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Abstract

For using Data Mining, especially cluster analysis, one needs measures
to determine the similarity or distance between data objects. In many ap-
plication fields the data objects can have different information levels. In
this case the widely used Euclidean distance is an inappropriate measure.
The present paper describes a concept how to use data of different in-
formation levels in cluster analysis and suggests an appropriate similarity
measure. An example from practice is included, that shows the usefulness
of the concept and the measure in combination with Kohonen’s Self-
Organizing Map algorithm, a well-known and powerful tool for cluster
analysis.

Keywords. cluster analysis, Data Mining, data preprocessing, information
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1 Introduction

Using Data Mining [6] methods in practice, one often has the problem how to
deal with vague, inaccurate, possibly false or even missing values in the data.
While the first three cases are more or less neglected in research, even the prob-
lem of missing values has not been solved [2]. In situations, where it makes no
sense or is not practicable to replace missing values by a ’typical’ value that
usually depends on the given data distribution as, for example, the mean value,
the only way out is to code them into a new value of the related attribute1.
But by doing this, the question arises, how to deal with this special values when
measuring the similarity between different data objects.

The present paper tries to answer this question by introducing the concept of
information levels and by describing a method—including an appropriate simi-
larity measure—that realizes this concept in Data Mining, especially in cluster
analysis. The suggested approach is general in the sense that not only missing
values are considered, but also other kinds of values with a lower information
level as, for example, vague or inaccurate values.

1Some authors simply suggest, not to use data objects with missing values. But this is
impossible in practice, because there it is quiet usual, that almost each data object contains
a missing value for at least one of its several attributes.
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In Section 2 we motivate the use of information levels—given in the data
implicitly—in Data Mining. We describe a concept and proper data transfor-
mations, to represent the information levels explicitly in the data. In Section 3
we show, how existing similarity measures can be transformed into a measure,
that directly considers the explicit information levels, without loosing the advan-
tages of the original measure. Based on this new kind of measure, we introduce a
general method that uses the explicit information levels within cluster analysis.
Finally, in Section 4, an illustrative example is given that shows the usefulness
of the suggested method within the Self-Organizing Map algorithm [5, 3] for
clustering high dimensional data of different information levels.

2 Different information levels

It is obvious, that data can represent different amounts of information, but it
is not so evident, why it is important to consider this fact in Data Mining,
especially in cluster analysis. Therefore we will first give a short motivation,
before the general concept is introduced.

Motivation The following two examples from practice illustrate, why it is
necessary to consider the implicitly given information levels, when performing
a cluster analysis.

Example: Insurance business An insurance company wants to cluster
their customers. For simplicity we suppose, that each customer is only described
by ten attributes2 a1, . . . , a10 and that each attribute has the valid values ’no’
and ’yes’, coded by 0 and 1. It is also possible, that the value of an attribute
is missing. For each customer x, the value of attribute ai is denoted by xi.
Because we want not to use the missing values for the similarity measurement,
we use a weighted Euclidean distance (with Q(x) := { i |xi ∈ {0, 1}}) :

dweighted-Euclid(x, y) :=

√√√√ 1

|Q(x) ∩Q(y)|
∑

i∈Q(x)∩Q(y)

(xi − yi)2.

We further suppose that there are customers called v, w, y and z, with the
following attribute values (missing values are denoted by ’m’):

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
v 1 1 1 m m m m m m m

w 1 1 0 m m m m m m m

y 1 1 1 1 1 1 1 0 1 0

z 1 1 0 1 1 1 1 1 0 1

While the customers v and w have for only two attributes the same valid
value, y and z have six valid hits. If we compute the weighted Euclidean distance
between v and w, we get the value 0.58, while for the distance between y and z
we get 0.63. Therefore the similarity between the first both customers seems to
be greater than between the last two. But this is a contradiction to the fact, that

2In reality there are often hundred or more attributes.
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y and z have three times more equal valid attribute values than v and w. Note
that only the valid values represent full information, while the missing values
represent no or even less information3. Obviously the Euclidean distance—
weighted or not4—is not able to consider these different information levels.
When performing a cluster analysis, this has negative results: The clustering
process is always determined by groups of objects with great inter-similarity.
If now the similarity between objects with many missing values is over-valued,
the clustering is heavily determined by objects with less information amount,
instead of those with full information.

Example: Opinion poll In an opinion poll 4000 citizens are asked ten
questions a1, . . . , a10 as, for example, ’Do you agree with the policy of the gov-
ernment?’. They can always give five possible answers: ’I totally agree’, ’I
rather agree’, ’I am indifferent’, ’I slightly disagree’ and ’I totally disagree’. The
answers are coded as 1, 0.75, 0.5, 0.25 and 0. For a person x, the answer of ques-
tion ai is denoted by xi. It is also possible not to answer. But because we have
already examined the missing value case in the example from insurance busi-
ness, we suppose now, that all asked people have given one of the five possible
answers. Note, that usually there are always a lot of people who are indifferent
and that indifference normally represents less information than a clear vote.

Suppose that there are four persons, called v, w, y and z. Let v and w
be indifferent for most questions, while y and z have always clear, but slightly
different votes:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
v 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

w 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

y 1 1 1 0 0.25 0.75 1 1 0.75 1

z 0 1 0.75 0.25 0 1 0.75 1 1 1

The Euclidean distance between v and w is 1.00, while it is 1.17 between y
and z. Even if we choose another coding, for example, 1, 0.9, 0.5, 0.1 and 0,
the second distance will be greater than the first one. But this is not what we
want: The opinions of y and z are more or less the same and so they should
have a great similarity value. The opinions of v and w are also quiet the same,
but also indifferent, i.e. the similarity of v and w is based on less information,
than the similarity between y and z and should therefore be smaller. But the
Euclidean distance generates exactly the opposite.

Note that even if one uses other similarity or distance measures, the de-
scribed problems will still be there, as long as one does not consider the implicit
information levels of the data. But to consider these levels, one has to develop
a concept, how to represent them in the data explicitly.

3Sometimes the fact, that a value is missing, implies important information (e.g. a customer
with many missing values could be a bad risk). But usually ’mining’ such informations is the
task of classification rather than cluster analysis.

4The situation becomes even worser, if we substitute the missing values by ’typical’ values
or special values (see introduction) and use the normal Euclidean distance. The results are so
called blind spots or no information clusters (see Section 4).
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A concept for representing information levels Suppose that each data
object x is described by q different attributes a1, . . . , aq. For each attribute ai,
a set Ai of valid values is defined and for each data object x, we denote the
value of attribute ai by xi, with xi ∈ Ai ∪ {missing}. Furthermore x∗i denotes
the information level of xi, with x∗i ∈ [0, 1]. If xi = missing, we always set
x∗i := 0. For all other values, we choose a suitable x∗i > 0. The larger the
amount of information, represented by xi, the larger the value for x∗i. The
highest information level is indicated by x∗i = 1. It is obvious that by this
construction, we can easily represent vague and inaccurate values, or values
that describes a kind of indifference. Note, that the explicit information levels
x∗i have to be chosen by an expert, who is familiar with the data. False values
(i.e. xi /∈ Ai) should always be transformed to missing, so that x∗i = 0. The
following example illustrates the concept:

Example: Car manufacturer A German car manufacturer wants to an-
alyze his vendors. One of the vendors attributes denotes the sales in the last
year. For some vendors there are only sale estimates, for others there are no
sales information (information level is zero). In the last five years the differ-
ences between the estimates and the real sale values were in 20% of the cases
significant. So the data analyst decides to fit the estimates with an information
level of 0.8 instead of 1. Note, that it is possible, that there are vendors with
equal sale values, but different information levels.

By now, we have introduced a natural concept to represent different levels
of information in our data explicitly5. Before we use this concept within Data
Mining methods, we have to perform some standardized transformations.

Standardized Transformations The necessary transformations depends on
the attribute types. We have to distinguish metric, ordinal and nominal at-
tributes. For metric attributes ai we suppose that they are bounded, i.e. there
exist li, ui ∈ R, with li ≤ v ≤ ui for all v ∈ Ai, while for ordinal and nominal
attributes there only exists a finite number of valid values, i.e. Ai is finite.

Let ai be a metric variable and suppose for simplicity that Ai = [li, ui]. The
following transformation6 normalizes xi on the interval [0, 1]:

T[0,1](xi) =

{
xi−li
ui

if xi ∈ Ai

0 if xi = missing.

This transformation is reversible, because we can separate the original zeros
from the transformed missing values by checking the information level x∗i.

Let ai be an ordinal variable, i.e. Ai = {vi1 , . . . , viki } with an arbitrary
ki ∈ N and an ordering vi1 ≤ . . . ≤ viki . For simplicity, we suppose Ai ⊂ R.

5The reader, familiar with fuzzy logic, will recognize the similarities. But concepts from
fuzzy logic are often used in cluster analysis in a different setting [4]. To avoid confusion, the
present concept is formulated in a way, such that it is independent of fuzzy logic concepts.

6If it is possible to compute the mean-value μi and the standard deviation σi for attribute
ai, the following transformation should be done previously: T (xi) =

xi−μi

σ2
i
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Setting li = vi1 and ui = viki , we can normalize xi by the same transforma-
tion T[0,1] as in the metric case.

Let ai be an nominal variable, i.e. Ai = {vi1 , . . . , viki } with an arbitrary
ki ∈ N. Because there is no natural ordering on Ai, we have to dichotomize
this attribute, i.e. we have to replace ai by ki new attributes ai,vi1 , . . . , ai,viki

,

with

xi,vir =

{
1 if xi = vir
0 else

, r = 1, . . . , ki

Finally we set x∗i,vir = x∗i for r = 1, . . . , k.

In the next section we describe a method, how to use the explicit information
levels within cluster analysis.

3 Information levels within cluster analysis

If we want to use information levels within cluster analysis, we need similarity
measures that consider the different levels adequately.

Suppose we take a traditional measure d(x, y) into account, for example,
the Euclidean distance, that computes the similarity or distance between the
two data objects x and y based on an arbitrary number q of ordinal or met-
ric attributes7, all normalized to [0, 1]. The explicit information levels x∗i and
y∗i are already defined for each attribute ai. It is obvious that such a mea-
sure is not able to consider the explicit information levels adequately8. So we
have to construct a new measure. Such a measure should match the following
requirements:

• It should behave as much as possible as the given measure d(x, y). Mainly
in the case, when all information levels of x and y are 1, the similarity
value should be the same for both measures9.

• If d(x, y) is differentiable, also the new measure should be differentiable.
This is necessary, if one wants to use the measure within some popular
cluster algorithms as, for example, the c-mean-algorithm [2].

• The new measure should compute the similarity based on the attribute
values and the corresponding information levels directly as a whole. It
seems to be not sufficient first to compute the similarity based on the
attribute values and afterwards to weight this value by something like an
’information level factor’. Such an indirect approach opens the door for
arbitrariness.

7Nominal attributes are dichotomized as described in the previous section.
8One could have the following simple idea: Consider the information levels as additional

attributes, i.e. a data object x will be described by x1, . . . , xq and x∗1, . . . , x∗q. But one easily
checks, that this approach does not solve the problems described in the previous section.

9This requirement is necessary to ensure the acceptance of the new measure. Many re-
searchers and practicians use their own, special measures. They should be able to use them—
only slightly changed—together with the concept of information levels.
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While the first two requirements cause no restriction for the original measure
d(x, y), the last requirement makes it necessary to suppose, that d(x, y) is as a
function of q one-dimensional measures di(xi, yi):

d(x, y) := f(d1(x1, y1), . . . , dq(xq, yq))

Note, that many popular distance measures have this feature. For the Eu-
clidean distance we have di(xi, yi) = (xi − yi)

2.

After this preliminary remarks, we can introduce the new measure d∗(x, y),
based on the given measure d(x, y).

A similarity measure that directly considers information levels There
are several possibilities to define measures, that use explicit information levels,
but the most of them do not match our requirements. After exhaustive research,
we suggest the following measure that directly considers information levels and
matches all requirements:

d∗(x, y) := f(d∗1(x1, y1, x∗1, y∗1), . . . , d∗q(xq, yq, x∗q, y∗q)),

with

d∗i (xi, yi, x∗i, y∗i) = log2

(
2−

(
2− 2di(xi,yi)

)√
x∗iy∗i

)

For the eucledian distance the measure simply denotes as:

d∗(x, y) :=

√√√√ q∑
i=1

log2
(
2− (

2− 2(xi−yi)2
)√

x∗iy∗i
)

If we look at the motivating examples and use the Euclidean distance as
original measure d(x, y), we see that the measure d∗(x, y) fits our needs:

In the example from insurance business, we have d∗(v, w) = 2.83 > d∗(y, z) =
2.45. In the opinion poll example, we choose x∗i = 0.5 as information level at
indifference (xi = 0.5). Then we get also d∗(v, w) = 2.50 > d∗(y, z) = 1.17.
Note that even for a higher information level for indifference, we will get the
same qualitative result.

By construction, the measure d∗(x, y) depends not only on the values xi and
yi, but also on the corresponding information levels x∗i and y∗i. Therefore it is
necessary to define, how to adapt information levels.

Adaptation of information levels In most cluster algorithms a kind of
cluster representative—called cluster center or codebook vector—is computed
and refined during the iterative process. Usually an object is projected to that
cluster, which representative is most similar to it. Therefore it is necessary to
assign information levels—one for each attribute—to each representative and to
adapt them during the process. The adaptation will be done on the same way
as usual, but with one difference: If an object x has a missing value for attribute
ai, the value xi will usually not be used for adapting the representatives. But
the value x∗i = 0 has to be used in the adaptation process, because he represents
information and so has effects on the clustering quality.

6



4 Information levels and Self-Organizing Maps:

A cluster example

In order to show the benefits of the information level concept and the suggested
measure, we shortly present an application from practice.

We are interested in a clustering of objects from the field of chemistry, which
are characterized by a hierarchical six-digit coding system, like e.g. books in a
library, each code describing a certain property. Although each object can be
characterized by an arbitrary number of this codes, in reality an object is often
described by less than ten codes. Because the coding is done by several different
persons, with different backgrounds, we can not be sure that each object is fully
characterized by his coding. Therefore there are always two possible reasons,
why an object is not characterized by a certain code: The object does not have
the related property, or the object has the property, but the person, who did
the coding, has forgotten to assign the related code to the object.

Because we have just about 30000 objects, we only look at the first three
digits. We consider each three-digit code as many times as it appears in the
six-digit coding10. By doing this, one observes that 36 three-digit-codes appears
quiet often, while the other codes are rather rare. We therefore introduce an
attribute for each of these 36 codes that denotes the number of appearance in
the coding of the object. A typical object has for only 10% − 20% of these
attributes a value greater than zero. The zero value represents the ’missing’ of
the related code.

Our task is to cluster the almost 30000 objects, using the Self-Organizing
Map (SOM) algorithm [5, 3] in combination with u-matrix visualization [1]. We
will show the results of the following four different approaches:

1. Use the Euclidean distance based on the 36 attributes.

2. Use the euclidian distance based on the 36 attributes, but with the zero
values as missing values, i.e. the zeros are not used for the distance com-
puting and the adaptation process.

3. Use the information level concept together with the suggested measure
based on the Euclidean distance. Set the information level of the zero
values to 0 (interpretation as missing values) and to 1 for all values greater
than zero.

4. Use the information level concept together with the suggested measure
based on the Euclidean distance. Set the information level of the zero
values to 0.5 (interpretation as vague values) and to 1 for all values greater
than zero.

Because we are interested in a comparison between these approaches, we
have fixed the parameters of the SOM as follows: We use a 11 × 9 grid with
hexagonal topology and a Gaussian neighbourhood. We perform 120000 steps,

10If an object is described by the codes 234567, 234875, 237234, 395864 and 395892, we
consider 234 twice, 237 once and 395 twice.
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while adapting the neighbourhood only for the first 30000 steps and use a log-
inverse descending learning rate. All attributes are normalized to [0, 1].

The u–matrix visualization of the resulting maps for the first two approaches
that make no use of information levels, are shown in Figure 1:

Figure 1: U–matrix visualization of the SOM for the traditional approaches (Eu-
clidean distance, no information levels) Left hand side: zero values are normal values,
Right hand side: zero values are missing values

The u-matrix of the first approach has the typical blind spot, i.e. a single
bright area on a quite dark map. All the objects with zero values for almost
all of the 36 attributes are projected to this area. Besides this no information
cluster, it is more or less impossible to detect other clusters.

The u-matrix of the second approach has no blind spot, because the zero
values are not used for the computing of the map. Although one is able to
detect cluster borders, the clustering is quite bad.

Next we look at the u–matrix visualization of the resulting maps for the last
two approaches that make use of information levels (see Figure 2). Note that
the u-matrix visualization makes only use of the original 36 attributes and not
of the information levels.

Figure 2: U–matrix visualization of the SOM for the approaches that considers
information levels Left hand side: zero values are missing values, i.e. have an information
level of 0, Right hand side: zero values are ’vague’ values, i.e. have an information level of 0.5

In the case that we set the information level of the zero values to 0, i.e.
interpret them as missing values, the clustering is rather similar to the one of
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the second approach. On the first view there seems to be no improvement. But
if one looks closer, one detects that the process of cluster verification is easier
in this case: If one has identified a cluster border, one normally looks first at
the codebook vectors to detect the important attributes that are responsible for
this cluster. The problem is that high values are not always a good indicator
for importance. But this restriction is not valid, when using the information
levels of the codebook vectors. Here a high level is an excellent indicator for the
importance of the related attribute.

At last we use an information level of 0.5 for the zero values. The choice of the
information level is rather uncritical: For x∗i between 0.25 and 0.75 the results
are not very different. The resulting clustering is much better than for the other
approaches. The detection of borders is rather easy and the cluster verification
makes no problems, when using the information levels of the codebook vectors.
Experts of the application field have justified the resulting clustering.

5 Conclusion

The paper presents a powerful, generally applicable approach to consider in-
formation levels in the setting of Data Mining, especially in cluster analysis.
Future work will focus on applications to large datasets with large numbers of
missing or vague values, and the development of necessary extensions to use the
suggested concept also within classification methods.
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