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Abstract

Neuroanatomical analysis, such as classification of cell types, depends
on reliable reconstruction of large numbers of complete 3D dendrite and
axon morphologies. At present, the majority of neuron reconstructions
are obtained from preparations in a single tissue slice in vitro, thus suf-
fering from cut off dendrites and, more dramatically, cut off axons. In
general, axons can innervate volumes of several cubic millimeters and
may reach path lengths of tens of centimeters. Thus, their complete re-
construction requires in vivo labeling, histological sectioning and imaging
of large fields of view. Unfortunately, anisotropic background conditions
across such large tissue volumes, as well as faintly labeled thin neurites,
result in incomplete or erroneous automated tracings and even lead ex-
perts to make annotation errors during manual reconstructions. Conse-
quently, tracing reliability renders the major bottleneck for reconstructing
complete 3D neuron morphologies. Here, we present a novel set of tools,
integrated into a software environment named ‘Filament Editor’, for cre-
ating reliable neuron tracings from sparsely labeled in vivo datasets. The
Filament Editor allows for simultaneous visualization of complex neuronal
tracings and image data in a 3D viewer, proof-editing of neuronal trac-
ings, alignment and interconnection across sections, and morphometric
analysis in relation to 3D anatomical reference structures. We illustrate
the functionality of the Filament Editor on the example of in vivo labeled
axons and demonstrate that for the exemplary dataset the final tracing
results after proof-editing are independent of the expertise of the human
operator.

1 Introduction

During the past 20 years, many technical barriers for reconstructing single neu-
rons have been overcome. Labeling neurons using intracellular (Horikawa and
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Armstrong, 1988) or cell-attached (Pinault, 1996) pipettes has allowed recon-
structing large parts of individual neurons (e.g. (Binzegger et al., 2004; Broser,
Grinevich, et al., 2008; Broser, Schulte, et al., 2004; Oberlaender, Boudewi-
jns, et al., 2011), thus linking their structure with activity patterns in wvitro
(e.g. (Feldmeyer and Sakmann, 2000; Schubert et al., 2006) and in vivo (Ober-
laender, Ramirez, et al., 2012). In addition to such conventional techniques,
genetic labeling methods based on fluorescent proteins have started the identifi-
cation and reconstruction of relatively uniform, molecularly identified cell pop-
ulations (Groh et al., 2010). Further, digital imaging has advanced rapidly. New
imaging methods, such as high-speed mosaic/optical-sectioning widefield (Ober-
laender, Broser, et al., 2009; Oberlaender, Bruno, et al., 2007) and confocal (Kle-
infeld et al., 2011) systems, as well as block-face two-photon (Ragan et al., 2012)
and light-sheet (Dodt et al., 2007) microscopes promise high-resolution imaging
of large brain regions. Finally, the limitations on archiving terabyte data sets
have disappeared with the falling costs of hard disk drives.

As a result of these developments various manual, semi- and fully automated
approaches for reconstructing single neuron morphologies have been reported
(see (Donohue and Ascoli, 2011; Meijering, 2010) for reviews). The hence rapidly
increasing number of reconstructed neuron morphologies gave rise to collabora-
tive efforts that collect single neuron reconstructions — the most comprehensive
being the ‘NeuroMorpho.org’ repository (Ascoli, 2006; Ascoli et al., 2007) — or
assemble neuronal network models for computer simulations of cortical signal
flow, e.g., the Blue Brain Project (Markram, 2006). However, the vast majority
of single neuron tracings has so far been obtained from in vitro preparations, i.e.,
individual neurons are labeled within a tissue slice of usually 300 pm thickness,
e.g., the Blue Brain Project relies entirely on in vitro tracings (Hill et al., 2012).
Unfortunately, in vitro tracings suffer from cut off dendrites and axons (Ober-
laender, Ramirez, et al., 2012). Reconstructing the complete 3D dendrite and
axon morphology of individual neurons, thus requires in vivo labeling in combi-
nation with histological sectioning of the brain (i.e., due to penetration limits of
staining and imaging methods) and subsequent imaging of large tissue volumes.
Tracing of faintly labeled, long-range projecting thin neurites, and recovering
across-section continuity of neuronal branches, thus render reconstructions of
in vivo labeled neurons as a major challenge in neuroscience research (e.g., see
‘DIADEM’ competition (Svoboda, 2011)).

Nevertheless, for sparsely labeled tissue, reconstruction results are usually
assumed to be highly reliable. However, little validation of this reliability has
been reported (Helmstaedter et al., 2011). Reconstruction validation requires
tools that allow users (i) to assess the correctness of the tracings by visual
comparison with the image data, and (ii) to interactively correct incomplete or
erroneous tracings (Luisi et al., 2011). In addition, in case of in vivo data, align-
ment and interconnection of tracings across brain sections must be established
and verified. In consequence, we argue that at present, reconstruction reliability
limits the determination of complete 3D morphologies from in vivo data.

Here, we present the ‘Filament Editor’ (FE), an integrated software envi-
ronment specifically designed to reconstruct and validate single neuron tracings
from in vivo preparations. It comprises tools for visualizing and interactively
correcting 3D neuron tracings, alignment, and across-section continuity, allow-
ing for efficient proof-editing within and across brain sections. In addition, the
FE incorporates advanced annotation and morphometric analysis functionali-
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Figure 1: The SpatialGraph data structure. (a) Dendritic tree of a layer 5
pyramidal neuron (Oberlaender, Kock, et al., 2012), colored according to the
anatomical labels defined in (d). (b) Magnification of the encircled region of (a).
The nodes (grey spheres) are connected by edges, represented and displayed as
polygonal lines defined by edge points (or points, for short; displayed as squares).
(c) Schematic representation of the SpatialGraph object in (b). The object con-
sists of three directed edges (Ey, E1, Es) which interconnect nodes Ny, N1, No
(the source node of Ey is not displayed). At branching nodes, the last point of
the incoming edge (Péo) on edge Ey) coincides with the first point of the outgo-
ing edges (Po(l) and PO(Q) on E1 and Es respectively). (d) Semantic information
can be associated with the morphology using labels. The Label viewer is used for
editing label hierarchies, assignment of labels to graph elements, and selection
of these elements for editing, visualization and analysis.

ties. We illustrate the applicability of the FE on frequently occurring use cases
and demonstrate that the proof-editing routines can result in unambiguous trac-
ings of in vivo labeled axons.

2 Methods

2.1 Data structure

The Filament Editor has been developed based on Amira software (FEI-Visualization
Sciences Group, 2013a), a visualization framework, implemented in C++, which
is frequently used in neuroscience research (e.g. (Ertiirk et al., 2012; Halavi et
al., 2012), NeuroMorpho.org accepts Amira file format).
Neuron morphology is represented in the FE by the SpatialGraph data struc-
ture (Fig. 1), which is similar to previously reported graph formats (Mayerich
et al., 2011). Specifically, the topological skeleton of the graph is defined by a
set of nodes, connected by a set of (unbranched) edges. The edge direction is



defined by specification of the source and target node. Edges can be treated as
undirected by ignoring this information. The graph is embedded in space by
associating 3D coordinates with each node. The edge trajectory is defined by a
sequence of 3D points (vertices). The first and last point of each edge coincides
with the source and target node, respectively.

The data structure was designed to allow interactive editing and render-
ing of large 3D tracings (e.g. >10k edges, >1M points). For traversing the
graph, an adjacency list is maintained for each node. This approach is more
memory-efficient than adjacency matrices (Skiena, 1998) for storing the present
sparse graphs. Further, the explicit representation of the (high-level) topological
structure using nodes and edges allows for more efficient traversal than through
linked lists of (low-level) points (e.g. SWC (Cannon et al., 1998)) or segments
(e.g. MorphML (Crook et al., 2007)). Points are stored as coordinate arrays
per edge for efficient rendering as line strips.

Different types of attribute data can be associated with the nodes, edges
and points of the SpatialGraph for visualization and morphometric analysis.
Labels are used to associate semantic information with substructures of the
graph, e.g. ‘Dendrite’, ‘Axon’ and ‘Soma’ (Fig. 1a,d). Additionally, numerical
attributes can be defined, e.g. a floating-point value representing the radius at
each edge point. Multiple attributes can be defined on nodes, edges and points
simultaneously. For each attribute defined on nodes, an array is generated
holding one value for each node. The array size thus equals the number of
nodes. Edge and point attributes are stored analogously. The attribute arrays
are kept up-to-date throughout the editing process to match the graph structure.
Tracings can be imported into the FE using the SWC (Cannon et al., 1998),
hoc (Carnevale and Hines, 2006) or the amiramesh (FEI-Visualization Sciences
Group, 2013b)) file format. These formats, as well as MorphML (Crook et al.,
2007) can be used to export the tracings.

2.2 Visualization

The FE provides a 2D and 3D viewer (Online Resource 1) for proof-editing
a tracing. The 3D viewer of the FE displays the graph using spheres for the
nodes, squares for the points and polylines for the edges. The user can inspect
the spatial structure of the tracing in 3D by camera rotation, zooming and
panning using the mouse, and edit each of the graphs’ components. Nodes,
edges and points can be colored according to one of the label attributes. Their
displayed size is user-adjustable. Besides traced morphologies, the 3D viewer
can display additional data using any available Amira display module (FEI-
Visualization Sciences Group, 2013b). For example, the neuron morphology can
be jointly visualized with the image data using volume rendering, 2D slices or
intensity projections. The SpatialGraph can be visualized as tubes by mapping a
radius attribute defined on edge points to cylinder thickness (rendering is based
on (Sigg et al., 2006)).

The 2D viewer displays a slice of user-defined thickness of the graph, su-
perimposed on a maximum intensity projection (MIP) of the corresponding 3D
image region (FEI-Visualization Sciences Group, 2013b). Hiding the remaining
image and tracing regions provides an unobstructed view to locally verify the
tracing with respect to the image stack. By varying the slice depth and/or ori-
entation, the user navigates through the volume. The slice MIP and bounding



box can be displayed in the 3D viewer to provide additional spatial orientation.

Both viewers can be used either side-by-side or one may be used exclusively.
User-selected sets of nodes and edges can temporarily be hidden in both viewers
by excluding them from rendering. Images are using standard bitmap formats
such as BMP, JPEG, PNG, and TIFF, or in the amiramesh format. Stacks of
2D images are converted into 3D volumes during import.

2.3 Selection tools

Modification of the traced morphology is achieved by selecting one or more
elements (nodes, edges, points), followed by the invocation of an operation (e.g.
deletion) (McGuffin and Jurisica, 2009). To provide a selection system that
is ‘powerful’ (i.e. allowing efficient selection of any subset of elements) and
‘forgiving’ (i.e. the selection itself can easily be modified) (Wills, 1996), the
following tools are available in the FE:

e Single-Element Selection: selects single nodes, edges or points that have
been clicked on with the mouse.

e Connected-Component Selection: selects the entire subgraph connected
to the element that has been clicked on with the mouse;

e Lasso Selection: selects all nodes and edges within a user-drawn polygon.
Using a modifier key, only connected components that are completely
contained within the Lasso polygon are selected.

e Select-All, Clear and Invert Selection: selects the entire SpatialGraph,
deselects and inverts the current selection, respectively.

e Label Selection: selects graph elements with a particular attribute by
clicking on the respective label in the Label Viewer (Fig. 1d).

Holding a modifier key adds to the current selection. Selected items are high-
lighted in red in the viewers.

2.4 Editing operations

The following operations are available to manipulate the data structure:

e Deletion of selected nodes and edges;

e Splicing (connecting) edges. Splicing is achieved by selecting either two
nodes, two points, or one point and one node, followed by the invocation
of the connect operation. Nodes are connected by a new straight edge.
Selected points are converted to nodes as they will be branching points; the
new nodes are subsequently connected. The splicing operation connects
multiple selected elements at once as follows. First, all nodes and edges
connected to the currently selected elements are added to the selection,
resulting in multiple connected subgraphs. An edge is added between
any two terminal nodes from different subgraphs that have the smallest
Euclidean distance until all subgraphs are connected.



e Point-to-Node Conversion converts a selected point into a node, resulting
in an edge split. The inverse Node-to-Point operation concatenates two
edges, while removing the intermediate node. The latter can be run for a
single selected node or for all intermediate nodes at once. Together with
the Remove-Isolated-Nodes operation, all nodes that are neither branching
nor terminal nodes can be purged from the graph.

e Edge-smoothing. Edges are smoothed by repositioning their edge points
as follows: the user specifies the neighborhood size IV, which must be odd.
The position of each point p; on the edge is replaced by the average of its
own position and the M = (N — 1)/2 points along both directions:

i+M

p;:% > bk (1)

k=i—M

The first and last M points on the edge are not moved, effectively leaving
all nodes in place.

e Transformation. An affine transformation can be applied to tracings, im-
ages or any other 3D data set (FEI-Visualization Sciences Group, 2013b).
For example, a linear scaling could be applied, independently for all di-
mensions, to compensate for tissue shrinkage.

All editing operations can be undone/redone. Shortcut keys are defined
to efficiently switch between the different selection and editing tools, as an
alternative to clicking tool buttons (Nielsen and Mack, 1994).

2.5 Semantic labels

Semantic information can be associated with nodes, edges and points by assign-
ing labels. A label is a name (i.e. a string), uniquely identified by an integer
value and associated with a color. Labels are organized in a hierarchical fashion,
i.e. in a tree data structure, providing access to graph substructures at different
levels of detail. Upon creation of a node (or edge/point) label attribute, each
node (or edge/point) is assigned a label from the tree.

The Label Viewer (Fig. 1d) is part of the FE user interface allowing the user
to (i) define and edit custom label trees, (ii) assign labels to selected substruc-
tures of the graph and (iii) select these substructures for editing, visualization
and analysis (Online Resource 2). For example, one could define a hierarchical
label tree with root label ‘Neuron’ having child labels ‘Axon’ and ‘Dendrite’
and assign these to the respective edges and nodes. Selecting the root label
(i.e. ‘Neuron’) in the Label Viewer highlights all edges and nodes assigned to
child labels recursively (i.e. ‘Axon’ and ‘Dendrite’), while selecting ‘Dendrite’
would highlight the subset of ‘Dendrite’ elements exclusively. Alternatively,
the Label Viewer supports flat label hierarchies (i.e., only one level of labels
below the root). For example, the ‘identify loops’ functionality of the FE (FEI-
Visualization Sciences Group, 2013b) automatically assigns all edges comprising
a loop the same label, pinpointing potential autapses (i.e., an intersecting den-
drite and axon from the same cell) or falsely connected branches.
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Figure 2: Section alignment. (a) The Align toolbox provides access to both
automated and interactive alignment. The section list allows to (i) select a
section to align, (i) toggle section wvisibility, and (i1i) manually adjust the z-
position of a section. (b) XY -view after alignment of eight sections. Edges
are colored by section, alternating red, blue, and black. Nodes are colored by
matching result. Matching nodes in different sections are assigned the same
label, and thus the same color. Black nodes could not be matched; white nodes
were not used for alignment. (c) Interactive alignment using a handle. Only the
section that is currently transformed (red, highlighted in the table in (a)) and its
predessor (blue) are visible; other sections are hidden not to obscure the view.

2.6 Section alignment

The FE incorporates an automated method (Dercksen et al., 2009) for rigid
alignment (Zitova and Flusser, 2003) of tracings obtained from adjacent image
stacks, e.g. from consecutive brain sections (Online Resource 3). The auto-
mated algorithm is complemented with a user interface for interactive manual
alignment (Fig.2a).

First, tracings from adjacent image stacks are merged using the CreateSpa-
tialGraphStack module. This module generates a new SpatialGraph by position-
ing tracings from image stacks obtained from adjacent brain sections at either
fixed distances along the z-axis (i.e. perpendicular to the cutting plane) or such
that the bounding boxes adjoin. Tracings from image stacks obtained from the
same brain section can be merged without (z-)translation for subsequent man-
ual alignment. The nodes and edges are assigned identifier labels that refer to
the corresponding image stack. Transformations can thus be applied to tracings
of each individual stack by transforming all nodes and edges with a particular
label.

The stack of tracings is aligned by repeated pair-wise alignment of neigh-
boring sections. The automated method (Dercksen et al., 2009) uses a 2D point
matching approach to compute the optimal transform, i.e. a rotation angle
around the z-axis and a 2D translation parallel to the xy-plane. The points
to be matched are the terminal nodes in the top and bottom region of each
section, e.g. within the upper and lower 25% (Fig.2b). The algorithm seeks
to maximize the number of matching points, while minimizing the positional
difference between matched points, weighting these conflicting goals, similar to
other feature-based alignment methods (Szeliski, 2006). This approach is suffi-
ciently fast to be used in an interactive workflow (Dercksen et al., 2009), with
response times ranging from a fraction of a second for a small number of end



points (~30), to several seconds for a larger set (~100).

Sections can be aligned simultaneously or pair-wise. The resultant align-
ments immediately appear in the 3D viewer, allowing visual validation (Fig. 2c).
In cases where the automated alignment result is not satisfactory, the user can
interactively translate and rotate each section with respect to its predecessor
section in the 3D viewer using handles. All other sections can be hidden to not
obscure the view.

2.7 Interactive manual tracing

The interactive tracing functionality available in the 2D viewer (FEI-Visualization
Sciences Group, 2013b) can be used to manually add filamentous and /or anatom-
ical reference structures. The user adds new nodes by clicking on the desired
location in the image. The node is added at the mouse cursor position at the
depth of the image plane (for 2D images) or the depth with highest image inten-
sity (3D image). The node is automatically connected to the latest created node
by a new edge. This feature can be used to augment automatically generated
tracings, for example with contours representing anatomical landmarks, such as
pia, white matter or blood vessel outlines (Fig. 3a), as well as with 2D outlines
of the soma in different optical and or histological sections.

2.8 Visual and quantitative morphometric analysis

The FE includes the following functionalities, for visual and quantitative mor-
phometric analysis (Fig. 3):

e Branch length and node statistics (number of branching, terminal nodes)
for the entire graph or for a selected subgraph, grouped by semantic labels.

e Quantitative measurement and visualization of branches within/outside a
reference volume (Fig. 3a). Closed 3D surfaces representing such reference
volumes can be generated from 2D contour outlines of anatomical land-
marks, as well as from contours representing neuron somata (Fuchs et al.,
1977). The length contained within a volume is computed by intersecting
all edge segments with the triangles comprising the bounding surface, per-
forming a point location test (Skiena, 1998) and accumulating the length
of the confined branches. The result is output to a spreadsheet. The
parts of the morphology contained within a volume can further be visu-
alized by labeling the edge points by the name of the respective structure
and coloring the graph according to these labels (Fig. 3a).

e 3D density of morphological properties. A 3D grid of user-defined voxel
size is superimposed onto the morphology and morphological properties of
the tracing within each voxel (Fig. 3b) are computed. Particular properties
of interest are the number of branching nodes or branch length. Branch
length within a voxel is computed by clipping each segment between adja-
cent edge points against the voxel’s bounding box (Liang et al., 1992) and
accumulating the resulting lengths. Semantic labels allow distinguishing
between substructures.

e 1D profile of morphological properties. By accumulating the values in
voxels in each plane (e.g. having the same z-value) of the 3D voxel grid



Figure 8: Morphometric analysis. (a) Manual drawing of anatomical landmark
contours. Contours outlining so called ‘barrel columns’ in rat vibrissal cortex
(S1) are created by clicking on the MIP image. A new node (red) is automati-
cally connected to the previously created node by an edge (green). (b) Visual and
quantitative analysis of semantically labeled neuronal branches with respect to
anatomical reference structures. Here, axonal length of a Layer 5 slender-tufted
pyramidal neuron is evaluated with respect to the barrel columns in S1 (Ober-
laender, Boudewijns, et al., 2011). The azon length within and outside each
column was automatically computed, exported to a spreadsheet, and visualized
using the Filament Editor by labeling all edge points as either inside (red) or
outside (black) any cortical column. (¢) Branch density visualization and quan-
tification. A grid of 50 um vozels is superimposed onto a reconstructed thalam-
ocortical azon labeled in rat vibrissal thalamus in vivo (Oberlaender, Ramirez,
et al., 2012). For each grid cell the total axon length is computed and visual-
ized in 3D or as 1D density profile by accumulating length densities across each
xy-plane.

described above, a 1D profile of the property of interest along an axis can
be extracted (see Fig. 3c and (Meyer et al., 2010; Oberlaender, Kock, et
al., 2012)).

2.9 Visual and quantitative comparison of tracings

Quantitative comparison of tracings obtained from the same image data set
requires defining their correspondence. Because of the intricate relation between
topology and geometry, at present, correspondence definitions need to employ
heuristics (Gillette et al., 2011; Mayerich et al., 2011).

Here, we implemented such a comparison metric, based on (Helmstaedter et
al., 2011), as follows: Given the set of reconstructions Ry, ..., Ry (N being the
number of users), first, edge points are inserted on all edges (without modifying
the trajectory), such that the distance between any two edge points is smaller
than a maximum sampling distance D.

Second, the reconstruction R; is pair-wise compared to the reconstructions
of all other users Rs...Ry. For each edge point p on R; the number of recon-
structions is counted that have a point p that corresponds to p. p corresponds
to p if they are no further than a maximum correspondence distance R apart,
ie, |p —p| < R. This results in the number of corresponding edge points
C(p) € [1,N]; C(p) = 1 if there is no other reconstruction with a matching



point (R; agrees only with itself in p), C(p) = N if all other reconstructions
have a matching point.

Third, the total length of all edges of R; is divided among N bins L1, ..., L.
A bin L; represents the length of R; that was agreed on by i reconstructions. To
this end all straight segments between pairs of successive edge points p and q are
regarded. If C(p) = 4, then half the length of segment pq is added to L;, same
for q. The length bins are computed separately for all other reconstructions
Ro, ..., Ry. The length per bin is presented to the user in a spreadsheet.

To visualize the correspondences, an integer attribute is defined on the edge
points, storing the value of C(p) for each point. Displaying one or more re-
constructions colored according to this value, similar to (Mayerich et al., 2011),
effectively pinpoints inter-user differences.

3 Results

3.1 Application example: 3D reconstruction of individual
axons labeled in vivo

We illustrate a potential workflow using the tools of the FE to generate com-
plete 3D morphologies for the example of in vivo labeled axons, reconstructed
by a previously reported automated imaging and tracing pipeline (Oberlaender,
Bruno, et al., 2007). The example workflow consists of the following steps: (i)
preprocessing: sample preparation, imaging, and tracing, (ii) proof-editing of
tracings of individual image stacks and (iii) alignment and proof-editing of trac-
ings across multiple image stacks. The steps will be described in detail below
and are illustrated by Online Resources 1-3.

3.1.1 Preprocessing: sample preparation, imaging and tracing

Briefly, individual neurons in rat vibrissal thalamus (for a gallery of recon-
structed cells see (Oberlaender, Ramirez, et al., 2012)) were filled with biocytin
using whole-cell (Margrie et al., 2002) patch-clamp recordings in vivo. This tech-
nique allows labeling the complete dendritic and axonal projections of individual
neurons (Horikawa and Armstrong, 1988). After perfusion, brains were fixed and
cut into 50 pm thick consecutive vibratome sections. Histological staining with
DAB (Wong-Riley, 1979) enhances the contrast of the biocytin-labeled neuronal
branches in each section. Using a custom-designed mosaic/optical-sectioning
brightfield microscope (Oberlaender, Broser, et al., 2009; Oberlaender, Bruno,
et al., 2007) and Surveyor image acquisition software (Objective Imaging Ltd.),
3D image stacks of typically 2mm x 2mm x 0.05 mm volumes were acquired in
vibrissal cortex at a resolution of 0.184 um x 0.184 um x 0.5 um per voxel (i.e.,
at 100x magnification).

Neuronal structures were automatically extracted from eight consecutive im-
age stacks using a previously reported and validated automated tracing software
named NeuroMorph (Oberlaender, Bruno, et al., 2007). Projection images of
each image stack, as well as 3D skeletons of neuronal branches (i.e. Spatial-
Graph files) represent the final results of the automated pipeline for each brain
section. A position label is assigned to all edges. The labels indicate whether
the connected component containing the edge (i) touches the top of the section

10



Figure 4: Splicing fragmented branches. (a) In the 2D MIP image (from an
inverted brightfield image stack) an azon fragment can be clearly distinguished
from background. (b) Based on 3D information, the automated tracing algo-
rithm generated a fragmented result (possibly due to faintly stained regions in
the azial direction), with connected components labeled as touching top (blue),
bottom (green) or neither top nor bottom (yellow). (¢) MIP and tracings are
superimposed in the FE. (d) Rotating the view immediately reveals the order in
which the azonal fragments have to be spliced. (e) After zooming in on the region
pointed at by the arrow, two branches are selected. (f) The selected branches
are connected using the splicing tool, resulting in an added edge segment (ma-
genta). (g) Splicing of the remaining fragments. (h) The 3D wview facilitates
visual validation.

(blue), (ii) touches the bottom (green), (iii) passes through (i.e. touches top
and bottom; red) or (iv) touches neither top nor bottom (yellow). Thus, a frag-
mented neuronal process passing through an image stack generally consists of
one or more green, zero or more yellow, and one or more blue parts (Fig. 4).

3.1.2 Proof-editing of tracings from individual image stacks

The FE is used to interactively splice (connect) fragmented edges and to delete
falsely traced edges from the automated tracing in each individual section. The
user loads the automatically traced neuron fragments and displays them in the
3D viewer, colored by position labels. The tracing data is superimposed on the
maximum intensity projection image (MIP) of the respective image stack. Four
typical proof-editing situations are illustrated in Figures 4-7.

Case 1: Splicing (Fig. 4). In the MIP, neuronal processes are easily dis-
tinguishable from background structures (Fig. 4a). Nevertheless, the tracing
algorithm may generate a fragmented result (Fig. 4b,c), for example due to
poorly stained regions in the axial direction. In such cases, the position label
colors facilitate identification of potentially contiguous parts. However, the lack
of depth information in a 2D projection view hampers user decision-making on
which fragments are to be connected and in what order. By 3D rotation of the
camera (Fig. 4d), human pattern recognition can quickly resolve this. Using the
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Figure 5: Connecting edges at a branching point. (a) Azonal fragments (black
arrow), whose 3D configuration is difficult to identify from the 2D MIP. (b) Even
when displaying the position labels, the correct configuration remains ambiguous
in 2D. (c) Rotation of the camera immediately reveals the three-dimensional
configuration of the fragments. (d) After splicing azonal fragments (magenta
segments) and removal of false segmentation results, branches may have to be
connected at branching points (one such point is indicated by the arrow). (e)
Close-up of the region pointed at by the arrow in (d). Nodes are displayed as
circles, edge points as small squares. The edge point to be turned into a branch-
ing node and the terminal node of the upper edge are selected and (f) spliced,
resulting in a point-to-node conversion and a new edge connecting the selected
node with the new branching node. (g) The reconstruction result superimposed

onto the MIP, and (h) viewed in 3D.

selection and splicing tools of the FE, gaps between identified fragments can be
closed (Fig. 4e-h).

Case 2: Creating new branching points (Fig. 5). A new branching connection
is created by selecting a terminal node and a point on a different edge. The latter
will be converted into a branching node (Fig. 5d,e) when applying the splice
operation (Fig. 5f). The most likely location of the new branching node can
easily be resolved by human pattern recognition, using the position-dependent
coloring (Fig. 5b) and 3D camera rotation of the tracing and MIP (Fig. 5¢).
The Splicing operation invokes a point-to-node conversion of the selected point.
The new node is connected to the selected node by a new edge, turning the
former into a branching node. These steps result in a fully connected structure
(Fig. 5g,h). Any intermediate nodes (having exactly two incident edges) are
removed in a final step by invoking the node-to-point operation.

Case 3: Removal of false segmentations (Fig. 6). When all neurites in a
particular region have been identified, falsely segmented fragments must be
removed. In the present example, the NeuroMorph algorithms accept overseg-
mentation to ensure that no faintly stained axons are falsely discarded. The
Lasso tool provides a dedicated mode (activated using a modifier key) to se-
lect only connected subgraphs that are entirely contained within a user-drawn
polygon. This allows to select all small artifacts in the neighborhood of a re-
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Figure 6: Removal of false segmentations. (a) A correctly traced neurite seg-
ment (blue) is surrounded by oversegmented fragments (yellow). (b) To remove
these, the lasso selection tool is employed, using the modifier key that ensures
that only connected subgraphs are selected that are completely contained within
the user-drawn polygon (green). (c) Thus only oversegmentations are selected
(red), (d) which can be quickly deleted.

constructed neuronal process at once and to delete them, without affecting the
larger structure.

Case 4: Removal of false connections (Fig. 7). Occasionally, nearby branches
may have been falsely connected by the tracing algorithm. Figure 7 illustrates
how such situations are resolved. In the present example, the NeuroMorph
algorithms created tracings whose spatial structure is difficult to verify from
the 2D MIP image (Fig. 7a). The 3D view (Fig. 7b,c) reveals that the structure
consists of two parallel axonal branches connected by a ‘bridge’. Such bridges
originate from limited resolution and are biologically implausible — they could
result in loops in the neuronal tree — and must therefore be removed. To correct
the false connection the user selects the bridging edge and removes it (Fig. 7d).
After deletion of the edge, the defining nodes are no longer branching nodes.
These intermediate nodes are removed using the node-to-point operation, joining
its two incident edges (Fig. 7d).

3.1.3 Alignment and proof-editing across multiple image stacks

An important aspect of reconstructing complete 3D neuron morphologies is the
merging of tracings obtained from multiple image stacks (e.g. consecutive brain
sections). Here, tracings containing axonal branches from thalamocortical axons
in eight consecutive brain sections were proof-edited as described above and then
merged into a single SpatialGraph using the CreateSpatialGraphStack module
(see Methods). The tracings obtained from each image stack were translated in
the z-direction, i.e. perpendicular to the cutting plane, such that their bounding
boxes adjoin.

The Align toolbox (Fig. 2a) in the FE was then used to rigidly align the
subgraphs corresponding to each section tracing. The automated algorithm
determined the correct transformation for all tracings in the 8-section data set.
After alignment, the branches were connected across the section boundaries
using the Splicing operation. The alignment and splicing process is regarded as
the final quality control, as tracings of branches passing through multiple brain
sections can be checked for continuity.

The final tracing result is scaled in the z-direction to match the vibratome-
defined thickness of the brain sections (i.e. 8 x 50 um = 400 pm), compensating
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Figure 7: Remowval of false connections. (a) Azonal branches, superimposed
on the MIP. Nodes are displayed as circles. The tracing is difficult to verify
from this view. (b) The 3D view reveals that the tracing consists of two almost
parallel axonal branches connected by a bridging edge (red) at the arrow, which
is to be removed. (c) 3D close-up of the region around the false connection. (d)
Resulting two separate branches (colored differently for visualization purposes)
after deletion of the selected edge and node-to-point conversion of its defining
nodes.

for potential tissue shrinkage. Further, smoothing along the z-direction is ap-
plied (N=9, see Methods) to remove staircase artifacts in the skeletons due to
anisotropic voxel sizes (i.e. 0.184um in x/y, and 0.5 um in z). As a result,
axonal branches of more than 1¢m path length, including 31 branching points,
were extracted from this example data set.

3.2 Inter-user variability of proof-editing in vivo-labeled
neurons

The proof-editing of tracings obtained from individual image stacks, as well as
the alignment and interconnection of tracings across image stacks, may intro-
duce inter-user variability to the final 3D neuron reconstructions. Thus, we
validate the above described tasks involving the FE by investigating the repro-
ducibility of the final tracing result. To do so, five users proof-edited, merged
and aligned the 8 tracings of the example data set. The users had varying degree
of experience. One expert user has been involved in the development of the FE,
two experienced users have been using the FE for approximately 12 months and
two novice users only received a short introductory training.

Table 1 shows a comparison across users of the reconstruction results after
proof-editing and merging (including smoothing and z-scaling) the 8 input trac-
ings. As a first assessment of the inter-user variability, we compared the number
of reconstructed axonal branches (i.e. edges in the SpatialGraph) and branch
nodes. The results of the 5 users were essentially identical, given these coarse
measures (i.e. 20 £ 0.84 branches, and 31 & 0.71 branching nodes, mean+SD).
Second, we investigated whether the extracted branches were similar in path

14



Ul U2 U3 U4 U5s Mean | SD | % of mean
#Branches 20 19 20 21 19 20 0.84 4.2
#Branch points 31 31 31 32 30 31 0.71 2.3
Length (pm) 10762 | 10953 | 11053 | 11313 | 11153 || 11047 | 207 1.9
Time intra (min.) | 344 209 118 130 405 241 129 53
Time inter (min.) 25 22 20 17 24 22 3.2 15

Table 1: Comparison between 5 users (U1-U5) of the morphological properties
of the final reconstructions. ‘Branches’ are edges in the SpatialGraph. ‘Time
intra’ is the accumulated time in minutes required for proof-editing all eight
input tracings. ‘Time inter’ is the time required for inter-section proof-editing,
i.e., merging, alignment, interconnection, scaling, and z-smoothing. Ul and U5
are novice users, U2 and U3 are experienced users, Uj is an expert user.

length. We find that the inter-user variability in path length is surprisingly
small (SD=2% of the mean) for the present example data set of axonal branches
from an in vivo labeled thalamocortical neuron.

While we could not observe any differences in tracing reliability across users,
the time required for proof-editing deviated substantially with experience. Novice
users (Ul and U5) need 2-3 times longer (344 and 405 minutes, respectively)
than well-trained users (U2 and U3; 209 and 118 minutes, resp.). The differ-
ence between well-trained and the expert user (U4; 130 minutes) was less pro-
nounced. In addition to the coarse comparison, we investigated the agreement
between different users on branch trajectories (see Methods). The user agree-
ment of a single example section (S01) and of the final result after alignment,
interconnection, smoothing and z-scaling (S01-S08) is shown in Figure 8a,b and
Figure 8c—, respectively. To quantitatively describe the user agreement of the
proof-edited tracings, we computed the accumulated length of all edge segments
of each reconstruction that was agreed upon by the majority of the users (i.e.
at least two other users found a corresponding segment). This length, expressed
as a percentage of the total length, is computed for all users and for each of the
eight tracings (Table 2).

U1l U2 | U3 | U4 | U5 || Mean | SD
S01 95.6 | 96.1 | 97.0 | 96.5 | 87.5 || 94.5 | 3.5
502 91.1 | 923 | 95.8 | 85.8 | 63.6 || 85.7 | 11.5
S03 95.6 | 94.3 | 96.4 | 98.7 | 64.6 || 89.9 | 12.7
S04 92.3 | 88.8 | 97.1 | 96.2 | 62.5 || 87.4 | 12.8
S05 88.5 | 96.8 | 96.9 | 95.5 | 85.5 || 92.6 | 4.7
S06 92.9 | 84.9 | 98.9 | 91.1 | 82.9 || 90.1 5.8
S07 96.7 | 92.6 | 96.4 | 94.3 | 88.2 || 93.7 | 3.1
S08 97.1 | 83.1 | 97.6 | 99.0 | 87.4 || 92.8 | 6.3
S01-08 (R=1pm) | 59.5 | 69.9 | 24.3 | 77.7 | 70.2 || 60.3 | 18.9
S01-08 (R=5pm) | 100.0 | 99.6 | 98.8 | 97.4 | 98.4 || 98.8 | 0.9

Table 2: Fraction of length (%) found by three or more users for each section
after intra-section proof-editing and the final reconstruction (S01-08) after inter-
section splicing (R = 0.5 um, unless stated otherwise; D = R/2).
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Figure 8: User agreement between reconstructions. (a) Reconstruction of sec-
tion SO1 created by one of the users. Each edge point is colored by the number
of users that found a corresponding point. (b) SO01 reconstruction of all 5 users
superimposed. (c) Reconstruction of all 8 sections by one of the users. (d) X Z-
view of the reconstruction result of a single user showing the original sections
(odd sections in green, even in red) and the interconnecting segments (black).
(e) The results of all users superimposed (X Z-view). The bottom section re-
mains untransformed, resulting in a virtually exact overlap between all users.
Differences in alignment accumulate towards the top of the stack, resulting in
minimally diverging branches. (f) XY -view on superimposed results of all users.
Mazimum sampling distance for single section (S01) comparison: D = 0.25 um;
mazimum correspondence distance: R = 0.5 um (voxel length in z-direction).
For comparison of entire stack: D = 2.5 um, R =5 um.

We find that, on average, between 85.7% and 94.5% of the tracings from
individual image stacks are agreed upon by at least 3 users. The larger values
of the standard deviation of particularly S02, S03 and S04 are mainly due to
U5, whose proof-edited tracings have a relatively large fraction of branches not
retained by the other users. These numbers have to be interpreted with caution.
Inexperienced users (e.g. U5) may pursue a conservative approach, by retaining
fragments that cannot doubtlessly be identified as foreground and by revisiting
them during the inter-section proof-editing phase, where they can be judged
within the context of the other brain sections. Consequently, retaining ‘false
positive’ branches is not necessarily wrong, as long as they are removed during
inter-section proof-editing.

Thus, we applied the same procedure for the completed reconstructions com-
prising the eight aligned and interconnected tracings (Table 2, S01-08). We
find that for a small correspondence distance (R = 1 um) on average 60.3% of
the total axon length is agreed upon by the majority of users. To investigate
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whether this relatively small fraction is due to missing branches or differences
in alignment, the correspondence distance was increased to 5 um, resulting in
an average agreement of 98.8%. Thus, virtually all branches had counterparts
and the large fraction of unmatched braches (i.e. at R = 1 um resolution) must
originate from small differences in alignment, as illustrated in Figure 8.

In a previous study (Dercksen et al., 2009) we showed that the automated
alignment method yields results comparable to those produced by an expert
user when aligning the same data sets. However, in the present example, we
compare the alignment between data sets that are slightly different due to inter-
user differences after proof-editing tracings of each image stack. All sections in
all five data sets could be successfully aligned using the default parameters
(distance threshold d = 10 wm and weighting factor o = 0.25, see (Dercksen
et al., 2009)). Differences in rotation and translation between users are listed
in Table 3. We find that these differences are small. Rotations differ by at
most 0.33 degree, translations by at most 4.04 um and 4.17 wm in z and v,
respectively.

() T, () T, (um)
max-min | SD | max-min | SD | max-min | SD
S02 0.11 0.04 1.66 0.58 2.14 0.71
S03 0.03 0.01 0.44 0.18 0.17 0.06
S04 0.25 0.09 2.49 0.81 3.85 1.27
S05 0.33 0.13 3.94 1.52 4.17 1.57
S06 0.13 0.05 1.56 0.60 1.44 0.54
S07 0.27 0.09 1.36 0.43 3.68 1.32
S08 0.13 0.05 4.04 1.44 3.46 1.22

Table 3: Inter-user differences in alignment. FEach row lists the difference
between mazimum and minimum rotation angle (R), translation in x- and y-
direction (T, T,) of each section with respect to its preceding section (S01 re-
mains untransformed), as well as the standard deviation (SD) of all 5 users.

In summary, comparison of the proof-editing results produced by five dif-
ferent users indicates a high degree of accuracy of the final morphology. First,
coarse comparison yielded only small differences in the number of branches (~1
error per 20 branches), branching nodes (~1 error per 31 branching nodes) and
total length (~19 um error per 1 mm axon, see Table 1). Second, agreement
in trajectories after proof-editing varied between 85.7% and 94.5% across indi-
vidual image stacks (Table 2). Third, differences in alignment are small, i.e.
~4 um (Table 3). Consequently, the trajectories of the final reconstructions
across multiple image stacks are very similar: on average 98.8% of the recon-
structed trajectories were identical across users, using a correspondence radius
of 5um. No significant differences were measured between expert and novice
users. Specifically, the consensus length was computed for two groups consist-
ing of the three most (U2, U3, U4) and three least experienced (U1, U3, U5)
users, respectively. The average consensus length (i.e., at least 2 of 3 users
agreed) as a percentage of the total length was 98.7% for the less experienced
and 98.8% for the more experienced group (using the correspondence distance
of R =5pum). However, the amount of manual labor required for proof-editing
automated tracings decreases with experience from ~6.5 to ~2 hours per cen-
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timeter axon.

4 Discussion

4.1 Applicability and inter-user variability of the Filament
Editor

The FE combines various visualization, selection and operation functionali-
ties that allow interactive proof-editing and analysis of 3D neuronal tracings
within an easy-to-use and intuitive GUI. Using an example dataset of in vivo
labeled thalamocortical axons from eight consecutive large, high-resolution im-
age stacks, we illustrated four general situations that may occur during proof-
editing any sparsely labeled morphology data. The relative abundance of each
of the four use cases will however strongly depend on the image and labeling
quality, as well as on the accuracy of the automated or manual tracing methods.

The example data set used here, can be regarded as one of the most chal-
lenging cases for reconstructing complete and accurate 3D neuron morpholo-
gies. First, the neurons were labeled in rat thalamus in vivo, whereas its axonal
branches were imaged within vibrissal cortex, about 3 mm away from the record-
ing site. Thus, in addition to faint staining caused by thin axonal diameters,
diffusion of the tracer (i.e., biocytin) along centimeters of axon may have fur-
ther decreased signal-to-noise ratios of terminal branches. Second, due to the
large axonal innervation volume, here 2mm x 2mm x 1mm, the tissue was
imaged using a brightfield microscope (at a resolution at the diffraction limit of
light) at the cost of contrast and axial resolution. Any fluorescent microscope
system of superior contrast and resolution (e.g. 2-photon) would require im-
practically long imaging times, compared to the ~24 hours required using the
present system (Oberlaender, Broser, et al., 2009; Oberlaender, Bruno, et al.,
2007).

Finally, because of the faint labeling and limited contrast, the automated
tracing algorithms (i.e. as implemented within the NeuroMorph pipeline) accept
oversegmentation to guarantee that all axonal fragments are reconstructed, at
the cost of picking up also background structures. The completeness of detecting
and tracing all axonal fragments by the NeuroMorph system has been validated
against manual results generated by human expert users previously (Oberlaen-
der, Bruno, et al., 2007). Consequently, because the FE allows unambiguous
proof-editing of the thalamocortical axons presented, datasets of higher con-
trast, higher resolution or less background will certainly allow for an even faster
and equally reliable proof-editing of complete 3D morphologies using the FE.

Using a challenging dataset, we illustrated that the combination of 3D image
data (e.g. as a 2D MIP) with (i) 3D tracings (edges are rendered as polylines,
nodes as spheres, points as squares), (ii) semantic labeling, (iii) 3D viewing
(i.e. camera rotation, translation and zoom), as well as (iv) 3D selecting, hiding
and editing is a convenient, intuitive and fast approach to extract reliable 3D
morphologies from large sparsely labeled images. Here, about 0.5 terabyte of
image data, containing more than one centimeter of axonal fragments could
be proof-edited with 98.8% accuracy within 2-6 hours, the proof-editing time
depending on the experience of the operator.

18



4.2 Comparison to other proof-editing tools

Peng et al. (Peng, Long, et al., 2011) argue that despite great advances in
automated tracing methods (see (Donohue and Ascoli, 2011; Meijering, 2010)
for reviews), proof-editing remains a necessary, but laborious process. Besides
a fully automated proof-editing system that learns by example to predict the
different error types and their bounds, Peng et al. regard a highly ergonomic 3D
interactive WYSIWIG (What You See Is What You Get) system as a solution
to this problem. Although a wide array of digital tracing tools are available
(the most used one, Neurolucida (www.mbfbioscience.com), as well as a variety
of alternative tools are reviewed in (Meijering, 2010; Parekh and Ascoli, 2013)),
only few software packages implement a system that provides effective visual
verification and fast interactive correction of tracings. The FARSIGHT Trace
Editor (Luisi et al., 2011), V3D (Peng, Ruan, et al., 2010), Neuromantic (Myatt
et al., 2012), NeuronStudio (Wearne et al., 2005) and SpineLab (Jungblut et al.,
2012) are examples of tools that provide simultaneous display of image and
tracing data for verification and a set of tools to modify the latter. Some
aspects in which the above mentioned tools differ are the degree of usability
(e.g. undo/redo functionality), whether the tracing can be viewed and edited in
3D, the available measurement functions and supported platforms (Windows,
Linux, Mac).

The FE was designed and implemented to meet high standards with respect
to all of these aspects. Further, and in contrast to the above mentioned tools, the
FE has been designed to meet the specific demands of in vivo labeled datasets.
The general challenges for validating neuronal tracings from in vivo data arise
from the (i) the large innervation volumes of individual axons (e.g., ~12mm? for
L5 slender-tufted pyramidal neurons (L5st, see Figure 3b) in rat vibrissal cortex
(S1) (Oberlaender, Boudewijns, et al., 2011)), (ii) the complexity of the axonal
arbor (e.g., 86.8 = 5.5 mm path length, 216 + 35 bifurcation points for L5st in
S1) and (iii) axonal diameters as thin as 100 nm. Consequently, validating in
vivo tracings can be considered as at least one order of magnitude more complex
(i.e., in terms of imaging volume, axonal path length and topology) compared
to in vitro data from the same species, brain region and cell type (e.g., L5st
axon length in S1 from in vitro tracings was reported as 7.8 + 2.5mm (Frick
et al., 2008)). These challenges are for example illustrated by the fact that, at
present, the NeuroMorpho.org repository comprises 5,405 neocortical neurons
from various species, but only 3% (188 neurons) of them were labeled in vivo
and only 0.4% (21 neurons) contain both, reconstructed dendrites and axons.
Moreover, none of these 21 neurons were reconstructed at a magnification of
100x% (i.e., as was the present example dataset), which may be critical to reliably
detect all axonal projections (Oberlaender, Broser, et al., 2009).

The Filament Editor provides proof-editing strategies to overcome the chal-
lenges described above. First, we incorporated 3D visualization and 3D editing
routines that remain functional for imaging volumes and tracing complexities
beyond typical in vitro datasets. For example (i) the data structure was designed
to render and edit large filament data sets, a consequence of the complexity of
in vivo labeled morphologies and of oversegmented automated tracings results,
while maintaining interactive usability. (ii) The selection system allows the user
to efficiently highlight the desired part of the tracing based on location (single
click, lasso selection), connectivity (connected component), or semantic label
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for editing or visualization. (iii) Selectively hiding parts of the tracing allows
focusing on specific regions of large structures without visual clutter. (iv) As
shown in the results, the semantic labeling feature enables position-dependent
labels, which visually support user decision making on what neuronal fragments
are to be connected or discarded. Second, we integrated alignment and splic-
ing functionalities to merge multi-section datasets, allowing for a final quality
control by checking continuity of tracings across brain sections. Again, the se-
mantic labeling eases across-section editing by visualizing edges from different
sections in different colors.

Other unique features of the Filament Editor include simultaneous display
and quantitative comparison of tracings for assessing inter-user variability, as
well as morphometric analysis with respect to 3D anatomical structures. Taken
together, the FE will help increasing the so far negligible number of validated
3D neuron tracings from in vivo preparations.

5 Conclusion

We presented the Filament Editor (FE), a software toolbox integrating com-
ponents for proof-editing neuron tracings in 3D, across-section alignment and
morphometric analysis. The effectiveness of the FE was demonstrated on the ex-
ample of in vivo labeled axonal branches from multiple brightfield image stacks.
The FE addresses a clear need for efficient and effective proof-editing, advancing
the possibilities for high-throughput reconstruction of accurate and complete 3D
neuron morphology. Altogether, the FE facilitates quantitative neuroanatomi-
cal studies from in vivo labeled data, as previously illustrated on the examples
of determining cell types (Oberlaender, Kock, et al., 2012), axon projection
patterns (Oberlaender, Boudewijns, et al., 2011), plasticity during sensory de-
privation (Oberlaender, Ramirez, et al., 2012) or simulations of sensory-evoked
signal flow (Lang et al., 2011).
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