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Abstract

This paper considers the optimal control of tuberculosis through education, diagnosis cam-
paign and chemoprophylaxis of latently infected. A mathematical model which includes im-
portant components such as undiagnosed infectious, diagnosed infectious, latently infected
and lost-sight infectious is formulated. The model combines a frequency dependent and a
density dependent force of infection for TB transmission. Through optimal control theory
and numerical simulations, a cost-effective balance of two different intervention methods is
obtained. Seeking to minimize the amount of money the government spends when tuberculo-
sis remain endemic in the Cameroonian population, Pontryagin’s maximum principle is used
to characterize the optimal control. The optimality system is derived and solved numerically
using the forward-backward sweep method (FBSM). Results provide a framework for design-
ing cost-effective strategies for diseases with multiple intervention methods. It comes out that
combining chemoprophylaxis and education, the burden of TB can be reduced by 80% in 10
years

1 Introduction

Tuberculosis (TB) is a preventable and curable disease caused byMycobacterium tuberculosis (Mtb)
that most often affects the lungs. To date, TB claims the second largest number of victims due
to a single infectious agent right after Human Immunodeficiency Virus and Acquired Immune
Deficiency Syndrome (HIV/AIDS) [32]. According to the WHO data published in April 2011 the
TB case detection rate (all forms) in Cameroon was last reported at 69% in 2010 and the TB
deaths reached 3,647 or 1.54% of total deaths. The age adjusted death rate of 21.89 per 100,000
of population ranks Cameroon 68th in the world [32].

Adult mortality has a significant effect on national economies, through both the direct loss
of productivity among those of working age and by altering fertility, incentives for risk-taking
behavior, and investment in human and physical capital [18]. TB is the most important cause of
adult death due to infectious disease after HIV/AIDS. TB has its greatest impact on adults between
the ages of 15 and 59 [31]. Therefore most economically productive persons in society, parents on
whom development and survival of children depend, are affected. TB places an extraordinary
burden on those afflicted by the disease, their families, communities and on government budgets.
In fact, the greatest burden of TB falls on productive adults who, once infected, are weakened and
often unable to work. The burden of taking care of sick individuals usually falls to other family
members and, besides putting them at greater risk of infection, can lower their productivity [18].
Diagnosed individuals with TB are often medically quarantined for a period of time, which can
affect their financial well-being. The infected population has an economic impact on their families
and in turn their countries’ national economies through their inability to contribute financially, as
they are often unable to be productive workers. Along with loss of productivity, the TB treatment
charge can be for the Government significant. Average household spending on TB can account for
as much as 8− 20 percent of annual household income, varying by region [9, 28].

Some TB models in the literature have discussed control of the disease by looking at the role
of disease transmission parameters for time dependent control strategies. Time dependent control
strategies have been applied for the studies of HIV models [11, 17], two strain tuberculosis models
[16], a TB model with lost sight class to reduce the rate by which people become lost sight [10],
and a SARS model with quarantine [33]. Some authors [14, 26] discussed the optimal control on a
model with reinfection. Time dependent optimal controls on chemoprophylaxis of both diagnosed
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and latently infected individual, and disease relapses are considered in [1] to reduce the actively
infected individual populations. In their recent article, Silva and Torres [30] studied the time
optimal control of TB in Angola using a model with early and persistent latency. Approaches of
studying control strategies produced valuable theoretical results which suggest or design epidemic
control programs. However, none of the previous studies considered the key combined role of
undiagnosed infectious population and quiting of the treatment on TB propagation. The goal in
this paper is to minimize the number of people who are undiagnosed infectious, lost sight, thus also
the number of people who die due to the infection. The number of TB new-cases, even if the success
rate of treatment remains the same will decrease implicitly. In this paper, we compute an optimal
way to minimize the cost of TB on a calibrated model taking into account the Cameroonian last
trend of the diseases and resulting parameters. The TB cost here means the expenses to fight TB
and save human life.

Two control strategies are considered. The first consists of education of the population about
TB and large scale diagnosis campaigns. Through education, one can decrease the number of
undiagnosed infectious people inside the population. Using the combined effect of education and
free of charge treatment, one can first reduce the number of people infected in the population, make
return people who have quitted the treatment to the hospital and accelerate the detection of newly
infected people who would stay to be treated naturally or through self-medication and traditional
medicine. A proportion of them will die without appropriate treatment. According to FAO,
less than 73% of the Cameroonian population goes to the hospital after first disease symptoms.
Because of the inaccessibility of certain regions of the country, access to health facilities is often
difficult. Besides treatment facilities, some rural and even urban population prefer sometimes to
use traditional medicine or self-medication for which the efficiency has not been established yet
for TB. An increase in the treatment access should help to reduce the lost sight and undiagnosed
classes. The immediate consequence will be a reduction in the number of infectious and then, on
the number of diagnosed infectious.

The second TB control approach is the chemoprophylaxis treatment. According to the National
Committee of Fight against TB (NCFT), the chemoprophylaxis of latently infected population is
currently not practiced in Cameroon. The number of latently infected individuals that may develop
an active TB will decrease if the chemoprophylaxis is practiced. The impact of both strategies on
TB dynamics will be discussed. We intend to determine optimal control strategies that minimize
not only undiagnosed infectious but also lost-sight and diagnosed infectious individuals which are
the source of TB spread. The optimal controls are completely characterized and optimal solutions
are depicted.

2 Modeling intervention methods

Mycobacterium tuberculosis (Mtb) spreads through the air from an infectious person to a susceptible
person. Two kinds of tests are used to determine if a person has been infected with TB bacteria:
the tuberculin skin test and TB blood analysis. A positive TB skin test or TB blood test only tells
that a person has been infected with TB bacteria and does not tell whether the person has latent
TB infection or has progressed to TB disease [8]. Other tests, such as a chest X-ray and a sample of
sputum, are needed to see whether the person has TB disease. Some TB treatment and prevention
options are carried out in some rural and urban hospitals in Cameroon. However, the treatment
of mild infections, classified as latent infections in our model, is not effective in Cameroon. On the
other hand, infective individuals classed as infectious in our model, require a hard treatment of
six months in the hospital. As preventive measures, population can be diagnosed, and latent TB
infections can be treated to reduce the bacterial load in their body. This last approach effectively
reduces the risk that TB infection will progress to TB disease. Certain groups are at very high
risk of developing TB disease once infected. Every effort should be made to begin appropriate
treatment and to ensure completion of the entire course of treatment for latent TB infection [8].

A finite (non-constant) total population at time t, denoted by N(t), is sub-divided into the
following mutually exclusive sub-populations:

S susceptible : healthy people not yet exposed to TB

E latently infected: exposed to TB but not infectious

I diagnosed infectious: have active TB confirmed after a sputum examination in a hospital
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J undiagnosed infectious: have not yet been to a hospital for diagnosis but are active for
confirmation by a sputum examination

L lost sight: people who have been diagnosed as having active TB, begun their treatment and
quitted before the end

R recovered: people cured after treatment in the hospital

All recruitment is into the susceptible class and occurs at an average scale Λ. The fixed rate of
non-disease related death is µ, thus 1/µ is the average lifetime. Susceptible individuals acquire TB
infection from individuals with active TB and lost sight at a rate ν(I, J, L) is given by

ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J, (1)

where βi, i = 1, 2, 3, are the effective contact rates of diagnosed, lost sight and undiagnosed
infectious sufficient to transmit infection to susceptible people. The effective contact rates βi in a
given population for tuberculosis are measured in effective contacts per unit time. This may be
expressed as the product of the total contact rate per unit time (ηi) by the risk of infection (φi)
given contact between an infectious and a susceptible individual, βi = ηiφi. This risk is called the
transmission risk. Controls are represented as functions of time and assigned reasonable upper
and lower bounds. In [21, 22], it have been shown that undiagnosed infectious population plays a
fundamental role on TB propagation through sensitivity analysis. Therefore, the optimal control
strategies aim to minimize the number of undiagnosed infectious and lost sight in the population.
First, u(t) represents the effort on education which allows people to go to the hospital, to be
diagnosed early and treated from the disease (to reduce the number of individuals that may be
undiagnosed infectious). Second, v(t) measures the rate of treatment of TB latent infections in
each time period. The whole model flow diagram with control is shown in Figure 1, and given as

I R

L

J

S E

p2u(t)ν(I, J, L)

µ

µ

σ2ν(I, J, L)

(p1 + p2u(t))ν(I, J, L)

ρ

µ + d2

µ + d3

γ
(1 − p1 − p2)ν

µ

Λ

µ

ω

δ(1 + u(t))

α(1 − u(t))

r2
θ(1 + u(t))

(1 − h)(k + σ1ν)(1 − r1 − v(t))

h(1 − r1 − v(t))(k + σ1ν)

Figure 1: Transfer diagram for a transmission dynamics of tuberculosis.

ODE system (2) below.















































Ṡ = Λ− ν(I, J, L)S − µS,

Ė = (1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R
− σ1(1 − r1 − v(t))ν(I, J, L)E −A1E,

İ = (p1 + p2u(t))ν(I, J, L)S + (1 + u(t))δL + (1 + u(t))θJ + γR
+ h(1− r1 − v(t))(k + σ1λT )E −A2(t)I,

J̇ = p2(1− u(t))ν(I, J, L)S + (1 − h)(1− r1 − v(t))(k + σ1λT )E −A3J,

L̇ = α(1− u(t))I −A4L,

Ṙ = r2I + ωL− σ2ν(I, J, L)R−A5R,

(2)

with

A1(t) = µ+ k(1 − r1 − v(t)), A2 = µ+ d1 + r2 + α(1− u(t)),
A3(t) = µ+ d2 + θ(1 + u(t)) + ρ, A4 = µ+ d3 + δ(1 + u(t)) and A5 = γ + µ,

subject to the initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, J(0) = J0, L(0) = L0 R(0) = R0. (3)

3



Table 1 presents parameter values and descriptions. The control functions u(t) and v(t) have to be
bounded and Lebesgue integrable functions. u(t) represents supplementary time dependent efforts
of education campaigns, applied during a time interval [0, T ] to the whole population. The control
function v(t) measures the time dependent efforts on the preventive treatment of latently infected
individuals to reduce the number of individuals that may be infectious. This control will have
an impact on the output flow of people from the latently infected class to infectious classes. The
coefficient 1− u(t) is a decreasing factor for fast route flow to undiagnosed population as result of
education. This factor aims to reduce the number of people becoming fast undiagnosed infectious
and developing cavitation. The coefficient v(t) represents the effort that prevents the inflow to the
undiagnosed infectious classes to reduce the number of undiagnosed individuals developing cavita-
tion. Our control problem involves the number of individuals with latent and active tuberculosis
infections and the cost of applying chemoprophylaxis education and treatment controls u(t) and
v(t) to be minimized subject to the differential equation (2). A description and the estimated
values of the parameters is summarized in Table 1 such that the model fits with TB dynamics in
Cameroon from 1994 –2013.

Note that in equation (2) the control u(t) moves infectious individuals from classes J and L
to class I and decreases the evolution to J and L classes. However, the control v(t) reduces the
progression rate from the latently infected class to the infectious classes. Since treatment effectively
decreases the number of infectious individuals in the population, the control functions may provide
a model of the impact of education and chemoprophylaxis of both latent and active infection.

Comparison to measurement data

Numerical simulations of model system (2) are carried out using a linearly implicit Euler scheme
in Matlab, version R2009. The total population of Cameroon in 1994 is given by N = 13, 240, 337
[24]. Using measurable data, model (2) gives a very good fit to the Cameroonian data for the
period 1994-2010 [32], as depicted in Figure 2. Estimated transmission parameters are performed
using a state of the art Gauss-Newton Method as presented in [21, 22] and the deterministic model
appears to capture all the qualitative properties of the observed pattern. Hence, model (2) can be
used to gain realistic insight into tuberculosis transmission dynamics at least for a limited period.

3 Modeling the optimal control problem

The goal is to solve the following problem: given initial population sizes of all six classes, S0,
E0, I0, J0, L0 and R0 find the best strategy in terms of efforts of education or chemoprophy-
laxis or both, that would minimize the number of people who die from the infection while at the
same time minimizing the cost of the strategy. There are various ways of expressing such a goal
mathematically.

Formulation

In this work, for a fixed terminal time T , we consider the following objective. Thus, we seek to
minimize the objective functional

J(u, v) =
∫ T

0 {B1 (d1I(t) + d2J(t) + d3L(t)) + B2I(t) + C1u(t) +D1v(t)
− C2 log(1− u(t))−D2 log(1− v(t))}dt+D3‖y1(T )− y∗‖22.

where y1(t) = (I(t), J(t), L(t)) and y∗ = (0, 0, 0). Constants B1, B2, C1, C2, D1, D2 and D3

have dual roles. On one hand, they are adjusting coefficients converting the dimension from
population number into cost (in dollars) expended over a finite time period of T years. For the
number of infectious individuals from the model (2) are more than hundreds, while u and v will
necessarily ranging between 0 and 1, in numerical simulations these constants are used to emphasize
parameters involving the educational and chemoprophylaxis efforts. The first sum, multiplied by
B1 is the cost of a death due to TB. The expression multiplied by B2 represents the treatment
cost for diagnosed infectious. The expressions multiplied by C1, C2, D1 and D2 are the costs
of implementation of both controls. In the objective functional, we intend to minimize also the
distance between values at time T of infective classes and a disease free equilibrium. D3 is therefore
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Figure 2: Evolution of model (2) showing the estimated state trajectories of susceptible, latently
infected, diagnosed infectious, undiagnosed infectious, lost sight, recovered and total population
classes. The dot plots represent the year-by-year trend and variability in yearly case reports over
the period 1994-2010.

a coefficient which aims to estimate the cost of this supplementary operation, and the norm is the
distance between the steady state y∗ and the value of infective classes at time T .

Parameter values and description are listed in Table 2. Parameter values C1, C2, D1 and D2 are
cost to apply a strategy on the whole population. It has to be proportional to the total population
when parameters B1 and B2 are only the cost for one person person.

The logarithmic expressions of the controls are included to model the potentially non-linear
costs at high educational and chemoprophylaxis levels [15, 16, 29, 23]. Education about TB, diag-
nosis campaigns and chemoprophylaxis are viewed as a nonlinear function since the implementation
of any public health intervention does not have a linear cost, but rather there are increasing costs
with reaching higher fractions of the population. The logarithm is a concave nonlinear function
and is therefore used for education and chemoprophylaxis controls. Since the fraction of educated
people will hardly achieve 1, the cost function is presumed to go to infinity when u and v are close
to 1. The term with logarithm in the cost objective functional seeks to increase the expenses of
education when most of the population has already been educated or received chemoprophylaxis.
The motivation of the logarithm is the fact that in a practical point of view, it is not possible to
reach 100% of the population educated. The set of admissible controls is defined as follows.

Γ =
{

u, v ∈ L1(0, T )|(u(t), v(t)) ∈ [0, 1]× [0, 1] ∀t ∈ [0, T ]
}

(4)

Thus, we seek an optimal control pair (u∗, v∗) such that

J(u∗, v∗) = min
Γ

J(u, v). (5)
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3.1 Existence of an optimal control solution

Let us consider an optimal control problem having the form

J(u, v) =

∫ T

0

g(t, y(t), u(t), v(t))dt + ‖y(T )− y∗‖2 −→ min
(u,v)

(6)

subject to
{

ẏ = f(t, y(t), u(t), v(t)),
y(t0) = y0.

where y = (S,E, I, J, L,R) and f is the right hand side of system (2). We analyze sufficient
conditions for the existence of a solution to the optimal control problem (6).

Theorem 3.1 There exists an optimal control pair (u∗(t), v∗(t)), and corresponding solution S∗,
E∗, I∗, J∗, L∗, R∗ to the state initial value problem (2) that minimizes J(u, v) over Γ.

Proof : We refer to the conditions in Theorem III.4.1 and its corresponding corollary in [12]. The
requirements there on the set of admissible controls and on the set of end conditions are clearly
met here. The following nontrivial requirements from Fleming and Rishel’s theorem are listed and
verified below:

A The set of all solutions to system (2) with corresponding control functions in Γ (as given in
equation (4)) is nonempty.

B The state system can be written as a linear function of the control variables with coefficients
dependent on time and the state variables.

C The integrand g in equation (6) is convex with respect to parameters u and v and additionally
fulfills

g(t, S, E, I, J, L,R, u, v) ≥ c1 | (u, v) |τ −c2,

where c1 > 0 and τ > 1.

In order to establish condition A, we refer to Theorem 3.1 by Picard-Lindelöf [5, 6]. If the solutions
of the state equations are a priori bounded and if the state equations are continuous and Lipschitz-
continuous in the state variables, then there is a unique solution corresponding to every admissible
control pair in Γ.

It is easy to see that the state system is continuous and bounded. It is also straightforward
to show the boundedness of the partial derivatives with respect to the state variables in the state
system, which establishes that the system is Lipschitz-continuous with respect to the state variables
(see [4], page 248). This completes the proof, thus condition A holds.

Condition B is verified by observing the linear dependence of the state equations on controls u
and v.

Finally, to verify condition C we note that the integrand g of the objective functional is clearly
convex in the controls. To prove the bound on g we note that by the definition of u and v, we have
C1u

2 ≤ C1u ≤ C1, and thus, C1u
2 − C1 ≤ C1u− C1 ≤ 0; therefore,

g(t, S, E, I, J, L,R, u, v) = B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) + C1u(t) +D1v(t)

− C2 log(1− u(t))−D2 log(1− v(t))

≥ min(C1, D1)(u + v)− C1

≥ min(C1, D1)(u
2 + v2)− C1

This completes the proof. �
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3.2 Characterization of optimal controls

Let us consider an optimal control problem having the form

J(u, v) =

∫ T

0

g(t, y(t), u(t), v(t))dt + ‖y(T )− y∗‖ −→ min
(u,v)

(7)

subject to
{

ẏ = f(t, y(t), u(t), v(t)),
y(t0) = y0,

and constraints

u(t) ≥ 0,

v(t) ≥ 0.

Pontryagin’s Maximum principle [27] allows to utilize costate functions to transform the optimiza-
tion problem to the problem of determining the pointwise minimum relative to u∗ and v∗ of the
Hamiltonian. The Hamiltonian is built from the cost functional (4) and the controlling dynamics
(2) derive the optimality conditions:

H(t, S, E, I, J, L,R, u, v) = B1(d1I(t) + d2L(t) + d3J(t)) +B2I(t) + C1u(t)

−C2 log(1− u(t)) +D1v(t)−D2 log(1− v(t)) + λ1 (Λ− ν(I, J, L)S − µS)

+λ2 ((1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R− σ1(1− r1 − v(t))ν(I, J, L)E −A1E)

+λ3 ((p1 + p2u(t))ν(I, J, L)S + (1 + u(t))δL+ (1 + u(t))θJ + γR)

+λ3 (h(1− r1 − v(t))(k + σ1λT )E −A2(t)I)

+λ4 (p2(1− u(t))ν(I, J, L)S + (1− h)(1− r1 − v(t))(k + σ1λT )E −A3J, )

+λ5 (α(1 − u(t))I −A4L) + λ6 (r2I + ωL− σ2ν(I, J, L)R−A5R)

(8)

where the λi, i = 1, · · · , 6 are the associated adjoints for the states S, E, I, J, L and R.
The optimality system of equations is found by taking the appropriate partial derivatives of the
Hamiltonian (8) with respect to the associated state variable.

The following theorem is a consequence of the maximum principle.

Theorem 3.2 Given an optimal control pair (u∗, v∗) and corresponding solutions to the state
system S∗, E∗, I∗, J∗, L∗, R∗, that minimize the objective functional (4), there exist adjoint
variables λ1, λ2, λ3, λ4, λ5, and λ6, satisfying

dλ1

dt
= µλ1 −

(

(β1I + β2L)
N − S

N2
+ β3J

)

× (−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1 − u(t))λ4) (9)

+ (β1I + β2L)
1

N2
[σ1(1 − r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

dλ2

dt
= (β1I + β2L)

S

N2
(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1 − u(t))λ4)

+ (β1I + β2L)
R

N2
σ2(λ2 − λ6) + µλ2 (10)

− (1− r1 − v(t))

[(

(β1I + β2L)
N − E

N2
+ β3J

)

σ1 + k

]

(−λ2 + hλ3 + (1− h)λ4)

dλ3

dt
= −

(

S
β1N − (β1I + β2L)

N2

)

(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

β1N − (β1I + β2L)

N2

)

[σ1(1 − r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

+ (µ+ d1)λ3 − r2(λ6 − λ3)− α(1 − u)(λ5 − λ3)−B1d1 −B2 (11)
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dλ4

dt
= −B1d2 −R

(

−
β1I + β2L

N2
+ β3

)

σ2(λ2 − λ6) (12)

− S

(

−
(β1I + β2L)

N2
+ β3

)

(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1 − u(t))λ4)

−

(

−(β1I + β2L)

N2
+ β3

)

Eσ1(1− r1 − v(t))(−λ2 + hλ3 + (1− h)λ4)

− ρ(λ2 − λ4) + (µ+ d2)λ4 − θ(1 + u(t))(λ3 − λ4)

dλ5

dt
= −

(

S
β2N − (β1I + β2L)

N2

)

(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1− u(t))λ4)

−

(

β2N − (β1I + β2L)

N2

)

[σ1(1 − r1 − v(t))E (−λ2 + hλ3 + (1− h)λ4) + σ2R (λ2 − λ6)]

+ (µ+ d3)λ5 − δ(1 + u(t))(λ3 − λ5)− ω(λ6 − λ5)−B1d3 (13)

dλ6

dt
=

S(β1I + β2L)

N2
(−λ1 + (1− p1 − p2)λ2 + (p1 + p2u(t))λ3 + p2(1 − u(t))λ4)

−

(

(β1I + β2L)
N −R

N2
+ β3J

)

σ2(λ2 − λ6) + µλ6 − γ(λ3 − λ6) (14)

+
E(β1I + β2L)

N2
σ1(1− r1 − v(t))(−λ2 + hλ3 + (1 − h)λ4)

with terminal conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 2D3(I(T )− I0),

λ4(T ) = 2D3(J(T )− J0), λ5(T ) = 2D3(L(T )− L0), λ6(T ) = 0.
(15)

Furthermore, we may characterize the optimal pair by the piecewise continuous functions

u∗ = max

(

0, 1 +
C2

C1 + (ν(I, J, L)Sp2 + θJ)(λ3 − λ4) + (δL+ αI)(λ3 − λ5)

)

,

v∗ = max

(

0, 1 +
D2

D1 − (σ1ν(I, J, L) + k)E(−λ2 + hλ3 + (1− h)λ4)

)

. (16)

Proof : The result follows from a direct application of a version of Pontryagin’s Maximum Principle
for bounded controls [19]. The differential equations governing the adjoint variables are obtained
by differentiation of the Hamiltonian function (8), evaluated at the optimal control. Then the
adjoint system can be written as dictated by the Maximum Principle, by the equations

dλ1

dt
= −

∂H

∂S
, λ1(T ) = 0,

dλ2

dt
= −

∂H

∂E
, λ2(T ) = 0,

dλ3

dt
= −

∂H

∂I
, λ3(T ) = 2D3(I(T )− I0),

dλ4

dt
= −

∂H

∂J
, λ4(T ) = 2D3(J(T )− J0),

dλ5

dt
= −

∂H

∂L
, λ5(T ) = 2D3(L(T )− L0),

dλ6

dt
= −

∂H

∂R
, λ6(T ) = 0,

evaluated at the optimal control pair (u∗, v∗) and corresponding states. This results in the stated
adjoint system (9)-(14).

Finally, the optimality conditions require that,

∂H

∂u
=

∂H

∂v
= 0, (17)

for the optimal pair (u∗, v∗), on the interior of the control set, and this condition is simplified
in equations (16) with special attention on control arguments involving the bounds on the controls
as defined with Γ in equation (4). �
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4 Numerical simulation of optimal controls

Optimal educational and chemoprophylaxis strategies are obtained by solving the optimality sys-
tem, consisting of 12 ODEs from the state and adjoint equations above. An iterative method is
used for solving the optimality system. The state system with an initial guess is solved forward
in time and then the adjoint system is solved backward using the transversality conditions. Note
that, since the model is not stiff, a number of numerical scheme for ODEs in the literature may
solve forward as well as backward the optimality problem which is used here. From model (2),
we generated the state values of different epidemiological classes for the year 2015 using data in
Tables 1 and 2. The initial values are thus defined as

S0 = 4, 950, 585, E0 = 15, 594, 821, I0 = 21, 392, J0 = 13, 009,
L0 = 3, 723 R0 = 139, 455 and N0 = 20, 722, 985,

(18)

representing model predictions for years 2015. These initial population sizes will be used through-
out the rest of following paragraph.

For the sake of realism, we have chosen to implement the optimal control over 10 years on
model 2,because we assume that it remains realistic enough to reproduce the dynamics of TB in
Cameroon over this period, also according to new development strategy presented by the Cameroo-
nian government. Another approach for optimal control could be the infinite time arising case, to
follow the longterm optimal control of TB in Cameroon. However, since parameters can change,
it is suitable on stochastic systems. We have chosen a 10 years horizon optimal control approach
to describe the impact of educational campaign on TB dynamics. However, most numerical sim-
ulation will be performed on 25 years, to minimize the influence of the final time arising over the
10 first years.

Throughout the iterations, a lower bound u0 = v0 = 0 will be keep for the control through a
projection of u and v on the interval [0, um]× [0, vm] where um = vm = 1.

Step size. An appropriate ODE integrator as well as an efficient optimal control update should
exert some adaptive control over its own progress, making appropriate changes in its step-size.
Usually the purpose of this adaptive step-size control is to achieve some predetermined accuracy
in the solution with minimum computational effort. Implementation of adaptive step-size control
requires that the stepping algorithm return information about its performance, most important,
an estimate of its truncation error. Obviously, the calculation of this information will add to the
computational overhead, but the investment will generally be repaid. In this work, an adaptive
step-size control implemented in the software Dopri5 [7] will be used to solve forward the states
equations and backward the adjoint equations. The control at the end of each iteration have been
chosen to be updated through uk = u∗ when u∗ is the value from the characterizations in equation
(16). The same type of update is used for the second control function v update (vk = v∗). In
contrast with the traditional convex combination used frequently in the literature to implement
the FBSM [20, 19], this update appeared to be faster and lead to the same result. The choice of
the control updates is justify by the speed of convergence to the optimal solution which happened
fast (after less than 3 minutes of computation). Time points chosen by adaptive step-size control
generally do not agree with discretization points of the controls. An integrator with dense output
is used to solve the problem. It constructs an interpolation polynomial based on the available
solution such that accuracy is not destroyed.

Stopping criteria. The optimal control iterations continue until convergence the relative update
between all of state variables, the adjoint functions and the control functions are less than a defined
value TOL, i.e.

min
i

‖xk
i − xk−1

i ‖

‖xk
i ‖

< TOL

where xi is either a state variable, the adjoint function or the control. The value TOL = 0.0001
is used in this numerical simulation. Parameter values are defined in Table 1 and data in Table 2
will be divided by 10000 in order to obtain a well scaled system.

4.1 Optimal educational strategy

Let us first focus on the optimal educational strategy for the population of Cameroon. Numerical
simulations are performed using the FBSM for D1 = D2 = 0 when v = 0. Then, the optimal
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control problem is defined by

J(u, v) =
∫ T

0
g(t, y(t), u(t))dt+ ‖y(T )− y∗‖2 −→ min

u

subject to
{

ẏ = f(t, y(t), u(t)),
y(t0) = y0.

where y = (S,E, I, J, L,R),

g(t, y, u) = B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) + C1u(t)− C2 log(1 − u(t))

and f the right hand side of system (2).
Figure 3 shows a time optimal educational schedule for T = 10 years. Here and on all following

figures, S, E, I, J, and R stand for susceptible, latently infected, diagnosed infectious, undiagnosed
infectious, lost sight and recovered population when u is the effort in educating and diagnosing
the population. It appears that the disease burden will indeed decrease due to the influence of
education u. Figure 3 (c) reveals an increase of the number of diagnosed infectious for one year
as result of the campaign. After one year, the number of undiagnosed infectious drops and be less
than the expected number after 3 years without the control. As a result of the decrease of the
number of infectious, the susceptible population will increase and the recovered population will
decrease (Figure 3 (a) and (f)). The control function in Figure 3 (u) is continuous and decreasing
with respect to time.

Figure 4 illustrates the convergence of the FBSM throughout the iterations when only education
is applied in the population. It appears from the Figure that at the end of the iterations, the norm
of the Hamiltonian’s gradient goes very close to 0.

4.2 Optimal chemoprophylaxis strategy

Setting C1 = C2 = 0 and u = 0 in system 2, the corresponding cost function is defined by

Jv(v) =

∫ T

0

{B1(d1I(t) + d2J(t) + d3L(t)) +B2I(t) +D1v(t)−D2 log(1 − v(t))}dt

+ D3‖y(T )− y∗‖2. (19)

Figure 5 presents the numerical results of a chemoprophylaxis optimal control on the dynamics of
TB in T = 10 years. It reveals that the population of infectious will drop for five years when the
control strategy will be implemented, but increase again after. The reverse effect will be observed
for the susceptible population. Results in Figure 5 show that chemoprophylaxis of latently infected
population may delay the TB propagation, but cannot eradicate the disease. The chemoprophylaxis
strategy will decrease the number of infected population by more than 40 percent during the 10
years of optimal control. The fact is that chemoprophylaxis does not reduce the contact between
infectious and susceptible population, but only minimizes the evolution to the disease for the
latently infected population. In the presence of fast progression, this strategy can not lead to a
satisfactory way for reducing TB if applied without further efforts.

Similarly to Figure 4, an analysis of the Hamiltonian can reveal the convergence of the FBSM.

4.3 Optimal education and chemoprophylaxis

Let us find now the optimal schedule for both education and chemoprophylaxis on the population
using data from Cameroon. For the Figures presented here, we assume that the weight factor C1

associated with control u is smaller than D1 which is associated with control v. This assumption
is based on following facts: the cost associated with chemoprophylaxis v will include the cost of
screening and treatment programs, and the cost associated with u including those of educating
people about the TB diagnosis in the hospital or sending people to watch the patients to finish their
treatment. Treating an infectious TB individual takes longer (by several months) than treating a
latent TB individual [16].

To minimize the total number of TB induced death, the optimal control u decreases during the
T = 25 years and v is also decreasing from the upper bound, while the steadily decreasing value
for u is applied over the most of the simulated time, T = 25 years. The initial conditions used
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Figure 3: Simulations of the TB model (2) showing the effect of optimal educational and diagnosis
campaign rates on the TB infection.
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Figure 4: Evolution of the norm of the Hamiltonian’s gradient throughout iterations corresponding
to the educational only optimal strategy.

in this case are extracted from numerical simulations of the model corresponding to year 2015.
Combining chemoprophylaxis and education, the burden of TB can be reduced by 80% in 10 years.

The convergence of the FBSM throughout the iterations when both control strategies are ap-
plied has been again verified through the Hamiltonian gradient’s norm.
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Figure 5: Simulations of the TB model (2) showing the effect of optimal chemoprophylaxis and
treatment rates against constant education and treatment rates on the infected population.

4.4 Impact of the objective functional parameters

The sensitivity of the optimal control with respect to constants such as C1, C2, D1 and D2 is a
well known and recurrent question. In this paragraph, we present the optimal control solutions
for several values of C1, C2, D1, and D2. Figure 7 illustrates how the optimal control strategies
depend on the parameter C1, C2, D1, and D2, which are the coefficients of the logarithmic and the
linear part of the objective functional defined in equation (4). Coefficients D1, and D2 show the
influence of the logarithmic non-linear term on other control parameters. These parameters values
may vary from place to place depending on many factors including living conditions and culture.
In Figure 7 and 8 the controls u and v are plotted as a function of time for the 6 different values
of C1 = C2 ∈ {1, 21, 41, 61, 81, 101} and D1 = D2 ∈ {1, 21, 41, 61, 81, 101}. Other parameters are
fixed as in Tables 1 and 2. Figure 7 and 8 show that the coefficients play a decreasing role on the
control while state values remain almost the same as C1 = C2 and D1 = D2 increases. The values
C1 = C2 and D1 = D2 have been chosen to express the particular case where the amount of money
for educational and chemoprophylaxis campaigns are available in different proportion. It comes
from the first figure that if the amount of money used for education is low, then, two educational
campaign have to be implemented. The first educational campaign will decrease the number of
undiagnosed infectious to zero. But after few years, diagnosed infectious will appear again and a
new campaign have to be implemented. But with high cost education, there is no more need of
effort for TB control. The highest number of latently infected people have to be treated trough
chemoprophylaxis strategy. Different other situations may be computed in the same way.

Figure 9 illustrates the convergence of the FBSM throughout the iterations. It appears that
the linear convergence of the FBSM is barely affected by parameters changes.
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Figure 6: Time series of model (2) results from optimal education and diagnosis campaign and
chemoprophylaxis strategies (dashed lines) compared with of no education and chemoprophylaxis
control strategies (plained lines). Without education and chemoprophylaxis, the number of infec-
tious increases little and the number of susceptible decreases little. In the presence of education
and chemoprophylaxis, the opposite effect is observed.

4.5 Impact of the final time

The sensitivity of the optimal control solution with respect to the final time T is also a well known
and recurrent question. In this paragraph, we present the optimal control solutions for several
values of T . Figure 10 illustrates how the optimal control strategies depend on the final time T of
the control strategies. It comes out that the educational campaign is sensitive on with respect to
the final time arising optimal control, however, an analysis of the ten year optimal control strategy
is enough to ensure a low number of undiagnosed in the population. It can be observed that for
T = 15, a new campaign have to be implemented at the 9th years. The same pulse have been
observed at the end of most educational control. This can be explained by the end condition which
ensure the number of undiagnosed to be as closed as possible to zero. It can also be observed that
for T ≥ 20 years, the optimal educational control is almost preserved. It means that a 25 years
implementation to extract 10 years control is an appropriate choice, and therefore, the optimal
solution is not sensitive to the final time. It can be observed that the chemoprophylaxis strategy
decreases to zero depending on the final time of the control. However, the optimal solution of
system (2) is not sensitive with respect to the final time. This ensures the optimal solution to be
reached regardless of the final time used for the implementation.
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Figure 7: Evolution of model (2) from optimal education and chemoprophylaxis strategies, dashed
lines, compared with that of no education and chemoprophylaxis control strategies (plained lines)
for C1 = C2 ∈ {1, 21, 41, 61, 81, 101}. Other parameters are presented in Tables 1 and 2. A large
change on v and v with the constants is observed.

5 Conclusion

The TB incidence rates have been declining since 2010 in Cameroon, namely due to prevention
and treatment policies that have been applied in the last years through “DOTS” and “Stop TB”
programs. The reduction of mortality and incidence rates depend on the effort at country level to
implement control policies. One of the most successful TB control methods implemented in the
world is the DOTS strategy. However, in many sub-Saharan countries, the number of estimated
cases of TB infected persons is still very high compared to the number of diagnosed cases. This
made the DOTS program and the new “Stop TB” program not fully implemented.

In this paper we presented a mathematical model for TB, which takes into account population
of undiagnosed and lost sight infectious, with the aim of controlling TB propagation through these
classes. Optimal time-dependent prevention policies which consider also the execution cost, are
proposed. We implemented different numerical approaches and we observed that the pattern of TB
can be controlled if in addition of the current “Stop TB” strategy, an educational and diagnosis
campaign, and chemoprophylaxis of latently infected individuals was performed on the population.
The model take into account the actual data on TB in Cameroon and the rate of success of the
treatment. Our results show that the implementation of the combined effect of education and
diagnose campaign with chemoprophylaxis of latently infected may reduce by 80 % the TB burden
in 10 years. The FBSM converges linearly and robustly. Numerical simulation showed that change
on model parameters does not influence the convergence of the FBSM. However, a change on
the cost function parameters and the discretization affects the control solution. A possible future
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Figure 8: Evolution of model (2) result from optimal education and chemoprophylaxis strategies,
dashed lines, compared with that of no education and chemoprophylaxis control strategies (plained
lines) for D1 = D2 ∈ {1, 21, 41, 61, 81, 101}. Other parameters are presented in Tables 1 and 2.
One observes a large change on v and v with the constants.
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Figure 9: Evolution of the norm of the Hamiltonian’s gradient with respect to iterations.

issue consists of quantifying the impact of cost-functional parameters on the control function and
to compare different direct and indirect methods for optimal control. The same method can be
applied to TB dynamics with seasonality or considering a co-infection model of TB with HIV/AIDS
and diabetes. From these analysis, it may be possible to analyze combining strategies to different
kind of diseases.
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Figure 10: Evolution of model (2) result from optimal education and chemoprophylaxis strate-
gies, compared with the case of no education and chemoprophylaxis control strategies for T ∈
{10, 15, 20, 25, 30, 35}. Other parameters are presented in Tables 1 and 2.
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