that the transfer operator for Markov processes can be introduced as
follows [5, 14]. First, define the operator

Ut : X → X

f 7→

(
x →

∫

E

f(y) p(t, x, dy)

)

on some space X = Lr(E,ΣE , µ) for 1 ≤ r ≤ ∞. In [4], it has been shown
that for the case of a stationary density µ of Xt and the corresponding Markov
kernel p, i.e. ∫

A

µ(dx) =

∫

E

p(t, x, A)µ(dx),

for all A ∈ ΣE , the operator Ut is well-defined for any 1 ≤ r ≤ ∞. If we define
the µ-weighted L2 scalar product:

〈f, g〉µ :=

∫

E

f(x) g(x)µ(dx),

for f ∈ Lq(E,ΣE , µ) and g ∈ Lp(E,ΣE , µ) with 1
p
+ 1

q
= 1, then it is known

that for each 1 ≤ r < ∞ there exists an adjoint operator Tt with

〈Utf, g〉µ = 〈f, Ttg〉µ ,

for all f ∈ Lq(E,ΣE , µ), g ∈ Lp(E,ΣE , µ). Unfortunately, there are two strong
restrictions:

1. We only know that Ut is well-defined if µ is a stationary measure.

2. For L∞(µ) we do not know if the operator Tt : L1(µ) → L1(µ) exists. In
general, for an arbitrary operator S : L∞ → L∞ there does not exist an
adjoint operator. This is a very strong restriction, because L1 contains all
possible probability densities, and it seems natural to define the transfer
operator on such a space.

This shows already that even in the case of Markov processes we have some
difficulties to define the transfer operator. In addition, a formal proof that T
does indeed propagate probability densities of the corresponding dynamics is
still missing. We now show that we can abandon these restrictions, and that
there is no need to confine to Markov processes, in particular with regard to
item 4.
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1.2 Structure of this article

We present a transfer operator for a general dynamical system in the following
stages:

1. In Section 2.1, we introduce a pre-kernel which is a generalization of a
Markov kernel, and show that for each stochastic process there exists
a pre-kernel p, such that the density of the process is captured by p.
Therefore, it always can be assumed that for a given dynamical system
there exists a corresponding pre-kernel.

2. In Section 2.2, we introduce the operator Ut as mentioned above, but with
the difference that we replace the Markov kernel with the here defined
pre-kernel without being restricted on stationary measures. After that,
we prove that the adjoint Tt in the case of L∞ exists.

3. At the end of Section 2.2, we prove that T propagates probability densities
according to the dynamical system.

4. In Section 2.3, we show that when µ is a stationary density we have

T (L2(µ)) ⊆ L2(µ)

which allows us to use the projection machinery of L2. The projection
theory for Markov processes on committor functions has been recently
investigated in [15].

5. In Section 3, we end the article by showing some basic properties of the
transfer operator, and we prove that the here defined transfer operator is a
generalization of the Frobenius-Perron Operator and the transfer operator
considered by Schütte [16].

2 Transfer operator

Let (E,ΣE , µ) be a σ-finite measuring space where ΣE is the σ-algebra on some
set E, and µ is a σ-finite measure defined on E. For a set A ∈ ΣE we denote
with

1A(x) =

{
1 if x ∈ A,

0 else,

the characteristic function of A. Furthermore, we define the probability space
(Ω,Σ,P) with the σ-algebra Σ on a set Ω and the probability measure P, i.e.
P(Ω) = 1.

2.1 Pre-kernel

We denote
p : [0,∞)× E × ΣE → R

as a pre-kernel iff

1. A 7→ p(t, x, A) is a probability measure on ΣE for all t ≥ 0, x ∈ E,

2. x 7→ p(t, x, A) is measurable on E for all A ∈ ΣE and t ≥ 0,
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3. and p(0, x, A) = 1A(x) holds for all A ∈ ΣE and x ∈ E.

We say that the pre-kernel corresponds to a stochastic process (Xt)t≥0,
Xt : Ω → E, iff

P(Xt ∈ B,X0 ∈ A) =

∫

A

p(t, x, B) ν(dx) (3)

holds for all A,B ∈ ΣE , t ≥ 0, where ν denotes the probability measure ν(A) :=
P(X0 ∈ A) for A ∈ ΣE . The following lemma shows, that this definition of a
pre-kernel is reasonable.

Proposition 1. Let us given a stochastic process (Xt)t≥0, and denote with ν
the measure

ν(A) := P[X0 ∈ A] for all A ∈ Σ.

Then, there exist a ν-almost surely unique corresponding pre-kernel.

Proof. To see uniqueness according to ν, let us assume that we have two pre-
kernel p1 and p2 corresponding to (Xt)t≥0. It follows, that

∫

A

p1(t, x, B) ν(dx) = P(Xt ∈ B,X0 ∈ A) =

∫

A

p2(t, x, B) ν(dx)

holds for all A,B ∈ Σ and, therefore, p1 = p2 ν−almost surely.
To see existence, take t ≥ 0 and B ∈ Σ arbitrarily. Let us consider the

following measure

pB,t : Σ → R

A 7→ P(Xt ∈ B,X0 ∈ A).

Note that for A ∈ Σ with ν(A) = 0 it follows pB,t(A) = 0. Therefore, due to
the Radon-Nikodym theorem, this measure has a density according to ν that
we denote by p(t, ·, B). By definition, it corresponds to (Xt)t≥0. We now show
that p is actually a pre-kernel ν-almost surely. Therefore, we have to show that

(i) p(t, x, E) = 1,

(ii) p(t, x, B) ≥ 0 for all B ∈ ΣE ,

(iii) p(t, x,
⋃

i∈N
Ai) =

∑
i∈N

p(t, x, Ai) for each sequence (Ai)i∈N of disjoint,
measurable sets,

(iv) p(0, x, A) = 1A(x),

holds ν-almost surely.
We show these items by making use of the fact that for any f, g ∈ L1(ν) we can
derive from ∫

A

f(x) ν(dx) =

∫

A

g(x) ν(dx) for all A ∈ ΣE

that f = g holds ν-almost surely. The point (i) and (ii) follow from

∫

A

p(t, x, E) ν(dx) = P(Xt ∈ E,X0 ∈ A) = P(X0 ∈ A) =

∫

A

1 ν(dx) for all A ∈ ΣE
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and
∫

A

p(t, x, B) ν(dx) = P(Xt ∈ B,X0 ∈ A) ≥ 0 for all A,B ∈ ΣE .

To meet (iii), let us given some sequence (Ai)i∈N of disjoint, measurable sets.
From

P(Xt ∈
⋃

i∈N

Ai, X0 ∈ A) =
∑

i∈N

P(Xt ∈ Ai, X0 ∈ A) for all A ∈ ΣE

we obtain
∫

A

p(t, x,
⋃

i∈N

Ai) ν(dx) =
∑

i∈N

∫

A

p(t, x, Ai) ν(dx) for all A ∈ ΣE ,

and due to the lemma from Beppo Levi we obtain

∫

A

p(t, x,
⋃

i∈N

Ai) ν(dx) =

∫

A

∑

i∈N

p(t, x, Ai) ν(dx) for all A ∈ ΣE .

It remains to show (iv):
p(0, x, A) = 1A(x)

ν-almost surely for all A ∈ ΣE and x ∈ E. This follows from

∫

B

p(0, x, A) ν(dx) = P(X0 ∈ B,X0 ∈ A) =

∫

A∩B

ν(dx) =

∫

B

1A(x) ν(dx)

for all A,B ∈ ΣE and x ∈ E.

The main statement of Theorem 1 is that for each stochastic process we
find a corresponding pre-kernel. We show vice versa that for each pre-kernel a
stochastic process exists. To do so, some preparations are necessary:

For n ∈ N let I = {1, . . . , n} be an index set and α(I) the set of all non-empty
subsets of I. For J ∈ α(I) we define for any set A

AJ := {(xi)i∈J | xi ∈ A, i ∈ J},

and denote by BJ the smallest σ-algebra that contains ΣJ
E . For J,H ∈ α(I)

with J ⊂ H , we denote with pHJ the projection

pHJ : EH → EJ ,

(xi)i∈H 7→ (xi)i∈J .

A family (PJ)J∈α(I) of probability measures on (EJ ,BJ) is called projective
family iff

PJ(A) = PH((pHJ )−1(A)) (4)

holds for all J ⊂ H ⊆ I, A ∈ BJ . One can show that it is sufficient to demand
(4) only for all A ∈ ΣJ . The following lemma be needed for the next proposition.
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Lemma 1. [[3] 62.4 Corollary] For any projective family (PJ)J∈α(I) on (EJ ,BJ)
there exists a stochastic process (Xi)i∈I with state space E such that for J =
{i1, . . . , il} ⊆ I and A1, . . . , Al ∈ ΣE we have

PJ(A1 × · · · ×Al) = P(Xi1 ∈ A1, . . . , Xil ∈ Al).

Now we are able to announce the following proposition.

Proposition 2. For each pre-kernel p and probability density ν there exists a
stochastic process (Xt)t≥0 which meets (3).

Proof. For arbitrary t ≥ 0, let us consider the measures

P{1}(A) = ν(A), P{2}(B) =

∫

E

p(t, x, B)ν(dx)

and

P{1,2}(A×B) =

∫

A

p(t, x, B)ν(dx)

for all A,B ∈ Σ. Then the measures (Pi)i∈{{1},{2},{1,2}}

P{1}(A) = P{1,2}(A× E) and P{2}(B) = P{1,2}(E ×B)

form a projective family, where A,B ∈ Σ. Because of Lemma 1, we obtain for
each t ≥ 0 the existence of two stochastic processes (X̃1

t , X̃
2
t ) with P{1,2}(A ×

B) = P(X̃1
t ∈ A, X̃2

t ∈ B). Define Xt := X̃2
t . It remains to show that

P(X0 ∈ A, Xt ∈ B) =

∫

A

p(t, x, B) ν(dx),

which holds iff X̃1
t = X̃2

0 is true. This follows from

P(X̃1
t ∈ A) =

∫

A

ν(dx)

=

∫

E

p(0, x, A) ν(dx)

= P(X̃2
0 ∈ A).

This motivates the following definition. A measure µ : Σ → [0, 1] is called a
stationary density of p if

∫

A

µ(dx) =

∫

E

p(t, x, A)µ(dx)

holds for all A ∈ Σ.
Note, if (Xµ

t )t≥0 is the process that evolves according to p with stationary
density µ as the starting density, then

P(Xµ
0 ∈ A) =

∫

A

µ(dx) =

∫

E

p(t, x, A)µ(dx) = P(Xµ
t ∈ A, Xµ

0 ∈ E) = P(Xµ
t ∈ A)

holds, which legitimizes to name it stationary density.
The following definition is crucial for the introduction of the transfer operator

below.
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Definition 3 (µ-compatible). A pre-kernel p is called µ-compatible if and only
if for each t ≥ 0 and A ∈ ΣE with µ(A) = 0 there exists a set B ∈ ΣE with
µ(B) = 0 and

p(t, x, A) = 0 for all x ∈ E\B.

One may notice that this condition is a weaker demand than absolutely
continuity. To see that, consider the measurable space (Rn,B(Rn), λ) and a
pre-kernel for time t = 0

p(0, x, A) =

{
1 if x ∈ A,

0 else.

Then, for each x ∈ E the measure p(0, x, ·) is a Dirac delta measure, and,
therefore, not absolutely continuous. However, p is λ-compatible.

2.2 Connection between operator and pre-kernel

Consider for some t ≥ 0 the following operator

Ut : L
∞(µ) → L∞(µ)

f 7→

(
x 7→

∫

E

f(y) p(t, x, dy)

)
.

(5)

Let us show that this operator is not necessarily well-defined. For example, if
we fix some x0 ∈ E, and consider the following pre-kernel

p(t, x, A) :=

{
1 if x0 ∈ A,

0 else,

for all x ∈ E, A ∈ Σ, t ≥ 0. Note that p depends only on the set A for t ≥ 0,
and that it is independent of x. Then (Utf)(x) = f(x0) holds, but f ∈ L∞(µ)
is only well defined up to a null set, so f(x0) could be arbitrary. In fact, in this
example Ut is only well-defined if and only if µ({x0}) > 0 holds.

Fortunately, we are able to show that the operator is well defined as long as
p is µ-compatible. To see that, consider f, g ∈ L∞(µ) such that

f(x) = g(x) for all x ∈ E\A

for a null set A. From the µ-compatibility, we obtain a null set B with

p(t, x, A) = 0 for all x ∈ E\B.

For x ∈ E\B, we obtain

∫

E

g(y) p(t, x, dy) =

∫

E\A

g(y) p(t, x, dy)

=

∫

E\A

f(y) p(t, x, dy)

=

∫

E

f(y) p(t, x, dy).

(6)
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It only remains to show that Utf ∈ L∞(µ). From f ∈ L∞(µ), we find a constant
M > 0 and a null-set A ∈ ΣE such that |f(x)| ≤ M for all x ∈ E\A. If p is µ-
compatible, we have a null-set B such that p(t, x, A) = 0 holds for all x ∈ E\B.
Therefore, we have for all x ∈ E\B that

∫

E

f(y) p(t, x, dy) =

∫

E\A

f(y) p(t, x, dy)

≤

∫

E\A

M p(t, x, dy)

= M.

Thus Utf ∈ L∞(µ). Analogous one can see that ||Utf ||L∞(µ) ≤ ||f ||L∞(µ) holds.
We are now in a position to sum up the results to obtain

Proposition 4. The operator Ut from (5) is well-defined and continuous if p is
µ-compatible.

Due to Hölder’s inequality, the term

〈f, g〉µ =

∫

Ω

f(x) g(x)µ(dx)

is well-defined for f ∈ Lp(µ) and g ∈ Lq(µ) with 1
q
+ 1

p
= 1, for 1 ≤ p, q ≤ ∞,

where 1
∞ := 0. We define the transfer operator Tt : L1(µ) → L1(µ) as the unique

operator that satisfies

〈Utf, g〉µ = 〈f, Ttg〉µ , (7)

for all f ∈ L∞, g ∈ L1(µ). In general, for an arbitrary operator R : L∞(µ) →
L∞(µ) an adjoint operator in the sense of (7) does not exist. However, we can
show that for an operator of the special form as in (5) it does exist. Consider a
sequence of measurable functions (1An

)n∈N which converges point-wise to some
measurable function 1A. Because of 1E ∈ L1(p), it follows from Lebesgue’s
dominated convergence theorem that Ut1An

converges point wise to Ut1A. In
the following theorem this is the key to show the existence of the transfer oper-
ator.

Theorem 5. Let (E,ΣE , µ) be a σ-finite measurable space and

R : L∞(µ) → L∞(µ)

a continuous Operator such that for any sequence of measurable functions of the
form (1An

)n∈N which converges point wise to some measurable function 1A we
have that R1An

converges point wise to R1A and that (R1An
)n∈N is bounded.

Furthermore, assume that for f ≥ 0 we have Rf ≥ 0, then it exists a unique
adjoint operator R∗, i.e.

〈Rf, g〉µ = 〈f,R∗g〉µ

for all f ∈ L∞, g ∈ L1(µ).

11



Proof. To see uniqueness, assume there exists two adjoint operators R∗
1,R

∗
2.

Then we have
∫

A

((R∗
1 −R∗

2)g)(x)µ(dx) = 0 for all A ∈ ΣE , g ∈ L1(µ).

Therefore, R∗
1 = R∗

2. To see existence, let us first restrict to the case K = R.
For f ∈ L1(µ), consider the functional

y′ : L∞(µ) → R

h 7→ 〈Rh, f〉µ .

We show now the existence of a function g ∈ L1(µ) with the property y′(h) =∫
Ω h(x)g(x)µ(dx). If we define the operator S as Sf := g, then

〈Rh, f〉µ = 〈h, Sf〉µ ∀h ∈ L∞(µ), f ∈ L1(µ),

and it remains to show that S is linear and continuous.
We start with showing the existence of a function g. Define ν : Σ → R by

ν(A) := y′(1A) for A ∈ Σ. We show now that ν is a signed measure, i.e.

• ν(∅) = 0,

• ν(
⋃

i∈N
Ai) =

∑
i∈N

ν(Ai) for each sequence (Ai)i∈N of disjoint, measur-
able sets.

First, we have ν(∅) = 0 since y′ is linear. To see the second property, let us given
a sequence (Ai)i∈N of disjoint, measurable sets, and denote with B := ∪i∈NAi

and Bn := ∪n
i=1Ai the corresponding union of sets. Since 1Bn

converges point
wise towards 1B, we obtain that R1Bn

converges point wise towards R1B.
Because of |R1Bn

(x)f(x)| ≤ M |f(x)| for some M ∈ R+, we obtain from the
Lebesgue’s dominated convergence theorem that

y′(1Bn
) = 〈R1Bn

, f〉µ → 〈R1B, f〉µ = y′(1B) for n → ∞

holds. Therefore, we get

lim
n→∞

n∑

i=1

ν(Ai) = lim
n→∞

n∑

i=1

y′(1Ai
)

= lim
n→∞

y′(1Bn
)

= y′(1B)

= ν(∪i∈NAi),

which shows that ν is indeed a measure. For A ∈ Σ with µ(A) = 0, we have
1A = 0 µ-almost surely and, therefore, ν(A) = y′(1A) = 0. Due to the Radon-
Nikodym theorem, we obtain a function g ∈ L1(µ) with

y′(h) =

∫

Ω

h(x) g(x)µ(dx).

If we define S : L1(µ) → L1(µ) as Sf := g, it only remains to show that S
is linear and continuous. To see linearity, consider some f1, f2 ∈ L1(µ) and
α1, α2 ∈ R. From

〈Rh, fi〉µ = 〈h, Sfi〉µ ∀h ∈ L∞(µ), i = 1, 2,
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we obtain

〈Rh, α1f1 + α2f2〉µ = 〈h, α1Sf1 + α2Sf2〉µ ∀h ∈ L∞(µ).

Because of the uniqueness from the Radon-Nikodym theorem, we have

α1Sf1 + α2Sf2 = S(α1f1 + α2f2).

To see continuity, consider for some f ∈ L1(µ) the function S̃f given by

S̃f (x) =

{
|(Sf)(x)|
(Sf)(x) if (Sf)(x) 6= 0,

0 else.

Because of |S̃f (x)| ≤ 1 for all x ∈ E, we have S̃f ∈ L∞(µ). Therefore, we have

||Sf ||L1(µ) =

∫

E

|(Sf)(x)|µ(dx)

=

∫

E

(Sf)(x) S̃f (x)µ(dx)

=

∫

E

f(x) (RS̃f )(x)µ(dx)

(∗)

≤ ||f ||L1(µ) ||R||L∞(µ) ||S̃f ||L∞(µ)

≤ ||f || ||R||,

where we have used the Hölder’s inequality in (∗).
Let us now consider the case K = C. Since Rf ≥ 0 for f ≥ 0, we know that

R maps real-valued functions onto real-valued functions. Therefore, we already
have the existence of S acting on all real-valued functions. We continue S on
L∞(µ) over the field C in the following way: For a function f : Ω → C set

Sf := S(Re(f)) + iS(Im(f)),

then S inherits continuity, linearity , by standard results from analysis. More-
over it is the adjoint of R.

It was the essential part of the above proof to find for a special functional
y′ : L∞(µ) → R a function g ∈ L1(µ) with

y′(h) =

∫

E

h(x) g(x)µ(dx). (8)

In general, the existence of a function g as described in (8) is only granted for
functionals y′ : Lp(µ) → R where 1 ≤ p < ∞ (p.15 Theorem II.2.4). We can
now define the transfer operator as follows:

Definition 6. Given a µ-compatible pre-kernel p and the operator Ut by (5),
then we define the (generalized) transfer operator Tt by

Tt := U∗
t ,

where U∗
t is the adjoint of Ut.

13



We show now that the interpretation as explained in the introduction coin-
cides with the transfer operator defined here. To see this, consider an arbitrary
starting density f , i.e.

∫
E
f(x)µ(dx) = 1 and f ≥ 0 µ-almost surely. From

Proposition 2, we know the existence of a process (Xf
t )t≥0 such that

P(Xf
0 ∈ A) =

∫

A

f(x)µ(dx)

and

P(Xf
t ∈ A) =

∫

E

p(t, x, A) f(x)µ(dx)forallA ∈ Σ, t ≥ 0. (9)

We can then state the following

Theorem 7. Let (Xf
t )t≥0 be given as stated above, then

P(Xf
t ∈ A) =

∫

A

Ttf(x)µ(dx)forallA ∈ Σ, t ≥ 0,

where Tt denotes the corresponding transfer operator given by Definition 6.

Proof.

P(Xf
t ∈ A) =

∫

E

f(x) p(t, x, A)µ(dx)

=

∫

E

f(x)

(∫

A

p(t, x, dy)

)
µ(dx)

=

∫

E

f(x)

(∫

E

1A(y)p(t, x, dy)

)
µ(dx)

=

∫

E

f(x) (Ut1A)(x)µ(dx)

=

∫

E

(Ttf)(x)1A(x)µ(dx) =

∫

A

(Ttf)(x)µ(dx).

2.3 Preparation for projection theory

Since our transfer operator propagates probability densities it seems natural
to use L1(µ) as the underlying space. However, for a projection onto finite
dimensional space for numerical reasons the space L2(µ) is favorable. In general
an embedding is not possible, since neither L2(µ) ⊆ L1(µ) nor L1(µ) ⊆ L2(µ)
holds. But if we confine our considerations to the case of a stationary measure
µ, we have

L∞(µ) ⊆ L2(µ) ⊆ L1(µ).

When now restricting the transfer operator Tt to L2(µ), we have to deal with
the question, weather

Tt(L
2(µ)) ⊆ L2(µ) (10)

holds, which would be obligatory to make use of the projection machinery in
L2(µ). For stationary measure µ we now show (10) by extending Ut onto L2(µ).
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The corresponding unique adjoint is then equal to the transfer operator on L2(µ)
and, therefore, we get (10).

Assume that we have a stationary density µ of a given pre-kernel p. Consider
then the extended operator

Ũt : L
2(µ) → L2(µ),

f 7→

(
x 7→

∫

E

f(y) p(t, x, dy)

)
.

(11)

We show:

Lemma 2. The operator Ũt from (11) is well-defined if µ is a stationary density
of p.

Proof. Let [f ] ∈ L2(µ) and consider two representative functions f̃ and g̃ of [f ].
We prove the following properties:

1. It holds that
∫
E
|f̃(y)| p(t, x, dy) < ∞ for all t ≥ 0, x ∈ E µ-almost surely.

Therefore, f̃ is p(t, x, ·) -integrable.

2. It holds that
∫
E
f̃(y) p(t, x, dy) =

∫
E
g̃(y) p(t, x, dy) µ-almost surely.

3. It holds that Ũtf ∈ L2(µ) and Ũt is continuous.

First, one may notice that
∫

E

1A(x)µ(dx) =

∫

E

p(t, x, A)µ(dx)

=

∫

E

∫

E

1A(y) p(t, x, dy)µ(dx).

(12)

Proof of 1. One may consider a non-negative monotonic increasing sequence
of simple2 functions (fn)n∈N that converges point-wise towards |f̃ |. Due
to the lemma of Beppo Levi, we get

lim
n→∞

∫

E

fn(y) p(t, x, dy) =

∫

E

|f̃(y)| p(t, x, dy).

Using the lemma of Beppo Levi again yields

lim
n→∞

∫

E

∫

E

fn(y) p(t, x, dy)µ(dx) =

∫

E

∫

E

|f̃(y)| p(t, x, dy)µ(dx).

Finally, applying (12) to the simple functions leads us to
∫

E

|f̃(x)|µ(dx) =

∫

E

∫

E

|f̃(y)| p(t, x, dy)µ(dx).

Since f̃ is µ-integrable, we have
∫
E

∫
E
|f̃(y)| p(t, x, dy)µ(dx) < ∞ and,

therefore, ∫

E

|f̃(y)| p(t, x, dy) < ∞

µ-almost surely.

2A simple function is a measurable function that can be written as a sum of indicator

functions.
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Proof of 2. Since µ is a stationary density of p, we have

0 =

∫

A

µ(dx) =

∫

E

p(t, x, A)µ(dx).

Since p is by definition non-negative, we obtain a set B ∈ ΣE with µ(B) =
0 and

p(t, x, A) = 0 for all t ∈ I , x ∈ E\B.

This shows that p is µ compatible, and the property follows then from (6).

Proof of 3. Baxter and Rosenthal have shown this property for Markov kernels
already in [4]. The proof does not change for the pre-kernel and is given
by:

||Ũtf ||
2
L2(µ) =

∫

E

|Ũtf(x)|
2µ(dx)

=

∫

E

(

∫
|f(y)| p(t, x, dy))2 µ(dx)

(∗)

≤

∫

E

∫
|f(y)|2 p(t, x, dy)µ(dx)

(12)
=

∫

E

|f(x)|2 µ(dx)

= ||f ||2L2(µ),

where we have used Jensen’s inequality in step (∗).

Consider now the weighted scalar product

〈f, g〉µ =

∫

E

f(x) g(x)µ(dx) ,

then (L2(µ), 〈·, ·〉µ) is a Hilbert space, and, therefore, the adjoint Ũ∗
t of Ũt exists,

i.e. 〈
Ũtf, g

〉

µ
=

〈
f, Ũ∗

t g
〉

µ

for all f, g ∈ L2(µ), and is well-defined.
We denote the adjoint of Ũt by T̃t = Ũ∗

t . It follows for all f ∈ L∞(µ) and
g ∈ L2(µ) that 〈

Ũtf, g
〉

µ
=

〈
f, T̃tg

〉

µ
= 〈f, Ttg〉µ .

In particular, we have

∫

A

((T̃t − Tt)g)(x)µ(dx) = 0 for all A ∈ ΣE , g ∈ L2(µ).

Thus, T̃tg = Ttg for all g ∈ L2(µ) which implies (10).
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3 Basic properties and examples

In this section, we show some basic properties of the transfer operator. First,
we show that the transfer operator of a Markov kernel3 has a certain property,
which is also known as the Chapman-Kolmogorov property.

Proposition 8. Let (Tt)t≥0 be the family of a transfer operator for a given
µ-compatible Markov kernel p. Then, it holds

Ts Tt = Ts+t for all s, t ≥ 0.

Proof. Since p is a Markov kernel, we have that for all A ∈ ΣE

p(t+ s, x,A) =

∫

E

p(s, y, A) p(t, x, dy) for all s, t ≥ 0.

Therefore, it follows that for f ∈ L∞(µ)

∫

A

f(y) p(t+ s, x, dy) =

∫

E

∫

A

f(y′) p(s, y, dy′) p(t, x, dy) for A ∈ ΣE . (13)

To prove the claim, it is only necessary to show 〈Ts Ttg, f〉µ = 〈g,Us+tf〉µ for

all g ∈ L1(µ), f ∈ L∞(µ) because the adjoint is unique.

〈Ts Ttg, f〉µ = 〈Ttg,Usf〉µ

= 〈g,Ut (Usf)〉µ

=

∫

E

g(x)(Ut (Usf)) (x)µ(dx)

=

∫

E

g(x)

(∫

E

(Usf( y) p(t, x, dy)

)
µ(dx)

=

∫

E

g(x)

(∫

E

∫

E

f(y′) p(s, y, dy′) p(t, x, dy)

)
µ(dx)

(13)
=

∫

E

g(x)

(∫

E

f(y) p(t+ s, x, dy)

)
µ(dx)

= 〈g,Us+tf〉µ .

The next statement shows how to extract essential probability information
from the transfer operator.

Proposition 9. Let µ be a probability density. Let us given a µ-compatible
pre-kernel p and the according transfer operator Tt. Let denote by (Xt)t≥0 the
according process from Proposition 2 with initial probability density µ. For any
sets A,B ∈ ΣE with µ(A) 6= 0, we have, then, that

〈Tt1A,1B〉µ
〈1A,1A〉µ

= P(Xt ∈ B | X0 ∈ A).

3See Section 1.1
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Proof. We have

〈Tt1A,1B〉µ =

∫

E

Tt1A(x)1B(x)µ(dx)

=

∫

E

1A(x)Ut1B(x)µ(dx)

=

∫

E

(
1A(x)

∫

E

1B(y) p(t, x, dy)

)
µ(dx)

=

∫

A

p(t, x, B)µ(dx)

= P(Xt ∈ B,X0 ∈ A),

and

〈1A,1A〉µ =

∫

E

1A(x)1A(x)µ(dx)

=

∫

A

µ(dx)

= P(X0 ∈ A).

We now conclude this paper with some examples for application.

3.1 Deterministic process

Let S : E → E measurable transformation on the phase space E which is
non-singular according to µ. Define then

p(t, x, A) =

{
1 S(x) ∈ A,

0 S(x) /∈ A,
for t > 0, x ∈ E, and A ∈ ΣE .

Note that p is µ-compatible if and only if S is non-singular according to µ. For
a given initial density f according to a random variable X , we get

P(S(X) ∈ A) = P(X ∈ S−1(A))

=

∫

S−1(A)

f(x)µ(dx)

=

∫

E

p(t, x, A) f(x)µ(dx).

Therefore, the constructed pre-kernel meets (9). This implies that the trans-
fer operator Tt defined by µ and p propagates the densities according to the
transformation S.

To see why the transfer operator coincides with the Frobenius-Perron Oper-
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ator, note that for A ∈ ΣE and f ∈ L1(µ) we have:

∫

A

(Ttf)(x)µ(dx) =

∫

E

(Ttf)(x)1A(x)µ(dx)

=

∫

E

f(x) (Ut1A)(x)µ(dx)

=

∫

E

f(x)

∫

E

1A(y) p(t, x, dy)µ(dx)

=

∫

E

f(x) p(t, x, A)µ(dx)

=

∫

E

f(x)1S−1(A)(x)µ(dx)

=

∫

S−1(A)

f(x)µ(dx).

which agrees (1). Therefore, the Frobenius-Perron operator is a special case of
our transfer operator defined in (6).

3.2 Markov process

Since any Markov process can be described by a Markov kernel4, and since each
Markov kernel is a pre-kernel, our scheme also covers Markov processes. One is
often interested in a stochastic differential equation of the form

dXt = V (Xt, t)dt+ ǫdWt, (14)

on the interval I = [t0, T ], where ǫ can be interpreted as temperature. Further,
assume that a unique stochastic process exists for each a ∈ Rn, denoted by
(Xa

t )t∈I , that solves

Xa
t = a+

∫ t

s

f(u,Xu)du+

∫ t

s

ǫdWu, t0 ≤ s ≤ t ≤ T.

It follows from [2], Theorem 9.2.3, that each solution of (14) is a Markov process,
and its Markov kernel, in particular also its pre-kernel, is given by

p(t, x, A) := P(Xx
t ∈ A).

3.3 Classical Mechanics

Let us consider a molecule with N atoms, then in classical molecular dynamics
its Hamiltonian is given by

H(q, p) =
1

2
pTM−1p+ V (q),

where q ∈ R3N denotes the conformational state and p ∈ R3N denotes the mo-
mentum state, M ∈ R

3N×3N the mass matrix, and V a differentiable potential.

4See Section 1.1
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If the initial values q0 and p0 are known, we can solve the differential equation

q̇(t) =
∂H

∂p(t)
= M−1p(t) ṗ(t) =

∂H

∂(t)
= −∇V (q(t))

q(0) = q0 p(0) = p0.

(15)

We denote the new state (qt, pt) by the Hamiltonian flow φt(q0, p0) = (qt, pt).
If Ωc = R3N is the conformational space and Ωm = R3N the momentum space,
then the phase space Γ is given as Γ = Ωc × Ωm. Let us denote by π1 : Γ → Ωc

the projection onto state space (q, p) 7→ q. In molecular dynamics one is often
interested on metastable sets according to the state space, i.e. one is interested
in the process π1φ

t. Let f0 : Γ → [0,∞) be a probability density on the phase
space, which is absolute continuous according to the Lebesgue measure, and
consider F (q) =

∫
Ωm

f0(q, p) dp, then F is a probability density on the config-

uration space. In particular, consider the probability space (Γ,B(Γ), f0) and
(Ωc,B(Ωc), F ), where B(Γ),B(Ωc) denotes the corresponding Borel-σ-algebra.
If we assume that F is always positive, then

Xt : Γ → Ωc,

x 7→ π1φ
tx

is a stochastic process according to the pre-kernel

p(t, q, A) :=
1

F (q)

∫

Ωm

p1(t, (q, p), A) f0(q, p) dp, (16)

with

p1(t, x, A) =

{
1 if π1φ

tx ∈ A

0 else.

This is due to the fact, that

f0 (X0 ∈ A) =

∫

Γ

1X0∈A(x) f0(x) dx

=

∫

Ωc

∫

Ωm

1A(q) f0(q, p) dp dq

=

∫

A

F (q) dq

and

f0 (Xt ∈ B, X0 ∈ A) =

∫

Γ

1X0∈A(x)1Xt∈B(x) f0(x) dx

=

∫

A

(∫

Ωm

1B(π1φ
t(q, p)) f0(q, p) dp

)
dq

=

∫

A

p(t, q, B)F (q) dq.

From Theorem 7 we know that the transfer operator according to the pre-kernel
p from (16) propagates probability densities in the conformational space. In
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particular, if f0 is stationary according to φt, i.e.
∫
A
f0(x) dx =

∫
φ−t(A)

f0(x) dx,

then the transfer operator is given as

Tt : L
1(Ωc) → L1(Ωc),

f 7→

(
q 7→

1

F (q)

∫

Ωm

f(π1φ
−t(q, p)) f0(q, p)dp

)
,

which is the operator that has been introduced and analyzed by Schütte [16].
This can be shown by verifying

〈Utf, g〉F = 〈f, Ttg〉F

for any f ∈ L∞(F ), g ∈ L1(F ), which follows from Lemma 3.10 in [16].

Conclusion

In this article, we derived a generalized transfer operator for an arbitrary dy-
namical system. We have proven that the here defined transfer operator exists,
is well-defined, posses the propagation property and can be restricted to the
subspace L2(µ) if µ is stationary.

In particular, this article provides the justification to consider transfer op-
erators on Markov kernels as it has been done in [14, 15, 17]. Furthermore,
this transfer operator includes the transfer Operator considered by Schütte [16],
which does not provide the Chapman Kolmogorov property, and, therefore, does
not derive from a Markov kernel.

All in all, the main achievement is that we have extended the Frobenius-
Perron Operator from deterministic systems to stochastic systems.
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